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ABSTRACT

Self-supervised learning (SSL) is a scalable way to learn general visual represen-
tations since it learns without labels. However, large-scale unlabeled datasets in
the wild often have long-tailed label distributions, where we know little about
the behavior of SSL. In this work, we systematically investigate self-supervised
learning under dataset imbalance. First, we find out via extensive experiments
that off-the-shelf self-supervised representations are already more robust to class
imbalance than supervised representations. The performance gap between bal-
anced and imbalanced pre-training with SSL is significantly smaller than the gap
with supervised learning, across sample sizes, for both in-domain and, especially,
out-of-domain evaluation. Second, towards understanding the robustness of SSL,
we hypothesize that SSL learns richer features from frequent data: it may learn
label-irrelevant-but-transferable features that help classify the rare classes and
downstream tasks. In contrast, supervised learning has no incentive to learn fea-
tures irrelevant to the labels from frequent examples. We validate this hypothesis
with semi-synthetic experiments and theoretical analyses on a simplified setting.
Third, inspired by the theoretical insights, we devise a re-weighted regularization
technique that consistently improves the SSL representation quality on imbalanced
datasets with several evaluation criteria, closing the small gap between balanced
and imbalanced datasets with the same number of examples.

1 INTRODUCTION

Self-supervised learning (SSL) is an important paradigm of machine learning, because it can lever-
age the availability of large-scale unlabeled datasets to learn representations for a wide range of
downstream tasks and datasets (He et al., 2020; Chen et al., 2020; Grill et al., 2020; Caron et al.,
2020; Chen & He, 2021). Current SSL algorithms are mostly trained on curated, balanced datasets,
but large-scale unlabeled datasets in the wild are inevitably imbalanced with a long-tailed label
distribution (Reed, 2001; Liu et al., 2019). Curating a class-balanced unlabeled dataset requires the
knowledge of labels, which defeats the purpose of leveraging unlabeled data by SSL.

The behavior of SSL algorithms under dataset imbalance remains largely underexplored in the
literature, but extensive studies do not bode well for supervised learning (SL) with imbalanced
datasets. The performance of vanilla supervised methods degrades significantly on class-imbalanced
datasets (Cui et al., 2019; Cao et al., 2019; Buda et al., 2018), posing challenges to practical
applications such as instance segmentation (Tang et al., 2020) and depth estimation (Yang et al.,
2021). Many recent works address this issue with various regularization and re-weighting/re-sampling
techniques (Ando & Huang, 2017; Wang et al., 2017b; Jamal et al., 2020; Cui et al., 2019; Cao et al.,
2019; 2021; Tian et al., 2020; Hong et al., 2021; Wang et al., 2021).

In this work, we systematically investigate the representation quality of SSL algorithms under class
imbalance. Perhaps surprisingly, we find out that off-the-shelf SSL representations are already more
robust to dataset imbalance than the representations learned by supervised pre-training. We evaluate
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Figure 1: Relative performance gap (lower is better) between imbalanced and balanced represen-
tation learning. The gap is much smaller for self-supervised (MoCo v2) representations (ASSL in
blue) vs. supervised ones (AS" in red) on long-tailed ImageNet with various number of examples 7,
across both ID (a) and OOD (b) evaluations. See Equation (1) for the precise definition of the relative
performance gap and and Figure 2 for the absolute performance.

the representation quality by linear probe on in-domain (ID) data and finetuning on out-of-domain
(OOD) data. We compare the robustness of SL and SSL representations by computing the gap
between the performance of the representations pre-trained on balanced and imbalanced datasets of
the same sizes. We observe that the balance-imbalance gap for SSL is much smaller than SL, under a
variety of configurations with varying dataset sizes and imbalance ratios and with both ID and OOD
evaluations (see Figure 1 and Section 2 for more details). This robustness holds even with the same
number of samples for SL and SSL, although SSL does not require labels and hence can be more
easily applied to larger datasets than SL.

Why is SSL more robust to dataset imbalance? We identify the following underlying cause to
answer this fundamental question: SSL learns richer features from the frequent classes than SL does.
These features may help classify the rare classes under ID evaluation and are transferable to the
downstream tasks under OOD evaluation. For simplicity, consider the situation where rare classes
have so limited data that both SL and SSL models overfit to the rare data. In this case, it is important
for the models to learn diverse features from the frequent classes which can help classify the rare
classes. Supervised learning is only incentivized to learn those features relevant to predicting frequent
classes and may ignore other features. In contrast, SSL may learn the structures within the frequent
classes better—because it is not supervised or incentivized by any labels, it can learn not only the
label-relevant features but also other interesting features capturing the intrinsic properties of the input
distribution, which may generalize/transfer better to rare classes and downstream tasks.

We empirically validate this intuition by visualizing the features on a semi-synthetic dataset where
the label-relevant features and label-irrelevant-but-transferable features are prominently seen by
design (cf. Section 3.2). In addition, we construct a toy example where we can rigorously prove the
difference between self-supervised and supervised features in Section 3.1.

Finally, given our theoretical insights, we take a step towards further improving SSL algorithms, clos-
ing the small gap between SSL on balanced and imbalanced datasets. We identify the generalization
gap between the empirical and population pre-training losses on rare data as the key to improvements.

To this end, we design a simple algorithm that first roughly estimates the density of examples with
kernel density estimation and then applies a larger sharpness-based regularization (Foret et al., 2020)
to the estimated rare examples. Our algorithm consistently improves the representation quality under
several evaluation protocols.

We sum up our contributions as follows. (1) We are the first to systematically investigate the
robustness of self-supervised representation learning to dataset imbalance. (2) We propose and
validate an explanation of this robustness of SSL, empirically and theoretically. (3) We propose a
principled method to improve SSL under unknown dataset imbalance.

2 EXPLORING THE EFFECT OF CLASS IMBALANCE ON SSL

Dataset class imbalance can pose challenge to self-supervised learning in the wild. Without access to
labels, we cannot know in advance whether a large-scale unlabeled dataset is imbalanced. We need to
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study how SSL will behave under dataset imbalance to deploy SSL in the wild safely. In this section,
we systematically investigate the effect of class imbalance on self-supervised representations.

2.1 PROBLEM FORMULATION

Class-imbalanced pre-training datasets. We assume the datapoints / inputs are in R? and come
from C underlying classes. Let = denote the input and y denote the corresponding label. Supervised
pre-training algorithms have access to the inputs and corresponding labels, whereas self-supervised
pre-training only observes the inputs. Given a pre-training distribution P over over R? x [C], let r
denote the ratio of class imbalance. That is, r is the ratio between the probability of the rarest class
min;eo) Py=5)
max;ero] P(y=74) —
imbalance ratios and use P” to denote the distribution with ratio . We also use P for the case where
r = 1, i.e. the dataset is balanced. Large-scale data in the wild often follow heavily long-tailed label
distributions where r is small. We assume that for any class j € [C], the class-conditional distribution
P (x|y = j) is the same across balanced and imbalanced datasets for all r. The pre-training dataset

and the most frequent class: r = 1. We will construct distributions with varying

‘P consists of n i.i.d. samples from P".

Pre-trained models. A feature extractor is a function fy : R? — R™ parameterized by neural
network parameters ¢, which maps inputs to representations. A linear head is a linear function
go : R™ — RY, which can be composed with fo to produce the predictions. SSL algorithms learn ¢
from unlabeled data. Supervised pre-training learns the feature extractor and the linear head from
labeled data. We drop the head and only evaluate the quality of feature extractor ¢.!

Following the standard evaluation protocol in prior works (He et al., 2020; Chen et al., 2020), we
measure the quality of learned representations on both in-domain and out-of-domain datasets with
either linear probe or fine-tuning, as detailed below.

In-domain (ID) evaluation tests the performance of representations on the balanced in-domain
distribution 7P with linear probe. Given a feature extractor fo pre-trained on a pre-training dataset

’ﬁfl with n data points and imbalance ratio r, we train a C-way linear classifier § on top of f4 on a
balanced dataset® sampled i.i.d. from P, We evaluate the representation quality with the top-1
accuracy of the learned linear head on P, We denote the ID accuracy of supervised pre-trained
representations by A5 (n, 7). Note that AS5(n, 1) stands for the result with balanced pre-training
dataset. For SSL representations, we denote the accuracy by A5t (n, r).

Out-of-domain (OOD) evaluation tests the performance of representations by fine-tuning the feature
extractor and the head on a (or multiple) downstream target distribution P;. Starting from a feature
extractor f, (pre-trained on a dataset of size n and imbalance ratio r) and a randomly initialized

classifier 6, we fine-tune ¢ and 6 on the target dataset 73,5, and evaluate the representation quality
by the expected top-1 accuracy on P;. We use A(S)%)D(n.7 r) and A%%D(n, r) to denote the resulting
accuracies of supervised and self-supervised representations, respectively.

Summary of varying factors. We aim to study the effect of class imbalance to feature qualities on
a diverse set of configurations with the following varying factors: (1) the number of examples in
pre-training n, (2) the imbalance ratio of the pre-training dataset r, (3) ID or OOD evaluation, and (4)
self-supervised learning algorithms: MoCo v2 (He et al., 2020), or SimSiam (Chen & He, 2021).

2.2  EXPERIMENTAL SETUP

Datasets. We pre-train the representations on variants of ImageNet (Russakovsky et al., 2015) or
CIFAR-10 (Krizhevsky & Hinton, 2009) with a wide range of numbers of examples and ratios of im-
balance. Following Liu et al. (2019), we consider exponential and Pareto distributions, which closely
simulate the natural long-tailed distributions. We consider imbalance ratio in {1,0.004, 0.0025} for
ImageNet and {1,0.1,0.01} for CIFAR-10. For each imbalance ratio, we further downsample the
dataset with a sampling ratio in {0.75,0.5,0.25,0.125} to form datasets with varying sizes. We

'Tt is well-known that the composition of the head and features learned from supervised learning is more
sensitive to imbalanced dataset than feature extractor ¢ itself (Cao et al., 2019; Kang et al., 2020). Please also
see Table 3 in Appendix C for a comparison between CRT (Kang et al., 2020) and Supervised.

>We essentially use the largest balanced labeled ID dataset for this evaluation, which oftentimes means the
entire curated training dataset, such as CIFAR-10 with 50,000 examples and ImageNet with 1,281,167 examples.
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Figure 2: Representation quality on balanced and imbalanced datasets. Left: CIFAR-10, SL vs.
SSL (SimSiam); Right: ImageNet, SL vs. SSL (MoCo v2). For both ID and OOD, the gap between
balanced and imbalanced datasets with the same n is larger for supervised learning. The accuracy of
supervised representations is better with reasonably large n in ID evaluation, while self-supervised
representations perform better in OOD evaluation.*

Accuracy on STL-10 % Aoop
o o
3 &

Accuracy on Target Datasets % Aoop
o
G

fix the variant of the dataset when comparing different algorithms. For ID evaluation, we use the
original CIFAR-10 or ImageNet training set for the training phase of linear probe and use the original
validation set for the final evaluation. For OOD evaluation of representations learned on CIFAR-10,
we use STL-10 (Coates et al., 2011) as the target /downstream dataset. For OOD evaluation of repre-
sentations learned on ImageNet, we fine-tune the pre-trained feature extractors on CUB-200 (Wah
etal., 2011), Stanford Cars (Krause et al., 2013), Oxford Pets (Parkhi et al., 2012), and Aircrafts (Maji
et al., 2013), and measure the representation quality with average accuracy on the downstream tasks.

Models. We use ResNet-18 on CIFAR-10 and ResNet-50 on ImageNet as backbones. For supervised
pre-training, we follow the standard protocol of He et al. (2016) and Kang et al. (2020). For self-
supervised pre-training, we consider MoCo v2 (He et al., 2020) and SimSiam (Chen & He, 2021).
We run each evaluation experiment with 3 seeds and report the average and standard deviation in the
figures. Further implementation details and additional results are deferred to Section A.

2.3 RESULTS: SELF-SUPERVISED LEARNING IS MORE ROBUST THAN SUPERVISED
LEARNING TO DATASET IMBALANCE

In Figure 2, we plot the results of ID and OOD evaluations, respectively. For both ID and OOD
evaluations, the gap between SSL representations learned on balanced and imbalanced datasets
with the same number of pre-training examples, i.e., A5t (n, 1) — ASSL(n, 7), is smaller than the
gap of supervised representations, i.e., AS%(n,1) — ASk(n, ), consistently in all configurations.
Furthermore, we compute the relative accuracy gap to balanced dataset ASSt(n, ) £ (AL (n, 1) —
ASSt(n, 1))/ ASSE(n, 1) in Figure 1. We observe that with the same number of pre-training examples,
the relative gap of SSL representations between balanced and imbalanced datasets is smaller than
that of SL representations across the board,

A ASSL(n 1) — ASSL(n, r)

N ASt(n, 1) — ASL(n, 1)
ASSL(n, 1) B

ASL(n, 1)

ASSL(n, T) < AS'L(TL7 T) (D

*The maximum 7 is smaller for extreme imbalance. The standard deviation comes only from the randomness
of evaluation. We do not include the stddev for ImageNet ID due to limitation of computation resources.
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Figure 3: Explaining SSL’s robustness in a toy setting. e; and e, are two orthogonal directions
in the d-dimensional Euclidean space that decides the labels, and e3.4 represents the other d — 2
dimensions. Classes 1 and 2 are frequent classes and the third class is rare. To classify the three
classes, the representations need to contain both e; and e, directions. Supervised learning learns
direction e; from the frequent classes (which is necessary and sufficient to identify classes 1 and 2)
and some overfitting direction v from the rare class which has insufficient data. Note that v might be
mostly in the es.4 directions due to overfitting. In contrast, SSL learns both e; and e, directions from
the frequent classes because they capture the intrinsic structures of the inputs (e.g., e; and e are the
directions with the largest variances), even though e, does not help distinguish the frequent classes.
The direction e, learned from frequent data by SSL can help classify the rare class.

Also note that comparing the robustness with the same number of data is actually in favor of SL,
because SSL is more easily applied to larger datasets without the need of collecting labels.

ID vs. OOD. As shown in Figure 2, we observe that representations from supervised pre-training
perform better than self-supervised pre-training in ID evaluation with reasonably large n, while
self-supervised pre-training is better in OOD evaluation. This phenomenon is orthogonal to our
observation that SSL is more robust to dataset imbalance, and is consistent with recent works (e.g.,
Chen et al. (2020); He et al. (2020)) which also observed that SSL performs slightly worse than
supervised learning on balanced ID evaluation but better on OOD tasks.

3 ANALYSIS

We have found out with extensive experiments that self-supervised representations are more robust to
class imbalance than supervised representations. A natural and fundamental question arises: where
does the robustness stem from? In this section, we propose a possible reason and justify it with
theoretical and empirical analyses.

SSL learns richer features from frequent data that are transferable to rare data. The rare classes
of the imbalanced dataset can contain only a few examples, making it hard to learn proper features to
classify the rare classes. In this case, one may want to resort to the features learned from the frequent
classes for help. However, due to the supervised nature of classification tasks, the supervised model
mainly learns the features that help classify the frequent classes and may neglect other features which
can transfer to the rare classes and potentially the downstream tasks. Partly because of this, Jamal
et al. (2020) explicitly encourage the model to learn features transferable from the frequent to the rare
classes with meta-learning. In contrast, in self-supervised learning, without the bias or incentive from
the labels, the models can learn richer features that capture the intrinsic structures of the inputs—both
features useful for classifying the frequent classes and features transferable to the rare classes.

3.1 RIGOROUS ANALYSIS ON A TOY SETTING

To justify the above conjecture, we instantiate supervised and self-supervised learning in a setting
where the features helpful to classify the frequent classes and features transferable to the rare classes
can be clearly separated. In this case, we prove that self-supervised learning learns better features
than supervised learning.

Data distribution. Let ey, es be two orthogonal unit-norm vectors in the d-dimensional Euclidean
space. Consider the following pre-training distribution P of a 3-way classification problem, where
the class label y € [3]. The input « is generated as follows. Let 7 > 0 and p > 0 be hyperparameters
of the distribution. First sample g uniformly from {0, 1} and £ ~ N(0, I') from Gaussian distribution.
For the first class (y = 1), set x = e; — qres + p&. For the second class (y = 2), set z =
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—ej — qTes + p&. For the third class (y = 3), set x = ea + p&. Classes 1 and 2 are frequent classes,

, 772823’ zgzzgg = o(1). See Figure 3 for an illustration of this

data distribution. In this case, both e; and es are features from the frequent classes 1 and 2. However,
only e helps classify the frequent classes and only ey can be transferred to the rare classes.

while class 3 is the rare class, i.e.

Algorithm formulations. For supervised learning, we train a two-layer linear network fy, w, () =
WoWix with weight matrices Wy € R™*d and Wy € R3*™ for some m > 3, and then use the
first layer Ws, = Wj as the feature for downstream tasks. Given a linearly separable labeled
dataset, we learn such a network with minimal norm ||W," W71 ||% + ||W,' W2 ||% subject to the margin
constraint fuw, w,(®)y > fwy,w,(z)y + 1 for all data (z,y) in the dataset and y’ # y.° For self-
supervised learned, similar to SimSiam (Chen et al., 2020), we construct positive pairs (z + &,z + &)
where x is from the empirical dataset, £ and &’ are independent random perturbations. We learn a
matrix Wssi. € R”™*? which minimizes —E[(W (z + €))7 (W (z + ¢'))] + 4 |W W |/%, where the

expectation [ is over the empirical dataset and the randomness of ¢ and £’. The regularization term
$|[WTW |3 is introduced only to make the learned features more mathematically tractable. We use
WessLz as the feature of data = in the downstream task.

Main intuitions. We compare the features learned by SSL and supervised learning on an imbalanced
dataset that contains an abundant (poly in d) number of data from the frequent classes but only a
small (sublinear in d) number of data from the rare class. The key intuition behind our analysis is
that supervised learning learns only the e; direction (which helps classify class 1 vs. class 2) and
some random direction that overfits to the rare class. In contrast, self-supervised learning learns both
e; and e, directions from the frequent classes. Since how well the feature helps classify the rare
class (in ID evaluation) depends on how much it correlates with the eo direction, SSL provably learns
features that help classify the rare class, while supervised learning fails. This intuition is formalized
by the following theorem.

Theorem 3.1. Let ny,no, ng be the number of data from the three classes respectively. Let p = d—s
and T = d5 in the data generative model. For ny,ny = ©(poly(d)) and ng < d5, with probability

1
at least 1 — O(e=4"°), the following statements hold for any feature dimension m > 3:

o Let Wy, = [w1,wa, -+ ,wy,] T be the feature learned by SL, then Z;il {eg,w;)? < O(d_Tlo).

o Let WssL = [y,1a, - ,Wm]T be the feature learned by SSL, then ||Ieylls > 1 — O(d™5),
where 11 projects es onto the row span of WssL..

Supervised learning results in features Ws;. whose rows have small correlation with the transferable
feature eo, indicating that supervised learning only learns features for classifying the frequent classes
and ignore the transferable features. In contrast, self-supervised learning recovers ey well, even
though e, is not relevant to classifying the frequent classes. The proofs are deferred to Section E.

3.2 ILLUSTRATIVE SEMI-SYNTHETIC EXPERIMENTS

In the previous subsection, we have shown that self-supervised learning provably learns label-
irrelevant-but-transferable features from the frequent classes which can help classify the rare class in
the toy case, while supervised learning mainly focuses on the label-relevant features. However, in
real-world datasets, it is intractable to distinguish the two groups of features. To amplify this effect in
a real-world dataset and highlight the insight of the theoretical analysis, we design a semi-synthetic
experiment on SimCLR (Chen et al., 2020) to validate our conclusion.

Dataset. In the theoretical analysis above, the frequent classes contain both features related to the
classification of frequent classes and features transferable to the the rare classes. Similarly, we
consider an imbalanced pre-training dataset with two groups of features modified from CIFAR-10 as
shown in Figure 4 (Left). We construct classes 1-5 as the frequent classes, where each class contains
5000 examples. Classes 6-10 are the rare classes, where each class has 10 examples. In this case, the
ratio of imbalance = 0.002. Each image from classes 1-5 consists of a left half and a right half.
The left half of an example is from classes 1-5 of the original CIFAR-10 and corresponds to the label
of that example. The right half is from a random image of CIFAR-10, which is label-irrelevant. In

SPrevious work shows that deep linear networks trained with gradient descent using logistic loss converge to
this min norm solution in direction (Ji & Telgarsky, 2018).
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Figure 4: Visualization of SSL features in semi-synthetic settings. Left: The right halves of the
rare examples decide the labels, while the left are blank. The left halves of the frequent examples
decide the labels, while the right halves are random half images, which contain label-irrelevant-but-
transferable features. Middle: Visualization of features with Grad-CAM (Selvaraju et al., 2017).
SimCLR learns features from both left and right sides, whereas SL mainly learns label-relevant
features from the left and ignore label-irrelevant features on the right. Right: Accuracies evaluated
on rare classes. The head classifiers are trained on 25000 examples from the 5 rare classes. SiImCLR
learns much better features for rare classes than SL. We include random feature (feature extractor
with random weights) and supervised-rare (model trained with only the rare examples) for references.
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contrast, the left half of an example from classes 6-10 is blank, whereas the right half is label-relevant
and from classes 6-10 of the original CIFAR-10. In this setting, features from the left halves of
the images are correlated to the classification of the frequent classes, while features from the right
halves are label-irrelevant for the frequent classes, but can help classify the rare classes. Note that
features from the right halves cannot be directly learned from the rare classes since they have only 10
examples per class. This is consistent with the setting of Theorem 3.1.

Pre-training. We pre-train the representations on the semi-synthetic imbalanced dataset. For
supervised learning, we use ResNet-50 on this 10-way classification task. For self-supervised
learning, we use SimCLR with ResNet-50. To avoid confusing the left and right parts, we disable the
random horizontal flip in the data augmentation. After pre-training, we fix the representations and
train a linear classifier on top of the representations with balanced data from the 5 rare classes (25000
examples in total) to test if the model learns proper features for the rare classes during pre-training. In
Figure 4 (Right), we test the classifier on the rare classes. In Figure 4 (Middle), we further visualize
the Grad-CAM (Selvaraju et al., 2017) of the representations on the held-out set®.

Results. As a sanity check, we first pre-train a supervised model with only the 50 rare examples and
train the linear head classifier with 25000 examples from the rare classes (5-way classification) to see
if the model can learn proper features for the rare classes with only rare examples (Supervised-rare
in Figure 4 (Right)). As expected, the accuracy is 36.5%, which is almost the same as randomly
initialized representations with trained head classifier, indicating that the model cannot learn the
features for the rare classes with only rare examples due to the limited number of examples. We then
compare supervised learning with self-supervised learning on the whole semi-synthetic dataset. In
Figure 4 (Right), self-supervised representations perform much better than supervised representations
on the rare classes (70.1% vs 44.3%). We further visualize the activation maps of representations
with Grad-CAM. Supervised learning mostly activate the left halves of the examples for both frequent
and rare classes, indicating that it mainly learn features on the left. In sharp contrast, self-supervised
learning activates the whole image on the frequent examples and the right part on the rare examples,
indicating that it learns features from both parts.

4 IMPROVING SSL ON IMBALANCED DATASETS WITH REGULARIZATION

In this section, we aim to further improve the performance of SSL to close the gap between imbalanced
and balanced datasets. Many prior works on imbalanced supervised learning regularize the rare classes
more strongly, motivated by the observation that the rare classes suffer from more overfitting (Cao
et al., 2019; 2021). Inspired by these works, we compute the generalization gaps (i.e., the differences
between empirical and validation pre-training losses) on frequent and rare classes for the step-

SCIFAR images are of low resolution. For visualization, we use high resolution version of the CIFAR-10
images in Figure 4 (Middle). We also provide the visualization on original CIFAR-10 images in Figure 7.
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imbalance CIFAR-10 datasets (where 5 classes are frequent class with 5000 examples per class and
the rest are rare with 50 examples per class). As shown in Table 1 (a), we still observe a similar
phenomenon—the frequent classes have much smaller pre-training generalization gap than the rare
classes (0.035 vs. 0.081), which indicates the necessity of more regularization on the rare classes.

We need a data-dependent regularizer that can have different effects on rare and frequent examples.
Thus, weight decay or dropout (Srivastava et al., 2014) are not suitable. The prior work of Cao et al.
(2019) regularizes the rare classes more strongly with larger margin, but it does not apply to SSL
where no labels are available. Inspired by Cao et al. (2021), we adapt sharpness-aware minimization
(SAM) (Foret et al., 2021) to imbalanced SSL.

Reweighted SAM (rwSAM). SAM improves model generalization by penalizing loss sharpness.
Suppose the training loss of the representation fg is L(¢),i.e. L(¢) = L 2?21 Uz, ¢). SAM seeks
parameters where the loss is uniformly low in the neighboring area,

m(gnz(gzﬁ +¢e(¢)), where €(¢)=argmax ETV¢E(¢). ()
llell<p

To take the weight of different examples into account, we add reweighting to the inner maximization
step of SAM. Intuitively, we wish the optimization landscape to be flatter for rare examples, which is

in effect regularizing the model more on rare examples. Concretely, consider the reweighted training
n

loss associated with weight vector w € R™, Ly, (¢) = L > i1 wil(zj, ¢). The reweighted SAM

T n

objective re-weights the regularization-related terms (e.g., €,,) but not the training loss L:

rrgn L(¢ + €w(9)), where €,(¢) = argmax eTV¢Ew(¢). 3)
llell<p

Assigning Weight with Kernel Density Estimation. The weight w; of an example z; should be
inversely correlated with the frequency of the corresponding class 7;. However, we have no access
to the labels. In order to approximate the frequency, we use kernel density estimation on top of
the representations f,. Concretely, denote by K (-, h) the Gaussian density with bandwidth h. We
assign w; to be inversely correlated with the estimated density, i.e., w; = ( Z;’L:l K(fe(x:) —

folz;), h)) ~“ where h and o > 0 are hyperparameters selected by cross validation.

4.1 EXPERIMENTS

We test the proposed rwSAM on CIFAR-10 with step or exponential imbalance and ImageNet-
LT (Liu et al., 2019). After self-supervised pre-training on the long-tailed dataset, we evaluate
the representations by (1) linear probing on the balanced in-domain dataset and (2) fine-tuning on
downstream target datasets. For (1) and (2), we compare with SSL, SSL+SAM (w/o reweighting),
and SSL balanced, which learns the representations on the balanced dataset with the same number of
examples. Implementation details and additional results are deferred to Section C. Code is available
athttps://github.com/Liuhong99/Imbalanced-SSL.

Results. Table 1 (a) summarizes results on long tailed CIFAR-10. With both step and exponential
imbalance, rwSAM improves the performance of SimSiam over 1%, and even surpasses the perfor-
mance of SimSiam on balanced CIFAR-10 with the same number of examples. Note that compared
to SimSiam, rwSAM closes the generalization gap of pre-training loss on rare examples from 0.081
to 0.066, which verifies the effect of re-weighted regularization. In Table 1 (b), we provide the result
of fine-tuning on downstream tasks with representations pre-trained on ImageNet-LT. The proposed
method improves the transferability of representations to downstream tasks consistently.

5 RELATED WORK

Supervised Learning with Dataset Imbalance. There exists a line of works studying supervised
imbalanced classification. Ando & Huang (2017); Buda et al. (2018) proposed to re-sample the
data to make the frequent and rare classes appear with equal frequency in training. Re-weighting
assigns different weights for head and tail classes and eases the optimization difficulty under class
imbalance (Cui et al., 2019; Tang et al., 2020; Wang et al., 2017b). Byrd & Lipton (2019); Xu et al.
(2021) studied the effect of importance weighting and found out that importance weighting does not
change the solution without regularization. Cao et al. (2019) studied reweighted regularization based
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(a) CIFAR, ID | r = 0.01, step | 7=0.01,exp
Method | Acc. (%) GapFreq. GapRare | Acc. (%)
SimSiam 843+ 0.2 0.035 0.081 81.44+ 0.3
SimSiam+SAM 84.74+0.3 0.044 0.075 82.1+£04
SimSiam, balanced 85.8 £0.2 0.038 0.037 82.0+04
SimSiam+rwSAM ‘ 85.6 £0.4 0.037 0.066 ‘ 82.7 + 0.5
(b) ImageNet, OOD \ Target dataset

Method | CUB Cars Aircrafts Pets | Avg.
MoCo v2 699+07 884+04 829+0.6 80.1+0.6]| 803
MoCo v2+SAM 699+05 888+£05 834+£04 81.5+0.8| 809
MoCo v2, balanced | 69.8 0.5 88.6+ 04 827+05 80.0+04 | 80.2

MoCo v2+rwSAM | 703 +0.7 887+03 849+06 81.7+04 | 814

SimSiam 70.0+03 87.0£0.6 81.5+0.7 83.8=£0.5]| 80.6
SimSiam, balanced | 70.5 0.8 879 +0.7 81.8+0.7 82.7+04 | 80.7

SimSiam+rwSAM | 70.7 £ 0.8 884 +£0.6 82.6+0.6 840+04 | 81.4

Table 1: Results of the proposed rwSAM. (a) Results on CIFAR-10-LT with linear probe and
ID evaluation. SimSiam+rwSAM on imbalanced datasets performs even better than SimSiam on
balanced datasets with the same number of examples. Note that rwSAM closes the generalization
gap on the rare examples (0.081 vs. 0.066). (b) Results on ImageNet-LT with fine-tuning and OOD
evaluation. rwSAM improves the performance of MoCo v2 and SimSiam on the target datasets.

on classifier margin, but these techniques are limited to supervised imbalanced recognition. Cao et al.
(2021) proposed to regularize the local curvature of loss on imbalanced and noisy datasets. Recent
works also designed specific losses or training pipelines for imbalanced recognition (Jamal et al.,
2020; Hong et al., 2021; Wang et al., 2021; Zhang et al., 2021).

Several works also studied the supervised representations under dataset imbalance. Kang et al. (2020);
Wang et al. (2020) found out that the representations of supervised learning perform better than
the classifier itself with class imbalance. Yang & Xu (2020) studied the effect of self-training and
self-supervised pre-training on supervised imbalanced recognition classifiers. In contrast, the focus
of our paper is the effect of class imbalance on self-supervised representations.

Self-supervised Learning. Recent works on self-supervised learning successfully learn representa-
tions that approach the supervised baseline on ImageNet and various downstream tasks. Contrastive
learning methods attract positive pairs and drive apart negative pairs (He et al., 2020; Chen et al.,
2020). Siamese networks predict the output of the other branch, and use stop-gradient to avoid
collapsing (Grill et al., 2020; Chen & He, 2021). Clustering methods learn representations by per-
forming clustering on the representations and improve the representations with cluster index (Caron
et al., 2020). Cole et al. (2021) investigated the effect of data quantity and task granularity on
self-supervised representations. Goyal et al. (2021) studied self-supervised methods on large scale
datasets in the wild. Kotar et al. (2021) studied whether dataset imbalance can have a significant
impact on contrastive learning representations. Several works have also theoretically studied the
success of self-supervised learning (Arora et al., 2019; Lee et al., 2020b; HaoChen et al., 2021; Wei
et al., 2021).

6 CONCLUSION

Our paper is the first to study the problem of robustness to imbalanced training of self-supervised
representations. We discover that self-supervised representations are more robust to class imbalance
than supervised representations and explore the underlying cause of this phenomenon. Our experi-
ments mainly focus on vision datasets. Future works can study the effect of dataset imbalance on
NLP datasets, where self-supervised pre-training is a dominant approach. We hope our study can
inspire analysis of self-supervised learning in broader environments in the wild such as domain shift,
and provide insights for the design of future unsupervised learning methods.
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To ensure reproducibility, we describe the implementation details of the algorithms and the con-
struction of the datasets in Section A.1 and Section C. The code of the experiments in Section 2,
Section 3.2 and Section 4 is provided in the supplementary material. We describe the setting and data
assumptions of the toy case in Section 3.1 and provide the proof in Section E.

ETHICS STATEMENT

Our paper studies the problem of robustness to imbalanced training of self-supervised representations.
This setting is important to Al Ethics, as large real-world datasets tend to be imbalanced in practice,
for instance including less examples from under-represented minorities. Furthermore, pre-training is
a standard practice in deep learning, especially for quickly adapting models to new domains, which
corresponds to our OOD evaluation scenario.

Our experiments and theoretical analysis show that SSL is more robust than supervised pre-training,
especially in the OOD scenario. As supervised learning is still the de facto standard for pre-training,
our work should have a wide impact, encouraging practitioners to use SSL for pre-training instead, or
at least consider evaluating the impact of imbalanced pre-training on their downstream task.

We also remark that the paper does not imply at all that the algorithms proposed or studied can
guarantee any form of fairness, and they in fact should still suffer from biases. The paper should be
considered as a step towards studying the important technical issue of dataset imbalance, which is
related to the fairness or biases questions.
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Figure 5: Visualization of the label distributions. We visualize the label distributions of the imbal-
anced CIFAR-10 and ImageNet. We consider two imbalance ratios 7 for each dataset.Imbalanced
CIFAR-10 follows the exponential distribution, while imbalanced ImageNet follows Pareto distribu-
tion.

A DETAILS OF SECTION 2

A.1 IMPLEMENTATION DETAILS

Generating Pre-training Datasets. CIFAR-10 (Krizhevsky & Hinton, 2009) contains 10 classes with
5000 examples per class. We use exponential imbalance, i.e. for class ¢, the number of examples is
5000 x e?(¢=1) we consider imbalance ratio € {0.1,0.01}, i.e. the number of examples belonging
to the rarest class is 500 or 50. The total ng is therefore 20431 or 12406. ImageNet-LT is constructed
by Liu et al. (2019), which follows the Pareto distribution with the power value 6. The number
of examples from the rarest class is 5. We construct a long tailed ImageNet following the Pareto
distribution with more imbalance, where the number of examples from the rarest class is 3. The total
number of examples ns is 115846 and 80218 respectively. For each ratio of imbalance, we further
downsample the dataset with the sampling ratio in {0.75,0.5,0.25,0.125} to formulate different
number of examples. To compare with the balanced setting fairly, we also sample balanced versions
of datasets with the same number of examples. Note that each variant of the dataset is fixed after
construction for all algorithms. See the visualization of label distributions of dataset variants in
Figure 5.

Training Procedure. For supervised pre-training, we follow the standard protocol of He et al. (2016)
and Kang et al. (2020). On the standard ImageNet-LT, we train the models for 90 epochs with step
learning rate decay. For down-sampled variants, the training epochs are selected with cross validation.
Fo self-supervised learning, the initial learning rate on the standard ImageNet-LT is set to 0.025
with batch-size 256. We train the model for 300 epochs on the standard ImageNet-LT and adopt
cosine learning rate decay following (He et al., 2020; Chen & He, 2021). We train the models for
more epochs on the down sampled variants to ensure the same number of total iterations. The code
on CIFAR-10 LT is adapted from https://github.com/Reza-Safdari/SimSiam-91.
9-topl-acc-on-CIFARI1O.

Evavluation. For in-domain evaluation (ID), we first train the the representations on the aforemen-
tioned dataset variants, and then train the linear head classifier on the full balanced CIFAR10 or
ImageNet. We set the initial learning rate to 30 when training the linear head with batch-size 4096
and train for 100 epochs in total. For in-domain out-of-domain evaluation (OOD) on ImageNet, we
first train the the representations on the aforementioned dataset variants, and then fine-tune the model
to CUB-200 (Wah et al., 2011), Stanford Cars (Krause et al., 2013), Oxford Pets (Parkhi et al., 2012),
and Aircrafts (Maji et al., 2013). The number of examples of these target datasets ranges from 2k to
10k, which is a reasonable scale as the number of examples of the pre-training dataset variants ranges
from 10k to 110k. The representation quality is evaluated with the average performance on the four
tasks. We set the initial learning rate to 0.1 in fine-tuning train for 150 epochs in total. For in-domain
out-of-domain evaluation (OOD) on CIFAR-10, we use STL-10 as the downstream target tasks and
perform linear probe.
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Figure 6: OOD Results of SimSiam on ImageNet. SimSiam also demonstrates more robustness
to class imbalance compared to supervised learning. The relative gap to balanced dataset is much
smaller than supervised learning across different imbalance ratios.

Table 2: Numbers in Figure 2 and Figure 6.

Imbalanced Ratio 7 | r = 1, balanced | r = 0.004 | r = 0.0025
Data Quantity n ‘ 116K 87K 58K 29K 14K‘ 116K 87K 58K 29K 14K ‘ 80K 60K 40K 20K 10K
MoCo V2, ID 50.4 43.5 40.9 37.0 30.8| 49.5 43.2 39.5 36.6 30.5|40.6 38.8 35.5 31.9 27.2

MoCo V2, 00D 80.3 79.8 79.7 77.4 77.0| 80.2 80.1 79.5 77.8 77.3|79.2 78.8 T1.7 75.6 74.4
Supervised, ID 543 51.6 46.1 40.5 26.3| 529 49.6 44.0 37.3 24.9]46.1 42.0 36.3 27.5 203
Supervised, OOD | 76.6 74.7 71.9 67.4 59.1| 75.5 73.3 70.4 65.8 57.8|71.8 69.1 65.9 60.3 54.3
SimSiam, OOD 80.7 80.4 79.9 78.7 77.2| 80.6 79.9 79.6 78.8 76.9|79.8 79.3 78.8 77.5 76.0

A.2 ADDITIONAL RESULTS

To validate the phenomenon observed in Section 2 is consistent for different self-supervised learning
algorithms, we provide the OOD evaluation results of SimSiam trained on ImageNet variants and
relative performance gap with balanced datasets in Figure 6. SimSiam representations are also less
sensitive to class imbalance than supervised representations.

We also provide the numbers of Figure 2 and Figure 6 in Table 2.

B DETAILS OF SECTION 3.2

We first generate the balanced semi-synthetic dataset with 5000 examples per class. The left halves of
images from classes 1-5 correspond to the labels, while the right halves are random. The left halves of
images from class 6-10 are blank, whereas the right halves correspond to the labels. We then generate
the imbalanced dataset, which consists of the 5000 examples per class from classes 1-5 (frequent
classes), and 10 examples per class from classes 6-10 (rare classes). We use Grad-CAM imple-
mentation based on https://github.com/meliketoy/gradcam.pytorch and SimCLR
implementation from https://github.com/leftthomas/SimCLR. We provide examples
and Grad-CAM of the semi-synthetic datasets in Figure 7.

C DETAILS OF SECTION 4

C.1 IMPLEMENTATION DETAILS

We use the same implementation as Section 2 for supervised and self-supervised learning

baselines. We implement sharpness-aware minimization following (Foret et al., 2021). In

each step of update, we first compute the reweighted loss Lo, (¢) = = Z?zl w;l(xj,¢) and

T n

compute its gradient w.r.t. ¢, ie. V¢fw(¢). Then we can compute e(¢) as e(¢) =
—1

-~ ~ -~ 1/
psgn(V Ly, (4)) ‘V¢Lw(¢)’q / (||V¢Lw(¢)\|g) p, where % + % = 1. Finally, we update the
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Figure 7: Examples of the semi-synthetic Datasets and Grad-CAM visualizations. SimCLR
learns features from both left and right sides, whereas SL mainly learns label-relevant features from
the left side of frequent data and ignore label-irrelevant features on the right side. In Figure 4, we
provide results the high-resolution images of the 10 CIFAR classes to make the results easier to
interpret. Here we further visualize the results on original CIFAR-10 images.

Frequent Classes

Rare Classes

Rare Classes

Frequent Classes

model on the loss without reweighting L(¢) by ¢ = ¢ — nV¢E(¢> + €(¢)). A detailed algorithm can
be viewed in Algorithm 1.

Algorithm 1 Reweighted Sharpness-Aware Minimization (rwSAM)

Input: the pre-training dataset 733.

1:

2: Output: learned representations ¢.

3: Stage 1: compute the weight w.

4: for i = 0 to MaxIter do R

5. Randomly sample a batch of examples {z;}?_; from D;.

6:  Update the representations ¢ on {z; }?_, to minimize the loss.
7: end for ¢ ¢ = nVyL(9)-

8: Generate the weight with kernel density estimation:
1 —a
wi = (=Y K (foli) = folas) )~
j=1

9: Stage 1: reweighted SAM.
10: for: = 0toMaxIter do N
11:  Randomly sample a batch of examples {x;}?_, from Dj.

12:  Calculate (¢) based on the reweighted loss L, (¢).
~ ~ q_l ~ 1/]’)
e = psen(VoLu(0)) [Volu(@)|  / (IVsLu(o)l)

13:  Update the representations ¢ on {x;}%_; to minimize the loss and penalize the sharpness,
¢ = ¢ = nVL(¢ + ().
14: end for

We select the hyperparameters p and o with cross validation. On ImageNet-LT and iNaturalist, p = 2
and a = 0.5. On CIFAR-10-LT, p =5and o = 1.2.

C.2 ADDITIONAL RESULTS Table 3: ImageNet-LT with Supervision.

We further introduce another evaluation protocol =~ Method | Backbone | Acc.
of the representations learned on imbalanced Ima-  gypervised ResNet-50 | 49.3
geNet: following the protocol of Kang et al. (2020);  CRT (Kang et al., 2020) |ResNet-50 | 52.0
Yang & Xu (2020), we fine-tune the representa-  LADE (Hong et al., 2021) | ResNeXt-50| 53.0
tions on imbalanced TmageNet dataset with super- ~ RIDE (Wang et al., 2021) |ResNet-50 | 54.9
vision, and then re-train the linear classifier with ~ RIDE (Wangetal,, 2021) |ResNeXt-50| 56.4
class-aware resampling, to compare with super-  ©MoCo V2 ResNet-50 | 55.0
vised imbalanced recognition methods. In MoCo  MoCo V2+rwSAM ResNet-50 | 55.5
V2 pre-training, we use the standard data augmen-
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tation following He et al. (2020). In fine-tuning, we use RandAugment (Cubuk et al., 2020). For
this evaluation, we further compare with CRT (Kang et al., 2020), LADE (Hong et al., 2021), and
RIDE (Wang et al., 2021), which are strong methods tailored to supervised imbalanced recognition.
Results are provided in Table 3. Supervised here refers to training the feature extractor and linear
classifier with supervision on the imbalanced dataset directly. CRT first trains the feature extractor
with supervision, and then re-trains the classifier with class-aware resampled loss. Note that CRT is
performing better than Supervised, indicating that the composition of the head and features learned
from supervised learning is more sensitive to imbalanced dataset than the quality of feature extractor
itself.

Even with a simple pre-training and fine-tuning pipeline, MoCo V2 representations can be comparable
with much more complicated state-of-the-arts tailored to supervised imbalanced recognition, further
corroborating the power of SSL under class imbalance. With rwSAM, we can further improve the
result of MoCo V2.

D ADDITIONAL RELATED WORK

D.1 SUPERVISED LEARNING WITH DATASET IMBALANCE

There exists a long line of works studying supervised imbalanced classification (He & Garcia, 2009;
Krawczyk, 2016). Early works on ensemble learning adjusted the boosting and bagging algorithms
with resampling in the imbalanced setting (Guo & Viktor, 2004; Wang & Yao, 2009). Classical
methods include resampling and reweighting. Hart (1968); Kubat et al. (1997); Chawla et al. (2002);
He et al. (2008); Ando & Huang (2017); Buda et al. (2018); Hu et al. (2020) proposed to re-sample
the data to make the frequent and rare classes appear with equal frequency in training. Re-weighting
assigns different weights for head and tail classes and eases the optimization difficulty under class
imbalance (Cui et al., 2019; Tang et al., 2020; Wang et al., 2017b; Huang et al., 2019). Byrd &
Lipton (2019) empirically studied the effect of importance weighting and found out that importance
weighting does not change the solution without regularization. Xu et al. (2021) justified this finding
with theoretical analysis based on the implicit bias of gradient descend on separable data.

Cao et al. (2019) initiated the idea of using re-weighted regularization and proposed the principle
of regularizing rare classes more heavily. Re-weighted regularizaton is shown to be typically more
effective than re-weighting or re-sampling the losses. Cao et al. (2021) proposed to regularize the
local curvature of loss on imbalanced and noisy datasets.

Works in the modern deep learning era also designed specific losses or training pipelines for imbal-
anced recognition (Tang et al., 2020; Hong et al., 2021; Wang et al., 2021; Zhang et al., 2021). Lin
et al. (2017) proposed to focus on hard examples to prevents easy examples from overwhelming the
models during training. Meta-learning approaches meta-learned the weight or the ensemble (Wang
et al., 2017b; Ren et al., 2018; Shu et al., 2019; Lee et al., 2020a). Liu et al. (2019); Jamal et al.
(2020); Liu et al. (2020) improved the performance on the rare examples by explicitly encourages
transfer learning. Re-calibration methods adjust the logits of the outputs with re-weighting (Tian
et al., 2020; Menon et al., 2021).

Several works also studied the supervised representations under dataset imbalance. Kang et al. (2020);
Wang et al. (2020) found out that the representations of supervised learning perform better than
the classifier itself with class imbalance. Yang & Xu (2020) studied the effect of self-training and
self-supervised pre-training on supervised imbalanced recognition classifiers. In contrast, the focus
of our paper is the effect of class imbalance on self-supervised representations.

D.2 SELF-SUPERVISED LEARNING

Earlier works on self-supervised learning learned visual representations by context prediction (Do-
ersch et al., 2015; Wang et al., 2017a), solving puzzles (Noroozi & Favaro, 2016), and rotation
prediction (Gidaris et al., 2018). Recent works on self-supervised learning successfully learn repre-
sentations that approach the supervised baseline on ImageNet and various downstream tasks, and
closed the gap with supervised pre-training. Contrastive learning methods attract positive pairs
and drive apart negative pairs (He et al., 2020; Chen et al., 2020). Siamese networks predict the
output of the other branch, and use stop-gradient to avoid collapsing (Grill et al., 2020; Chen & He,
2021). Clustering methods learn representations by performing clustering on the representations and
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improve the representations with cluster index (Caron et al., 2020). Cole et al. (2021) investigated the
effect of data quantity and task granularity on self-supervised representations. Goyal et al. (2021)
studied self-supervised methods on large scale datasets in the wild, but they do not consider dataset
imbalance explicitly. Kotar et al. (2021) studied whether dataset imbalance can have a significant
impact on contrastive learning representations. Madaan et al. (2022) found out that self-supervised
representations are better at continual learning than supervised representations. Several works have
also theoretically studied the success of self-supervised learning (Arora et al., 2019; HaoChen et al.,
2021; Wei et al., 2021; Lee et al., 2020b; Tian et al., 2021; Tosh et al., 2020; 2021). Our analysis in
Section 3.1 is partially inspired by the work HaoChen et al. (2020).
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E PROOF OF THEOREM 3.1

We notate data from the first class as xgl) =e — q;l)TGQ + pfi(l) where i € [nq] and qfl) € {0,1}.
1(-2) = —e; — q§2)7‘€2 + p{fz) where ¢ € [ns] and
qgl) € {0,1}. We notate data from the third class as x§3) =ex+ pfz@ where i € [n3]. Notice that

all ffk) are independently sampled from A/ (0, I).

Similarly, we notate data from the second class as x

We first introduce the following lemma, which gives some high probability properties of independent
Gaussian random variables.

Lemma E.1. Let & ~ N(0,1) fori € [n]. Then, for any n < poly(d), with probability at least
1
1 — e~ %" and large enough d, we have:
* [(&iyer)| < dT, (&, e2)| < dT0 and |3 — d| < 4d7 for all i € [n].

o« (&, )| < 3d5 foralli # j.

Proof of Lemma E.1. Let £, & ~ N (0, I) be two independent random variables. By the tail bound
of normal distribution, we have

Pr <|<§,el>‘ Zd%) §d7%~67§. )
By the tail bound of x? distribution, we have
Pr (|13 — dl > 4at) <22 6)

Since the directions of £ and £’ are independent, we can bound their correlation with the norm of &
times the projection of £’ onto &:

o=

45
2

+ 26"/3.

/ e r S s gk ) <€
Pr (16,6012 3at) < Pr (lell > VA +20%) + Pr (16 01 2 a% ) <

(6)

Since every &; and &; are independent when ¢ # j, by the union bound, we know that with probability
1

d5

T2

atleast 1 — (n2 +2n) (S +2e~V9), we have |(&;, e1)| < d5, |(&;, e2)| < d7o and |||&]|2 —d| <

e 2
d10
4d7 foralli € [n], and also [(§;, ;)] < 3d5 forall i # j. Since the error probability is exponential

1
in d, for large enough d, the error probability is smaller than e~%'° , which finishes the proof. O
Using the above lemma, we can prove the following lemma which constructs a linear classifier of the
empirical dataset with relatively large margin and small norm.

Lemma E.2. In the setting of Theorem 3.1, let w} = ey, w5 = —ey, wi = ﬁ POy 553). Apply

Lemma E.I to the set of all EZ-(k) where k € [3] and i € [ng]. When the high probability outcome of
Lemma E.1 happens, the margin of classifier {w?, w3, w3} is at least 1 — O(d’Tlo ). Furthermore,
we have ||w3]|2 < O(d~5).

Proof of Lemma E.2. When the high probability outcome of Lemma E.1 happens, we give a lower
1

bound on the margin for all data in the dataset. For data x = x; ’ in class 1, we have

wiTe =1+, e1)p > 1 — pds, )
wSTx: 71+<§£1),61)p§ 71+pd%, (8)

* 1 1 1 1 T - 3 TL3(7'—|— ].) 1 377,3 3
wile =5 (e = afrea + ) ;55') Y R
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1 4

So the margin on data (z;’,1) is
1 3
wz—wi x> 1—pdio —"3(;7)(11 Z?’do >1-—0(d ). (10)

Similarly, for data 331(-2)

For data x = .’L’ES)

in class 2, the margin is at least 1 — O(d~10).

in class 3, we have

T

1
@3 3 3 37”&3 _ ngdio _1
ws ””—* Zf ) (e2+p€§ )) ||€ 13 - P >1-0(d"%). (11)
On the other hand,
wiTe = (oY, e1) < pd, (12)
wi'w = (pg”), —e1) < pd7o. (13)
So the margin is
wSTx — max{w! "z, w z} > w3 T —pdio >1— O(d*%)_ (14)
Finally, noticing that ||w} || < 2”;’7‘/3 < 2d~ 1 finishes the proof. O

We also introduce the following helper lemma:
Lemma E.3. Let W € R3*? be an arbitrary matrix, m > 3. Then, we have

L
IWIIE =5 min (I Wal7 + WA 7). (15)

where Wi € R™*4 gnd Wy € R3*™_ Furthermore, the minimum is achieved when W1W1T =
WQT W.

Proof. On one hand, we have

W2 = Tr(ww ) -
= i T T
= wpn,, Trve Wy Wy ) (17)
= i, Tr VW W 1) (18)
1 .
< 3 wmin (W + (W5 W 17), (19)

where the inequality becomes equality if and only if W, W," = W,J W,.

On the other hand, let W = UXV be the SVD decomposition of W, Where ¥ € R3*9 is a diagonal
matrix with o1, 09, 03 on its diagonal. For integers p, ¢ > 3, we use pr o to denote the p X ¢ matrix
with /o7, \/? ,+/03 at its first 3 diagonal positions and O otherwise. If we set W = Eix 4V and

Wy = Uzgm, then it can be verified that W = Wo W5 and [|W |2 = (||[Wi W, ||Z+ || Wy Wal2).
Therefore, the equality holds in Equation 19, which finishes the proof. O

Now we are ready to prove the supervised learning part of Theorem 3.1:

Proof of Theorem 3.1 (supervised learning part). Let {10y,109,103} be three vectors in R¢ that mini-
mize [|w:]|3 4 [[wa |3 + [lws]|3 subject to the margin constraint w,) x > wa + 1 for all empirical

data (z,y) and y # y. To prove the supervised learning part of Theorem 3.1, we will first prove
that (1, e1)2 + (s, e1)2 + (i3, e1)2 < O(d~10) with high probability, and then use this result to
prove the correlation between ey and Wy.
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We frist apply Lemma E.1 to the set of all £; *) where k € [3] and i € [ng]. We consider the situation
when the high probability outcome of Lemma E.1 holds (which happens with probability at least

] — e—d1 ). By Lemma E.2, the constructed classifier {w], w3, w3} has margin o > 1 — O(d~10)

in thls case. As aresult, {= Lovt, ;wQ, awg} is a classifier with margin 1 and norm bounded by

1 2 + ||w]|3 1
L2 L —wi)2= B2 <94 O(d10). 20
Haw1||2 + ||aw2||2 + Haw3||2 o2 <2+0( ) (20)

Let {1, 2, 3} be min-norm linear classifier of the empirical dataset. Since its norm cannot be
larger than the constructed one, we have ||i; [|3 + [[@2]|3 4 |33 < 2+ O(d~ ). By standard

1
d~ 10

concentration inequality, when n; > poly(d), with probability at least 1 — e , we have

Eie[m]vqgl):o[%('l)] —e1l < diTlOa 2D

where the expectation is over all the data from class 1 that satisfies qgl) = 0. By the definition of
{1, e, W3} we know (1 — uig)T:cl(-l) > 1for all ¢ € [nq], hence averaging over all the class 1
1)

data with g;* = 0 and using the above inequality gives us
(1 — ) Ter > 1 — |[iby — abgllz - d T > 1 —O(d~ ). (22)
A similar analysis for class 2 data gives us
(W2 —b3) T (—e1) > 1 — O(d™ 7). (23)

Now we prove that wy, wa, 12)3 all have small correlation with e;. Without loss of generality, we
assume w4 e; =t > 0. If ¢ > 5, we have

1 2 1
(11, e1)? + (g, e1)? + (13, e1)? > (t +1-— O(d—m)) >2.25 - 0(d™10), (24)

which contradicts with |1 |3 + [[d2|3 + [|i3]|3 < 2+ O(d~70). Therefore, there must be ¢ < &
hence

(1, e1)? + (g, e1)% + (13, €1)? (25)
> (1+t70(d’%))2+(17t70(d’%))2+t2 (26)
>243t2— 0(d" 1) 27)
>2-0(d ). (28)
As a result,
(b1, €2)* + (W2, €2)” + (103, €2)° (29)
< ldn |5 + [[d2 3 + l@s]l5 — (i1, e1)® — (o, e1)? — (i, €1) (30)
< <2+O(d‘ﬁ)> - (2_ (d~ T ) 31)
<0(d™ ™). (32)

Now we turn to the analysis of Ws;. Recall that we learn two matrices W; € R™*? and W, €
R3*™ that minimize |W," W1 |% + ||[W, W2||% subject to the margin constraint (WoWjz), >
(WaWix),s + 1, and the supervised representation is Ws;, = Wj. According to Lemma E.3, we
know that the solution Wy and Wy satisfy WoW; = [y, s, w3]T and Wy Wy = Wi W,T. Let
Wy Wy = WiW," = UTXU be the SVD decomposition, where > € R™*™ is a non-negative
diagonal matrix and U is a unitary matrix. Since W5 has rank at most 3, there are at most 3 entries in
Y. that are non-zero. Without loss of generality, we assume that all the non-zero entries of X are in
the first 3 rows.

Let X,,, x4 and X3, be the matrices by reshaping > (deleting or padding all-0 rows/columns) to

the corresponding dimensions. We can write W7 as W; = Um 22 2 xqV1 for some unitary matrix
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1
Vi € R4 where Y2 4 1s the element-wise square root of X, x ¢. Similarly, Wa = 12X 3XmU for
some unitary matrix V5 € R3*3. Taking the product gives Wo W, = VoXs,4V).
Let Wsp, = Wy = [wy,wa, -+ ,w,,] . Now we finishe the proof with

m

D (wi )’ = [Wiea|3 = [UTS 2 Viesll3 < IViesll3 - IS axaViez |3 = IVaSaxaViesll3
=1

(33)
= [WaWies|2 = (i, e2)? + (tho, €2)% + (13, €2)% < O(d~ ). (34)
O

To prove the self-supervised learning part of Theorem 3.1, we first introduce the following lemma
which gives some helpful properties of the empirical data matrix.

Lemma E.4. In the setting of Theorem 3.1, let M = E,[xx"] where the expectation is over
1

empirical data. Then, when ni,ny > poly(d), with probability at least 1 — e~%"°, we have: (1)
eg Mey > Q(d3), and (2) u™ Mu < O(1) for all u € RY such that u™ ey = 0 and |ul|y = 1.

Proof of Lemma E.4. Letn = nj + ny + ng. We abuse notation and let §; (¢ € [n]) be the set of all

(k) that appears in the empirical data. Let matrix M’ = l & -T. B standard concentration
i Pp p i=1 y

inequalities and union bound, for n > poly(d), with probability at least 1 — 1 S , we have that

|M] ;| < 4 foralli # jand [M/, — 1| < % forall i € [d]. In this case, for any vector u € R? such
that |lulls = 1and u" ey = 0, we have

' Mu < 2||ul|3 +2u’ (0> M )u <2+ 2p% + 20| M’ — I||r < O(1). (35)

On the other hand, by the definition of data distirbution and standard concentration inequalities, for

1
n > poly(d), with probability at least 1 — 2e=¢"

with q( ) = 1 or class 2 with qz@) =1and [ Y7 &2 < O(3). In this case,

we have that: at least % of all data either is class 1

eg Mey = E,[(eg 2)%] > (Epleq z])? > <T—62 < Z&)) > Q(r%) = Qd?).  (36)
O

Using the above lemma, we can prove the self-supervised learning part of Theorem 3.1.

Proof of Theorem3.1(self-supervised learning part). Let M = E,[zx ] be the empirical data ma-
trix, where the expectation is over the dataset. Notice that self-supervised learning objective has the
same minimizer as the matrix factorization objective || M — W TW||2., by Eckart—Young—Mirsky theo-
rem we know that the span of wq, ws, - - - , W,, is exactly the span of the top m eigenvectors of matrix

M. Let M = Z?:l A\iv;v; where ); is the i-th largest eigenvalue of M with the corresponding
eigenvector v;. We decompose e in the eigenvector basis as es = Zle Civ;.

We first note that )\1 > Q(d3 ) and max;z; A; < O(1). Indeed, we know that E[M] = diag(1 +
d—3 , ds +d-3 , d’S, cee,d” ) By standard matrix concentration bounds (e.g. Theorem 4.6.1 of

1
Vershynin (2018)), we know that with probability atleast 1 — e~ | M — E[ I <0(d _2) By
Weyl’s inequality we know that max; |A; (T') — A;(S)| < ||S =T, so Ay > Q(d?) and max;z1 Ay <
O(1).

1
By Lemma E.4, we know that with probability at least 1 — e~?'°, we have eg Mey > Q(d ) and
uw' Mu
lTul3

only need to prove that (2 > 1 — O(d~5) in this case.

< O(1) for all u orthogonal to es. To prove the result regarding self-supervised learning, we
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We first show that (7 > 1. For contradiction, first assume (7 < 1. Define vector

/ G s Givi
u = 17<%U17ﬁ

which satisfies u " e3 = 0 and |lu/|2 = 1. Notice that

u' Mu ¢ CQ)\Z-
- 7 ( —C1))\1 12722
[Jull3 -G
> 21 — max \;
i#£1
> Q(d?),

.
which contradicts to “”u]ﬁ[z“ < O(1). Therefore, we have (7 > 1
2

To prove that Cf is close to 1, we let scalar t = %

<2 1 and define vector
1

d
u=—tGo1 + (v,

=2
which satisfies u " es = 0. Since (7 > 1, we have t < 1 and ||ul|2 < 1. As a result, we have
u' Mu 2y 25 42, T 2 72
T >t 1<1+Z/\g > t?e) Mey > Q(2d5).
2 =2

On the other hand, we know that “ "My < O(1). Comparing these two bounds gives us t> < O(d~

lull3
1

which means ¢ > 1 — O(d™3).

24

(37

(38)

(39)

(40)

(41)

(42)

1
5),
O



	Introduction
	Exploring the Effect of Class Imbalance on SSL
	Problem Formulation
	Experimental Setup
	Results: Self-supervised Learning is More Robust than Supervised Learning to Dataset Imbalance

	Analysis
	Rigorous Analysis on A Toy Setting
	Illustrative Semi-synthetic Experiments

	Improving SSL on Imbalanced Datasets with Regularization
	Experiments

	Related Work
	Conclusion
	Details of Section 2
	Implementation Details
	Additional Results

	Details of Section 3.2
	Details of Section 4
	Implementation Details
	Additional Results

	Additional Related Work
	Supervised Learning with Dataset Imbalance
	Self-supervised Learning

	Proof of Theorem 3.1

