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Abstract—The reliability of industrial equipment is crucial
for the normal operation of production lines. Traditional fault
detection methods rely on expert experience and struggle to
adapt to complex and variable industrial environments. This
paper proposes a fault detection method based on deep learning,
which analyzes and models the operational data of industrial
equipment using Convolutional Neural Networks (CNN) and
Long Short-Term Memory (LSTM) networks to automatically
identify potential faults. Experimental results show that this
method outperforms traditional methods in terms of accuracy
and real-time performance, providing an effective solution for
industrial fault detection.

Index Terms—Fault detection, Deep learning, Convolutional
Neural Networks, Long Short-Term Memory networks, Indus-
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I. INTRODUCTION

With the rapid development of global manufacturing, the
degree of automation of industrial equipment has continuously
increased, and the operational stability and reliability of equip-
ment are directly related to production efficiency and safety.
Especially in high-risk industries such as aviation, energy,
and chemicals, any equipment failure may lead to significant
economic losses or even casualties. Therefore, how to detect
potential faults in a timely and accurate manner has become
a focal point of attention for both industry and academia.

Traditional fault detection methods mainly rely on rule-
based models and expert systems. Rule-based models are
usually developed by experts based on long-term experience
and deep understanding of the equipment, setting a series of
thresholds or rules to judge the health status of the equipment.
However, as the complexity of the equipment increases, it
becomes difficult for rule-based models to comprehensively
cover all possible fault scenarios, and they require frequent
updates to adapt to new equipment and environments. In
addition, expert systems rely on large knowledge bases from
experts, but they often face challenges such as knowledge
acquisition difficulties and complex system maintenance in
dealing with the varied and complex real-world industrial
environments.

In recent years, with the rapid advancement of big data and
artificial intelligence technologies, data-driven methods have
gradually become a research hotspot in fault detection. Espe-
cially deep learning, which has attracted widespread attention
due to its superior performance in handling high-dimensional

and nonlinear data. By automatically learning the latent pat-
terns in the operating data of equipment, deep learning can
more accurately identify potential fault conditions, reducing
reliance on manual expertise. At the same time, the efficiency
and scalability of deep learning models make them show great
potential in large-scale industrial applications.

However, despite significant progress in deep learning for
fault detection, some challenges remain. For example, data in
industrial environments typically exhibit imbalance and noise,
making it challenging to improve the accuracy of models
under such conditions. Furthermore, the black-box nature of
deep learning models limits their applicability in fault cause
analysis and result interpretation. Therefore, researching a
fault detection method that combines the strengths of different
deep learning models to enhance detection accuracy and
interpretability is of significant research value and practical
importance.

This paper proposes a hybrid model that combines Con-
volutional Neural Networks (CNN) and Long Short-Term
Memory (LSTM) networks for fault detection in industrial
equipment. CNNs effectively extract local features in time-
series data, while LSTMs capture long-term dependencies,
thus enabling precise modeling of the equipment’s operating
state. Through experimental validation, the proposed method
demonstrates outstanding performance in terms of accuracy,
real-time capability, and robustness, providing a new solution
for industrial equipment fault detection.

II. RELATED WORK

The development of fault detection technology has evolved
from traditional methods to those based on machine learning
and deep learning. Traditional fault detection methods mainly
include model-based methods, signal processing-based meth-
ods, and statistical methods.

Model-based methods usually rely on physical or mathemat-
ical models, which infer the health status of the equipment
by modeling its operating principles and state equations.
However, these methods require high model accuracy and are
challenging to adapt to complex industrial environments. For
example, Wu et al. proposed a fault detection method based on
parameter estimation, which uses dynamic system models and
parameter estimation techniques to monitor equipment status,
but its application is limited in nonlinear systems.
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Signal processing-based methods analyze the signals gen-
erated during the operation of equipment, such as vibrations,
sounds, and temperatures, to detect abnormal features. These
methods typically include time-domain analysis, frequency-
domain analysis, and time-frequency analysis techniques. For
instance, Fourier Transform (FFT) and Wavelet Transform
(WT) are widely used in vibration signal fault detection. These
methods perform well when dealing with single or simple
signals, but their effectiveness is limited in the presence of
multivariable and non-stationary signals.

Statistical methods analyze historical data to establish sta-
tistical models under normal operating conditions, detecting
faults when actual monitoring data deviates from the model.
For example, Principal Component Analysis (PCA) and Sup-
port Vector Machines (SVM) have been widely applied in in-
dustrial fault detection. However, these methods often assume
that the data follows certain statistical distributions, which may
not always hold in complex industrial environments.

With the rise of artificial intelligence, machine learning-
based methods have gradually become mainstream in fault
detection. Algorithms such as K-Nearest Neighbors (KNN),
Decision Trees (DT), and Random Forests (RF) have been
widely applied in fault detection, as they can automatically
learn patterns in the data, reducing the dependence on ex-
pert knowledge. However, the feature extraction process in
traditional machine learning methods often requires manual
intervention, which limits the model’s generalization ability
when dealing with complex, multi-dimensional data.

In recent years, deep learning has become a research hotspot
in fault detection due to its advantages in automatic feature ex-
traction and high-dimensional data processing. Convolutional
Neural Networks (CNN) initially achieved great success in
image processing and were later applied to time-series analysis
for extracting spatial features in time-series data. Recurrent
Neural Networks (RNN), especially Long Short-Term Memory
(LSTM) networks, have shown excellent performance in han-
dling data with strong temporal dependencies. These models,
trained in an end-to-end manner, can automatically extract
fault features from raw data, significantly improving fault
detection accuracy.

III. METHODOLOGY

In this section, we present the proposed fault detection
methodology, which combines Convolutional Neural Networks
(CNN) and Long Short-Term Memory (LSTM) networks.
The methodology is structured into three main stages: data
preprocessing, model architecture, and model training and
evaluation.

A. Data Preprocessing

Data preprocessing is a critical step in the fault detection
process, as the quality of input data directly influences the
performance of the deep learning model. In an industrial
environment, the raw data collected from sensors is typically
in the form of time series, which may contain noise, missing
values, and irrelevant features. To address these issues, we
apply several preprocessing techniques:

• Normalization: To ensure that the input features are
on a similar scale, we normalize the data to have zero
mean and unit variance. This helps in accelerating the
convergence of the deep learning model during training.

• Noise Reduction: We employ techniques such as moving
average filtering and wavelet transform to reduce noise
in the time-series data, thereby improving the signal-to-
noise ratio.

• Windowing: The time-series data is segmented into
fixed-length windows using a sliding window approach.
Each window represents a snapshot of the equipment’s
operational state, which serves as an input to the deep
learning model. The choice of window size is crucial,
as it balances the trade-off between capturing sufficient
temporal information and maintaining computational ef-
ficiency.

B. Model Architecture

The proposed model architecture integrates the strengths of
CNN and LSTM networks to capture both spatial and temporal
features of the time-series data. The architecture is designed
as follows:

• Convolutional Neural Network (CNN) Layers: The
CNN layers are employed to extract local spatial features
from the input time-series data. These layers perform
convolution operations using multiple filters, followed by
activation functions and pooling layers. The convolutional
layers capture patterns such as trends, cycles, and anoma-
lies within the time-series data, which are indicative of
potential faults.

• Long Short-Term Memory (LSTM) Layers: Following
the CNN layers, the extracted features are passed to the
LSTM layers, which model the temporal dependencies
in the data. LSTM networks are specifically designed
to handle long-term dependencies and are effective in
learning the sequential nature of time-series data. This is
particularly important for fault detection, as certain faults
may develop gradually over time, requiring the model to
remember information from previous time steps.

• Fully Connected Layers: After the LSTM layers, the
output is fed into fully connected layers, which combine
the learned features to produce the final prediction. The
fully connected layers serve as a classifier that determines
whether the current input corresponds to a normal or
faulty state of the equipment.

• Output Layer: The output layer employs a softmax
activation function to produce a probability distribution
over the possible classes (e.g., normal operation, specific
fault types). This allows the model to provide not only a
binary fault detection decision but also the likelihood of
different fault types.

C. Model Training and Evaluation

The training process is crucial to ensure the model general-
izes well to unseen data. The following strategies are adopted
to train and evaluate the model:
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• Training Setup: The model is trained using a large
dataset of labeled time-series data collected from indus-
trial equipment. We use the Adam optimizer to minimize
the categorical cross-entropy loss, which is suitable for
multi-class classification tasks. The learning rate is set
adaptively to ensure a balance between convergence
speed and training stability.

• Data Augmentation: To address the issue of class imbal-
ance, which is common in fault detection tasks, we apply
data augmentation techniques such as random cropping,
time warping, and jittering to artificially increase the
number of minority class samples. This helps the model
learn to detect rare faults more effectively.

• Cross-Validation: To validate the model’s performance,
we use k-fold cross-validation. The dataset is split into k
subsets, and the model is trained k times, each time using
a different subset as the validation set and the remaining
subsets as the training set. This ensures that the model
is robust and not overfitted to a particular subset of the
data.

• Early Stopping: To prevent overfitting during training,
we implement early stopping based on the validation loss.
If the validation loss does not decrease for a specified
number of epochs, the training is halted, and the model
with the best validation performance is retained.

• Evaluation Metrics: The performance of the trained
model is evaluated using metrics such as accuracy, preci-
sion, recall, and F1-score. Additionally, the Area Under
the Receiver Operating Characteristic Curve (AUC-ROC)
is calculated to assess the model’s ability to distinguish
between normal and faulty states across different decision
thresholds.

The combination of CNN and LSTM in the proposed
architecture enables the model to effectively capture both
spatial and temporal features of the time-series data, leading
to improved fault detection performance. The use of data
augmentation, cross-validation, and early stopping ensures that
the model is robust and generalizes well to unseen data,
making it suitable for deployment in real-world industrial
settings.


