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Abstract
In this paper, we present an intuitive analysis of the optimization technique based on the quan-
tization of an objective function. Quantization of an objective function is an effective optimiza-
tion methodology that decreases the measure of a level set containing several saddle points and
local minima and finds the optimal point at the limit level set. To investigate the dynamics of
quantization-based optimization, we derive an overdamped Langevin dynamics model from an in-
tuitive analysis to minimize the level set by iterative quantization. We claim that quantization-based
optimization involves the quantities of thermodynamical and quantum mechanical optimization as
the core methodologies of global optimization. Furthermore, on the basis of the proposed SDE, we
provide thermodynamic and quantum mechanical analysis with Witten-Laplacian. The simulation
results with the benchmark functions, which compare the performance of the nonlinear optimiza-
tion, demonstrate the validity of the quantization-based optimization.

1. Introduction

From a conventional engineering perspective, quantization is one of the significant signal process-
ing techniques, such as effectively compressing original data[4, 16, 25]. For a long time, the goal
of quantization research has been to reduce the quantization error and restore an original signal
faithfully from compressed data by quantization. Instead of researching quantization as a branch of
signal processing, we could find an effective non-convex optimization algorithm that quantizes the
level set of an objective function and appropriately decreases the quantization step to time index.
Furthermore, conventional research on quantization demonstrates that if the quantization error does
not depend on the original signal when we quantize the signal uniformly for a large amount of data,
the quantization error follows an independent increment distribution(i.i.d.)[6, 8, 17, 27]. Therefore,
we can design an effective stochastic optimization algorithm using a suitable quantization process
from the i.i.d. quantity of the quantization error. For this purpose, we present an intuitive stochas-
tic analysis of an optimization algorithm based on quantization applied to a random search. The
proposed analysis presents the stochastic differential equation (SDE) to describe the dynamics of
quantization-based optimization. We can establish the Witten-Laplacian [2, 15, 24] to demonstrate
that the quantization to an objective function provides the escape property from local minima. Fi-
nally, we verify the validity of the proposed analysis by comparing the optimization performance
of the quantization-based algorithm with that of other conventional global optimization algorithms
such as simulated annealing(SA)[11, 12, 18, 19] and quantum annealing(QA)[3, 7, 9, 21].
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2. Preliminaries

2.1. Definition and Assumption

The conventional research relevant to signal processing defines a quantization such that xQ ≜ ⌊ x∆ +
1
2⌋∆ for x ∈ R, where ∆ ∈ R+ denotes a fixed-value quantization step[6, 8]. We provide a
more detailed definition of quantization to explore the impact of the quantization error, using the
quantization parameter as a reciprocal of the quantization step such that Qp ≜ ∆−1, so we denote
the quantization parameter as Qp and the quantization step as Q−1

p , respectively.

Definition 1 For x ∈ R, we define the quantization of x as follows:

xQ ≜
1

Qp
⌊Qp · (x+ 0.5 ·Q−1

p )⌋ = 1

Qp
(Qp · x+ εq) = x+ εqQ−1

p , xQ ∈ Q, (1)

where ⌊x⌋ ∈ Z denotes the floor function such that ⌊x⌋ ≤ x for all x ∈ R, Qp ∈ Q+ denotes the
quantization parameter, and εq is the fraction for quantization such that εq : Ω 7→ R[−1/2, 1/2).

Definition 2 The quantization parameter Qp is a monotone-increasing function such that

Qp(t) = η · bh̄(t), (2)

where η ∈ Q++ denotes the fixed constant parameter of the quantization parameter, b ∈ Z+

represents the base that is typically 2, and h̄ : R++ 7→ Z+ denotes the power function such that
h̄(t) ↑ ∞ as t→∞.

Assumption 1 The quantization errorQ−1
p εq defined in (1) is a uniformly distributed, independent

random variable such that

EεqQ−1
p εq = 0, EεqQ−2

p εq = Q−2
p Eεqεq2 = 1/(12Q2

p) (3)

Furthermore, we can establish an independent stochastic process with a fraction for quantization
such as (εqt )t≥0. Based on Assumption 1, such a stochastic process is an i.i.d. process, and we
can regard the stochastic process (εqt )t≥0 as a white noise, which is known as the White Noise
Hypothesis (WNH), from conventional researches such as [6, 8, 17, 27]. In order to proceed with
the main discussion, we consider the optimization problem for an objective function f ∈ C∞ such
that

minimize f : Rd 7→ R+. (4)

For a combinatorial optimization problem such as the Traveling Salesman Problem(TSP), we deal
with an actual input represented as x ∈ [0, 1]m. In such a case, we assume that there exists a proper
transformation from a binary input to a real vector space such that T : [0, 1]m 7→ X ⊂ Rd, whereX
represents the virtual domain of the objective function f . Consequently, we consider the objective
function as (4) regardless of whether the domain is related to the problem.

Finally, we provide the following assumption for the virtual objective function.

Assumption 2 There exists a quadratic virtual objective function f̃Q(xt+1) such that

fQ(xt+1)− fQ(xt) = f̃Q(xt+1)− fQ(xt). (5)

The Hessian of the quadratic virtual function f̃(xt) is a positive definite matrix, therein, the maxi-
mum eigenvalue λ0 of the virtual function satisfies the following:

λ0 = argλ max
h∈Rd

λ

2
∥ht∥2 = argλ max

h∈Rd

∫ 1

0
(1− s)ht · ∇2

xf̃(xt + sht)htds. (6)
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Algorithm 1: Blind Random Search (BRS) with the proposed quantization scheme

Input: Objective function f(x) ∈ R+

Output: xopt, f(xopt)
Data: x ∈ Rn

Initialization
τ ← 0 and h̄(0)← 0
Set initial candidate x0 and xopt ← x0
Compute the initial objective function f(x0)
Set b = 2 and η = b−⌊logb(f(x0)+1)⌋, Qp ← η

fQopt ← 1
Qp
⌊Qp · (f + 0.5 ·Q−1

p )⌋

while Stopping condition is satisfied do
Set τ ← τ + 1
Select xτ randomly and compute f(xτ )
fQ ← 1

Qp
⌊Qp · (f + 0.5 ·Q−1

p )⌋
if fQ ≤ fQopt then

xopt ← xτ

h̄(τ)← h̄(τ) + 1, Qp ← η · bh̄(τ)

fQopt ← 1
Qp
⌊Qp · (f + 0.5 ·Q−1

p )⌋
end

end

2.2. Primitive Analysis of Quantization-based Optimization Algorithm

We present a fundamental optimization algorithm as Algorithm 1 for combinatorial optimization
with a binary domain and a general optimization problem with a continuous domain. The presented
algorithm is similar to the elementary MCMC algorithm except for the procedure under the if clause,
as it is based on a random search employed in SA and QA. The most crucial difference is that the
presented algorithm quantizes the objective function regarding a randomly selected candidate xt,
and the quantization error induced by the quantization adds i.i.d. noise to the original objective
function, such that fQ(xt) = f(xt) + Qtεt, where the time index t is equal to τ in Algorithm 1.
From the perspective of updating the parameter, this operation is similar to an annealing operation
deduced by the acceptance probability in SA and QA.

The other difference is that the algorithm compares the quantized temporary optimal objective
function denoted as fQopt with a quantized objective function to the candidate fQ(xt). Naturally, the
quantized function is not a real objective function value, so that we can model a virtual objective
function for the quantized objective function. For instance, when we represent the objective function
with a power series based on the given base value b denoted in (2) such that f(xt) = f0

∑∞
k=0 ckb

k,
we can write the quantized objective function as follows:

f(xt) = f0 +

∞∑
k=1

ckb
−k = f0 +

n∑
i=1

cib
−i +

∞∑
j=n+1

cjb
−j = fQ(xt)−Q−1

p (t)εt. (7)

In (7), we can set the quantized objective function such as fQ(xt) = f0 +
∑n

i=1 cib
−i, and the

quantization error as Q−1
p (t)εt =

∑∞
j=n+1 cjb

−j . Therefore, since the quantization step Q−1
p (t)

decreases with the power of b as represented in Algorithm 1 and Definition 2, the equation (7) is
similar to the Hamiltonian approximation for a tunneling effect in QA[3, 10, 23].

Moreover, comparing the quantized value of the objective function in the algorithm does not
require accurate modeling of the quantization error, so we can design a virtual objective function
for the part of the quantization error. Notably, instead of using the objective function’s accurate
Hessian, we can design the virtual function using a simple Hessian for convenient analysis. This
method helps to analyze and establish a learning equation for machine learning with the proposed
quantization. In the following chapters, we will discuss the design of the virtual objective function
in more detail.
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3. Intuitive Analysis of the Objective Quantization

3.1. Association to the Stochastic Differential Equation(SDE)

As shown in Algorithm 1, the update condition for the temporary optimal point is that fQ(xt+1)
is less than or equal to fQ(xt), that is, fQ(xt+1) ≤ fQ(xt). Since fQ(xt+1) < fQ(xt) is an
evident update condition, we do not consider this case. Instead, we investigate the condition when
the quantized objective function is equal, i.e. fQ(xt+1) = fQ(xt).

First, we establish a discrete search equation to describe the dynamics of the proposed algorithm
regarding the condition of equal quantized objective function. Since the algorithm minimizes the
objective function, the search equation requires a negative gradient as a primary directional deriva-
tive. However, as is well known in convex optimization, a positive definite Hessian to the objective
function gives information about local minima from the Taylor expansion with the search equation.
On the other hand, several local minima and saddle points can exist in the sufficiently large domain
of the equal quantized objective function. Accordingly, the search equation with a negative gradi-
ent needs additional components to elaborate the algorithm’s dynamics due to the limitation of the
Taylor expansion based on a quadratic approximation. To compensate for such a limitation, we add
a random vector rt ∈ Rd, which we assume that the expectation is zero, to the candidate of the
search equation as follows:

ht ≜ xt+1 − xt = −η∇xf(xt) + ηrt, η ∈ R(0, 1). (8)

Lemma 1 Given the candidate of the search equation as (8), suppose that the virtual objective
function satisfying Assumption 2 for the condition fQ(xt+1) = fQ(xt), before theQp(t) is updated.

Then, the norm of the random vector rt satisfies ∥rt∥ ≤
√
2λ0Q

−1
p (t) for the update of xt under

the assumption of the quantized objective functions and η = λ−1
0 .

We suppose that the algorithm success to update when fQ(xt+1) ≤ fQ(xt) and fail to update when
fQ(xt+1) > fQ(xt). Although we cannot estimate the probability of success correctly, we can
suppose that the distribution of the norm of rt is symmetric to the condition of fQ(xt+1) = fQ(xt).
Therefore, we consider that the variance of rt is equal to 2λ0Q

−1
p (t)Id. Furthermore, rt affects

primarily the real value of the objective function f(xt) and not significantly on fQ(xt) affected
by the quantization step Q−1

p (t). Accordingly, since rt is an independent random vector for the
quantization error, we can regard rt as Gaussian white noise without loss of generality. Therefore,
we obtain the following theorem regarding SDE to describe the proposed search algorithm.

Theorem 2 Based on the given candidate (8) of the search equation and the variance of rt, i.e.,
Ert⊗rt = 2λ0Q

−1
p (t)Id, we can obtain the approximated SDE form for the proposed quantization-

based search algorithm as follows:

dXt = −∇xf(Xt) +

√
2Q−1

p (t)dW t, (9)

where W t ∈ Rd denotes a vector valued standard Brownian motion, and Xt ∈ Rd denotes a
random vector corresponding to xt in (8).

The SDE represented as (9) is a standard Langevin dynamics as an overdamped form and not
unadjusted Langevin dynamics[14, 24]. Consequently, the proposed search algorithm embeds a
Metropolis-Hastings acceptance step controlled by the quantization parameter Qp(t) so that the
provided SDE describes the dynamics of the proposed search algorithm.
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3.2. Quantum Mechanical Quantities of the Quantization-Based Optimization

In the previous section, we present the search equation formed as the stochastic difference equation
(8) and the approximated SDE (9) for the quantization-based optimization. Comparing both equa-
tions, when we design the noise model that directly affects the directional derivative, the SDE for
the search equation denotes the standard SDE employed with a damped variance term represented
as a simulated temperature or a quantization step, as we propose.

An additional advantage of the SDE (9) is that we can analyze the dynamics of the algorithm
with quantum mechanics. For this purpose, we introduce the Fokker-Plank equation (FPE) for the
SDE (9) with a differential operator L∗ as follows [5, 14, 24]:

∂ρ

∂t
= L∗ρ, L∗ρ = ∇x · (ρ∇xf(xt)) +Q−1

p (t)∆ρ, (10)

where ∆ denotes the standard Laplacian, ρ ≜ ρ(x, t) : Rd ×R+ 7→ R[0, 1] is the density of the
random vector Xt defined in (9). The stationary solution of (10) is the well-known Boltzmann-
Gibbs distribution Z−1 exp(−Qp(t)f(xt)), where Z =

∫
Rd exp(−Qp(t)f(x))dx <∞[5].

For the analysis based on quantum dynamics under the regime of a small quantization step
(Q−1

p (t) → 0), we derive a following Witten-Laplacian on 0-forms ∆(0)
f,h associated with f and the

small parameter h(t) ≜ 2Q−1
p (t) from the FPE (10):

∆
(0)
f,hu = −h2∆u+ (|∇xf |2 − h∆xf)u, ef/hL∗ue−f/h = − 1

2h
∆

(0)
f,hu (11)

where u ≜ u(x, t) : Rd ×R+ 7→ R is the test function defined as u = ρ exp(f/h).
Substituting iℏ/m into h, and replacing the test function u with ψ : Rd × R 7→ C, we can

obtain the Schrödinger equation from the Witten-Laplacian (11) and FPE (10).

iℏ
∂ψ

∂t
= − ℏ2

2m
∆xψ −

m

2
(∥∇xf∥2 −

iℏ
m
∆xf)ψ = − ℏ2

2m
∆xψ + V ψ, (12)

where V denotes a potential energy defined as V = −m
2 (∥∇xf∥2 − h∆xf), m denotes a mass of

a particle, and ℏ denotes the reduced Plank constant.
To verify the claims that the search algorithm based on the quantized objective function in

Chapter 2 involves a quantum mechanical effect, we investigate the potential energy V when the
search parameter xt is trapped in a local minimum. Under the assumption, we note that the norm
of the gradient ∥∇xf∥ is zero at the local minimum. In spite of the case, the Laplacian term
2Q−1

p (t)∆xf still remains non-zero in V ; thus, for small Q−1
p (t) = h

2 , we get

∂ρ

∂t
= L∗ρ = − 1

2h
∆

(0)
f,hu · exp(−f/h) ≈

h

2
∆xu · exp(−f/h) > 0 (13)

Equation (13) reveals that the proposed algorithm can increase the probability density ρ(x, t) to
move the searching point through a potential barrier even if xt falls in a local minimum. Addition-
ally, the stop condition of the algorithm depends on the quantization step Q−1

p (t), which decreases
to zero. According to the tunneling effect provided by the Schrödinger equation, the height of the
energy barrier that the algorithm can penetrate is equal to the quantization step Q−1

p (t) since the
proposed algorithm quantizes the objective function.
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Table 1: Specification of Benchmark Test functions for Performance Test
Function Equation optimal point

Xin-She Yang N4 f(x) = 2.0 + (
∑d

i=1 sin
2(xi)− exp(−

∑d
i=1 x

2
i ) exp(−

∑d
i=1 sin

2
√

|xi|) min f(x) = −1, at x = 0

Salomon f(x) = 1− cos

(
2π

√∑d
i=1 x

2
i

)
+ 0.1

√∑d
i=1 x

2
i min f(x) = 0, at x = 0

Drop-Wave f(x) = −
1+cos

(
12
√

x2+y2
)

0.5(x2+y2)+2
min f(x) = 0, at x = 0

Shaffel N2 0.5 +
sin2(x2−y2)−0.5

(1+0.001(x2+y2)2
min f(x) = 0, at x = 0

Table 2: Simulation results of standard benchmark test function for nonlinear optimization
Function Criterion Simulated Annealing Quantum Annealing Quantization-Based Optimization

Xin-She Yang N4 Iteration 6420 17* 3144
Improvement ratio 54.57% 35.22% 54.57%

Salomon Iteration 1312 7092 1727
Improvement ratio 99.99% 99.99% 100.0%

Drop-Wave Iteration 907 3311 254
Improvement ratio 100.0% 100.0% 100.0%

Shaffer N2 Iteration 7609 9657 2073
Improvement ratio 100.0% 100.0% 100.0%

4. Experimental Result

We conducted experiments on well-known continuous benchmark functions such as Xin-She Yang
N4[26], Salomon[20], Drop-Wave[1], and Shaffer N2[22] to compare the optimization performance
with thermodynamic-based (SA), quantum mechanical (QA) and quantization-based algorithms.
Since all benchmark test functions are continuous, simulated annealing, quantum annealing, and
the proposed quantization-based optimization are enabled to find the global minima within finite it-
erations. Furthermore, the quantization-based optimization finds the global minimum within fewer
iterations than the SA and QA algorithms. We predict that the energy barrier induced virtually by
the quantization is relatively lower and more easily penetrated than the natural barrier imposed by
the object function. Such a quantity of the quantization-based search algorithm can improve the
optimization performance. As for the experiments on the Xin-She-Yang N4 function, quantum an-
nealing fails to find the global minimum, whereas SA and the proposed algorithm successfully find
it. The simulation result demonstrates that the presented analysis based on the FPE to thermody-
namical and the proposed quantization-based optimization is valid.

5. Conclusion

We present an intuitive analysis of quantization-based optimization based on stochastic analysis
and quantum mechanics. The proposed SDE for the algorithm is a standard overdamped Langevin
dynamics appropriate to the algorithm’s dynamics. Based on the presented SDE, we provide an FPE
and Witten-Laplacian, including the quantization parameter, to analyze the algorithm’s dynamics.
However, despite the significant performance difference, the analysis formulas presented in this
paper are similar to those of SA. We suspect that the tunneling effect, which we have not investigated
sufficiently, is the primary cause. In future work, we will analyze the algorithm’s dynamics in
more detail using a quantum mechanical perspective and combine the quantization of the objective
function with the learning equation in machine learning.
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Appendix B. Introduction

We set notation, proof of lemmas and theorems, and more detailed information about the simulation
in the manuscript in the following sections.

Appendix C. Notations

• Rn The n-dimensional space with real numbers

• R Rn|n=1

• R[α, β] {x ∈ R|α ≤ x ≤ β, α, β ∈ R}

• R(α, β] {x ∈ R|α < x ≤ β, α, β ∈ R}

• R[α, β) {x ∈ R|α ≤ x < β, α, β ∈ R}

• R(α, β) {x ∈ R|α < x < β, α, β ∈ R}

• Qn The n-dimensional space with rational numbers

• Q Qn|n=1

• Z The 1-dimensional space with integers.

• N The 1-dimensional space with natural numbers.

• R+ {x|x ≥ 0, x ∈ R}

• R++ {x|x > 0, x ∈ R}

• Q+ {x|x ≥ 0, x ∈ Q}

• Q++ {x|x > 0, x ∈ Q}

• Z+ {x|x ≥ 0, x ∈ Z}

• Z++ {x|x > 0, x ∈ Z}, Z++ is equal to N.

• ⌊x⌋ max{y ∈ Z|y ≤ x, ∀x ∈ R}

• ⌈x⌉ min{y ∈ Z|y ≥ x,∀x ∈ R}

• ∇xf(x) Gradient of the scalar field f : Rd 7→ R+ such that∇x : R 7→ Rd. For Euclidean
space,∇xf(x) =

∑d
i=1

∂f
∂xi

ei, where {ei}di=1 = { ∂
∂xi
}di=1 is a local covariant bases

10
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• ∇x · V (x) Divergence of a vector field V : Rd 7→ Rd such that ∇x· : Rd 7→ R. For
Euclidean space,∇x · V (x) =

∑d
i=1

∂f
∂xi

.

• ∇2
xf(x) Hessian of the scalar field f : Rd 7→ R+ such that ∇2

x : R 7→ Rd×d computed by
∇x∇xf =

∑d
i,j=1

∂2f
∂xi∂xj

ei ⊗ ej for an Euclidean space.

• ∆xf(x) Laplacian of the scalar field f : Rd 7→ R+ such that ∆x : R 7→ R computed by
∆xf(xt) = ∇x · ∇xf =

∑d
i=1

∂2f

∂xi2
for a Euclidean space.

Appendix D. Proofs of Theorems in Section 3

D.1. Proof of Lemma 1

Lemma 1 Given the candidate of the search equation as (8), suppose that the virtual objective func-
tion which is a quadratic function with a positive Hessian for the condition fQ(xt+1) = fQ(xt),
before the Qp(t) is updated. Let the maximum eigenvalue of the Hessian be λ0. Then, the norm of

the random vector rt satisfies ∥rt∥ ≤
√
2λ0Q

−1
p (t) for the update of xt under the same quantized

objective condition.

Proof We write the quantization of the objective function fQ(xt+1) before the algorithm update
the quantization step (i.e., Q−1

p (t+ 1) = Q−1
p (t)) as follows:

fQ(xt+1) = f(xt+1) +Q−1
p (t+ 1)εt

= f(xt) +∇xf(xt) · ht +
∫ 1

0
(1− s)ht · ∇2

xf(xt + sht)htds+Q−1
p (t+ 1)εt+1

= f(xt) +Q−1
p (t)εt +∇xf(xt) · ht +

∫ 1

0
(1− s)ht · ∇2

xf(xt + sht)htds

+Q−1
p (t+ 1)εt+1 −Q−1

p (t)εt

= fQ(xt) +∇xf(xt) · ht +
∫ 1

0
(1− s)ht · ∇2

xf(xt + sht)htds+Q−1
p (t+ 1)εt+1 −Q−1

p (t)εt

= fQ(xt) +∇xf(xt) · ht +
∫ 1

0
(1− s)ht · ∇2

xf(xt + sht)htds+Q−1
p (t)(εt+1 − εt)

Thus, we obtain the following fundamental equation for the equality condition:

fQ(xt+1)−fQ(xt) = ∇xf(xt)·ht+
∫ 1

0
(1−s)ht ·∇2

xf(xt+sht)htds+Q
−1
p (t)(εt+1−εt) (14)

To investigate the condition for no imposed random vector such that rt = 0, we let the directional
derivative as ht = −η∇xf(xt), for η ∈ R(0, 1). Additionally, according to Assumption 2, we
employ a virtual function f̃(xt) that satisfies f̃(xt) = f(xt) and f̃Q(xt+1)−fQ(xt) = fQ(xt+1)−
fQ(xt). Hence, we can obtain the following equation:

fQ(xt+1)− fQ(xt) = f̃Q(xt+1)− fQ(xt)
= f̃(xt+1)− f(xt) +Q−1

p (t)(εt+1 − εt),
(15)

11
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where, without loss of generality, we can let the difference of the quantized virtual function and
fQ(xt) such that

f̃(xt+1)− f(xt) = −∇xf(xt) · ht + max
h∈Rd

∫ 1

0
(1− s)ht · ∇2

xf(xt)htds (16)

In (14) and (15), the maximum and minimum of Q−1
p (εt+1 − εt) is

−Q−1
p = −Q−1

p

(
−1

2
− 1

2

)
≤ Q−1

p (εt+1 − εt) ≤ Q−1
p

(
1

2
+

1

2

)
= Q−1

p ; (17)

thus (17) implies that
Q−1
p |εt+1 − εt| ≤ Q−1

p . (18)

From the assumption of the virtual function (15), we can rewrite (14) as

fQ(xt+1)− fQ(xt) = f̃Q(xt+1)− fQ(xt)
= f̃(xt+1)− f(xt) +Q−1

p (t)(εt+1 − εt)

= −∇xf(xt)ht +
1

2
λ0∥ht∥2 +Q−1

p (t)(εt+1 − εt)

= −η∥∇xf(xt)∥2 +
1

2
λ0η

2∥∇xf(xt)∥2 +Q−1
p (t)(εt+1 − εt)

=
1

2
λ0∥∇xf(xt)∥2

(
η2 − 2

λ0
η

)
+Q−1

p (t)(εt+1 − εt)

=
1

2
λ0∥∇xf(xt)∥2

((
η − 1

λ0

)2

− 1

λ20

)
+Q−1

p (t)(εt+1 − εt).

Hence, we obtain the following one of a fundamental equation to investigate the update condi-
tion:

fQ(xt+1)− fQ(xt) =
1

2
λ0∥∇xf(xt)∥2

((
η − 1

λ0

)2

− 1

λ20

)
+Q−1

p (t)(εt+1 − εt) (19)

Since (19) is a convex with respect to η, the search algorithm update xt when the minimum of
the LHS of (19) satisfies the following:

min
η∈R(0,1)

fQ(xt+1)− fQ(xt) ≤ 0 (20)

Herein, (20) should satisfy the worst case of quantization error such that Q−1
p (t)(εt+1 − εt) =

maxε·∈R[−0.5,0.5]Q
−1
p (t)(εt+1 − εt) = Q−1

p . Considering the above quantization error condition,
(20) implies that

min
η∈R(0,1)

1

2
λ0∥∇xf(xt)∥2

((
η2 − 1

λ0

)2

− 1

λ20

)
+ max
ε·∈R[−0.5,0.5]

Q−1
p (t)(εt+1 − εt) ≤ 0

=⇒ − 1

2λ0
∥∇xf(xt)∥2 +Q−1

p ≤ 0. =⇒ ∥∇xf(xt)∥2 ≥ 2λ0Q
−1
p

12
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Therefore, when η = 1
λ0

, we obtain the minimum of ∥∇xf(xt)∥ such that

∥∇xf(xt)∥ ≥
√

2λ0Q
−1
p . (21)

Next, we consider the case of imposing the random vector rt into the directional derivative ht
such that ht = η(−∇xf(xt) + rt). Computing the squared norm of ht, we get

∥ht∥2 = η2∥∇xf(xt)∥2 − 2η2∇xf(xt)rt + η2∥rt∥2 (22)

Holding the assumption of the virtual function, to avoid the redundant of the quantization error
according to the condition of ∥∇xf(xt)∥, we substitute (22) into f̃(xt+1)− f(xt) instead of (15);
then we can obtain

f̃(xt+1)−f(xt) =
1

2
λ0∥∇xf(xt)∥2

((
η − 1

λ0

)2

− 1

λ20

)
+η(1−ηλ0)∇xf(xt)·rt+

η2

2
λ0∥rt∥2

(23)
Since we have set η is equal to 1

λ0
, we can rewrite the RHS of (23) with the parameter update

condition f̃(xt+1)− f(xt) ≤ 0 such that

f̃(xt+1)− f(xt) = −
1

2λ0
∥∇xf(xt)∥2 +

η2

2
λ0∥rt∥2 =

1

2λ0
(∥rt∥2 − ∥∇xf(xt)∥2) ≤ 0 (24)

For the minimum of ∥∇xf(xt)∥2 derived as (22), the right most term of (24) should be less than
zero; thus we get

∥rt∥2 ≤ min
η∈R(0,1)

∥∇xf(xt)∥2 =
√
2λ0Q

−1
p (t) (25)

D.2. Proof of Theorem 1

Theorem 2 Based on the given candidate (8) of the search equation and the variance of rt, i.e.,
Ert⊗rt = 2λ0Q

−1
p (t)Id, we can obtain the approximated SDE form for the proposed quantization-

based search algorithm as follows:

dXt = −∇xf(Xt) +

√
2Q−1

p (t)dW t, (26)

where W t ∈ Rd denotes a vector valued standard Brownian motion, and Xt ∈ Rd denotes a
random vector corresponding to xt in (8).

Proof Let the time index τt depend on η be such that τt ≜ tη, where t denotes the time index in
(8). Furthermore, we let a vector-valued random variable Xτt ∈ Rd corresponding to x in (8). The
first-order Taylor expansion of the standard Wiener process is as follows:

W τt+1 −W τt = η
dW τt

dτ
+O(η2), (27)
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and the variance of the LHS in (27) is

E(W τt+1 −W τt)⊗ (W τt+1 −W τt) = (τt+1 − τt)Id = (t+ 1− t)ηId = ηId. (28)

From the assumption for rτt as a Gaussian white noise and (28), we get

Erτt ⊗ rτt = 2λ0Q
−1
p (τt)Id = 2λ0Q

−1
p (τt)E

(W τt+1 −W τt)⊗ (W τt+1 −W τt)

η

= 2λ20Q
−1
p (τt)E

(W τt+1 −W τt)⊗ (W τt+1 −W τt)

η
.

(29)

Therefore, from (29), we can rewrite the random vector rt such that

rτt = λ0

√
2Q−1

p (τt)(W τt+1 −W τt). (30)

Rewriting (8) to the time index τt and Xτt , we can obtain

Xτt+1 −Xτt = −η∇xf(Xτt) + ηrτt . (31)

Substituting (30) into rτt in (31), we get

Xτt+1 −Xτt = −η∇xf(Xτt) + η · λ0
√

2Q−1
p (τt)(W τt+1 −W τt)

=⇒ Xτt+1 −Xτt = −η∇xf(Xτt) +

√
2Q−1

p (τt)

(
η
dW τt

dτ
+O(η2)

)
=⇒

Xτt+1 −Xτt

η
= −∇xf(Xτt) +

√
2Q−1

p (τt)

(
dW τt

dτ
+O(η)

)
=⇒ lim

η→0

Xτt+1 −Xτt

(t+ 1− t)η
= −∇xf(Xτt) +

√
2Q−1

p (τt)

(
dW τt

dτ
+ lim
η→0
O(η)

)
=⇒ dXτt

dτ
= −∇xf(Xτt) +

√
2Q−1

p (τt)
dW τt

dτ
.

Replace the time index τt with t, it implies that

dXτt = −∇xf(Xτt)dt+

√
2Q−1

p (τt)dW t. (32)

D.3. From Fokker-Plank Equation to Schrödinger Equation with Witten Laplacian

Given the Fokker-Plank Equation (FPE) as

∂ρ

∂t
= L∗ρ, L∗ρ = ∇x · (ρ∇xf(xt)) +Q−1

p (t)∆ρ, (33)

there are two approaches for the derivation of Witten-Laplacian; one is based on the Fokker-Plank
differential operator L∗ as presented in the paper, and the other is using a non-negative symmetric
differential d(0)f,h and d(0)∗f,h , where the differential denotes as follows [13–15]:

d
(0)
f,h = exp(−f/h)(h∇x) exp(f/h)

d
(0)∗
f,h = − exp(f/h)(h∇x·) exp(−f/h).

(34)
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Under the differential defined as (34), the Witten-Laplacian is as follows:

∆
(0)
f,h = d

(0)∗
f,h d

(0)
f,h (35)

We present both derivations in this section. First, we derive the Whitten-Laplacian based on the
FPE operator as presented (10). We rewrite the FPE as follows

∂ρ

∂t
= ∇x(ρ · ∇xf) +Q−1

p ∆ρ = ∇xρ · ∇xf + ρ∆xf +
h

2
∆xρ, (36)

where h ≜ 2Q−1
p , and ρ ≜ ρ(x, t) : Rd×R+ 7→ R[0, 1] is the density of the random vector Xt de-

fined in (9). The stationary solution of ρ is the Boltzmann-Gibbs distributionZ−1 exp(−Qp(t)f(xt)),
where Z =

∫
Rd exp(−Qp(t)f(x))dx <∞[5].

Let a wave function be ψ : Rd × R → C such that ρ(x, t) ≜ ψ(x, t) exp(−f/h) = ψg.
Additionally, we let the fundamental partial derivatives of ρ to t be as follows:

∂ρ

∂t
= −g∂ψ

∂t
. (37)

The gradient of ρ is

∇xρ = ∇x(ψ · g) = ∇xψ · g − ψ ·
∇xf

h
g =

(
∇xψ −

ψ

h
∇xf

)
g. (38)

The Laplacian of ρ is

∆xρ = ∇x ·
(
∇xψ −

ψ

h
∇xf

)
g

=

(
∆xψ −

1

h
(∇xψ · ∇xf + ψ∆xf) +

(
∇xψ −

ψ

h
∇xf

)
−∇xf

h

)
g

=

(
∆xψ −

2

h
∇xψ · ∇xf −

1

h
ψ∆xf +

ψ

h2
∥∇xf∥2

)
g.

(39)

(39) implies that

h

2
∆xρ =

(
h

2
∆xψ −∇xψ · ∇xf +

1

2h
(∥∇xf∥2 − h∆xf)ψ

)
g. (40)

Furthermore,
∇x(ρ · ∇xf) = ∇xρ · ∇xf + ρ∆xf

=

((
∇xψ −

ψ

h
∇xf

)
· ∇xf + ψ∆xf

)
g

=

(
∇xψ · ∇xf −

1

h
(∥∇xf∥2 − h∆xf)ψ

)
g

(41)

Substituting (41) and (39) into (36), we obtain

−g∂ψ
∂t

=

(
∇xψ · ∇xf −

1

h
(∥∇xf∥2 − h∆xf)ψ +

h

2
∆xψ −∇xψ · ∇xf +

1

2h
(∥∇xf∥2 − h∆xf)ψ

)
g

∂ψ

∂t
= −h

2
∆xψ +

1

2h
(∥∇xf∥2 − h∆xf)ψ = ∆

(0)
f,hψ.

(42)
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To obtain the Schrödinger equation, we replace h with iℏ/m in the final equation of (42). Substi-
tuting the conjugate wave function ψ∗ such that ∂ρ∂t = g ∂ψ

∗

∂t into (42), we obtain the following:

g
∂ψ∗

∂t
=

(
∇xψ

∗ · ∇xf −
1

h
(∥∇xf∥2 − h∆xf)ψ

∗ +
h

2
∆xψ

∗ −∇xψ
∗ · ∇xf +

1

2h
(∥∇xf∥2 − h∆xf)ψ

∗
)
g

∂ψ∗

∂t
=
h

2
∆xψ

∗ − 1

2h
(∥∇xf∥2 − h∆xf)ψ

∗

=⇒ ∂ψ∗

∂t
=

iℏ
2m

∆xψ
∗ − m

2iℏ
(∥∇xf∥2 − h∆xf)ψ

∗

=⇒ iℏ
∂ψ∗

∂t
= − ℏ2

2m
∆xψ

∗ − m

2
(∥∇xf∥2 − h∆xf)ψ

∗

Consequently, we can obtain the Schrödinger equation (12) replacing ψ∗ with ψ as follows:

iℏ
∂ψ

∂t
= − ℏ2

2m
∆xψ + V ψ, (43)

where V = −m
2 (∥∇xf∥2 − h∆xf).

The second approach is the methodology using the symmetric differential defined as (34). We
calculate the first differential d(0)f,h such that

d
(0)
f,hu = e−f/h(h∇x)e

f/h u

= e−f/h
(
h∇xe

f/h u+ h ef/h∇xu
)

= e−f/h
(
uh

1

h
∇xf e

f/h + hef/h∇xu

)
= (∇xf + h∇x)u.

Next, we calculate the second differential d(0)
∗

f,h such that

d
(0)∗
f,h ∇xu = −ef/h(h∇x·)e−f/h∇xu

= −ef/hh(∇xe
−f/h · ∇xu+ e−f/h∇x · ∇xu)

= −ef/hh
(
−1

h
e−f/h∇xf · ∇xu+ e−f/h∆xu

)
= (∇xf · ∇x − h∆x)u

Consequently, we get

d
(0)
f,hu = (∇xf + h∇x)u ∵ d

(0)
f,h : R→ Rd

d
(0)∗
f,h ∇xu = (∇xf − h∇x) · ∇xu ∵ d

(0)∗
f,h : Rd → R

(44)
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Figure 1: Conceptual diagram of the tunneling effect provided by the quantization; Blue line repre-
sents the objective function f(xt), dashed line represents the quantized objective function
fQ(xt with a relatively large quantization step

Therefore,

d
(0)∗
f,h d

(0)
f,hu = (∇xf − h∇x) · (∇xf + h∇x)u

= (∇xf − h∇x) · (u∇xf + h∇xu)

= u∇xf · ∇xf + h∇xf · ∇xu− h∇x · (u∇xf)− h2∇x · ∇xu

= ∥∇xf∥2u+ h∇xf · ∇xu− h∇xu · ∇xf − hu∇x · ∇xf − h2∆xu

= ∥∇xf∥2u+ h(∇xf · ∇xu−∇xu · ∇xf)− h∆xfu− h2∆xu

= −h2∆xu+ (∥∇xf∥2 − h∆xf)u

It implies that 0-form Witten-Laplacian from the computation of the symmetric differentials as
follows:

∆
(0)
f,hu = −h2∆xu+ (∥∇xf∥2 − h∆xf)u (45)

We can obtain the Schrödinger equation (43) by applying the Witten-Laplacian presented as
(45) to (42) replacing h with iℏ/m for the conjugate wave function ψ∗ instead of u.

D.4. Intuitive Analysis at Local Minima of an Objective Function

We can derive the equation (13) straightforwardly with (10) and (11). Therefore, expanding the
Witten-Laplacian, we can get the partial derivative of the probability density ρ as follows:

∂ρ

∂t
= − 1

2h

(
−h2∆x + (∥∇xf∥2 − h∆xf)

)
u exp(−f/h) (46)

17



INTUITIVE ANALYSIS OF THE QUANTIZATION-BASED OPTIMIZATION: FROM STOCHASTIC AND QUANTUM MECHANICAL PERSPECTIVE

Suppose that the parameter xt remains a local minima x∗, and the assumption implies that
∇xf(x∗) = 0 at t ∈ R+. Particularly, from the fact that h = 2Q−1

p , we assume that h is sufficiently
small to neglect the effect of h∆xu.

Holding such the assumption for paralysis of searching caused by local minima, we note that
there exists a non-zero term ∆xfρ in the RHS of the Witten-Laplacian (46). Since the trapping
point is a local minimum, the eigenvalue of the Laplacian ∆xf is positive, and it implies that the
probability density represents increasing as follows:

∂ρ

∂t
=
h

2
∆xρ−

1

2h
∥∇xf∥2 +

1

2
∆xf · ρ

=

(
h

2
∆xu−∇xu · ∇xf +

1

2h
∥∇xf∥2 −

1

2
∆xf · u

)
exp(−f/h) + 1

2
∆xf · ρ

=
h

2
∆xu · exp(−f/h)−

1

2
∆xf · ρ+

1

2
∆xf · ρ, ∵ ∇xf = 0

=
h

2
∆xu · exp(−f/h) > 0,

(47)

Therefore, the algorithm’s stop condition is that the quantization step h(t) = 2Q−1
p (t) decreases

infinitely to zero, which implies that the probability density reaches a stationary distribution.

D.5. Specification of the Benchmark Functions in Simulation Results

The benchmark functions used for optimization performance tests are widely known as the com-
plication of finding the global minimum. Figure 2 represents the 3D plot of each benchmark. All
functions involve several local minima and the global minimum at x = 0. Figure 3 shows how the
quantization-based optimizer searches for the global minimum of the benchmark functions, with the
1D plotted on the Y-zero axis. Those limited searches on a one-dimensional plane cause the conver-
gence point to be slightly different from the global minimum due to the limited gradient. However,
as shown in the figures, even if the algorithm is trapped at a local minimum point, the algorithm can
escape the local minimum, proceed with searching, and finally converge to the global minimum.
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(a) 3D plot of Xin She Yang N4 benchmark
function on 2-dimensional input space

(b) 3D plot of Drop wave benchmark function
on 2-dimensional input space

(c) 3D plot of Salomon benchmark function on
2-dimensional input space

(d) 3D plot of Salomon benchmark function on
2-dimensional input space

Figure 2: 3D plot of the benchmark functions
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Figure 3: Search process to benchmark functions on 1-dimension
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