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Abstract

Graph Neural Networks (GNNs) excel in graph mining tasks thanks to their
message-passing mechanism, which aligns with the homophily assumption. How-
ever, connected nodes can also exhibit inconsistent behaviors, termed heterophilic
patterns, sparking interest in heterophilic GNNs (HTGNNs). Although the message-
passing mechanism seems unsuitable for heterophilic graphs owing to the propaga-
tion of dissimilar messages, it is still popular in HTGNNSs and consistently achieves
notable success. Some efforts have investigated such an interesting phenomenon,
but are limited in the data perspective. The model-perspective understanding re-
mains largely unexplored, which is conducive to guiding the designs of HTGNNs.
To fill this gap, we build the connection between node discriminability and the
compatibility matrix (CM). We reveal that the effectiveness of the message passing
in HTGNNs may be credited to increasing the proposed Compatibility Matrix
Discriminability (CMD). However, the issues of sparsity and noise pose great chal-
lenges to leveraging CM. Thus, we propose CMGNN, a novel approach to alleviate
these issues while enhancing the CM and node embeddings explicitly. A thor-
ough evaluation involving 13 datasets and comparison against 20 well-established
baselines highlights the superiority of CMGNN.

1 Introduction

Graph Neural Networks (GNNs) have shown remarkable performance in graph mining tasks, such as
social network analysis [1} 2] and recommender systems [3| 14]. The widely used message-passing
mechanism is typically based on the homophily assumption [3], which assumes that nodes are
inclined to behave similarly to their neighbors [[6]. However, this assumption is often violated in
real-world graphs, where connected nodes exhibit a contrasting tendency called heterophily [7]. In
response to the challenges of heterophily, heterophilic GNNs (HTGNNs) have attracted considerable
interest [0, 8, 9], with numerous innovative approaches [[10-H13]. However, the majority of them
continue to employ a message-passing mechanism and remain successful, which was not originally
designed for heterophilic graphs, as they tend to incorporate excessive messages from disparate
classes. This raises a question: Why does message passing remain effective on heterophilic graphs?

Some efforts [6, (9,14} [15] have begun to investigate this question and reveal that vanilla message-
passing (VMP) can still work on heterophilic graphs under certain conditions. However, these
works are limited in studying what kind of data is suitable for VMP. A large part of HTGNNs have
modified the message-passing mechanism in response to heterophily, namely heterophilic message-
passing (HTMP), which outperforms VMP on heterophilic graphs. How HTMP works effectively in
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certain data remains largely unexplored. In this paper, we investigate the connection between node
discriminability and the compatibility matrix (CM), that is, the latent connection preference among
classes within a graph. We propose the Compatibility Matrix Discriminability (CMD) to measure the
discriminability of CM. Theoretical and empirical analyses prove that node discriminability and CMD
are positively correlated in VMP while ignoring the influence of node degrees. In addition, a toy
example and a posterior evaluation in representative HTGNN show that the effectiveness of existing
HTMP mechanisms may be attributed to increasing CMD, which leads to better node embeddings.

This discovery explains the essence of HTMP and provides insight for the design of new HTGNNS.
Nevertheless, the graph sparsity and noise bring significant challenges for leveraging the CM as
they can cause low-quality CM estimations, misguiding the message passing. To fill this gap, we
propose a novel Compatibility Matrix-aware Graph Neural Network (CMGNN), which alleviates
the sparsity and noise issues by introducing supplementary CM-aware messages while preserving
the original neighborhood information. Meanwhile, a targeted constraint is applied to explicitly
and simultaneously enhance the CMD and node embeddings. We then conduct fair comparisons
to evaluate the effectiveness of CMGNN, compared with 20 baseline methods on 13 datasets with
varying homophily levels and scales. Extensive experimental results demonstrate that CMGNN
outperforms all baseline methods on heterophilic graphs while also being competitive on homophilic
graphs. The contributions of this paper are summarized as follows:

* Theoretical Findings. We reveal the possible principle behind the heterophilic message-passing
mechanism through comprehensive theoretical and empirical analyses, which may help people
better understand the HTMP mechanism.

* Proposed Method. We introduce CMGNN, a novel approach that leverages and enhances the CM
to learn better node embeddings while alleviating the issues of graph sparsity and noise.
* Benchmarking and Evaluation. We construct a comprehensive and fair benchmark to evaluate

the effectiveness of CMGNN. Extensive experimental results show the superiority of CMGNN.
Our code is available at https://github.com/zfx233/CMGNN.

2 Preliminaries

Notations. Given a graph G = (V,£,X, A,Y), V is the node set and € is the edge set. Nodes are
characterized by the feature matrix X € RN *ds where N = |V| denotes the number of nodes, d 1 1s
the feature dimension. Y € R™*! is the node labels with the one-hot version C € RV*X  where K
is the number of node classes. A € RV*¥ is the adjacency matrix, each element a;; in A denotes
whether there is an edge between 4 and j, and D = diag(dy, ..., d,) represents the diagonal degree
matrix, where d; = > ; @ij. The normalized adjacency matrix is denoted by A=D"'A Weusel
to represent a matrix with all elements equal to 1.

Homophily and Heterophily. Graphs exhibit high homophily when a large fraction of neigh-
boring nodes have the same labels as the central nodes, whereas graphs with high heterophily
show the contrary. For measuring the homophily level, two widely used metrics are edge

homophily he [16] and node homophily h™ [17], defined as h¢ = He“”le“”elilY“ =Yu}l and

h" = \Vl Y vey ‘{“"’“”egd Yu=Yu}l Both metrics range from [0, 1], with higher values denoting
greater homophily and lower values signifying stronger heterophily.

Vanilla Message-Passing (VMP). The vanilla message-passing mechanism plays a pivotal role
in transforming and updating node embeddings based on the neighborhood [18]]. Typically, the
mechanism operates iteratively and comprises two stages:

Z' = AGGREGATE(A,Z'™"), Z'= COMBINE (ZH, Zl) , (1)

where the AGGREGATE function first aggregates the input messages Z'~! from neighborhood A

into Z!, and subsequently, the COMBINE function combines the messages of the node ego and
neighborhood aggregation, resulting in updated embeddings Z.

Heterophilic Message-Passing (HTMP). To adapt to heterophily, many heterophilic message-
passing methods have been proposed, which usually extend the neighborhood variously, enriching
the sources of messages. In addition, the aggregation weights and the COMBINE function are
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often redesigned to collect neighbor messages preferentially while preserving the ego messages.
Moreover, there may exist multiple messages collected from different neighborhoods in HTMP,
which simultaneously form node embeddings. In this paper, we use "HTMP" methods to refer to
the heterophilic GNNs that follow the message-passing mechanism. More detailed related works are
available in Appendix [A]

3 Exploring the Essence of Message Passing on Heterophilic Graphs

In this section, we aim to uncover the underlying principle that explains the effectiveness of HTMP
Inspired by the key factors identified by Zhu et al. [9], we consider the compatibility matrix (CM) [7]]
as a potential path. To formally explore the connection between node discriminability and CM
in message passing, we use the Expected Negative KL-divergence (ENKL) [[15] to measure node
discriminability and define Compatibility Matrix Discriminability (CMD) for CM.

Expected Negative KL-divergence (ENKL) [[15]. ENKL can measure the inter-class node discrim-
inability in the graph generated by the Contextual Stochastic Block Model for Homophily/Heterophily
(CSBM-H) [115]], a variation of the generative model CSBM [19], which has been widely adopted to
study the behavior of GNNs [6,120,121]]. In CSBM-H, the generated graph comprises two disjoint node
sets, i € Cp and j € Cy, representing two classes. The node features are generated independently,
where x; is generated from N (g, 02I) and z; from N (g, 021), with g, g € RE* and Fy, as the
embedding dimension. Node degrees for Cy and C; are dy, dy respectively. For ¢ € Cy, its neighbors
are independently sampled as h - d intra-class and (1 — h) - dy inter-class nodes, mirrored for j € C;.
Then, the ENKL is defined as follows:

ENKL(X) = ~d (12 + 105) = (0 + 5 —2), @
where d% = (g — 1) (g — 1), p = 20 Different message-passing mechanisms can obtain
different node embeddings with corresponding ENKL values, where smaller ENKL values correspond
to more distinguishable node embeddings. Thus, ENKL can serve as a theoretically guaranteed
evaluation criterion for different message passing approaches.

Compatibility Matrix (CM) [[1]]. CM characterizes the latent connection preference among classes
within a graph. It is formatted as a matrix M € R¥> X where the i-th row M; denotes the connection
probabilities between class ¢ and all classes. It can be estimated empirically as follows:

M = Norm(C”'C™), C" =AC, 3)

where Norm(+) is the L1 normalization for matrix row vectors and 7 is the matrix transpose operation.
C" ¢ RNV*XK i the semantic neighborhoods of nodes, indicating the proportion of neighbors from
each class in the neighborhoods. Thus, the CM under CSBM-H settings is:

h, 1—h]. @

Mcspm-H = {1 2 h

To measure the discriminability of CM, we define the Compatibility Matrix Discriminability (CMD).

Definition 3.1 (Compatibility Matrix Discriminability (CMD)). Given a compatibility matrix M,
the CMD is defined as the average L1 distance between rows (classes):

KK M, — M

where K is the number of classes and M; is the i-th row of M. || - ||; denotes the L1 distance. The
higher the CMD, the more distinguishable each row in the CM is.

We start with VMP to investigate the potential connection between CMD and ENKL. Following
previous work [[15], we use a low-pass (LP) operator A asan example of VMP: H*F = AX. Since
all neighbors of each node share the same weight in VMP, CM can also indicate the proportion of
class-level neighbor messages in node embeddings. Thus, discriminability in CM can be transferred
to node embeddings in VMP. Formally, through theoretical analysis, we have the following theorem.
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Figure 1: Visualization of CSBM-H (uy = [—1,0], uy = [0,1],08 = 1,07 = 2,dy = 5,d; = 5).

Theorem 3.2 (Negatively Correlation between CMD and ENKL of VMP). Consider a graph
G ~ CSBM-H(pg, 11,021,021, dy,dy,h) and the LP operator A as VMP. When ignoring the
influence of node degrees, i.e., dy = dy, we have Cov(CMD(Mcspy.1r), ENKL(HE)) < 0, where
Cov(-) denotes the covariance. It means that the CMD and ENKL of VMP are negatively correlated.

The detailed proof is available in Appendix [B] We visualize the changing trends of CMD and ENKL
of VMP (LP) in Figureﬂ] , which does show a negative correlation. Thus, more discriminable CM
can lead to better node embeddings in VMP. This gives the reason why VMP can work well in some
heterophilic situations: A CM with low homophily but high discriminability can also lead to high
node discriminability in VMP. We conduct experiments on the synthetic dataset to provide empirical
analysis in Appendix [C] This conclusion is similar to previous works [6] 9] that discuss heterophily
from the perspective of data, since heterophily and CM are both characteristics of data. However,
they lack the understanding from the perspective of the model, which is conducive to guiding the
designs of HTGNNs. To fill this gap, we take a further step in understanding this theoretical finding
with a model perspective and consider such a question: when given the exact data, can we enhance
the CMD through the model to learn better embeddings? Coincidentally, this may able to explain
the essence of HTMP methods, as the weights of practical class-level neighbor messages in these
HTMP methods may be different from the original CM. Since CM is a fixed concept for describing
the original data, we introduce Weighted-CM for the sake of distinction.

Definition 3.3 (Weighted Compatibility Matrix (Weighted-CM)). The weights of practical class-
level neighbor messages after message passing. It is also formatted as a matrix M € REXK where
the ¢-th row M; denotes the aggregate weights of all classes for class 7. It can be estimated as follows:

M =CcTAC, (6)

where A € RV*N js the practical aggregate weights matrix during message passing. Note that there
is no strict limit to the values: m;; € R.

For further analysis, we define the identity (I), high-pass (HP) and heterophilic message-pass (HTMP)
operators as A! = I, AH® = T — A, and AH™P — I 4+ bA + cA2, where a,b,c € [—1,1] are
three learnable weight parameters. The high-pass operator can capture the difference between the
central node and its neighborhoods in heterophilic graphs. The HTMP operator is a typical scheme
that aims to utilize the linear combination of multiple-order neighborhood messages to obtain more
distinguishable embeddings. The embedding matrices after message passing can be represented as
H° = A°X,0 € {I, LP, HP, HTMP}. Thus, the Weighted-CMs and corresponding CMDs of identity,
LP, HP, and HTMP operators are as follows:

0 1, 0] ~op [ By 1—h] e [1—h, h—1

M—{o, 1}’M _{1—h7 h }M _{h—L 1—h}’

NHTMP _ a + bh + C[h2 +(1- ]’L)Q}7 b(l —h)+ 20h(1 —h) (7
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a

1 1
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Table 1: CMD and ENKL values of different operators on real-world graphs.

Dataset ‘ Roman-Empire ‘ Amazon-Ratings ‘ Chameleon-F ‘ Squirrel-F
Operator | CMD | ENKL | CMD | ENKL | CMD | ENKL | CMD | ENKL
LP 085 | -0.76 | 0.46 -0.26 027 | 2538 | 0.08 | -14.84
HP 277 | -262 | 1.95 -0.80 207 | -1265 | 2.02 | -67.89
HTMP (Case 1) | 3.31 | -4.13 | 235 -1.14 239 | -150.8 | 222 | -80.05

HTMP (Case 2) | 3.55 -5.04 3.10 -2.41 2.85 | -170.6 | 2.28 | -89.52
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Figure 2: Visualizations of Weighted-CMs estimated through various methods on Amazon-Ratings.

Since we aim to obtain the largest CMD, the values of a, b, ¢ can be set as follows:

Case 1, h > % :a:1,b:1,c:1,AHTMP:I+A+A2,CMDHTMP:8(h—i)2+g,
(3)
Case2, h < % :a:1,b:—1,c:1,AHTMP:I—A+A2,CMDHTMP:8(h—%)2—&—2.

We visualize the changing trends of CMD and ENKL of the four operators in Figure[I} Similarly, the
two changing trends are negatively correlated independently for each operator, which can also be
proven by theoretical analysis. Although the relationship between the CMD and ENKL values among
different operators is not consistent, we still show that it is feasible to obtain better embeddings by
increasing the CMD in HTMP as the HTMP operator achieves the minimum ENKL, i.e., the best
node discriminability, in most cases by different combinations of parameters a, b, c.

However, there are significant gaps between the theoretical assumptions of CSBM-H and real-world
graphs, including multi-class, semi-supervised settings, imbalanced node degrees, and potential
low-quality node features, among others. What is the impact on the relationship between CMD and
ENKL? We count the values of ENKL and CMD when different operators are used on some real
graphs, as in Table|l} We find that the negative correlation between CMD and ENKL still holds
on real-world graphs, which expands the Theorem@ In addition to the above analyses, we also
investigated three representative methods, GIoGNN [22]], GPR-GNN [23]], and ACM-GCN [12]].

Observation 3.4 (The increased CMDs of representative HTGNNs). We conduct a posterior
evaluation on the results of GIoGNN, GPR-GNN, and ACM-GCN. All the CMDs of Weighted-CMs
have been significantly improved compared to the fixed one of the original data, as shown in Figure[2]

More details and examples about the posterior evaluation can be found in Appendix [D] The success
of the HTMP operator and Observation [3.4] gives a possible answer to the effectiveness of HTMP:

Remark 3.5 (Increasing CMD is a possible reason for the effectiveness of HTMP). Given certain
data, the HTMP mechanism can increase the CMD by replacing the fixed one with the Weighted-CM
via various model-level designs, leading to better node embeddings.

This explains the underlying principle of HTMP and provides insight for designing new HTGNNs
via increasing CMD. Several existing works [7} 24} 25] have naively estimated and used CM without
increasing CMD. However, to make good use of CM, there are still two significant issues, namely
sparsity and noise, when considering real-world heterophilic graphs. First, node degrees can be
very imbalanced. Some nodes may have few neighbors due to the sparsity of the graph, which may
not only show a highly inconsistent semantic neighborhood with CM but also be harmful to the
effectiveness of message passing. Second, node labels are not fully available in the semi-supervised
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Figure 3: The overall framework of CMGNN.

setting. Inaccurate predictions of node labels can cause low-quality CM estimation, which misguides
the message passing, leading to low-discriminative node embeddings. These issues pose significant
challenges to the explicit modeling and effective utilization of CM.

4 Methodology

To address these issues, we introduce Compatibility Matrix-Aware GNN (CMGNN), as shown
in Figure |3] which alleviates the sparsity and noise issues by virtual neighborhood supplement,
confidence-based compatibility matrix estimation, and CM-aware message passing. Then, a straight-
forward constraint is applied to explicitly enhance the discriminability of CM and node embeddings.

Virtual Neighborhood Supplement. Given the graph sparsity, some nodes may have low degrees.
Thus, CMGNN introduces an additional virtual neighborhood to provide nodes with supplemental
messages from each class. The virtual neighborhood is the same for all nodes, which consists of
K additional virtual neighbors: As“? = 1 € RV*K [t ensures accessibility to the messages of
all classes for each node. Specifically, these additional neighbors are K virtual nodes, designed as
the class prototypes based on the training set labels. The attributes XP** € R%*4s neighborhoods
APt ¢ REXN and labels YP* € RE>XE of prototypes are defined as follows:

XPH = NOTm(Ct7-ainTXt7-ain), AP = o, Y = I, ©))

where Cy,.qin and Xy,.qip are the one-hot labels and attributes of nodes in the training set. Utilizing
class prototypes to construct virtual neighborhoods can provide each node with representative
messages of all classes, which builds the basis for CM-aware message passing.

Confidence-based CM Estimation. The CM can be calculated via Eq[3|with full-available labels.
However, label information is not entirely available in semi-supervised settings. Thus, we try to
estimate the CM with the help of pseudo labels. To mitigate the impact of potentially incorrect
pseudo labels predicted by the model, we introduce a confidence metric g € R™ <! derived from the
information entropy, with high entropy indicating low confidence:

gi = log K — H(C;) € [0,log K], (10)

where H(p) = — 3, pilog(p;) denotes the entropy, C € RV > is the soft pseudo labels composed

of training labels Cy,.q;,, and model predictions C:

A~ { Ctiain,i, v; € vtrain, (11)

C;, = .
¢ Ci, otherwise,

where Vi, 1s the training set. Then the semantic neighborhoods of the nodes are calculated
considering the confidence: C" = Norm(A(g - C)) € RV*X. Finally, we can estimate the

compatibility matrix M e RE*K g5 follows:

M = Norm((g - C)")C™. (12)

Note that the CM is repeatedly updated during training. To improve efficiency and stability, CM is
not estimated in every epoch. It remains fixed until the evaluation performance improves.



CM-aware Message Passing. Relying entirely on CM to guide message passing can lead to confus-
ing embeddings when the quality of CM is low. Therefore, we regard it as a separate supplementary
message source while preserving the original neighborhood distribution. Specifically, CMGNN col-
lects messages from node ego, raw neighborhoods A and the supplement neighborhoods A%“P,
respectively. The first two are widely used in HTGNNSs as the ego-neighbor separation design
principle [16]], while the last provides a novel approach to apply CM. The messages from node ego
and raw neighborhoods are obtained as follows:

Zi:go = Zlilwigm Ziaw = Azlilwiawa (13)

where Z!~1 is the input node embedding of layer I, W gos W! . are learnable matrices for message
transformation. For the supplement neighborhood, we leverage CM to offer nodes additional messages

personalized by their soft pseudo labels, which converts discriminability from CM into messages:
Z.,, = (A" © CM)Z},/W.,,, (14)

where © is the Hadamard product, Zi,;tl are the input embeddings of virtual prototype nodes obtained

via the same message-passing process as real nodes. The aggregation weights CM indicate the
desired semantic neighborhoods of nodes, i.e., the desired class proportion of neighbors according to
the class probability of central nodes. Using soft logits rather than one-hot pseudo labels preserves
the real characteristics of nodes and reduces the impact of wrong predictions.

Given the diverse conditions of nodes, we apply adaptive weighted addition to combine these
messages. Meanwhile, messages of multiple layers are concatenated to preserve information from
different localities within the graph. The overall CM-aware message passing is described as follows:

L
Zl = diag(aégo)zégo + diag(aiaw)ziaw + diag(alsup)zlsupy Z= | Zlv (15)
=0

where diag(al,,), diag(al,, ), diag(cl,,,) € RV*! are the learnable combination weights, || denotes
the concatenation operation, Z is the final node embeddings. The input embedding of the first layer
is Z° = XW?° where WY € R% *4r and d,. is the dimension of node emebddings. In practice, we
use ReL.U as the activation function between layers. Note that we use the prediction of the model
C to estimate CM in the above process. It is initialized as a uniform distribution on each class and
replaced by the output of CMGNN via a classifier CLA during the learning process:

C =CLA(Z). (16)

Objective Function. As mentioned in Sec 3] enhancing the discriminability of CM is beneficial for
learning better node embeddings. Thus, we introduce an additional discrimination loss L 4;s to reduce
the similarity of the desired neighborhood message among different classes, which simultaneously
enhances the discriminability of CM and node embeddings. Experimental analysis in Section [5.4]
demonstrates the effectiveness of this constraint to enhance the CM. The overall loss consists of a
CrossEntropy loss L. and the discrimination loss £g;s:

L="Lee(Z,Y)+ Nais, Lais = SIm(M;Zpsr, M;Zyur), (17)
i#]

where Sim(-) denotes the cosine similarity, Z,; € R¥*9" is the embeddings of virtual prototype
nodes. More details of CMGNN including pseudo-code are available in Appendix [E]

S Experiments

5.1 Experimental Settings

As reported in Platonov et al. [26], some widely adopted datasets in existing works have critical
drawbacks, leading to unreliable comparisons. Therefore, with a comprehensive review of existing
benchmark evaluations, we construct a new collection of datasets and a unified codebase to fairly
perform experimental evaluation. Specifically, we integrate 20 representative homophilic and het-
erophilic GNNs, construct a unified codebase, and evaluate their node classification performances on
13 datasets with various scales and heterophily levels.



Table 2: Node classification accuracy comparison (%). The error bar (+) denotes the standard
deviation of results over 10 runs. The best and second-best results in each column are highlighted in
bold font and underlined. OOM denotes out-of-memory error during training.

Dataset | Roman-Empire | A Ratings | Cl leon-F | Squirrel-F | Actor | Flickr | BlogCatalog | Pubmed | =
Homo. 0.05 0.38 0.25 0.22 0.22 0.24 0.4 0.8 é
Nodes 22,662 24,492 890 2,223 7,600 7,575 5,196 19,717 IS
Edges 65,854 186,100 13,584 65,718 30,019 479,476 343,486 88,651 =
Classes is 5 5 5 5 9 6 3 <
MLP | 6229+1.03 | 4266+084 | 38.66+4.02 | 36.74+1.80 | 36.70+0.85 | 89.82+0.63 | 93.57 £0.55 | 87.48+0.46 | 15.6
GCN 38.58 +2.35 45.00 £0.55 42.12+£3.82 | 37.89+2.40 | 30.09+0.74 | 68.33£2.82 | 78.07+1.17 | 87.66+0.42 | 16.3
GAT 59.55 £ 1.45 47.72+0.73 40.89+3.50 | 3822+ 1.71 | 30.94+0.95 | 57.22+3.04 | 88.36+1.37 | 87.45+0.53 | 15.6
GraphSAGE 69.62 + 1.40 45.07 £0.54 4218 £4.64 | 38.13+1.71 | 36.12+1.40 | 92.00+0.58 | 96.30+0.44 | 88.86+0.56 | 9.0
APPNP 70.77 + 0.66 45.97 +0.49 42.07+4.07 | 36.38+1.20 | 34.86£1.32 | 91.50£0.51 | 96.29+0.41 | 89.22+0.58 | 10.9
GCNII 82.53£0.37 47.53+0.72 41.56 +4.15 | 40.70+1.80 | 37.51£0.92 | 91.64 +0.67 | 96.48+0.62 | 89.96+0.43 | 4.9
H2GCN 68.61 = 1.05 37.20 £ 0.67 4229 +£4.57 | 3582220 | 33.32+0.90 | 91.25+0.58 | 96.24 £0.39 | 89.32+0.37 | 12.6
MixHop 79.06 +0.64 47.41 £ 1.00 44.97£3.12 | 40.43£1.40 | 36.99+0.88 | 91.10+0.46 | 96.22+0.42 | 89.47+0.35 | 6.6
GBK-GNN 66.04 + 1.44 40.18 + 1.94 4173 £4.57 | 3649+ 1.37 | 3591 +£0.84 OOM OOM 88.14+0.43 | 16.5
GGCN OooOM OOM 4123+£4.08 | 36.76+2.19 | 3568 £0.87 | 90.84 £0.65 | 9558 +0.44 | 89.04+0.40 | 15.4
GloGNN 68.63 +0.63 48.62 +0.59 4095+5.95 | 36.85+1.97 | 36.66+0.81 | 90.47 £0.77 | 94.51 £0.49 | 89.60+0.34 | 11.4
HOGGCN OOM OOM 4335+3.66 | 38.63+1.95 | 36.47+0.83 | 90.94 +£0.72 | 94.75+0.65 OOM 13.1
GPR-GNN 71.10 £ 0.66 46.87 £ 0.60 42.85+3.48 | 37.66+1.08 | 36.16+£1.02 | 91.20+0.46 | 96.29 £0.44 | 89.26+0.37 | 8.5
ACM-GCN 71.15+0.73 50.64 +0.61 4520:+4.14 | 40.90£1.74 | 3599+ 1.44 | 91.43+0.65 | 96.16+0.57 | 89.94+0.35 | 6.0
OrderedGNN 82.88 +0.71 51.15+0.46 4151415 | 36.94+294 | 37.07+0.95 | 91.43+0.78 | 96.22+0.35 | 90.01 £0.35 | 6.4
M2MGNN 83.97+0.71 50.93+£0.45 40.39 £3.68 | 36.36£3.06 | 35.92+0.76 | 91.49+0.76 | 96.34 £0.48 | 89.91£0.35 | 8.8
N? 80.42 +1.30 49.94 £ 0.86 4246 £4.37 | 40.924£225 | 35.51+£1.20 | 90.85+0.78 | 96.22+0.63 | 88.53+0.50 | 8.5
CLP 67.36 £0.62 47.42 £0.44 41.73£4.49 | 37.64 £1.37 | 36.67+1.64 | 90.13+0.67 | 94.45+0.59 | 88.88+0.42 | 11.8
EPFGNN 43.05 £0.40 45.16£0.73 4430£391 | 4047 +1.54 | 3024+ 1.14 | 57.54£1.77 | 74.35+2.22 | 87.06+0.53 | 15.0
CPGNN 59.55+0.84 46.65 £0.71 4145484 | 37.24+2.09 | 3337+ 1.02 | 80.46£1.25 | 81.92+1.06 | 87.98+0.40 | 15.6
CMGNN | 8435+1.27 | 5213055 | 4570+4.92 | 41.89+2.34 | 36.82+0.78 | 92.66 +0.46 | 97.00 +0.52 | 89.99+0.32 | 1.5

Table 3: Node classification accuracy (%) and time cost (minutes) comparison on large-scale graphs.

Dataset | Penn94 | Twitch-Gamer | Genius | Pokec | Snap-Patents | »
Homo. 0.47 0.55 0.62 0.45 0.07 g
Nodes 41,554 168,114 421,961 1,632,803 2,923,922 ~
Edges 1,362,229 6,797,557 984,979 30,622,564 13,975,788 2]
Classes 2 2 2 2 5 Z

Method | Accuracy | Cost | Accuracy | Cost | Accuracy | Cost | Accuracy | Cost | Accuracy | Cost |

MLP | 7471+040 | 1 | 61.25+0.19 | 15 | 82.54+0.14 | 0.8 | 6227+0.08 | 48 | 31.50+0.06 | 14 | 13.8
GCN 7848+041 | 27 | 61.30+0.10 | 2.6 | 84.05+0.12 | 1.6 | 70.17+0.10 | 75 | 37.91£0.06 | 35 | 9.4
GAT 77.94+122 | 25 | 64.59+0.20 | 103 | 82.01+045 | 5 7536+0.18 | 243 | 38.38+0.15 | 142 | 88
GraphSAGE | 78.90+0.37 | 2.8 | 62.14+0.09 14 8437+0.15 | 4.1 | 77.22+0.06 | 134 | 3572£0.12 | 125 7.8

APPNP 77.04+035 | 45 | 60.28+0.23 | 54 | 82.81+£029 | 47 | 62.01+£3.83 | 34 | 3264+0.07 | 57 | 134
GCNII 79.97+040 | 14 | 6497040 | 221 | 8645+0.19 | 89 | 77.75+1.17 | 343 | 42.24+0.68 | 495 | 34

MixHop 76.74+1.17 | 8 | 6225+0.17 | 52 | 8349+027 | 10 | 76.97+0.27 | 305 | 36.94+0.17 | 152 | 8.6

GloGNN 8229+062 | 8 |6574+0.20 | 163 | 84.54+0.15 | 9.5 | 78.61+£0.79 | 263 | 3427+528 | 165 | 4.0

GPR-GNN 82.50+0.32 9 61.03 +0.38 8 82.80+0.64 | 44 | 7545+0.08 54 32.87 +£0.10 39 9.2
ACM-GCN | 80.67+0.49 | 12 | 61.87+0.71 | 58 | 80.63+0.53 | 4.9 | 74.60+0.46 | 393 | 37.53+0.22 | 378 | 10.2
OrderedGNN | 79.49 +0.86 | 14 | 6455+032 | 66 | 84.83+0.75 | 31 | 7579+0.20 | 265 | 39.56+0.34 | 385 | 5.4
M2MGNN | 81.86+0.24 | 74 OOM / 84.43£0.13 | 100 OOM / OOM / 11.4
N2 80.69+0.44 | 35 | 65.76+£0.19 | 294 | 84.08+1.40 | 538 OOM / OOM / 8.8
CLP 74.62+053 | 0.5 | 63.77+0.18 | 1.7 | 82.51+0.14 | 1.3 | 67.23+£0.10 | 13 | 3205£0.06 | 20 | 124
EPFGNN | 72534058 | 12 | 64.19+0.23 | 21 | 81.99+044 | 65 | 64.19+023 | 93 OOM / 13.4
CPGNN 7820+042 | 14 | 63.06+0.25| 15 | 80.70+0.80 | 3.9 | 75.80+0.11 | 123 | 37.09+0.09 | 137 | 9.8
CMGNN | 83.01+048 | 17 | 65.18+031 | 247 | 85.19+0.53 | 20 | 81.42%0.55 | 376 | 59.86+0.61 | 69 | 1.6

Newly Organized Datasets. The newly organized datasets include (i) small-scale: Roman-Empire,
Amazon-Ratings, Chameleon-F, Squirrel-F, Actor, Flickr, BlogCatalog and Pubmed; (ii) large-scale:
Penn94, Twitch-Gamer, Genius, Pokec and Snap-Patents. Their statistics are summarized in Table|2|
and Table[3] For consistency with existing methods, we randomly construct 10 splits with predefined
proportions (48% / 32% / 20% for training / validation / test) for each dataset and report the mean
accuracy and standard deviation of 10 splits.

Baseline Methods. For baseline methods, we choose 20 representative homophilic and heterophilic
GNNSs, including (i) shallow base model: MLP; (ii) homophilic GNNs: GCN [l1]], GAT [27], Graph-
SAGE [28]], APPNP [29], GCNII [30]; (iii) heterophilic GNNs: H2GCN [16], MixHop [[10]], GBK-
GNN [31]], GGCN [32], GIoGNN [22], HOGGCN [33]], GPR-GNN [23]], ACM-GCN [12], Or-
deredGNN [[13], M2MGNN [34] and N2 [35]}; (iv) compatibility matrix-based methods: CLP [25],
EPFGNN [24], CPGNN [7]]. For each method, we integrate its code into a unified codebase and
search for parameters in the space suggested by the original papers. All methods share the same
call interfaces, ensuring a fair environment for comparison. More detailed descriptions about the
drawbacks of previous datasets, newly organized datasets and other experimental settings can be
found in Appendix [F}

5.2 Performance Comparison

We evaluate the above methods and report their performances in Table 2] and Table 3]



Table 4: Ablation study results (%) between CMGNN and five ablation variants, where CE denotes
the confidence-based CM estimation, SM denotes supplementary messages from the sufficient
neighborhoods and DL denotes the discrimination loss.

Variants | Roman-Empire | Squirrel-F |  Actor | Chameleon-F | Amazon-Ratings | Pokec | Penn94 | Genius

CMGNN ‘ 84.35 +1.27 ‘ 41.89 +£2.34 ‘ 36.82 +0.78 ‘ 45.70 £4.92 ‘ 52.13 £ 0.55 ‘ 81.42 + 0.55 ‘ 83.01 +0.48 ‘ 85.19 £ 0.53
‘W/O CE 83.88 + 141 40.35+£2.43 | 36.47+1.22 | 44.75+3.05 51.93 £0.38 80.67 £0.65 | 82.58 +0.49 | 85.03 +0.47
W/0O SM 83.82+1.29 40.72£2.28 | 36.05+1.24 | 42.29+4.38 5191 +£0.83 79.39+£0.37 | 81.68 £ 1.55 | 84.94 +£0.56

W/O DL 83.63 £ 1.35 41.65£2.55 | 3641 £1.08 | 44.92+4.12 52.05+£0.57 80.28 £0.49 | 81.34+1.83 | 84.87£0.75
W/O CE and DL 83.77 +1.38 39.80+2.36 | 36.32+1.05 | 44.58+3.28 51.74 £0.55 79.26 £0.34 | 81.20 £0.61 | 84.53 +0.59
W/O SM and DL 83.48 + 1.89 40.19£2.69 | 35.66 +1.42 | 41.01+3.09 51.49 £1.02 77.57+0.44 | 80.71 £0.48 | 84.28 +0.50

Performance of Baselines. With the comprehensive benchmark, some interesting observations can
be found. First, comparing MLP and homophilic GNNs , we find that VMP can still work well
in Amazon-Ratings, Chameleon-F, and Squirrel-F, which meet the observations of previous works.
Specifically, GCNII achieves an average rank of 4.9, which is even better than all HTGNNs. This may
be attributed to the initial residual connection in GCNII, which enhances the practical Weighted-CM
in message passing. As for heterophilic GNNs, they generally achieve better results than VMPs
(GCN, GAT), demonstrating the effectiveness of their various designs for heterophily. Notably,
MixHop, as an early method, can also achieve quite good performance. The previous SOTA methods,
OrderedGNN and ACM-GCN, prove their effectiveness again through good rankings.

Performance of CMGNN. CMGNN achieves the best performance in 6 small-scale datasets with
an average rank of 1.5, outperforming all baseline methods. This demonstrates the superiority of
leveraging CM and increasing CMD while alleviating the sparsity and noise issues. Regarding the
suboptimal performance in Actor, we speculate that this is because its node attributes and CM are not
discriminative enough to provide valuable information via the supplementary messages, and are hard
to enhance. On Pubmed, the raw identity-like CM is good enough, leading to a minor contribution
from supplement messages. Despite this, CMGNN still achieves top-level performance.

Comparision with CM-based Methods. Some existing methods also utilize the CM to redefine
pairwise relations (e.g., edge weights) for nodes. However, they suffer from the issues of sparsity and
noise, as their performances and average ranks have significant gaps compared with CMGNN. In
contrast, CMGNN leverages CM and virtual neighbors to construct supplementary messages while
preserving the original neighborhood distribution, leading to the following advantages: (i) Better
robustness for low-quality pseudo labels; (ii) Unlock the effectiveness of CM for low-degree nodes;
(iii) More accurate estimation of CM. More detailed analyses are listed in Appendix [G.1]

Performance on Large-Scale Graphs. To further evaluate the scalability of CMGNN, we also
conduct experiments on five large-scale datasets. The performance and computational cost comparison
are listed in Table[3] Again, CMGNN achieves superior performance with the best average rank of
1.6, while GCNII follows behind with a rank of 3.4. Meanwhile, CMGNN strikes a good balance
between performance and efficiency, especially in Snap-Patents with 17% significant improvements
and less time cost, demonstrating great scalability in handling of large-scale graphs.

Performance on Homophilic and Heterophilic Graphs. We divide all datasets into two groups
according to their edge homophily levels with a threshold of 0.5. CMGNN shows significant
effectiveness on heterophilic graphs with an average rank of 1.3 and achieves the best on 9 of 10
datasets. Also, CMGNN can keep competitive performance on homophilic graphs with an average
rank of 2.3, which is also the best compared with baseline methods. Interestingly, some heterophilic
GNNs work relatively better on homophilic graphs rather than heterophilic graphs, such as GloGNN
and OrderedGNN. This might be because these methods are relatively more inclined to adapt to both
situations.

5.3 Ablation Study

We conduct an ablation study on three key designs of CMGNN, including the confidence-based CM
estimation (CE), supplementary messages from the virtual neighborhood (SM) and the discrimination
loss (DL). The results are shown in Table [d] Firstly, all three components have indispensable
contributions to CMGNN, as the absence of any part will degrade the performance. Meanwhile, the
CE and DL have relatively small impacts while SM plays a more important role in most datasets.
Further, we notice that CMGNN can reach a smaller standard deviation compared with the variants
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Figure 4: Visualizations of the original CM (O) and Weighted-CMs (W) on Amazon-Ratings (Ama),
Chameleon-F (Cha), and Squirrel-F (Squ), along with the corresponding CMD values.

most of the time. This shows that CMGNN achieves more stable results by alleviating the sparsity
and noise issues. As for the opposite result on Chameleon-F, this may be attributed to its small size
(890 nodes), which naturally leads to unstable results.

5.4 Case Study on the Estimated CMs and CMDs

To evaluate the effectiveness of CMGNN in increasing CMD, we calculate the CMD of both original
and Weighted-CMs, as illustrated in Figure 4] The results demonstrate that CMGNN is capable of
enhancing the CMD across graphs with varying homophily levels, thereby resulting in better node
embeddings. Even for CM with tiny CMD on Squirrel-F, CMGNN can still maintain its effectiveness.

More experimental results can be found in Appendix [G] including more ablation studies, case
studies on node degrees and low label rate settings, comprehensive complexity analysis, and runtime-
performance tradeoff comparison.

6 Conclusion and Limitation

In this paper, we explore the underlying principle that explains the effectiveness of HTMP by
investigating the connection between node discriminability and CM. We find that the effectiveness of
many existing HTMP mechanisms may be credited to increasing the CMD. Inspired by this discovery,
we propose CMGNN, a novel approach to enhance the CMD and node embeddings explicitly while
alleviating the sparsity and noise issues. Experimental results show the effectiveness of CMGNN.

This work mainly focuses on the message-passing mechanism in existing HTGNNs under the semi-
supervised setting. Thus, this paper does not analyze the other designs in HTGNNSs, such as spectral-
and graph-transform-based methods. Theoretical analyses and proofs are based on the CSBM-H with
corresponding assumptions about node features, degrees and edges.
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NeurIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The contributions and scope of this paper are included in the abstract and
introduction.

Guidelines:
¢ The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.
2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The limitations of this work are listed in the Sec[6l
Guidelines:
* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.
* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.
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* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
Justification: We provide the formalization proof of Theorem [3.2)in Appendix
Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The details of the method and experimental settings are provided in Section ][]
and Appendix [E] [F
Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

* If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

* Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.
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* While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]
Justification: The data and code are available in the supplementary material.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.
 The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they

should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized

versions (if applicable).

Providing as much information as possible in supplemental material (appended to the

paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: The detailed experimental settings are provided in Section [5|and Appendix [F]
Guidelines:

* The answer NA means that the paper does not include experiments.

» The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.
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* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We report the average accuracy and the standard deviation as the performance
in experiments.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We list the hardware and software resources along with the space and space
complexity and run time in Appendix [F]and

Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: The research conducted in this paper conforms, in every respect, with the
NeurIPS Code of Ethics.
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Guidelines:

* The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The potential positive societal impacts are provided in Sec[I] while the potential
negative societal impacts are meaningless since this work is foundational research.

Guidelines:

» The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This paper poses no such risk. The datasets used are all publicly available
online.

Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.
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12.

13.

14.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The datasets and codes of baseline methods are publicly available online. We
cite the original paper and mark the URL in both papers and the codebase.

Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]
Justification: We provide a public codebase along with an illustrative README file.
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.
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15.

16.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this paper does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Related Works

Homophilic Graph Neural Networks. Graph Neural Networks (GNNs) have showcased impressive
capabilities in handling graph-structured data [36} [37]]. Traditional GNNs are predominantly founded
on the assumption of homophily, broadly categorized into two classes: spectral-based GNNs and
spatial-based GNNs. Firstly, spectral-based GNNs acquire node representations through graph
convolution operations employing diverse graph filters [1, 138} 39]]. Secondly, spatial-based methods
gather information from neighbors and update the representation of central nodes through the
message-passing mechanism [27, 29} [28]]. Moreover, for a more comprehensive understanding of
existing homophilic GNNs, several unified frameworks [40, 41]] have been proposed. Ma et al. [40]]
propose that the aggregation process in some representative homophilic GNNs can be regarded
as solving a graph denoising problem with a smoothness assumption. Zhu et al. [41] establishes
a connection between various message-passing mechanisms and a unified optimization problem.
However, these methods have limitations, as the aggregated representations may lose discriminability
when heterophilic neighbors dominate [[11}[16].

Heterophilic Graph Neural Networks. Recently, some heterophilic GNNs have emerged to tackle
the heterophily problem [[10H13} [33) [16} 42} 143) [17, 22| [23] 144} 32} |35} 34]]. Firstly, a commonly
adopted strategy involves expanding the neighborhood with higher homophily or richer messages,
such as high order neighborhooods [16, 42]], feature-similarity-based neighborhoods [42} 43]], and
custom-defined neighborhoods [17} 44]. Secondly, some approaches [[11} 33112} 22| 32]] aim to lever-
age information from heterophilic neighbors, considering that not all heterophily is detrimental [6].
Thirdly, some methods [16} 10, 23| [13] adapt to heterophily by extending the combine function in
message passing, creating variations for addition and concatenation.

Reviewing Heterophilic Graph Neural Networks. Heterophilic GNNs have attracted more and more
research attention. Some surveys have provided a macroscopic view for reviewing heterophilic GNNs,
categorizing heterophilic GNNs with shallow analysis. Specifically, Zheng et al. [8] categorizes the
designs of heterophilic GNNs into non-local neighbor extensions and GNN architecture refinement.
Zhu et al. [9] examines the impact of heterophilic graph characteristics on GNNs. For categorizations,
it simply lists some effective designs in heterophilic GNNs. Gong et al. [45] reviews heterophilic
graph learning, where message passing is only a minor aspect of its taxonomy with a broader view.

The Connection Between Message Passing and Heterophily. Recently, some efforts [6] 9] [14] [15]
46| have begun to investigate the connection between message passing and heterophily. Zhu et al. [9]
highlighted that node degrees and compatibility matrices are key factors for message passing under
heterophily. In ACM [[12]], the authors found that the performance curves of the VMP mechanism
under different levels of homophily are U-shaped. Similarly, Ma et al. [[6] proposed the existence of a
special case of heterophily, named "good" heterophily, where the homophily ratios remain low, but
the VMP mechanism can achieve strong performance. Luan et al. [15] shows that the low-pass filter
works better at very low and very high homophily intervals, while the high-pass filter works better at
the low to medium homophily interval. However, these works are limited in studying what kind of
data is suitable for the message-passing mechanism, lacking a model-perspective understanding of
heterophilic message passing.

B Proof of Theorem 3.2

To prove Theorem we first calculate the CMD(Mcspyv.nr) and ENKL(H), respectively.

According to the definitions in CSBM-H, the corresponding compatibility matrix is as follows:

Mesems = [1 b h} . ()
Thus, the corresponding CMD can be calculated by Eq[5}
CMD(Mcspyn) = 2(jh = (1 = h)|2+ L=h=h) _ 2|20 — 1| = 4|h — %|‘ (19)
On the other hand, the original X and LP features H-? = AX are as follows:
i € Co, i ~ N(pg, op1); hi¥" ~ N(fag, 551), 20)

j S Clij ~ N(/J’ha-%]:)v h]LP ~ N(pﬂ?&%]:)a
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~ ~ ~ h(o2—02)40? - h(o?—o3)+od
where fig = h(pg — p1) + p1, oy = h(py — po) + o, 55 = % 57 = Moizgoltor

Considering the formula of ENKL Eq we first calculate d%lu,.
d%( = |lmo — p’l”%a
d%—IU’ = [/ — 111”%

= [|h(rg — 1) + 11 — (Bpey — po) + o) 13 (21)

=120 = 1) (1o — 1) |13

= (2h — 1)%d%.
In CSBM-H, F}, = 2, we further assume dy = d; = d, that is, ignoring the influence of node degrees.
Now we have 63 = % and 63 MW.
The ENKL of LP feature is as follows:
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Since g, pt1,03, 07 and d are fixed parameters in CSBM-H when only considering the change of
homophily h, we simplify the above formulation by new variables a, b.

d% - d(od + o})

a=| 2"
(0§ —0f)?

(0 +ob? _ 1

4(ck —0?)2 T4’

; 2] 2, +00),
(23)

b= +00).
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Figure 5: The visualization of the compatibility matrix on synthetic graphs.

Thus, the ENKL can be represented as follows:

b
- +1]. (24)

ENKLH") =¢q|————
EY =a |G

Furthermore, lett = |h — 1| € [0, 3] since h € [0, 1], the CMD and ENKL can be represented as
follows:

CMD(Mcspm-n) = 4t,

py __ab (25)
ENKL(H™") = o +a.
To simplify the computation, we analyze monotonicity with the aid of derivatives.
dCMD
=4>0,
dt 26)
dENKL _ —2abt _ (
dat (t2—b)2 = 7

That means CMD increases monotonically with t, while ENKL decreases monotonically with t. Thus,
the covariance between CMD and ENKL is negative: Cov(CMD(Mcspm.n), ENKL(HP)) < 0.

C The Experiments on Synthetic Datasets

To explore the performance impact of homophily level, node degrees, and compatibility matrix (CMs)
on simple GNNs, we conduct some experiments on synthetic datasets.

C.1 Synthetic Datasets

We construct synthetic graphs considering the factors of homophily, CMs, and degrees. For homophily,
we set 3 levels including Lowh (0.2), Midh (0.5), and Highh (0.8). For CMs, we set two levels of
discriminability, including Easy and Hard. For degrees, we set two levels, including Lowdeg (4)
and Highdeg (18). Note that with a certain homophily level, we can only control the non-diagonal
elements of CMs. Thus, there are a total of 12 synthetic graphs following the above settings. These
synthetic graphs are based on the Cora dataset, which provides node features and labels, which means,
only the edges are constructed. We visualize the CMs of these graphs in Figure[5] Since there is no

23



Table 5: Node classification accuracy of GCN on synthetic datasets.

Factors | Highh, Easy Highh, Hard | Midh, Easy Midh, Hard | Lowh, Easy Lowh, Hard

Highd | 99.15+0.35 99.48+0.24 | 86.42+4.13 90.52+1.05 | 89.34+2.19 39.22+2.34
Lowd | 89.98+1.59 91.25+0.85 | 70.85+1.59 70.20+141 | 56.46+2.63 4091+ 1.75

significant difference in CMs between low-degree and high-degree, we only plot the high-degree
ones. Further, the edges are randomly constructed under the guidance of these CMs and degrees to
form the synthetic graphs.

C.2 Experiments on Synthetic Datasets

We use GCN to analyze the performance impact of the above factors. The semi-supervised node
classification performance of GCN is shown in Table [5] while the baseline performance of MLP
(72.54 £ 2.18) is the same among these datasets since their difference is only on edges. From these
results, we have some observations: (1) High homophily is not necessary, GCN can also work well
on low homophily but discriminative CM; (2) Low degrees have a negative impact on performance,
especially when the CMs are relatively less discriminative. This also indicates that nodes with lower
degrees are more likely to have confused semantic neighborhoods; (3) When handling nodes with
confused semantic neighborhoods, GCN may contaminate central nodes with their neighborhoods’
messages, which leads to worse performance than MLP. This once again reminds us of the importance
of enhancing the CM discriminability.

D The Posterior Evaluation about the Weighted-CM and CMD in HTGNNs

In this part, we give the details of the empirical posterior evaluation on GloGNN [22]], GPR-GNN [23],
and ACM-GCN [12].

GloGNN. GloGNN learns a global pair-wise coefficient matrix Z and utilizes it as the aggregation
weights during message passing. Thus, we directly calculate this matrix as the practical aggregate

weights matrix Adlo — 7, then regard A as the neighborhood and calculate the Weighted-CM and its
corresponding CMD.

ACM-GCN. ACM-GCN merges messages from various filters using adaptive weights, effectively
altering edge weights to construct the Weight-CM with optional negative elements due to the high pass

filter. Thus, we leverage the learned weights to rebuild a practical aggregate weights matrix Aaem

based on the low-pass filter A and high-pass filter I — A, then regard Aaem a5 the neighborhood and
calculate the Weighted-CM and its corresponding CMD.

GPRGNN. GPR-GNN integrates the CMs of multiple-order neighborhoods with adaptive weights to
form a more discriminative Weighted-CM. Thus, we utilize the learned weights to rebuild a practical

aggregate weights matrix A97" based on the multi-hop adjacency matrices [I, A, A2, ..., A¥], then
regard A9P" as the neighborhood and calculate the Weighted-CM and its corresponding CMD.

The visualization of Weighted-CMs and corresponding CMD on various datasets can be seen in
Figure|[6]

E Additional Detailed Implementation of CMGNN

Considering the influence of node degree in compatibility matrix estimation. As mentioned in
Section 3] the semantic neighborhood of low-degree nodes may display inconsistencies with CM.
Thus, nodes with low degrees deserve low weights during the CM estimation. We manually set up a
weighting function range in [0, 1]:

d; /2K, d; < K,
wé = {025+d/4K K < d; <3K 27)
1, otherwise.
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Figure 6: Visualizations of Weighted-CMs and CMD of GloGNN, GPR-GNN, and ACM-GCN on
various datasets.

For low-degree nodes, increases in degree should yield more significant benefits compared to high-
degree nodes. Beyond a certain threshold, increases in degree yield tiny benefits. We have empirically
chosen K and 3K as fixed thresholds for the weighting function to simplify the design without
multiple attempts. This approach is straightforward and can be substituted with other forms that meet
the same criteria. In practice, the compatibility matrix is estimated considering the various node
degrees:

M = Norm((w? - g - C)T)C". (28)

The utilization of additional structural features. In line with existing methods [12]22]], we treat
the topology structure as additional node features. These features, shown as the adjacency matrix A,
depict node connections. Each row A; can be viewed as an extra NV-dimensional feature of node .
Thus, the input representation of the first layer can be obtained in two ways:

70 = XWX || AWAIWO, or Z° = XW°. (29)
Specifically, (i) using additional features, where WX € R *xdr W4 ¢ RNXdr and W, € R2drxdr

are learnable matrices; (ii) using only attribute features, where WO ¢ Rér*dr where d, is the
dimension of node embeddings.

Message COMBNIE with Adaptive Weights. The aggregated messages from node ego, raw, and

supplementary neighborhoods are Z. g0 Z!,. and Zéup, respectively. The combination weights are
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Algorithm 1 Algorithm of CMGNN
Require: Graph G = (V,&,X, A,Y), loss weight A, epoch E
Ensure: Predicted labels Y _
1: Initialize the soft predicted labels C' with other elements %
2: Construct class prototypes as additional virtual neighbors for all nodes via Eq[9]
3. for iteration 1, 2, ..., E do
4:  Obtain the input representations for the first layer via Eq[29]
5:  Estimate the compatibility matrix via Eq[I0] Eq[TT] Eq[27] and Eq[2§]
6:  Obtain the output representations through the CM-aware message-passing mechanism via
Eq[T3] Eq[T4] and Eq[T]
7:  Obtain the predlcted logits (soft label) C via Eq.
8:  Calculate loss £ via Eq[T7]
9:  Back-propagation £ to optimize the weights of networks.
10:  if the performance in the validation set improved then

11: update the compatibility matrix with current soft predicted label C.
12 endif

13: end for ) . .

14: Obtain the predicted labels Y via Y = Softmax(C).

15: output Y

learned by an MLP with Softmax:

lego, A o aéup] = Softmax(Sigmoid ([Z!

|Z AW, )W), (30)

[a mix

ego rawH sup

where W', € RB4+Ux3 and W! . € R3*3 are two learnable weight matrixes, d is the node
degrees Wthh may be helpful to welghts learning.

The Message Passing of Class Prototypes. Specifically, the virtual prototype nodes are viewed as
additional nodes, which have the same message-passing mechanism as real nodes:

Zptt,l — diag(aptt l)Zptt JA— Wl + diag(aptt l)Apttzptt JA— lwl

ego raw
+ dlag(a{fit]ol)(Aptt ,Sup ® Bptt 5up)zptt J— 1Wlsup7 (31)
Zptt || Zptt l
=0

where AsuPPtt — 1 ¢ REXK and Bsupptt — CPHUM are similar with those of real nodes.

F More Details about the Experimental Settings

In this section, we describe the details of the new benchmarks, including (i) the reason why we
need a new benchmark: drawbacks of existing datasets; (ii) detailed descriptions of newly organized
datasets; (iii) baseline methods and the codebase; (iv) details of obtaining benchmark performance;
and (v) detailed experimental settings of CMGNN.

F.1 Drawbacks in Existing Datasets

Existing works mostly follow the settings and datasets used in Pei et al. [[17]], including 6 heterophilic
datasets (Cornell, Texas, Wisconsin, Actor, Chameleon, and Squirrel) and 3 homophilic datasets
(Cora, Citeseer, and Pubmed). Platonov et al. [26] pointed out serious data leakages in Chameleon and
Squirrel, while Cornell, Texas, and Wisconsin are too small with very imbalanced classes. Further,
we revisit other datasets and discover new drawbacks: (i) In the ten splits of Citeseer, there are
two inconsistent ones, which have smaller training, validation, and test sets that could cause issues
with statistical results; (ii) Cora’s data split ratios are inconsistent with the expected ones. These
drawbacks may lead to certain issues in the conclusions of previous works.

Therefore, to build a comprehensive and fair benchmark for model effectiveness evaluation, we newly
organize 13 datasets with unified splitting across various homophily values and scales.
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F.2 Newly Organized Datasets

In our benchmark, we adopt ten different types of publicly available datasets with a unified splitting
setting (48%/32%/20% for training/validation/testing) for fair model comparison, including Roman-
Empire [26], Amazon-Ratings [26], Chameleon-F [26], Squirrel-F [26], Actor [17], Flickr [47],
BlogCatalog [47], Pubmed [48]], Penn94 [49], Twitch-Gamer [49], Genius [49], Pokec [49] and
Snap-Patents [49]. The datasets have a variety of homophily values from low to high. The statistics
and splitting of these datasets are shown in Table[6] The detailed description of the datasets is as
follows:

Table 6: Statistics and splitting of the experimental benchmark datasets.

Dataset | Nodes | Edges | Attributes | Classes | Avg. Degree | Undirected | Homophily | Train / Valid / Test
Roman-Empire 22,662 65,854 300 18 29 v 0.05 10,877/17,251 74,534
Amazon-Ratings 24,492 186,100 300 5 7.6 v 0.38 11,756 /7,837 1 4,899
Chameleon-F 890 13,584 2,325 5 15.3 X 0.25 427/284/179
Squirrel-F 2,223 65,718 2,089 5 29.6 X 0.22 1,067 /711 /445
Actor 7,600 30,019 932 5 39 X 0.22 3,648/2,432/1,520
Flickr 7,575 479,476 12,047 9 63.3 v 0.24 3,636/2,424/1,515
BlogCatalog 5,196 343,486 8,189 6 66.1 v 0.40 2,494 /1,662 / 1,040
Pubmed 19,717 88,651 500 3 4.5 v 0.80 9,463 /6,310/ 3,944
Penn94 41,554 1,362,229 5 2 65.6 X 0.47 19,945/13,297/ 8,312
Twitch-Gamer 168,114 6,797,557 7 2 40.4 X 0.55 80,694 /53,796 / 33,624
Genius 421,961 984,979 12 2 2.3 X 0.62 202,541/ 135,027 / 84,393
Pokec 1,632,803 | 30,622,564 65 2 18.8 X 0.45 783,667 / 522,444 / 326,529
Snap-Patents 2,923,922 | 13,975,788 269 5 4.8 X 0.07 1,403,482 /935,655 / 584,785

. Roman-Empirﬂ [26] is derived from the extensive article on the Roman Empire found on the
English Wikipedia, chosen for its status as one of the most comprehensive entries on the platform.
It contains 22,662 nodes and 65,854 edges between nodes. Each node represents an individual
word from the text, with the total number of nodes mirroring the length of the article. An edge
between two nodes is established under one of two conditions: the words are sequential in the text
or they are linked in the sentence’s dependency tree, indicating a grammatical relationship where
one word is syntactically dependent on the other. Consequently, the graph is structured as a chain
graph, enriched with additional edges that represent these syntactic dependencies. It encompasses
a total of 18 distinct node classes, with each node being equipped with 300-dimensional attributes
obtained by fastText word embeddings [50].

« Amazon-Ratings? [26] is sourced from the Amazon product co-purchasing network metadata
dataset [51]]. It contains 24,492 nodes and 186,100 edges between nodes. The nodes within
this graph represent products, encompassing a variety of categories such as books, music CDs,
DVDs, and VHS video tapes. An edge between nodes signifies that the respective products are
often purchased together. The objective is to forecast the average rating assigned to a product by
reviewers, with the ratings being categorized into five distinct classes. For the purpose of node
feature representation, we have utilized the 300-dimensional mean values derived from fastText
word embeddings [50]], extracted from the textual descriptions of the products.

« Chameleon-F and Squirrel-F2 [26] are specialized collections of Wikipedia page-to-page net-
works [52], of which the data leakage nodes are filtered out by Platonov et al. [26]. Within these
datasets, each node symbolizes a web page, and edges denote the mutual hyperlinks that connect
them. The node features are derived from a selection of informative nouns extracted directly from
Wikipedia articles. For the purpose of classification, nodes are categorized into five distinct groups
based on the average monthly web traffic they receive. Specifically, Chameleon-F contains 890
nodes and 13,584 edges between nodes, with each node being equipped with 2,325-dimensional
features. Squirrel-F contains 2,223 nodes and 65,718 edges between nodes, with each node being
equipped with a 2,089-dimensional feature vector.

. Actmﬂ [L7] is an actor-centric induced subgraph derived from the broader film-director-actor-writer
network, as originally presented by Tang et al. [S3]]. In this refined network, each node corresponds
to an individual actor, and the edges signify the co-occurrence of these actors on the same Wikipedia
page. The node features are identified through the presence of certain keywords found within

*https://github.com/yandex-research/heterophilous-graphs/tree/main/data
*https://github.com/bingzhewei/geom-gen/tree/master/new_data/film
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the actors’ Wikipedia entries. For the purpose of classification, the actors are organized into five
distinct categories based on the words of the actor’s Wikipedia. Statistically, it contains 7,600
nodes and 30,019 edges between nodes, with each node being equipped with a 932-dimensional
feature vector.

Flickr and Blogcatalodﬂ [47] are two datasets of social networks, originating from the blog-sharing
platform BlogCatalog and the photo-sharing platform Flickr, respectively. Within these datasets,
nodes symbolize the individual users of the platforms, while links signify the followship relations
that exist between them. In the context of social networks, users frequently create personalized
content, such as publishing blog posts or uploading and sharing photos with accompanying tag
descriptions. These textual contents are consequently treated as attributes associated with each
node. The classification objective is to predict the interest group of each user. Specifically, Flickr
contains 7,575 nodes and 479,476 edges between nodes. The graph encompasses a total of 9
distinct node classes, with each node being equipped with a 12047-dimensional attribute vector.
BlogCatalog contains 5,196 nodes and 343,486 edges between nodes. The graph encompasses a
total of 6 distinct node classes, with each node being equipped with 8189-dimensional attributes.

Pubme(ﬂ [48] is a classical citation network consisting of 19,717 scientific publications with
44,338 links between them. The text contents of each publication are treated as its node attributes,
and thus each node is assigned a 500-dimensional attribute vector. The target is to predict which of
the paper categories each node belongs to, with a total of 3 candidate classes.

Penn94ﬂ [49] is a friendship network derived from the Facebook 100 networks, featuring university
students from 2005 [54]. In this network, each node represents a student and is labeled with the
user’s reported gender. The node features include major, second major or minor, dorm or house,
year, and high school.

Twitch-Gamer® [49] is a subgraph from the streaming platform Twitch, with nodes representing
users and edges connecting mutual followers [S5]]. Node features encompass the number of views,
creation and update dates, language, lifetime, and account status. The task is to predict whether a
channel contains explicit content.

Genius® [49] is a subnetwork extracted from genius.com, a website for crowdsourced annotations
of song lyrics [S6]. In this graph, nodes represent users, and edges connect users who follow each
other. User features include expertise scores, contribution counts, roles, and more. Some users are
labeled as "gone", indicating a higher likelihood of being spam accounts. Our goal is to predict
whether a user is marked as "gone".

Poked@ [49] is a friendship graph from a Slovak online social network, with nodes representing
users and edges indicating directed friendship relations [57]. Node features are derived from profile
information, such as geographical region, registration time, and age. The task is to classify users
based on their gender.

Snap-Patents@ [49] is a U.S. patent network, where nodes correspond to patents and edges denote
citation relationships [S8]]. Node features are derived from patent metadata. The task is to classify
patents into five categories based on the time of their grant.

F.3 Baseline Methods and the Codebase

For comprehensive comparisons, we choose 20 representative baseline methods as in the benchmark,
which can be categorized into four main groups of works as follows:

(i) Shallow Model: MLP;

(ii) Homopihlous Graph Neural Networks: GCN [1], GAT [27], GraphSAGE [28]], APPNP [29]],
and GCNII [30];

(iii) Heterophilous Graph Neural Networks: H2GCN [16], MixHop [10], GBK-GNN [31]],
GGCN [32]], GlIoGNN [22]], HOGGCN [33]], GPR-GNN [23], ACM-GCN [[12]], OrderedGNN [13]],
M2MGNN [45]], and N2 [34];

(iv) Compatibility Matrix-based Models: CLP [25]], EPFGNN [24], and CPGNN [7].

*https://github. com/TrustAGI-Lab/CoLA/tree/main/raw_dataset
Shttps://lings.soe.ucsc.edu/datac
Shttps://github.com/CUAI/Non-Homophily-Large-Scale/tree/master/data
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To explore the performance of baseline methods on newly organized datasets and facilitate future
expansions, we collect the official/reproduced codes from GitHub and integrate them into a unified
codebase. Specifically, all methods share the same data loaders and evaluation metrics. One can
easily run different methods with only parameters changing within the codebase. The codebase is
based on the widely used PyTorc framework, supporting both DGIH and PyCﬂ Detailed usage of
the codebase is available in the Readme file of the codebase.

F.4 Details of Obtaining Benchmark Performance

Following the settings in existing methods, we construct 10 random splits (48%/32%/20% for
train/valid/test) for each dataset and report the average performance among 10 runs on them, along
with the standard deviation. For all baseline methods except MLP, GCN, and GAT, we conduct
parameter searches within the search space recommended by the original papers. The searches
are based on the NNI framework with an annealing strategy. We use Adam as the optimizer for
all methods. Each method has dozens of search trails according to their time costs, and the best
performances are reported. The currently known optimal parameters of each method are listed in the
codebase. We run these experiments on NVIDIA GeForce RTX 3090 GPUs with 24G memory. The
out-of-memory error during model training is reported as OOM in Table [2]and 3]

F.5 Detailed Experimental Settings of CMGNN

CMGNN has the same experimental settings within the benchmark, including datasets, splits, evalua-
tions, hardware, optimizer, and so on.

Parameters Search Space. We list the search space of parameters in Table[/] where patience is for
the maximum epoch early stopping, n_hidden is the embedding dimension of hidden layers as well
as the representation dimension d,., relu_varient decides ReLU applying before message aggregation
or not as in Luan et al. [12], structure_info determines whether to use structure information as
supplement node features or not.

Table 7: Parameter search space of our method.

Parameters | Range
learning rate {0.001, 0.005, 0.01, 0.05}
weight_decay | {0, le-7, 5e-7, 1e-6, 5e-6, Se-5, Se-4}
patience {200, 400}
dropout [0,0.9]
A {0,0.01,0.1, 1, 10}
layers {1,2,4,8}
n_hidden {32, 64, 128, 256}
relu_variant {True, False}
structure_info {True, False}

G More Details about Experiments

In this section, we show some additional experimental results and analyses.

G.1 Detailed Analysis about the comparison between CMGNN and existing CM-based
methods

Specifically, CMGNN achieves better performance and benefits from the approach of utilizing CM
in the following aspects: (i) Better robustness for low-quality pseudo labels: Existing CM-based
methods utilize CM to guide the weights of propagation, which can lead to error accumulation with

"https://pytorch.org
Shttps://wuw.dgl.ai
‘https://wuw.pyg.org
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Table 8: Ablation study results (%) on the effects of additional structural features, where True denotes
CMGNN with additional structural features and False denotes CMGNN with only node features.

Structural Features ‘ Roman-Empire ‘ Amazon-Ratings ‘ Chameleon-F ‘ Squirrel-F ‘ Actor ‘ Flickr ‘ BlogCatalog ‘ Pubmed
True 68.43 £2.23 52.13 £0.55 4570 £4.92 | 41.89+2.34 | 35.72£0.75 | 92.66 £ 0.46 | 96.47 +£0.58 | 88.90 +0.45
False 84.35 +1.27 51.41+0.57 44.85+5.64 | 4049+1.55 | 36.82+£0.78 | 92.05+0.75 | 97.00 +£0.52 | 89.99 +0.32

Table 9: Node classification accuracy comparison (%) among nodes with different degrees.

Dataset Amazon-Ratings Flickr BlogCatalog
Deg. Prop.(%) | 0~20 20~40 40~60 60~80 80~100 | 0~20 20~40 40~60 60~80 80~100 | 0~20 20~40 40~60 60~80 80~100

CMGNN 59.78 5836 53.08 41.74 47.86 | 9256 91.19  92.71 93.24 93.65 | 9413 9717 9829  97.99 97.47

ACM-GCN 57.35 5621  51.74 4155 46.47 | 9044 91.17 92.85 93.19 89.50 | 92.17 96.68 97.83  97.84 96.51

OrderedGNN | 56.32  56.16  51.20  41.85 50.26 | 8648 90.07 9240 9279 9340 | 92.19 96.09 9748  97.36 96.27
GCNII 50.61 4994 4749 4185 4776 | 87.49 90.54 9229  92.68 95.09 | 92.81 96.73  97.58  97.90 97.43

Dataset Roman-Empire Chameleon-F Actor
Deg. Prop.(%) | 0~20 20~40 40~60 60~80 80~100 | 0~20 20~40 40~60 60~80 80~100 | 0~20 20~40 40~60 60~80 80~100

CMGNN 88.60 87.00 85.59  86.25 7433 | 40.73 4528  56.02  46.64 39.93 | 3556 37.14 3840  36.03 36.84
ACM-GCN 79.00 7787 7352 72.09 53.77 | 39.51 4121 5225 4580 47.09 | 3448 36.58 36.27 34.63 37.46
OrderedGNN | 88.60 87.00 8556  84.68 69.69 | 4321 4451 49.16 3827 3223 | 3594 3806 37.87 3577 37.15
GCNII 86.79 85.14 8520 84.75 71.09 | 3484 4256 4750 4045 41.84 | 36.89 3720 3853  38.02 36.99

Dataset Squirrel Pubmed
Deg. Prop.(%) | 0~20 20~40 40~60 60~80 80~100 | 0~20 20~40 40~60 60~80 80~100

CMGNN | 4537 4710 4525 3486 37.10 | 8932 8933 8931 9262  89.39
ACM-GCN | 4112 4430 4422 3297 4210 | 89.60 89.54 8958 9202 8923
OrderedGNN | 4378 4553 4309 2790 2848 | 89.67 89.37 8945 9254  89.02
GCNII 4308 4555 4365 3307 3805 |89.77 8950 8924 9245  88.86

inaccurate pseudo labels. This is a common limitation of CM-based methods. In CMGNN, the CM is
used to construct desired messages while original neighborhoods are preserved, mitigating the impact
of inaccurate pseudo labels. (ii) Unlock the effectiveness of CM for low-degree nodes: Existing
CM-based methods redefine pair-wise relations only for existing edges, limiting the effectiveness
of CMs for low-degree nodes. In CMGNN, virtual neighbors can provide prototype messages from
every class, enhancing neighborhood messages for low-degree or even isolated nodes. (iii) More
accurate estimation of CM: While existing CM-based methods take naive approaches to estimate
or initialize CM, CMGNN considers the effects of node degrees and model prediction confidence,
resulting in more accurate CM estimation, especially in real-world situations. Additionally, CM in
CMGNN is continuously updated with more accurate pseudo labels, creating a positive cycle.

G.2 Ablation study on additional structural features

Utilizing additional structural features is a common approach in heterophilous GNNs that offers
another way to use connection relationships, introducing both discriminant and redundant information.
Thus, it presents a trade-off between the advantages and disadvantages. We conducted an ablation
study to examine its effects and report the results in Table[8] The additional structure features have
positive effects on four datasets, while others have negative effects. It doesn’t significantly impact
performance except for Roman-Empire. Moreover, CMGNN can still achieve competitive results
without using additional structural features.

G.3 Performance on Nodes with Various Levels of Degrees

To verify the effect of CMGNN on low-degree nodes, we divide the test set nodes into 5 parts accord-
ing to their degrees and report the classification accuracy respectively. We compare CMGNN with
3 top-performance methods and show the results in Table[0] In general, nodes with low degrees
tend to have incomplete and noisy semantic neighborhoods. Thus, our outstanding performances
on the top 20% nodes with the least degree demonstrate the effectiveness of CMGNN for providing
supplementary neighborhood messages. Further, we can find that OrderedGNN and GCNII are good
at dealing with nodes with high degrees, while ACM-GCN is relatively good at nodes with low
degrees. And CMGNN , to a certain extent, can be adapted to both situations at the same time.
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Table 10: Performance comparison on low-label rate setting.

Method | Roman-Empire Amazon-Ratings Chameleon-F  Pubmed

MLP 58.14+1.40 37.03+0.43 36.74+£2.97 83.07+0.55
GCN 33.53+0.77 37.32+0.52 36.91+£2.22 83.95+0.62
GCNII 63.27+0.72 39.93+0.87 38.40+3.27 86.04+0.74
ACM-GCN 59.93+2.03 39.96+0.81 37.43+£2.84 85.54+0.79
OrderedGNN 64.76£2.20 40.00+£0.90 38.91+£2.57 85.59+0.68
CMGNN 65.93+2.17 40.02+0.86 40.11+2.82 85.62+0.94

G.4 Performance on low label rate setting

We conduct an experiment to investigate the performance of CMGNN under the low label rate setting.
The label rate for training is set as 5% to meet the low label rate setting, and the datasets include
Roman-Empire, Amazon-Ratings, Chameleon-F, and Pubmed. We compare CMGNN with 2 base and
3 top-performance baseline methods, including MLP, GCN, GCNII, ACMGCN, and OrderedGNN.
The classification accuracy comparison is as Table[I0] Consistent with the main results, CMGNN can
also achieve outstanding performance on the low label rate setting, demonstrating the effectiveness of
CMGNN on handling the noise issue.

G.5 Visualization of Weighted-CM and CMD of CMGNN

We visualize the original and Weighted-CM of CMGNN along with the corresponding CMDs in
Figure [/l Obviously, CMGNN has increased the CMDs with Weighted-CMs. This shows that even
with incomplete node labels, CMGNN can estimate and enhance high-quality CMs that provide
valuable neighborhood information to nodes. Meanwhile, it can adapt to graphs with various levels
of heterophily.

G.6 Efficiency Study

Complexity Analysis. The number of learnable parameters in layer [ of CMGNN is 3d,-(d, + 1) + 9,
compared to d,.d, in GCN and 3d,(d, + 1) + 9 in ACM-GCN, where d, is the dimension of
representations. The time complexity of layer [ is composed of three parts:

(i) AGGREGATE: O(Nd,.?), O(Nd,* + Md,) and O(Nd,* + NKd,.) for node ego, raw neighbor-
hood and the sufficient neighborhood respectively, where N and M = |£| denotes the number of
nodes and edges;

(i) COMBINE: O(3N (3d,+1)+12N) for calculating adaptive weights and O(3N) for combination;
(ii1) Final: O(1) for concatenations.

Thus, the overall time complexity of L-layer CMGNN is O(L(Nd, (3d,+K+9)+Md,+18N)+1),
or O(LNd,? + LMd,) for brevity.

Experimental Running Time. We report the actual average running time (ms per epoch) of baseline
methods and CMGNN in Table[TT|for comparison. The results demonstrate that CMGNN can balance
both performance effectiveness and running efficiency.

Trade-off Analysis between Effectiveness and Efficiency. We have also visualized the trade-off
between performance accuracy and empirical runtime compared to baseline methods in Figure
From the results, we can see that CMGNN achieves the best performance with relatively low time
consumption. Compared with OrderedGNN and GCNII, which have the second- and third-best
average ranks, CMGNN offers both better accuracy and lower time consumption.
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Figure 7: The visualization of original (O) and Weighted-CM (W) of CMGNN along with the CMDs
on all small-scale datasets.

Table 11: Efficiency study results of average model running time (ms/epoch). OOM denotes an
out-of-memory error during the model training.

Method \ Roman-Empire Amazon-Ratings Chameleon-F Squirrel-F  Actor Flickr BlogCatalog Pubmed
MLP 7.8 7.0 6.1 6.5 6.3 9.1 6.7 6.1
GCN 33.8 33.4 7.9 20.6 344 372 30.4 35.6
GAT 15.9 67.3 10.3 14.0 30.8 66.2 17.6 334

APPNP 14.6 15.9 13.9 21.3 14.6 20.2 232 21.2

GCNII 294 284 373 19.6 37.7 84.2 97.6 258.0

CPGNN 12.7 20.3 12.2 13.4 13.6 18.9 16.7 14.0

H2GCN 20.0 31.2 17.2 324 55.6 415.7 165.5 39.0

MixHop 434.6 486.3 21.9 31.0 30.6 90.4 81.6 89.5

GBK-GNN 119.8 191.8 31.0 238.1 1579 OOM OOM 137.0

GGCN OOM OOM 55.7 42.1 199.8 1112 108.7 2290.8

GloGNN 254 19.3 121.8 233 1292 5629 30.9 432

HOGGCN OOM OOM 25.2 54.3 1002.9 707.3 367.4 OOM
GPR-GNN 15.9 12.5 223 232 16.7 15.9 14.7 13.2
ACM-GCN 56.7 56.7 26.1 29.7 22.5 60.7 31.7 37.1
OrderedGNN 86.0 110.8 49.5 60.1 67.8 107.0 88.3 88.1
M2MGNN 275.6 843 52.7 169.1 4002 136.7 220.5 151.0
N2 236.8 184.4 172.0 160.6 1345 1912 116.5 184.9
CMGNN 51.5 93.5 62.5 64.7 19.0 52.5 69.8 102.9
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Figure 8: Visualizations of the trade-off between performance accuracy and training time compared
with baseline methods on three representative datasets.
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