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ABSTRACT

Regularization is used to avoid overfitting when training a neural network; unfor-
tunately, this reduces the attainable level of detail hindering the ability to capture
high-frequency information present in the training data. Even though various
approaches may be used to re-introduce high-frequency detail, it typically does
not match the training data and is often not time coherent. In the case of network
inferred cloth, these sentiments manifest themselves via either a lack of detailed
wrinkles or unnaturally appearing and/or time incoherent surrogate wrinkles. Thus,
we propose a general strategy whereby high-frequency information is procedurally
embedded into low-frequency data so that when the latter is smeared out by the
network the former still retains its high-frequency detail. We illustrate this approach
by learning texture coordinates which when smeared do not in turn smear out the
high-frequency detail in the texture itself but merely smoothly distort it. Notably,
we prescribe perturbed texture coordinates that are subsequently used to correct the
over-smoothed appearance of inferred cloth, and correcting the appearance from
multiple camera views naturally recovers lost geometric information.

1 INTRODUCTION

(a) inferred cloth (b) texture sliding

Figure 1: Texture coordinate perturbations (tex-
ture sliding) reduce shape inference errors: ground
truth (blue), prediction (orange).

Since neural networks are trained to generalize
to unseen data, regularization is important for
reducing overfitting, see e.g. Goodfellow et al.
(2016); Scholkopf & Smola (2001). However,
regularization also removes some of the high
variance characteristic of much of the physical
world. Even though high-quality ground truth
data can be collected or generated to reflect the
desired complexity of the outputs, regulariza-
tion will inevitably smooth network predictions.
Rather than attempting to directly infer high-
frequency features, we alternatively propose to
learn a low-frequency space in which such fea-
tures can be embedded.

We focus on the specific task of adding high-
frequency wrinkles to virtual clothing, noting
that the idea of learning a low-frequency embed-
ding may be generalized to other tasks. Because
cloth wrinkles/folds are high-frequency features,
existing deep neural networks (DNNs) trained to infer cloth shape tend to predict overly smooth
meshes Alldieck et al. (2019a); Daněřek et al. (2017); Guan et al. (2012); Gundogdu et al. (2019);
Jin et al. (2020); Lahner et al. (2018); Natsume et al. (2019); Santesteban et al. (2019); Wang et al.
(2018); Patel et al. (2020). Rather than attempting to amend such errors directly, we perturb texture
so that the rendered cloth mesh appears to more closely match the ground truth. See Figure 1. Then
given texture perturbations from at least two unique camera views, 3D geometry can be accurately
reconstructed Hartley & Sturm (1997) to recover high-frequency wrinkles. Similarly, for AR/VR
applications, correcting visual appearance from two views (one for each eye) is enough to allow the
viewer to accurately discern 3D geometry. Our proposed texture coordinate perturbations are highly
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dependent on the camera view. Thus, we demonstrate that one can train a separate texture sliding
neural network (TSNN) for each of a finite number of cameras laid out into an array and use nearby
networks to interpolate results valid for any view enveloped by the array. Although an approach
similar in spirit might be pursued for various lighting conditions, this limitation is left as future work
since there are a great deal of applications where the light is ambient/diffuse/non-directional/etc. In
such situations, this further complication may be ignored without significant repercussion.

2 RELATED WORK

Cloth: While physically-based cloth simulation has matured as a field over the last few decades
Baraff & Witkin (1998); Baraff et al. (2003); Bridson et al. (2002; 2003); Selle et al. (2008), data-
driven methods are attractive for many applications. There is a rich body of work in reconstructing
cloth from multiple views or 3D scans, see e.g. Bradley et al. (2008b); Franco et al. (2006); Vlasic
et al. (2008). More recently, optimization-based methods have been used to generate higher resolution
reconstructions Huang et al. (2015); Pons-Moll et al. (2017); Wu et al. (2012); Yang et al. (2016).
Some of the most interesting work focuses on reconstructing the body and cloth separately Bălan &
Black (2008); Neophytou & Hilton (2014); Yang et al. (2018); Zhang et al. (2017). With advances
in deep learning, one can aim to reconstruct 3D cloth meshes from single views. A number of
approaches reconstruct a joint cloth/body mesh from a single RGB image Alldieck et al. (2019a;b);
Natsume et al. (2019); Onizuka et al. (2020); Saito et al. (2019; 2020), RGB-D image Yu et al.
(2019), or video Alldieck et al. (2018a;b); Habermann et al. (2019); Xu et al. (2018). To reduce the
dimensionality of the output space, DNNs are often trained to predict the pose/shape parameters
of human body models such as SCAPE Anguelov et al. (2005) or SMPL Loper et al. (2015) (see
also Pavlakos et al. (2019)). Habermann et al. (2019); Natsume et al. (2019); Varol et al. (2018)
leverage predicted pose information to infer shape. When only the garment shape is predicted, a
number of recent works output predictions in UV space to represent geometric information as pixels
Daněřek et al. (2017); Jin et al. (2020); Lahner et al. (2018), although others Gundogdu et al. (2019);
Santesteban et al. (2019); Patel et al. (2020) define loss functions directly in terms of the 3D cloth
vertices.

Wrinkles and Folds: Cloth realism can be improved by introducing wrinkles and folds. In the graph-
ics community, researchers have explored both procedural and data-driven methods for generating
wrinkles De Aguiar et al. (2010); Guan et al. (2012); Hahn et al. (2014); Müller & Chentanez (2010);
Rohmer et al. (2010); Wang et al. (2010). Other works add real-world wrinkles as a postprocessing
step to improve smooth captured cloth: Popa et al. (2009) extracts the edges of cloth folds and then
applies space-time deformations, Robertini et al. (2014) solves for shape deformations directly by
optimizing over all frames of a video sequence. Recently, Lahner et al. (2018) used a conditional
Generative Adversarial Network Mirza & Osindero (2014) to generate normal maps as proxies for
wrinkles on captured cloth.

Geometry: More broadly, deep learning on 3D meshes falls under the umbrella of geometric deep
learning, which was coined by Bronstein et al. (2017) to characterize learning in non-Euclidean
domains. Scarselli et al. (2008) was one of the earliest works in this area and introduced the notion
of a Graph Neural Network (GNN) in relation to CNNs. Subsequent works similarly extend the
CNN architecture to graphs and manifolds Boscaini et al. (2016); Maron et al. (2017); Masci et al.
(2015); Monti et al. (2017). Kostrikov et al. (2018) introduces a latent representation that explicitly
incorporates the Dirac operator to detect principal curvature directions. Tan et al. (2018) trains a
mesh generative model to generate novel meshes outside an original dataset. Returning to the specific
application of virtual cloth, Jin et al. (2020) embeds a non-Euclidean cloth mesh into a Euclidean
pixel space, making it possible to directly use CNNs to make non-Euclidean predictions.

3 METHODS

We define texture sliding as the changing of texture coordinates on a per-camera basis such that any
point which is visible from some stereo pair of cameras can be triangulated back to its ground truth
position. Other stereo reconstruction techniques can also be used in place of triangulation because
the images we generate are consistent with the ground truth geometry. See e.g. Bradley et al. (2008a);
Hartley & Sturm (1997); Seitz et al. (2006).
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3.1 PER-VERTEX DISCRETIZATION

Since the cloth mesh is discretized into vertices and triangles, we take a per-vertex, not a per-point,
approach to texture sliding. Our proposed method (see Section 4.1) computes per-vertex texture
coordinates on the inferred cloth that match those of the ground truth as seen by the camera under
consideration. Then during 3D reconstruction, barycentric interpolation is used to find the subtriangle
locations of the texture coordinates corresponding to ground truth cloth vertices. This assumes
linearity, which is only valid when the triangles are small enough to capture the inherent nonlinearities
in a piecewise linear sense; moreover, folds and wrinkles can create significant nonlinearity. See
Figure 2.

3.2 OCCLUSION BOUNDARIES

Accurate 3D reconstruction requires that a vertex of the ground truth mesh be visible from at least two
cameras and that camera projections of the vertex to the inferred cloth exist and are valid. However,
occlusions can derail these assumptions.

First, consider things from the standpoint of the inferred cloth. For a given camera view, some
inferred cloth triangles will not contain any visible pixels, and we denote a vertex as occluded when
none of its incident triangles contain any visible pixels. Although we do not assign perturbed texture
coordinates to occluded vertices (i.e. they keep their original texture coordinates, or a perturbation
of zero), we do aim to keep the texture coordinate perturbation function smooth (see Section 4.2).
In addition, there will be so called non-occluded vertices in the inferred cloth that do not project
to visible pixels of the ground truth cloth. This often occurs near silhouette boundaries where the
inferred cloth silhouette is sometimes wider than the ground truth cloth silhouette. These vertices
are also treated as occluded, similar to those around the back side of the cloth behind the silhouette,
essentially treating some extra vertices near occlusion boundaries as also being occluded. See Figure
3a.

Next, consider things from the standpoint of the ground truth cloth. For example, consider the case
where all the cameras are in the front, and vertices on the back side of the ground truth cloth are
not visible from any camera. The best one can do in reconstructing these occluded vertices is to
use the inferred cloth vertex positions; however, care should be taken near occlusion boundaries to
smoothly taper between our texture sliding 3D reconstruction and the inferred cloth prediction. A
simple approach is to extrapolate/smooth the geometric difference between our texture sliding 3D
reconstruction and the inferred cloth prediction to occluded regions of the mesh. Once again, the
definition of occluded vertices needs to be broadened for silhouette consideration. Not only will
vertices not visible from at least two cameras have to be considered occluded, but vertices that don’t
project to the interior of an inferred cloth triangle with valid texture coordinate perturbations will
also have to be considered occluded. See Figure 3b.

Figure 2: Consider an extreme case, where the
inferred cloth has a quite large triangle (shown
in red). That triangle should encompass the non-
linear texture region outlined in yellow (shown
in pattern space). Note: the yellow curve was
generated by sampling the ground truth cloth’s
texture coordinates along the projected edges of
the red triangle. The linearity assumption im-
plied by barycentric interpolation instead uses the
region outlined in green.

(a) (b)

Figure 3: The method discussed in Section 4.1
can fail near silhouettes of the inferred and ground
truth cloth meshes, in which case smoothness
assumptions are used (see Section 4.2). In (a),
inferred triangles with at least one vertex falling
outside the silhouette of the ground truth mesh
are colored red. In (b), ground truth triangles with
at least one vertex falling outside the silhouette
of the inferred mesh are colored blue.
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4 DATASET GENERATION

Let C = {X,T} be a cloth triangulated surface with n vertices X ∈ R3n and texture coordinates
T ∈ R2n. We assume that mesh connectivity remains fixed throughout. The ground truth cloth mesh
CG(θ) = {XG(θ), TG} depends on the pose θ. Given a pre-trained DNN (we use the network from
Jin et al. (2020)), the inferred cloth CN (θ) = {XN (θ), TG} is also a function of the pose θ. Our
objective is to replace the ground truth texture coordinates TG with perturbed texture coordinates
TN (θ, v), i.e. to compute C ′N (θ, v) = {XN (θ), TN (θ, v)} where TN (θ, v) depends on both the pose
θ and the view v. Even though TN (θ, v) is in principle valid for all v using interpolation (see Section
6.3), training data TN (θ, vp) is only required for a finite number of camera views vp. For each camera
p, we also only require training data for finite number of poses θk, i.e. we require TN (θk, vp), which
is computed from TG using XG(θk), XN (θk), and vp.

4.1 TEXTURE COORDINATE PROJECTION

Figure 4: Illustration of the ray intersection method
for transferring texture coordinates to the inferred
cloth from the ground truth cloth. Texture coor-
dinates for the inferred cloth vertex (red cross)
are interpolated from the ground truth mesh to the
point of ray intersection (red circle).

We project texture coordinates to the inferred
cloth vertices XN (θk) from the ground truth
cloth mesh CG(θk) using ray intersection. For
each inferred cloth vertex in XN (θk), we cast
a ray from camera p’s aperture through the
vertex and find the first intersection with the
ground truth mesh CG(θk); subsequently, TG is
barycentrically interpolated to the point of inter-
section and assigned to the inferred cloth vertex
as its TN (θk, vp) value. See Figure 4. Rays are
only cast for inferred cloth vertices that have at
least one incident triangle with a nonzero area
subregion visible to camera p. Also, a ground
truth texture coordinate value is only assigned to
an inferred cloth vertex when the point of inter-
section with the ground truth mesh is visible to
camera p. We store and learn texture coordinate
displacements dvp(θk) = TN (θk, vp)− TG. Af-
ter this procedure, any remaining vertices of the inferred cloth that have not been assigned dvp(θk)
values are treated as occluded and handled via smoothness considerations as discussed in Section 4.2.

4.2 OCCLUSION HANDLING

Some vertices of the inferred cloth mesh remain unassigned with dvp(θk) = 0 after executing
the algorithm outlined in Section 4.1. This creates a discontinuity in dvp(θk) which excites high
frequencies that require a more complex network architecture to capture. In order to alleviate
demands on the network, we smooth dvp(θk) as follows. First, we use the Fast Marching Method
on triangulated surfaces Kimmel & Sethian (1998) to generate a signed distance field. Then, we
extrapolate dvp(θk) normal to the distance field into the unassigned region, see e.g. Osher & Fedkiw
(2002). Finally, a bit of averaging is used to provide smoothness, while keeping the assigned values
of dvp(θk) unchanged. Alternatively, one could solve a Poisson equation as in Cong et al. (2015)
while using the assigned dvp(θk) as Dirichlet boundary conditions.

5 NETWORK ARCHITECTURE

A separate texture sliding neural network (TSNN) is trained for each camera p; thus, we drop the vp
notation in this section. The loss is defined over all poses θk in the training set

L =
∑
θk

∥∥∥d(θk)− d̂(θk)∥∥∥
2

(1)

to minimize the difference between the desired displacements d(θk) and predicted displacements
d̂(θk). The inferred cloth data we chose to correct are predictions of the T-shirt meshes from Jin
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et al. (2020), each of which contains about 3,000 vertices. The dataset spans about 10,000 different
poses generated from a scanned garment using physically-based simulation, and includes texture
coordinates for the garment mesh. To improve the resolution, we up-sampled each cloth mesh by
subdividing each triangle into four subtriangles. Notably, our texture sliding approach can be used to
augment the results of any dataset for which ground truth and inferred training examples are available.
Moreover, it is trivial to increase the resolution of any such dataset simply by subdividing triangles.
Note that perturbations of the subdivided geometry are unnecessary, as we merely desire more sample
points (to address Figure 2). Finally, we applied an 80-10-10 training-validation-test set split.

Figure 5: Texture sliding neural network (TSNN)
architecture.

Similar to Jin et al. (2020), the displacements
d(θk) are stored as pixel-based cloth images
for the front and back sides of the T-shirt,
though we still output per-vertex texture coor-
dinate displacements in UV space. See Figure
5 for an overview of the network architecture.
Given input joint transformation matrices of
shape 1 × 1 × 90, TSNN applies a series of
transpose convolution, batch normalization, and
ReLU activation layers to upsample the input to
512× 512× 4. The first two dimensions of the
output tensor represent the predicted displace-
ments for the front side of the T-shirt, and the
remaining two dimensions represent those for
the back side.

6 EXPERIMENTS

In Section 6.1, we quantify the data generation approach of Section 4 and highlight the advantages of
mesh subdivision for up-sampling. In Section 6.2, we evaluate the predictions made by our trained
texture sliding neural network (TSNN). In Section 6.3, we demonstrate the interpolation of texture
sliding results to novel views between a finite number of cameras. Finally, in Section 6.4, we use
multi-view texture sliding to reconstruct 3D geometry.

6.1 DATASET GENERATION AND EVALUATION

We aim to have the material coordinates of the cloth be in the correct locations as viewed by multiple
cameras, so that the material can be accurately 3D reconstructed with point-wise accuracy. As such,
our error metric is a bit more stringent than that commonly used because our aim is to reproduce the
actual material behavior, not merely to mimic its look (e.g. , by perturbing normal vectors to create
shading consistent with wrinkles in spite of the cloth being smooth, as in Lahner et al. (2018)). In
order to elucidate this, consider a two-step approach where one first approximates a smooth cloth
mesh and then perturbs that mesh to add wrinkles (similar to Santesteban et al. (2019)). In order to
preserve area and achieve the correct material behavior, material in the vicinity of a newly forming
wrinkle should slide laterally towards that wrinkle as it is formed. Merely non-physically stretching
the material in order to create a wrinkle may look plausible, but does not admit the correct material
behavior. In fact, the texture would be unrealistically stretched as well, although this is less apparent
visually when using simple textures.

Since texture coordinates provide a proxy surface parameterization for material coordinates, we
measure texture coordinate errors in a per-pixel fashion comparing between the ground truth and
inferred cloth at the center of each pixel. Figure 6a shows results typical for cloth inferred using the
network from Jin et al. (2020), and Figure 6b shows the highly improved results obtained on the same
inferred geometry using our texture sliding approach (with 1 level of subdivision). Note that the vast
majority of the errors in Figure 6b occur near the wrinkles where the nonlinearities illustrated in
Figure 2 are most prevalent. In Figure 6c, we deform the vertices of the inferred cloth mesh so that
they lie exactly on the ground truth mesh in order to mimic a two-step approach (as discussed above).
Note how our error metric captures the still rather large errors in the material coordinates (and thus
cloth vertex positions) in spite of the mesh in Figure 6c appearing to have the same wrinkles and
folds as the ground truth mesh. Figure 7 compares the local compression and extension energies of
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(a) (b) (c)

Figure 6: Per-pixel texture coordinate errors be-
fore (a) and after (b) applying texture sliding to
the inferred cloth output by the network of Jin
et al. (2020). The result of a two-step process (c)
may well match the ground truth in a visual sense,
whilst still having quite large errors in material
coordinates. Blue = 0, red ≥ 0.04.

(a) (b) (c)

Figure 7: Local compression (blue) and extension
(red) energies for a sample pose, comparing the
ground truth cloth (a), the inferred cloth (b), and
the result of a two-step process (c). In spite of the
cloth mesh in (c) bearing visual resemblance to
the ground truth in (a), it still has quite erroneous
deformation energies.

the ground truth mesh (Figure 7a), the inferred cloth mesh (Figure 7b), and the result of this two-step
process (Figure 7c). In spite of the untextured mesh in Figure 7c bearing visual similarity to the
ground truth in Figure 7a, it still has rather large errors in deformation energy.

Figure 8 illustrates the efficacy of subdividing the cloth mesh to get more samples for texture sliding.
The particular ground truth cloth wrinkle shown in Figure 8e is not captured by the inferred cloth
geometry shown in Figure 8a. The texture sliding result shown in Figure 8b better represents the
ground truth cloth. Figures 8c and 8d show how subdividing the inferred cloth mesh one and two
times (respectively) progressively alleviates errors emanating from the linearity assumption illustrated
in Figure 2. Table 1 shows quantitative results comparing the inferred cloth to texture sliding with
and without subdivision.

Method SqrtMSE (×10−3)
Jin et al. (2020) 24.496 ± 6.9536

TS 5.2662 ± 2.2320
TS + subdivision 3.5645 ± 1.6617

Table 1: Per-pixel square root of mean
squared error (SqrtMSE) for the entire
dataset.

(a) (b) (c) (d) (e)

Figure 8: As the inferred cloth mesh (a) is sub-
divided, texture sliding (b-d) moves the inferred
mesh’s appearance closer to the ground truth (e).

6.2 NETWORK TRAINING AND INFERENCE

(a) (b) (c)

Figure 9: A typical test set example prediction. (a)
Ĉ ′N . (b) C ′N . (c) Per-pixel errors (blue = 0, red
≥ 0.04).

The network was trained using the Adam opti-
mizer Kingma & Ba (2014) with a 10−3 learning
rate in PyTorch Paszke et al. (2017). As men-
tioned earlier, we subdivided the mesh triangles
once. Figure 9 shows a typical prediction on a
test set example, including the per-pixel errors in
predicted texture coordinates. While the TSNN
is able to recover the majority of the shirt, it
struggles near wrinkles. Figure 10 highlights a
particular wrinkle comparing the inferred cloth
(Figure 10a) and the results of the TSNN before
(Figure 10b) and after (Figure 10c) subdivision
to the ground truth (Figure 10d). Table 2 shows
quantitative results comparing the inferred cloth
to TSNN results with and without subdivision.
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Network SqrtMSE (×10−3)
Jin et al. (2020) 24.871 ± 7.0613

TSNN 13.335 ± 4.2924
TSNN + subdivision 13.591 ± 4.5194

Table 2: Per-pixel SqrtMSE for the test set. In-
spite of Table 1 demonstrating that subdivision
improves the ground truth TS data, the improve-
ments are not uniformly realized by the TSNN
(which we discuss in the supplemental material).

(a) (b) (c) (d)

Figure 10: The results of the TSNN before (b) and
after (c) subdivision, as compared to the ground
truth (d). In spite of Table 2, some wrinkles are
better resolved by the TSNN after subdivision.
The inferred mesh with ground truth texture coor-
dinates is shown in (a).

6.3 INTERPOLATING TO NOVEL VIEWS

Given a finite number of camera views vp, one can specify a new view enveloped by the array
using a variety of interpolation methods. For the sake of demonstration, we take a simple approach
assuming that one can interpolate via v =

∑
p wpvp, and then use these same weights to compute

TN (θk, v) =
∑
p wpTN (θk, vp). This same equation is also used for T̂N (θk, v). Figure 11 shows the

results obtained by linearly interpolating between two camera views. Note how the largest errors
appear near areas occluded by wrinkles, where one (or both) of the cameras has no valid texture
sliding results and instead uses the inferred cloth textures. This can be alleviated by using more
cameras placed closer together.

Figure 11: Given two camera views (far left and far right images), texture sliding can be linearly
interpolated to novel views between them. The top row shows per-pixel errors (blue = 0, red ≥ 0.04),
and the bottom row shows the cloth from a fixed front-facing view to illustrate how the interpolated
texture changes as a function of the chosen novel view.

6.4 3D RECONSTRUCTION

In order to reconstruct the 3D position of a vertex of the ground truth mesh, we take the usual
approach of finding rays that pass through that vertex and the camera aperture for a number of
cameras. Then given at least two rays, one can triangulate a 3D point that is minimal distance from
all the rays. We can do this without solving the typical image to image correspondence problem
because we know the ground truth texture coordinates for any given vertex. Thus, we merely have to
find the ray that passes through the camera aperture and the ground truth texture coordinate for the
vertex under consideration.

To find a ground truth texture coordinate on a texture corrected inferred cloth mesh C ′N (θk, v), or
Ĉ ′N (θk, v), we first find the triangle containing that texture coordinate. This can be done quickly
by using a hierarchical bounding box structure where the base level boxes around each triangle are
defined using the min/max texture coordinates at the three vertices. Then one can write the barycentric
interpolation formula that interpolates the triangle vertex texture coordinates to obtain the given
ground truth texture coordinate, and subsequently invert the matrix to solve for the weights. These
weights determine the sub-triangle position of the vertex under consideration (taking care to note
that different answers are obtained in 3D space versus screen space, since the camera projection is
nonlinear). Figure 12 shows the 3D reconstruction of a test set example using texture sliding (Figure
12c) and the TSNN (Figure 12d). To remove reconstruction noise generated by network inference
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(a) (b)

(c) (d)

Figure 12: The ground truth (a) and inferred cloth
(b) compared to the 3D reconstructions obtained
using texture sliding (c) and the TSNN (d).

(a) (b)

Figure 13: Per-pixel errors (top) and local com-
pression/extension energies (bottom) for Figure
12c (a) and Figure 12d (b).

errors in Figure 12d, we used the postprocess from Geng et al. (2020); although, there are many other
smoothing options in the literature that one might also consider. Figure 13 compares the per-pixel
errors and local compression/extension energies of Figures 12c and 12d.

7 DISCUSSION AND FUTURE WORK

There are many disparate applications for clothing including for example video games, AR/VR,
Hollywood special effects, virtual try-on and shopping, scene acquisition and understanding, and
even bullet proof vests and soft armor. Various scenarios define accuracy or fidelity in vastly different
ways. So while it is typical to state that one cares about more than just the visual appearance (or
“graphics”), often those aiming for predictive capability still make concessions. For example, wherein
Santesteban et al. (2019) proposes a network that well predicts wrinkles mapped to new body types,
the discussion in Lahner et al. (2018) implies that the horizontal wrinkles predicted by Santesteban
et al. (2019) are more characteristic of inaccurate physical simulation than real-world behavior.
Instead, Lahner et al. (2018) strives for more vertical wrinkles to better match their data, but they
accomplish this by predicting lighting to match an image while accepting overly smooth geometry.
And as we have shown in Figure 7c, predicting the correct geometry still allows for rather large errors
in the deformation (see Geng et al. (2020)).

In light of this, we state the problem of most interest to us: Our aim is to study the efficacy of using
deep neural networks to aid in the modeling of material behavior, especially for those materials for
which predictive methods do not currently exist because of various unknowns including friction,
material parameters (for cloth and body), etc. Given this goal, we focus on the accurate prediction of
material coordinates, which are a super set of deformation, geometry, lighting, visual plausibility, etc.

As demonstrated by the remarkably accurate 3D reconstruction in Figure 12c (see 13a), our approach
to encoding high frequency wrinkles into lower frequency texture coordinates (i.e. texture sliding)
works quite well. It can be used as a post-process to any existing neural network to capture lost details
(as long as ground truth and inferred training examples are available); moreover, we showed that
trivial subdivision could be used to increase the sampling resolution to limit linearization artifacts.
One needs to take care when training the texture sliding neural network (TSNN) since inference
errors can cause reconstruction noise. Thus, as future work, we plan on experimenting with the
network architecture, the size of the image used in the CNN, the smoothing methods near occlusion
boundaries, the amount of subdivision, etc. In addition, it would be interesting to consider more
savvy multiview 3D reconstruction methods (particularly ones that employ DNNs; then, one might
train the whole process end-to-end).
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