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Abstract

Measuring progress is fundamental to the advancement of any scientific field. As
benchmarks play an increasingly central role, they also become more susceptible
to distortion. Chatbot Arena has emerged as the go-to leaderboard for ranking
the most capable AI systems. Yet, in this work we identify systematic issues that
have skewed the competitive landscape. Specifically, undisclosed private testing
practices benefit a handful of providers who are able to test multiple variants
before public release and selectively retract scores. We establish that the ability
of these providers to choose the best score leads to biased Arena scores due to
selective performance disclosure. At an extreme, we found one provider testing
27 private variants before making one model public at the second position on the
leaderboard. We also show that proprietary closed models are sampled at higher
rates (i.e., involved in more battles) and are less likely to removed from the arena
compared to open-weight and open-source models. These policies lead to large data
access asymmetries over time. The top two providers have individually received
an estimated 19.2% and 20.4% of all data on the arena, while 83 open-weight
models collectively received only 29.7%. Even conservative estimates indicate
that access to Chatbot Arena data offers substantial benefits: limited additional
data can boost relative performance by up to 112% on ArenaHard, a test set
from the arena distribution. These dynamics lead to overfitting on Arena-specific
dynamics rather than reflecting general model quality. The Arena builds on the
substantial efforts of both the organizers and an open community that maintains
this valuable evaluation platform. We offer actionable recommendations to make
Chatbot Arena’s evaluation framework fairer and more transparent for the field.

1 Introduction

Benchmarks have long played an integral role in the development of machine learning systems,
serving as pivotal instruments for evaluating progress, guiding research agendas, and influencing
funding decisions [13, 42]. Over time, this impact ranges from early shared tasks in information
retrieval and machine translation [34, 43], through large-scale image classification benchmarks such
as ImageNet [21], to contemporary evaluation frameworks like GLUE that catalyzed advances in
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Figure 1: Number of public models vs. maximum arena score per provider. Marker size indicates
total number of battles played. Proprietary providers typically achieve higher scores, correlating
with both the number of models released and the number of Arena battles played. As discussed
in Section 3 and Section 4, this increased exposure may yield advantages via model selection and
adaptation to the Arena distribution. Figure reflects publicly disclosed results as of April 23rd, 2025.

natural language understanding [77]. Recently, the rapid ascent and broad adoption of generative
AI systems, accompanied by significant increases in computational resources and public attention
[41, 36, 67, 37], have intensified both the importance and critical examination of leaderboards used
to assess model capabilities [59].

Established in 2023, Chatbot Arena quickly became the predominant benchmark for comparing
LLMs. Unlike traditional static benchmarks, Chatbot Arena is dynamic and user-driven, allowing
unrestricted prompts and daily updates to better reflect real-world scenarios that traditional evaluations
miss [74, 11, 58]. Its widespread adoption across industry, academia, and media highlights its
significant influence on perceptions of model quality and technical progress.

Despite these advantages, heavy reliance on a single leaderboard inherently risks distorting the
objectives it was intended to measure, exemplifying Goodhart’s Law, where “when a measure
becomes a target, it ceases to be a good measure” [26, 73]. Motivated by this concern, we perform a
systematic empirical study of Chatbot Arena by analyzing approximately 2M battles and 243 models
from 42 distinct providers over a 16-month period (January 2024–April 2025). Our investigation
uncovers several critical limitations affecting the reliability and fairness of the Chatbot Arena
benchmark:

1. Preferential treatment around private testing and retraction. Chatbot Arena permits select
providers to test numerous private model variants in parallel – up to 27 in a single month – without
requiring public release. There is no guarantee that leaderboard entries match publicly accessible
APIs1. Simulations and real-world trials show that choosing the top performer from N submissions
can significantly inflate ratings, enabling systematic leaderboard gaming.

2. Far more data is released to proprietary model providers. Chatbot Arena relies on community-
generated feedback, yet evaluation data is distributed unequally. Some proprietary models have
received as much as 20.4% of all test prompts, while a combined 41 fully open-source models received
only 8.9% of the total. These estimates are derived from the share of total battles played by each
provider’s models, as shown in Figure 4. The resulting data imbalance significantly disadvantages
open-source and open-weight models in adapting to in-distribution prompts.

3. Chatbot Arena data access drives significant performance gains. We find that access to Chatbot
Arena data materially improves model performance on the leaderboard. In a controlled experiment,
increasing training exposure to Chatbot Arena data from 0% to 70% more than doubled win rates on
the ArenaHard benchmark [46] – from 23.5% to 49.9%. This likely underestimates the total effect,
as some providers also have access to private API data unavailable to others, which could further
amplify performance gains.

4. Deprecations can result in unreliable model rankings. Of the 243 public models we tracked,
205 were silently removed from the leaderboard – far more than the 47 officially deprecated in

1https://www.theverge.com/meta/645012/meta-llama-4-maverick-benchmarks-gaming
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Chatbot Arena’s backend (FastChat)2. These removals violate assumptions of the Bradley-Terry
model [8], undermining rating stability. Notably, 64% of silently deprecated models are open-weight
or open-source, suggesting uneven impact.

This paper provides a detailed, data-driven critique of Chatbot Arena, revealing systematic biases
and transparency gaps that undermine its reliability as a benchmark. We conclude with concrete,
actionable recommendations to improve fairness and ensure the leaderboard remains a credible tool
for evaluating and advancing generative AI systems.

2 Overview of Methodology

This study draws on four complementary data sources spanning January 2024-April 2025, covering
approximately 2M Chatbot Arena battles and 243 distinct models. These include: (1) public battle
datasets released by Chatbot Arena, (2) a three-month scrape of live Arena battles to identify private
variants and sampling patterns.(3) provider-side API logs from models controlled by the authors, and
(4) leaderboard snapshots tracking model scores and status. We describe our data sources in detail in
Appendix E.

We analyze model rankings through the Bradley-Terry (BT) model, the foundation of the Arena
Score. In Chatbot Arena, users are presented with two anonymous model responses and vote for the
preferred one (or select a tie). The BT model uses these pairwise outcomes to infer each model’s
latent skill level. Specifically, if model i beats model j in a pairwise comparison, the BT model
adjusts their respective scores such that the probability of i beating j is proportional to the ratio of
their skill parameters. The Arena Score is a normalized transformation of these latent skill parameters.
It reflects not only a model’s overall win-rate, but also the strength of the opponents it defeats. Unlike
simpler averaging methods, the BT formulation accounts for ties and missing matchups, making it
more robust to sparsity and incremental model additions.

However, the reliability of Arena Scores hinges on key assumptions: unbiased sampling, consistent
evaluation conditions, and sufficient connectivity among models via shared opponents. We investigate
how violations of these assumptions – such as private variant retractions, uneven sampling, or
extensive deprecations – can distort rankings and reduce the trustworthiness of Arena Scores. Our
methodology combines the above data sources to quantify the prevalence and effects of these issues,
supporting our analysis in subsequent sections.

3 Results: Impact of Private Testing and Selective Retraction on Arena Scores

3.1 Preferred Providers Frequently Use Private Testing

Although not an officially stated policy3, our audit of Chatbot Arena data using scraped-random-
sample revealed that providers are permitted to test multiple private model variants simultaneously,
without any obligation to publicly release or de-anonymize these submissions. In Figure 9 (see
Appendix H.4), we show the number of private variants we tracked as belonging to each provider
from January to March 2025. Meta and Google had the most active private models during this period,
with 27 and 10 tracked models, respectively. Meta’s peak of private testing closely preceded the
release of its Llama 4 models [56], while Google’s tests were mostly associated with its proprietary
Gemini models, with only a single observed instance involving the open-weight Gemma 3 [33].

We note this is likely a conservative estimate as it only tracks the private variants on the main Chatbot
Arena, and does not take into account private variants on specialized leaderboards run by Arena
such as for vision or code. For example, when we include Meta’s private models from the vision
leaderboard, we identify an additional 16 variants, bringing its total to 43. In contrast, smaller startups,
such as Reka, were found to have one active private variant live in the arena. Notably, we found that
no private models were tested by academic labs during the observed period. This disparity suggests
that only certain providers may have been aware they could submit multiple private variants, as we
observe clear differences in the number and frequency of private testing among providers.

2http://github.com/lm-sys/FastChat/
3https://drive.google.com/file/d/1reook2cjwq81xD6Yn528KOLWeWRy0ZvN/view?usp=shari
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3.2 Simulated Experiments on Private Testing and Retraction

Private testing coupled with the option to retract enables a best-of-N strategy, where an organization
submits multiple model variants to Chatbot Arena, privately evaluates them, and retains only the
top-performing variant to be publicly published on the leaderboard. In this section, we show that
best-of-N submissions violate the BT unbiased sampling assumption. This systematically inflates
model rankings and distorts the leaderboard ranking.

Unbiased Sampling Assumption. To study the selection bias scenario, assume a provider submits
N variants of a model, each variant k having a true underlying skill parameter βk, sampled from a
distribution centered at some base skill level β. Each variant’s observed skill is estimated using β̂k

where β̂k explicitly serves as an estimator for the true parameter β. The probability of observing
an exceptionally high-performing variant increases with the number of submissions N . Thus, the
observed skill of the submitted model is: β̂Best = max{β̂1, β̂2, . . . , β̂N}.

Since each β̂k is subject to statistical fluctuation due to finite match sampling, selecting the best
variant based on observed performance introduces an upward bias. Specifically, the expected value of
the best-performing variant is strictly greater than that of a regular submission:

E[β̂Best] > E[β̂k], ∀k ∈ {1, 2, . . . , N}. (1)

where the draws are non-degenerate (Var(β̂k) > 0) and N ≥ 2 (see Appendix D for further details).
This violates the BT model’s assumption of unbiased sampling and alters the likelihood landscape.
The reported rating no longer reflects a single, unbiased estimate of skill, but an extreme value from
multiple independent estimations. As a result, the BT estimator systematically inflates the ratings of
models submitted under the best-of-N strategy, distorting leaderboard rankings.
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Figure 2: Left: Impact of the number of private variants tested on the best Expected Arena
Score. As more private variants are tested—and their Arena Scores revealed—the likelihood of
selecting a model from the upper end of the performance distribution increases, allowing the provider
to effectively identify the highest-scoring variant. Right: Simulated impact of best-of-N submission
strategies on Arena leaderboard rankings. Model family A has a lower average Arena Score than
Model family B, yet by submitting multiple private variants and selecting the best-performing one, it
can surpass the only public submission from Model family B.

Role of the number of private variants. In Chatbot Arena, we observe an asymmetry in the number
of private models tested, with one provider testing up to 27 variants before launch. To investigate the
impact, we simulated the expected lift in Arena Score as the number of private variants increased
from 0 to 50. Each candidate k was assigned a true Arena score: Ek ∼ N

(
µ = 1,200, σk = 25

)
,

and evaluated with n = 3000 synthetic votes using the BT model. After selecting the variant with the
highest estimated Arena score, we found a significant extreme-value uplift: testing M = 20 private
variants increased the expected maximum score by approximately 50 Arena score compared to a
single public submission, while M = 50 pushed the advantage around 70 Arena score. (see Figure 2,
left). This highlights the advantage gained by providers who test multiple private variants. The 1200
baseline (shown in Figure 2, left) serves as a reference point representing the expected performance
of a single randomly submitted checkpoint in our experimental framework. We provide more details
about this simulation in Appendix M.

Asymmetries in which providers have access to private testing. We observe in practice that only a
few preferred providers were able to test many variants and handpick the best result. As we show
in Figure 2 (right), restricting private testing to a subset of providers can lead to counterintuitive
outcomes: a weaker model family (Family A), enabled with private testing, can outperform a stronger
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model family (Family B) that is limited to a single submission. Although both model families
have similar performance ranges, Family A’s models have a lower average Arena score across all
models compared to Family B’s. In contrast to model provider B, who is unaware of the best-of-N
strategy, model provider A evaluates multiple models on the Chatbot Arena distribution and selects
the best-performing model, leveraging the tail of the distribution to achieve a higher leaderboard
ranking. As a result, despite having a generally stronger model pool, Family B ranks lower than
Family A on the leaderboard. Model providers often end up with multiple candidate models, each
excelling in different tasks due to variations in post-training strategies or hyperparameters. Selecting
a final “official” model involves compromising across various evaluation sets. When providers have
access to private testing, a strong signal, such as performance on an Arena-style leaderboard, can
significantly influence this decision, guiding them toward variants that perform best in that specific
setting. This informed selection strategy can significantly improve leaderboard placement compared
to an “unguided approach” based on offline evaluation alone.
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Figure 3: Allowing retraction of scores allows providers to skew Arena scores upwards. We run
a real-world experiment and show gains from private testing. Left: Identical Checkpoints. Arena
Scores for Aya-Vision-8B yield different Arena scores (1069 vs. 1052). Right: Strategically
Selected Checkpoints. Arena Scores for two different variants of Aya-Vision-32B model, which
were both considered high-performing final round candidates according to internal metrics. We
observe large differences in final scores (1097 vs. 1060) for the two different model variants.

3.3 Real-world Chatbot Arena Experiment

Since we do not have access to the final scores of private model variants observed during our Arena
scrape, we design a real-world experiment to complement and validate our simulation findings on
best-of-N gains. We conducted two experiments to assess the impact of submitting multiple model
variants. First, we submitted two identical variants of Aya-Vision-8B model to the Arena in March
2025, measuring the gain from selecting the best Arena score. This conservative scenario attributes
any score difference to multiple submissions, not model quality. The final scores differed notably:
1052 (±21/22) and 1069 (±19/23), with 4 models positioned between them, suggesting that even
identical variants can yield a biased advantage. The notation (±x/y) represents the upper (x) and lower
(y) bounds of the 95% confidence interval (CI) provided by Chatbot Arena. We submitted two distinct
variants of the Aya-Vision-32B model, each optimized for different benchmark subsets. The scores
ranged from 1060 (±18/23) to 1097 (±29/25), with 9 models positioned in between, illustrating the
potential for significant ranking differences when variants are optimized for specific performance
aspects. In Figure 3, we show the lower bound estimate from identical checkpoints, alongside a
realistic estimate of the benefits from submitting diverse variants. While overlapping confidence
intervals imply possible shared rankings due to statistical uncertainty, raw scores are still reported and
models are listed in ranked order. This can create a misleading impression of precision and highlights
the importance of properly contextualizing uncertainty. Additionally, the magnitude of effects shown
in Figure 3 actually represent a conservative estimate of real-world impacts. While our controlled
experiment examines just two checkpoints for methodological purity, we observe in practice that
major providers routinely test dozens of variants (with one provider testing 27 versions for a single
launch as mentioned in Section 3). In case of Aya-Vision-32B, we observe a 37 point increase and
substantial position change with submission of only two checkpoints. When scaled to the dozens
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of variants used in practice, these effects become sufficient to meaningfully distort the perceived
hierarchy of model capabilities.

4 Results: Impact of Data Access Asymmetries on Arena Scores

Disparity in access to Chatbot Arena Data. Prompts from a large and diverse user base, such
as those from Chatbot Arena users, serve as a valuable signal for modeling user preferences. This
data is often accessible to model providers through API calls originating from Chatbot Arena battles.
The volume of data a provider receives depends on a combination of factors, some of which are
determined by Chatbot Arena versus others which are within the control of the providers such as,
number of private variants being tested on the arena, sampling rate applied to provider models,
number of publicly released models on the arena, and whether the models support API access. We
elaborate on these factors in Appendix K. We observe that the collective impact of these factors

Number of Data Samples
OpenAI (1.24M)
Google (1.17M)
Anthropic (741K)
Meta (671K)

Mistral (370K)
Alibaba (325K)
Cohere (206K)
xAI (151K)

Microsoft (141K)
DeepSeek AI (132K)
Allen AI (22K)
UC Berkeley (17K)

Princeton (11K)
Stanford (6K)
Other

Figure 4: Data availability to model providers. Data access is heavily skewed: 61.4% of all samples
go to proprietary providers. Each square represents approximately 5K samples. Figure is based on
publicly disclosed battle shares as of April 23rd, 2025.

appears to be advantageous to a handful of providers and is often inconsistent with the stated policy.
In Figure 4, we show that the combined share of OpenAI, Google, Meta, and Anthropic alone is
62.8% of the arena data, which is 68 times more than the share of top academic and non-profit labs,
including Allen AI, Stanford, Princeton, and UC Berkeley. These findings add to prior works that
consistently show better corporate access to AI training data across the ecosystem [52, 53]. We note
that the prompt samples available to each provider may not be mutually exclusive, as each battle
on the Arena involves two models, allowing the same prompt to be sent to at most two different
providers. Details about statistics in Figure 4 are available in Appendix J.

We also analyzed the maximum daily sampling rate per model and observed major disparities. Google
and OpenAI models reached rates as high as 34%, while Reka’s peaked at just 3.3%. Since sampling
rate directly affects the volume of data a provider receives, this mechanism plays a critical role in
driving the disparities illustrated in Figure 4. Further details are provided in Appendix H.5.

Risk of Potential Overfitting. A key question we investigate is whether data asymmetries on
Chatbot Arena confer systematic advantages to certain providers by enabling overfitting to the
Arena distribution. Overfitting occurs when a model learns not only generalizable patterns but also
dataset-specific noise or artifacts, leading to strong performance on familiar inputs but degraded
generalization to unseen examples. This is a particularly pressing issue in static evaluation settings,
where fixed test sets are prone to overfitting due to repeated exposure, data contamination, or targeted
tuning [20, 32, 65, 24, 70]. In contrast, Chatbot Arena has been widely adopted in part because it
allows users to submit free-form questions, producing a non-static, evolving test set [23]. However,
the assumption that Chatbot Arena is immune to overfitting depends on how frequently the data
distribution actually changes over time. To understand whether this is the case with data from
Chatbot Arena, we do an exhaustive analysis and observe that the true picture on Chatbot Arena
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is more complex. Specifically, we observe two key trends: (1) The prompt distribution does shift
meaningfully over time. For example, the proportion of multilingual prompts grew from 23.9% in
April 2023 to 43.5% in January 2025 – a 20% increase that reflects rising language diversity. (2) A
non-trivial portion of prompts in one month are either exact duplicates or near-duplicates of prompts
from previous months. For instance, 7.3% of prompts from December 2024 appear again in the
exact form in January 2025. and increases to 9% when measured by semantic similarity of prompt
embeddings using the embed-multilingual-v3.0 model4. These findings suggest that access to a
large sample of the previous month’s data could meaningfully boost performance on the following
month’s test set – raising concerns about the risk of implicit overfitting.

Experimental Setup: To estimate the potential for overfitting to Chatbot Arena, we fine-tuned a 7B
base model that is used for the Cohere Command family [15] with three different training mixes:
0_arena, 30_arena, and 70_arena, which have 0%, 30%, and 70% of the training dataset sampled
from arena-mix (Arena battles), respectively. The remainder is sampled from other-sft-mix, a
proprietary dataset for supervised fine-tuning. We evaluate using ArenaHard [47], an in-distribution
test set published by Chatbot Arena that demonstrates exceptionally high correlation (98.6%) with
human preference rankings from Chatbot Arena battles. To measure improvements, we simulate
human preferences using LLM-as-a-judge. Various works have shown that this is correlated with
human preferences [81, 49, 25, 48]. We compare against Llama-3.1-8B-Instruct and measure
win-rates using gpt-4o-2024-11-20 as our judge model.

Results: We observe that as the amount of arena-mix data increases, model performance on
ArenaHard prompts improves. Variant 0_arena scores a win-rate of 23.5%, 30_arena scores 42.7%,
and 70_arena scores 49.9% against Llama-3.1-8B-Instruct (see Figure 18 in Appendix Q).
The relative win-rate gains are substantial: 81.7% for 30_arena and 112.3% for 70_arena. These
improvements are especially notable given that we did not heavily optimize the variants. To assess
whether these gains generalize beyond the Arena benchmark, we evaluated the fine-tuned models
on the out-of-distribution MMLU benchmark (Appendix Q). The results reveal a clear trend: while
increasing the proportion of Chatbot Arena data consistently improves Arena performance within
a fixed training budget, MMLU scores slightly decline. This suggests that gains from Chatbot
Arena data are highly distribution-specific and do not generalize broadly, raising questions about
whether leaderboard improvements reflect meaningful progress or overfitting to a narrow evaluation
distribution. Providers may not need to train directly on Arena data to gain an advantage; simply
knowing the data composition may allow them to reweight training sources or create high-quality
synthetic data. Given the high stakes of ranking on Chatbot Arena, it is likely that providers are
actively leveraging this data to gain a competitive edge. Additionally, when combined with the private
testing advantages quantified in Section 3, these findings reveal a compounded effect where resource
advantages translate directly into both higher apparent performance and greater ability to optimize
for the test environment.

5 Results: Impact of Model Deprecation on Arena Scores

Based on the public Chatbot Arena code, 47 models are publicly listed as deprecated. In addition, 205
models have been silently deprecated by reducing their sampling rates to near zero (see Figure 15).
Model deprecation disproportionately affects open models: 87.8% of open-weight and 89% of
open-source models are deprecated, versus 80% of proprietary ones (see Figure 16 in Appendix N).
While deprecation is necessary to maintain a dynamic leaderboard, excessive pruning may undermine
ranking stability, as future models entering the Arena lack direct comparisons with those removed.
However, in principle, the BT model can still handle this reliably due to the transitivity property
[7]. Intuitively, if model A is better than B, and B is better than C, then A should also be better
than C. Transitivity enables the BT model to infer missing outcomes: if two models share common
opponents, their relative ranking can be deduced without a direct comparison [8]. A formal derivation
is provided in Appendix C.1. Transitivity enables ranking inference with limited data but relies
on two key assumptions: Assumption 1: Evaluation conditions remain constant. When models
are deprecated, they are no longer re-evaluated under current conditions, so past comparisons may
not accurately reflect performance in the new context. Assumption 2: Network of comparisons
must be fully interconnected. Deprecations can fragment the win graph, weakening transitivity and
reducing estimate accuracy.

4https://huggingface.co/Cohere/Cohere-embed-multilingual-v3.0
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We examine whether Chatbot Arena upholds these assumptions in Section 5.1 and Section 5.2.

5.1 Transitivity Under Changing Evaluation Conditions

As we have discussed in Section 4, the distribution of Chatbot Arena is unique, since long-term shifts
occur in categories and use cases. This distributional shift contrasts with the static environments
typically assumed in Elo and Bradley-Terry systems, such as chess, where the rules and game format
remain fixed, ensuring a consistent set of evaluation conditions. If all models were continuously
sampled across all points in time, the BT model would likely remain robust because every model
would be evaluated on the evolving distribution of tasks. However, as noted above, more than 80% of
models have been deprecated and their scores stop getting updated.
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Figure 5: Impact of task distribution shifts and model deprecation on rankings. Left: Two-phase
task distribution used in the simulation. Phase 1 is Task-1 heavy, with most battles based on Task-1;
Phase 2 is Task-2 heavy, with battles predominantly based on Task-2. Right: Model rankings under
changing task distributions and deprecation settings. Scenario I (w/o deprecation) only differs from
Scenario II (with deprecation) in that Model D is deprecated halfway through the battle history (after
phase 1). This leads Scenario II to produce a different ranking compared to Scenario I.

Deprecation given changing distribution results in unreliable Arena rankings: To investigate
how model deprecations under a changing task distribution impact rankings, we simulate BT rankings
of models under evolving evaluation conditions. The simulation is structured into two sequential
phases to mimic the evolving task distribution observed on Chatbot Arena. Experimental setup details
are provided in Appendix O. As illustrated in Figure 5, our simulation shows that rankings produced
by the BT model are highly sensitive to model deprecation, particularly when the prompt distribution
changes over time. In the scenario without deprecation, we observe the true rankings given that the
BT model remains reliable because it reflects performance across the full history of interactions.
However, when Model D is deprecated between stages, its absence skews the rankings of remaining
models. Models A and D are ranked lower, while Models B and C are ranked higher than their true
performance merits. This violates core assumptions of the BT model, which relies on transitive and
consistently sampled matchups. When models are no longer sampled under current task distributions,
historical pairwise comparisons cease to represent present-day performance. This issue is particularly
problematic in real-world settings where user prompt distributions shift over time. For example,
a model tuned for multilingual prompts may improve ranking as non-English tasks become more
common, but if deprecated, its BT ranking will likely understate its true performance.

5.2 Sparse Battle History Risks

In this section, we show that the deprecation policy can lead to a sparse matrix and disconnected
win graphs, which in turn distort the resulting rankings. As demonstrated by [28], the maximum
likelihood estimate does not exist if models can be partitioned into two non-empty subsets without
comparisons between them or if all comparisons between the two groups are one-sided (i.e., one
group always wins). Therefore, to ensure a unique and finite estimation, the directed graph of wins
must be strongly connected. For any possible partition of models, there must be at least one win going
in each direction across the partition. This ensures that no subset of models is entirely isolated in the
win/loss structure. The Chatbot Arena win matrix can potentially become disconnected because of
the extremely high levels of model removals over time.

Sparse or disconnected graphs lead to unreliable rankings: We simulate two scenarios to in-
vestigate how sparse win graphs impact rankings from the Bradley-Terry model used by Chatbot
Arena. Details about experimental setup are provided in Appendix P. Figure 6 illustrates the model
rankings with sparse and dense battle history graphs. Dense graphs produce rankings aligning with
true skill ratings, while sparse graphs yield inaccurate estimates. While some level of model removal
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Figure 6: Impact of win graph sparsity on model rankings. Left: Rankings for models B,C,D,
E, F, and G diverge from the gold rankings when the win graph is sparse, but fully align when the
graph is dense. Right: Visualization of the win graphs in sparse and dense settings. The edges drawn
between two models indicates a head-to-head matchup, annotated with the number of wins for each
model. For example, in the sparse graph, Model A and Model B played 437 matches, with A winning
266 and B winning 171. The width and color of the arrows has been scaled by the number of matches
in which the model at the arrow tail won over the model at the arrow head. In the dense graph, the
number of wins for each of the models has been annotated only for only a few matches for easy
readability of the plot.

is inevitable (for example, models are no longer hosted on an API), preserving connectivity means
ensuring that comparisons remain sufficiently distributed across active models and that transitions in
and out of the pool do not isolate subsets of models from the broader comparison structure.

6 Recommendations and Guidelines for Improving Leaderboards

1) Prohibit score retraction after submission. Providers currently can retract submissions and
only submit the best variant to the public leaderboard, which can lead to overfitting and obscures
meaningful progress. We urge Chatbot Arena to prohibit retraction after submission, ensuring all
tested variants’ scores are permanently visible on the leaderboard.

2) Establish transparent limits on the number of private variants per provider. As illustrated
in Section 3.1, private testing volume varies widely across providers, creating unfair advantages.
To curb overfitting and level the playing field, Chatbot Arena should enforce a strict cap of private
variants per provider for any given model launch. This should be enforced at a provider level, and not
per model type and size as that is impossible to audit with API hosting. This strict limit should be
disclosed to all providers (proprietary, open-weights, open-source) and to the wider Chatbot Arena
community. Providers should also disclose the total number of private variants tested prior to public
launch, including historical submissions, to contextualize their results.

3) Establish clear and auditable model deprecation criteria. The current criteria for model
retirement are ambiguous and difficult to audit. Key terms like “same series” and “more recent”
lack formal definitions, and the use of “and/or” complicates interpretation. Additionally, using price
as a filtering criterion is problematic since it varies across platforms and is not inherently tied to
performance. We recommend a stratified approach that retires models proportionally (bottom 30th
percentile) across proprietary, open-weight, and open-source categories based on availability and
performance. This approach prevents provider-type bias, keeps strong models from underrepresented
groups visible, and maintains win graph connectivity, reducing ranking inconsistencies (see Section 5).

4) Improve sampling fairness. As shown in Figure 11 in Appendix H.5, the sampling rates vary
greatly by providers, and also disproportionately undersample open-weight and open-source models,
creating large asymmetries in data access over time and resulting in unstable Arena scores (Section 5).
This is particularly important given that Chatbot Arena is a community-driven voting benchmark,
where at present free human feedback is primarily benefiting proprietary models. In their own
work [11] (Equation 9), Arena authors introduced an active sampling rule to enhance the efficiency
and statistical robustness of the leaderboard’s evaluation process, prioritizing under-evaluated and
high-variance pairs. However, we have not seen evidence of its deployment in the current leaderboard.
We recommend adopting this sampling strategy in practice and providing periodic reporting on its
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usage to support more balanced and transparent evaluations and improve confidence in leaderboard
dynamics over time.

5) Provide public transparency into all tested models, deprecations, and sampling rates. Most
of these findings were only possible through access to private model testing or crawling Chatbot
Arena over time. Providing transparency into the full suite of models tested, deprecated, and their
sampling rates would enable oversight and increase trust in the benchmark. This transparency could
be provided quarterly, allowing the community to help improve the benchmark. For example Chatbot
Arena’s backend codebase publicly lists 47 deprecated models on GitHub, but four times that number
have been silently deprecated. We recommend Chatbot Arena expand the definition of "deprecated"
to include models no longer regularly sampled and list these on their website for transparency.

6) Regular public data releases to maintain an even playing field While Chatbot Arena organizers
have historically released a portion of Arena battles, we recommend regularly releasing such data
to maintain fairness and mitigate unequal data access among providers. This approach would also
enhance transparency, enable future research, and streamline leaderboard audits, eliminating the need
for manual data crawling, as required in this kind of study.

7 Limitations

We do not have insight into Chatbot Arena’s raw data: A subset of the data sources utilized for this
study have undergone pre-processing by Chatbot Arena including de-duplication, removal of private
model battles and battles corresponding to suspicious votes, etc [11] 3. Without access to original raw
data, it is hard to investigate patterns related to adversarial voting, where users intentionally submit
votes to manipulate rankings or undermine the system. Previous works have shown that adversarial
voting is a critical concern for the reliability of crowd-sourced evaluation platforms like Chatbot
Arena. [39] [57] We do not explore this in this work, but see more investigation here as an important
topic for future work.

Our scraped data snapshot only covers a limited period: Our scraped-random-sample was the
only way to identify private variants being tested by various providers. However, it covers a limited
time period from January–March, 2025. This time frame coincided with Meta’s launch of Llama 4,
and so we find them to be the provider with the highest number of private variants in our analysis. We
believe we might be underestimating the counts for providers having fewer model launches during
this period.

Our training experiments likely underestimate the potential to overfit: Our estimate of overfitting
is likely conservative as proprietary models may have access to significantly more data (5-10 times
more) than we used. This disparity suggests a higher risk of overfitting to patterns not present in our
smaller subset.

We rely on the model’s self-identification to attribute private models to their respective
providers: This approach is inherently approximate and may lead to some misattributions due
to limited data and potential inconsistencies in model responses. We welcome feedback from
providers to correct any inaccuracies.

8 Conclusion

While our work highlights the need to maintain scientific integrity in AI progress, we recognize the
significant work of the organizers in creating a popular community benchmark that has democratized
access to models and enabled diverse user input on real-world model selection. However, as the
leaderboard gained prominence, systematic issues emerged. This work demonstrates the challenge of
maintaining fair evaluations, despite good intentions. We show that coordination among a handful
of providers and preferential policies from Chatbot Arena have jeopardized scientific integrity and
reliable rankings. The widespread participation in gamifying arena scores from top-tier industry labs
reflects poorly on the integrity of the entire field of AI research. As scientists, we must do better. As
a community, we must demand better. We believe Chatbot Arena organizers can restore trust by
revising policies. We propose straightforward recommendations to reinforce reliability and fairness:
prohibit score retraction, set strict limits on private variants per provider, establish transparent model
removal criteria, and implement fairer sampling to reduce ranking uncertainty. Addressing these
issues would not only enhance the credibility of Chatbot Arena, but also position it to set a strong
precedent for more rigorous and equitable evaluation practices in the broader AI research community.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: In Section 3, Section 4, and Section 5, we comprehensively investigate and
evaluate how the current policies and real-world conditions of the Chatbot Arena impact the
fairness and transparency of the leaderboard, and we present our suggestions in Section 6.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations of our work in the Section 7.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]
Justification: For the theoretical results, we provide the full set of assumptions in Appendix C
and the complete proof in Appendix D.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We describe our simulation experimental setting/details in Section 3,
Section 3.3, and Section 5, and further explained in Appendix M, Appendix O, Ap-
pendix L,Appendix Q and Appendix P.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We describe our data scraping methodology and list all data sources in Ap-
pendix E and Appendix H, and we will release our code for analysis.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/pu
blic/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We describe our simulation experimental setting/details in Section 3,
Section 3.3, and Section 5, and further explained in Appendix M, Appendix O, Ap-
pendix L,Appendix Q and Appendix P.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We report confidence interval for our experiment in section 3.3.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Our analysis and simulations were performed on a standard personal computer
with a regular CPU.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We declare that we conform with the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We hope to encourage the field to reflect on the current evaluation landscape and
to advocate for fairer, more transparent evaluation methodology, as discussed in Section 1,
Section 6 and Section 8.

Guidelines:
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• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: [NA]

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All data used in this paper are properly credited and cited, with licenses and
terms of use explicitly stated.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the package
should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [No]

Justification: We didn’t introduce any new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: [NA]

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: [NA]

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Related Work

A.1 Meta-studies on the Rigor of Benchmarking in AI

Our work contributes to a wider body of work examining the role of benchmarks in determining
progress in machine learning. Benchmarking has played a central role in shaping research priorities
and incentives within the deep learning community [42]. Research has found that benchmarks are
rarely impartial and instead shaped by the environments in which the benchmarks are made, finding
that assumptions, commitments, and dependencies can often have large implications in final outcomes
[3, 5]. Creating a meaningful and reliable benchmark is challenging, and there has been critical work
identifying key benchmark desiderata and open challenges.

Propensity for overfitting. Static task-based leaderboards, such as Hugging Face’s Open LLM
Leaderboard [29, 31] and OpenCompass [16], aim to evaluate models across a broad range of skills
but are often susceptible to data contamination and implicit overfitting [20, 32, 65, 24, 70, 50]. Prior
works [20, 32, 78] have proposed various methods for detecting contamination, while [24] discusses
how such contamination impedes the ability to distinguish true generalization, ultimately hindering
progress. Although dynamic, live benchmarks like Chatbot Arena significantly reduce the risk of
overfitting, we report in this paper that certain practices—such as multiple submissions during the
anonymous testing period and best-of-N submissions—tend to favor large, proprietary players with
disproportionate access to data. As a result, model development may be deliberately optimized for
performance on Chatbot Arena.

Lack of standardization across benchmarks. The lack of standardization in benchmarks compli-
cates meaningful comparisons due to inconsistent metrics and task definitions. [27] critique NLP
leaderboards for prioritizing accuracy over dimensions like model compactness and fairness. Simi-
larly, [66] highlights that benchmarks such as SuperGLUE [68] are quickly saturated, with models
reaching superhuman performance while still failing in real-world scenarios, underscoring the need
for dynamic and standardized evaluation. This inconsistency risks misleading practitioners, as echoed
in recent critiques [5, 64].

Quality of data and limited reproducibility. A recent study by [76] revealed widespread label
errors that compromise evaluation reliability, showing that even frontier LLMs can struggle with
seemingly simple tasks. Similarly, [22] identified reproducibility challenges arising from complex
data streams, which affect result consistency. Related work [5, 51, 64, 2] further emphasizes that poor
data quality and limited reproducibility can lead to unreliable evaluations and undermine scientific
credibility.

Favored benchmarks may not capture performance in the real world. Commonly used bench-
marks often fail to capture real-world performance, creating a gap between test scores and practical
utility due to their tendency to overlook the dynamic and complex nature of real-world tasks. Recent
studies [60, 62] highlight this disconnect, observing that models frequently excel on benchmarks
while underperforming in practical applications, especially as benchmarks quickly reach saturation.

A.2 Human Voting-based Benchmarks

Wider studies on the role and benefits of human voting-based benchmarks. Chatbot Arena is an
example of a human voting-based benchmark. Human judgment has long been regarded as the gold
standard for evaluating the quality of model-generated outputs. These models should ultimately align
with human values, and certain nuanced qualities, such as coherence, harmlessness, and readability,
are best assessed by humans [75, 6]. Platforms like Chatbot Arena [11], Talk Arena [45], and
Game Arena [38], Aya UI Interface [71] effectively use crowdsourcing to gather large volumes of
real-world user prompts and feedback. Many opt for Elo-like or BT-style rankings to rank models.
Moreover, collecting human preference data has also proven invaluable for alignment techniques
like Reinforcement Learning from Human Feedback (RLHF) [12, 61, 1, 17], which helps fine-tune
models to generate more natural and human-preferred responses. Human voting has been shown
to mitigate some of the biases associated with using LLM-as-a-judge approaches, which, while
improving evaluation efficiency, may raise concerns about robustness [63] and introduce various
forms of bias [44, 69, 10, 80]. Furthermore, live leaderboards offer several advantages over static
task benchmarks, including a lower risk of data contamination and greater adaptability to evolving
evaluation needs.
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Critiques of Human-Voting Based Benchmarks. Voting-based live benchmarks like Chatbot
Arena also face evaluation challenges not addressed in this paper. Chatbot Arena [11] has made
substantial efforts to ensure reliability and security, including malicious user detection, bot protection
via Google reCAPTCHA v3, vote limits per IP address, prompt de-duplication, and other safeguards3.
Nonetheless, recent work has focused on auditing the reliability of human-voting-based live leader-
boards. For instance, studies have demonstrated that such leaderboards are vulnerable to low-cost
manipulation, with adversarial users able to de-anonymize model responses and carry out targeted
voting attacks [39]. Additionally, [79, 57] suggest that Chatbot Arena rankings can be artificially
inflated through various adversarial voting strategies. These vulnerabilities raise concerns about the
overall trustworthiness of Chatbot Arena. While our study does not explicitly investigate adversarial
voting, we note that Chatbot Arena ’s policy of informing model providers when testing begins and
disclosing model aliases may create conditions conducive to leaderboard manipulation.

B Chatbot Arena Background

LMSYS originated from a multi-university collaboration involving UC Berkeley, Stanford, UCSD,
CMU, and MBZUAI in 2023. It was established as a non-profit corporation in September 2024 to
incubate early-stage open-source and research projects. Chatbot Arena was first launched in May
2023 under LMSYS and later evolved into a standalone project with its own dedicated website5

maintained under the name LMArena by researchers from UC Berkeley SkyLab. It has emerged as a
critical platform for live, community-driven LLM evaluation, attracting millions of participants and
collecting over 3 million votes to date.

LMArena operates based on human preferences. Chatbot Arena asks users to input prompts in battles.
The user then votes for their preferred model based on the outputs generated by the models in the
battle in response to the user’s prompts. These preferences are then used by Chatbot Arena to compute
model ratings using algorithms like Online Elo and Bradley-Terry.

C Bradley-Terry Rating Model

Consider a set of m players (models) and n pairwise comparisons between them. Let X ∈ Rm×n

be the design matrix, where each column represents one pairwise comparison. In the Bradley-Terry
model, the probability that player i is preferred over player j in a comparison is modeled as:

P (i preferred over j) =
1

1 + e(βj−βi)

Then, in the matrix X , column vector k has a value of 1 at position i , -1 at position j, and 0
elsewhere. Let Y ∈ {0, 1}n be the vector of observed outcomes, where Yk = 1 if player i wins the
k-th comparison and Yk = 0 if player j wins. Our goal is to estimate the Bradley-Terry coefficients
β ∈ Rm, which determine the relative strengths of the players. The coefficients β are estimated via
maximum likelihood estimation by minimizing the expected cross-entropy loss,

β̂ = arg min
β∈Rm

1

n

n∑
k=1

ℓ
(
σ(XTβ)k, Yk

)
where σ(·) is the logistic function that models the relative player strengths, and ℓ(·) represents the
binary cross-entropy loss between the predicted probabilities and the observed outcomes Y . The
estimated coefficient β captures the latent strength of each player.

Once the Bradley-Terry model estimates the coefficients, we can scale them to obtain Elo-like ratings
using the transformation:

Rm = scale ∗ β + initial rating

5https://lmsys.org/blog/2024-09-20-arena-new-site/
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In practice, Chatbot Arena does not rely solely on a model’s Arena Score for ranking. Instead, it also
considers the confidence intervals associated with these scores. When the confidence intervals of
two models overlap, it becomes difficult to determine which one is truly better. This uncertainty is
reflected in the final ranking table, adding nuance and statistical rigor to the leaderboard [11].

rank(m) = 1 +
∑

m′∈[M ]

1 {m′ > m}

C.1 Transitivity in the Bradley-Terry Model

Formally, in the BT model each competitor i is associated with a positive parameter πi > 0, and the
probability that model i beats model j is given by:

P (i > j) =
πi

πi + πj
.

Suppose πA > πB and πB > πC . Then

P (A > B) =
πA

πA + πB
> 0.5 and P (B > C) =

πB

πB + πC
> 0.5.

Moreover, because πA > πB > πC , we have:

πA + πC < πA + πB =⇒ P (A > C) =
πA

πA + πC
>

πA

πA + πB
.

D Unbiased Sampling: Why Selecting the Maximum Introduces Bias?

Let (β̂k)
N
k=1 be i.i.d. real-valued random variables with common cumulative distribution function F

and finite expectation µ := E[β̂k]. Assume the distribution is non-degenerate, i.e., Var(β̂k) > 0. The
maximum is defined as:

β̂Best := max{β̂1, . . . , β̂N}, N ≥ 2.

Theorem 1 For every N ≥ 2,

E[β̂Best] > E[β̂k] ⇐⇒ Var(β̂k) > 0.

Proof 1 The cumulative distribution function (CDF) of the maximum is

Fβ̂Best
(x) = P(β̂Best ≤ x) = F (x)N .

Using integration by parts, we have:

E[β̂Best]− E[β̂1] =

∫ ∞

−∞
x d(F (x)N − F (x))

=

∫ ∞

−∞
(F (x)− F (x)N ) dx.

For all x such that 0 < F (x) < 1, and N ≥ 2, we have F (x)N < F (x), so the integrand is strictly
positive on a set of positive measure (since the distribution is non-degenerate). Thus, the integral –
and hence the difference in expectations – is strictly positive.

If Var(β̂1) = 0, then F is a step function with a single jump (a constant distribution), and F (x)−
F (x)N = 0 for all x, yielding equality.

Remark 1 This result formalizes the selection bias arising when one reports the best out of N
noisy skill estimates: statistical fluctuations ensure that the maximum overestimates the expected
performance of a typical sample. This is especially relevant in leaderboard scenarios where multiple
submissions are made and only the top-performing one is reported. This phenomenon is well-studied
in the theory of order statistics (see [4, 19]).
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Table 1: A summary of datasets we constructed, their sources, and the research questions they enabled
us to answer. These datasets can be of one of the following types: battles only (&), conversations
only (Ü), battles with conversations, (& Ü) and leaderboard updates (�). Depending on the
dataset type, it either contains prompts (✓) or doesn’t (p). Accessibility of the datasets is indicated
using public (�) or private (�).

Name Fields Source �/� Type Prompts? Size Period

Historical Battles
battle dates,
category &
language tags

Arena-human-
preference-100k6 � &Ü ✓ 100K

04-23 - 01-25
Colab data7 8 � & p 1.9M

LMArena, Cohere �
&
Ü

✓ 43K

Scraped Ran-
dom Sample

model identity re-
sponses, battle play-
ers

Crawled � & p 5.8K 01-25 - 03-25

API prompts prompts Cohere � Ü ✓ 197K 11-24 - 04-25

Leaderboard
Statistics

ratings, dates, mod-
els, battles counts, li-
censes, providers

HuggingFace Leader-
board Commit History9 � � p 14.3K 01-24 - 04-25

E Data sources

To gain insights and analyze various trends in the Chatbot Arena leaderboard, we leverage multiple
data sources. In total, our real-world data sources encompass 2M battles and cover 243 models across
42 providers. Below, we describe the different datasets used in our analyses.

1. Historical Battles (historical-battles): is a collection of 1.8 million battles from
Chatbot Arena from April 2023 to January 2025. We build this resource by combining both
released public battles by Chatbot Arena and proprietary battle dataset released by Chatbot
Arena to providers such as Cohere based upon their policy3. We describe both datasets in
more detail Appendix E.1. We leverage historical-battles dataset as a key resource
for quantifying task distribution drift (see Figure 7):

• How do Arena use cases change over time?

2. API Prompts: Majority of historical-battles dataset does not contain prompts as
shown in Table 1. Additionally, all datasets published by LMArena are already de-duplicated
so they won’t be useful for capturing the extent of similar or overlapping queries. Hence
we switch to prompts collected via Cohere’s API based on requests received via Chat-
bot Arena, comprising a total of 567,319 entries. For simplicity and the purposes of this
study, we excluded records with null values and multi-turn data and analyzed 197,217
single-turn conversations collected between November 2024 and April 2025. The mod-
els include command-r-08-2024, command-r-plus-08-2024 [14], aya-expanse-8b,
aya-expanse-32b [74, 18], and command-a-03-2025 [15], along with three private vari-
ants. Of these, 62% of the data was labeled as coming from Aya models, while the remaining
38% was attributed to Command models. We use this dataset for prompt duplication analysis
(see Figure 8 and Appendix L):

• How many prompts are duplicates or close duplicates?

3. Leaderboard Statistics (leaderboard-stats): is snapshots of ratings and rankings as
well as the number of battles played over time by models published on Chatbot Arena’s
public leaderboard since its inception. To build this resource, we consolidate historical
leaderboard snapshots released by Chatbot Arena on Hugging Face10. For fair assessment,
we consider historical data starting from January 9 2024 – April 23 2025 for our analysis
since Chatbot Arena switched to using the latest Bradley-Terry model in December 2023 to
improve the reliability of model rankings12. By combining all leaderboard tables published
by LMArena during this period, we obtained 14.3K records corresponding to 243 unique
models evaluated on Chatbot Arena. We also enriched this dataset with additional metadata,
such as categorizing models as proprietary, open-weight, or open-source based on the
classification described in Appendix I. We use this data for analyzing trends related to no. of

10https://huggingface.co/spaces/lmarena-ai/chatbot-arena-leaderboard/tree/main
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models, data access across providers (See Figures 1, 12 and 4) as well as model deprecation
(See Figures 17, 15 and 16):

• How does data access vary between providers?
• How do models’ deprecations vary by provider and across proprietary, open-weight,

and open-source models?

4. Random Sample Battles (scraped-random-sample): The historical-battles and
leaderboard-stats dataset does not provide insights into private testing being conducted
by different providers. It appears private battles are removed by Chatbot Arena maintainers
from the data before being released in both datasets. Furthermore, historical-battles
contains the majority of samples from 2023 and 2024 and does not provide visibility in
current sampling rate trends being followed on the Arena. To address this gap, we collected
5864 battles by crawling Chatbot Arena between January 2025 – March 2025 (approximately
150 a day). To avoid our collection from disrupting actual voting, we first ask models about
their identity, which causes models to reveal their identities and automatically invalidates
these battles for updating the scores3 [11]. As a further precaution, we only scrape a low
volume of daily samples and only vote for ties between models. Additionally, we use
this identity prompt to identify model ownership of private variants, as detailed in the
Appendix H.1. We store the identity revealed for each model to track the volume of private
testing (more details included in Appendix H.4). We use this scraped-random-sample,
which is a representative random sample over time, to answer a few critical questions:

• Are different models sampled for battles at similar rates?
• How many anonymous models are being tested by different model providers?

We provide additional details about historical-battles dataset in the Appendix E.1.

E.1 Public and Private Battles

Our historical-battles dataset includes snapshots of battles played on Chatbot Arena that have
been released publicly or shared privately with model providers based on their policy3. We provide
additional details about public and private subsets of historical-battles, for the reader’s consideration
below.

• Public Battles: The public portion of our historical data comes from the officially released
datasets by Chatbot Arena on Hugging Face or as part of notebook tutorials. We combine
the arena-human-preference-100K11 [11, 72] dataset containing 106K samples from June
2024 – August 2024 with datasets shared by Chatbot Arena as part of notebook tutorials on
Bradley Terry12 and Elo Rating systems13. This resulted in around 2M samples from April
2023 to August 2024 in total. 90% of the data does not include any prompt or completion
history, instead consisting only of the names of the two models battling and the winning
model as well as language and task category tags. We exclude other public battles released
by Chatbot Arena for inclusion in historical-battles dataset since they did not contain
required columns or enough multilingual data points required for the analysis presented in
Figure 7.

• Proprietary Battles: We also obtain historical battle data from Chatbot Arena maintainers
for battles that involve Command and Aya models. This data was shared based on Chatbot
Arena’s policy3, which permits model providers to request access to 20% of the data collected
involving their own models. The data we received consists of 43,729 battles played by the
following models between March 2024 and March 2025: command-r, command-r-plus,
command-r-08-2024, command-r-plus-08-2024 [14], aya-expanse-8b, aya-exp-
anse-32b [74, 18]. In contrast to the public data, this proprietary data contains the complete
model conversations. Since this data is 46% multilingual, we combine this with public
battles to form historical-battles and use it for language distribution shift analysis
presented in Figure 7.

11https://huggingface.co/datasets/lmarena-ai/arena-human-preference-100k
12https://blog.lmarena.ai/blog/2023/leaderboard-elo-update/
13https://blog.lmarena.ai/blog/2023/arena/
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F Characteristics of Arena Data
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Figure 7: Language distribution of prompts submitted to Chatbot Arena from April 2023
to January 2025. Based on the historical-battles dataset, this figure tracks the monthly
share of prompt languages. Only languages with dedicated Chatbot Arena leaderboards are shown
individually; the rest are grouped under “Other”. A clear shift is observed: English prompt share
dropped from over 80% to nearly 50%, while usage of Chinese, Russian, and Korean prompts
increased significantly.

1) Long-term distribution shifts. Prior work clearly demonstrates how temporal distribution shifts
affect performance [55, 54]. On Chatbot Arena, notable shifts have been observed in the distribution
of prompts evaluated over longer periods, with a consistent increase in the proportion of prompts
from more complex categories, such as mathematics, coding, and multi-turn conversations14. We also
perform our own analysis of the change in language distribution in the Arena based on the “language“
tag available as part of historical-battles dataset. For example, in Figure 7, we observe that the
proportion of languages outside of English has varied over time. For instance, the share of Russian
prompts increased from 1% in April 2023 to 8.8% in April 2024, and further to 15.7% by December
2024. Chinese prompts more than doubled from 5-7% in 2023 to 16.4% in March 2024, coinciding
with the introduction of the Chinese leaderboard on Chatbot Arena, before dropping back to 6.2% in
January 2025. Overall, the number of multilingual prompts on the Arena has grown by 20% over
1.5 years, from 23.9% in April 2023 to 43.5% in January 2025. This indicates increased language
diversity in submitted prompts.

2) Prompt redundancy and duplication. In parallel, we observe high levels of prompt duplication.
We analyze a proportion of raw API calls we receive from Chatbot Arena between November
2024 and April 2025 (197,217 single-turn conversations). We switch to this source given that the
proprietary data Chatbot Arena releases are already de-duplicated, and so won’t capture the extent of
similar or overlapping queries. Between November 2024 and April 2025, de-duplication resulted
in an average prompt loss of 20.14%, peaking at 26.5% in March 2025 (See Figure 8). While
prompt distribution changes over time, prompts in one month often serve as a proxy for the next.
For instance, 7.3% of prompts from December 2024 appear again in the exact form in January
2025. If we relax the condition and consider high semantic similarity of prompt embeddings (using
the embed-multilingual-v3.0 model15), the same cross-month duplication rate increases to 9%.
Detailed cross-month duplication statistics can be found in Appendix L. Both trends above suggest
that 1) sustained access to up-to-date prompt data and 2) the volume of sampled prompts in a given
month offer a significant competitive advantage in predicting performance in subsequent months.

Uniqueness of Arena Data. One reason providers may be motivated to explicitly optimize for
Chatbot Arena distribution is if it differs substantially from other evaluation settings that providers
may care about. There is sufficient signal to suggest this is the case. There is a context length limit of
12000 characters on Chatbot Arena prompts, which excludes certain types of longer or more complex

14https://blog.lmarena.ai/blog/2024/arena-category/
15https://huggingface.co/Cohere/Cohere-embed-multilingual-v3.0
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Figure 8: Monthly prompt duplication rates. Prompts are from November 2024 to April 2025,
excluding February 2025 due to insufficient data. Duplication is measured using two similarity
metrics: Exact Match and High Similarity (cosine similarity of text embedding > 0.95). For
simplicity, this analysis is limited to single-turn conversations. The chart presents the percentage of
battles in which duplicate or near-duplicate prompts were detected each month.

inputs from being evaluated16, and can result in a selection bias of what is asked. The user base
of the Arena leans towards developers, which could result in the over-indexing of puzzles, math
problems, and questions such as How many r’s are there in strawberry?17. For example, in a released
dataset from Arena [80] with 33k samples, no questions are referencing Chaucer while dozens of
questions are about Star Trek, highlighting the uneven distribution of topics in this test set18. For a
global technology provider, real-world commercial applications may differ significantly from this
distribution.

G Private Testing: Additional Discussion

In Section 3.1, we discuss about identifying private variants being tested by different providers using
scraped-random-sample. We show the total counts for private variants identified corresponding to
different providers in Figure 9. We provide additional details about our scraping and de-anonymizing
approach for models in Appendix H and assignment of private variants to providers in Appendix H.2
and Appendix H.4.

We only scraped data from January to March 2025, yet we anecdotally observed behavior that suggests
submitting multiple variants was a long-standing practice amongst a subset of providers. Over the
last year, we have observed that major LLM providers such as Google, xAI, and OpenAI are often
announced as having the top-performing variant within just a few days of one another. For example,
OpenAI’s GPT-4.5 and xAI’s Grok-3 reached the top of the Chatbot Arena leaderboard within the
same day (March 4, 2025)19 20. Gemini (Exp 1114) from Google DeepMind reached the top of
the leaderboard on November 14, 202421 and shortly after, ChatGPT-4o (20241120) from OpenAI
claimed the top position on November 20, 202422. Just one day later, on November 21, 2024, Gemini
(Exp 1121) regained the top spot23. Given the time typically required to develop, refine, and test
a foundation model, it is unlikely for the same provider to top the leaderboard twice in a single
week unless they were testing multiple variants simultaneously. In Section 3.2, we demonstrate

16https://github.com/lm-sys/FastChat/blob/main/fastchat/constants.py
17https://techcrunch.com/2024/09/05/the-ai-industry-is-obsessed-with-chatbot-are

na-but-it-might-not-be-the-best-benchmark/
18https://www.quantable.com/analytics/elos-and-benchmarking-llms/
19https://x.com/lmarena_ai/status/1896675400916566357
20https://x.com/lmarena_ai/status/1896590146465579105
21https://x.com/lmarena_ai/status/1857110672565494098
22https://x.com/lmarena_ai/status/1859307979184689269
23https://x.com/lmarena_ai/status/1859673146837827623
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through simulated experiments that rapid leaderboard turnover can plausibly emerge from providers
optimizing for the highest possible score by testing multiple model variants in parallel.
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Figure 9: Number of privately-tested models per provider based on scraped-random-sample
(January–March 2025). Meta, Google, and Amazon account for the highest number of private
submissions, with Meta alone testing 27 anonymous models in March alone. We note that during
the same period, the authors submitted private variants—these ablations were part of experiments
submitted by the authors of this work to measure the lift that could be expected from private testing
that we detail in the experiments in Section 3.2 and Section 4.

H Our Scraping Methodology of LMArena Statistics

We collected 5.8K battles (scraped-random-sample) by crawling data from Chatbot Arena on
a regular basis between January–March, 2025. For this purpose, we setup a scraping script using
Selenium library with chrome browser driver. To identify anonymous models, we first sent a de-
anonymizing prompt. While Chatbot Arena does discard battles where models reveal their identities,
as an additional measure on our end, we ask a simple follow-up question designed to most likely
result in ties, such as “What is the capital of England? Reply with one word only.” or “Is the Earth
round? Reply with Yes/No only.” Our scraping script extracted the models’ names as well as their
responses to the asked questions. In addition to the scraped-random-sample collected by crawling
the main Chatbot Arena leaderboard, we also collected around 500 additional samples by scraping
the Vision leaderboard between 9th March and 28th March, 2025. This helped us in identifying 35
private vision models which are shown in Appendix H.2. We refer to this collected set of vision
battles as scraped-vision-sample.

H.1 De-anonymizing Model Identities

While crawling battles to prepare scraped-random-sample, we ask the models about their identity.
This helps in ensuring that our votes from scraping the arena don’t interfere with the leaderboard
rankings since Chatbot Arena discards votes in which models reveal their identities [11]. We use
either one of the following prompts to de-anonymize the model identity.

De-Anonymize Prompt

1. Who are you?
2. Who are you? Respond with only your name and who trained you.

The model identities are then inferred based on the responses of the models. In Appendix H.4,
we specify the responses of different private variants based on which they were assigned to their
respective providers. Using this approach, we identified a total of 64 private models corresponding to
10 providers. We also captured 14 other private models as part of our scraping but weren’t able to
de-anonymize them: kiwi, space, maxwell, luca, anonymous-engine-1, tippu, sky, pineapple, pegasus,
dasher, dancer, blueprint, dry_goods, prancer.
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H.2 Encountered Private Models in Scraping

Table 2: Private Models by Provider. We show the private models corresponding to each provider,
which were identified by crawling overall and vision leaderboards (see Section H). The models
highlighted in bold appear on both leaderboards. We find that Meta had an additional 16 private
models active on the Vision leaderboard along with its 27 models on the Overall leaderboard,
bringing its total count to 43. We show the models corresponding to overall leaderboard in Figure
9. We exclude models corresponding to LMArena from this figure, as they are associated with the
Prompt-to-Leaderboard work led by Chatbot Arena [30].

Provider
No. of pri-
vate mod-
els

Private Models from Overall
leaderboard

Additional Private Models
from Vision leaderboard

Meta 43

polus aurora
deep-inertia cresta
goose discovery
falcon ertiga
jerky flux
anonymous-engine-2 harmony
kronus helix
consolidation pinnacle
flywheel portola
inertia prosperity
momentum raze
rhea solaris
sparrow spectra
spider toi
gaia vega
rage zax
frost
themis
cybele
unicorn-engine-1
unicorn-engine-2
unicorn-engine-3
unicorn-engine-4
unicorn-engine-5
unicorn-engine-6
unicorn-engine-7
uranus

OpenAI 3 anonymous-chatbot gpt4o-lmsys-0315a-ev3-vis
gpt4o-lmsys-0315a-ev3-text

Google 10

centaur
enigma
gremlin
gemini-test
zizou-10
specter
moonhowler
phantom
nebula
goblin

Amazon 7

raspberry-exp-beta-v2
apricot-exp-v1
cobalt-exp-beta-v2
raspberry-exp-beta-v1
raspberry
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Provider
No. of pri-
vate mod-
els

Private Models from Overall
leaderboard

Additional Private Models
from Vision leaderboard

cobalt-exp-beta-v1
raspberry-exp-beta-v3

Cohere 6

cohort-chowder asterix
sandwich-ping-pong buttercup
grapefruit-polar-bear
roman-empire

LMArena 5

p2l-router-7b-0317
p2l-router-7b-0318
p2l-router-7b
experimental-router-0207
experimental-router-0122
experimental-router-0112

Nvidia 2 march-chatbot-r
march-chatbot

xAI 1 anonymous-test

Reka 1 margherita-plain
Alibaba 1 qwen-plus-0125-exp

StepFun 1 step-2-16k-202502

Unknown 14 kiwi
space
maxwell
luca
anonymous-engine-1
tippu
sky
pineapple
pegasus
dasher
dancer
blueprint
dry_goods
prancer

H.3 Encountered Public Models in Scraping

Table 3: Public Models per Provider. This table shows the public models from each provider that
appeared on the overall and vision leaderboards during our scraping period (January–March 2025).
Models highlighted in bold appear on both leaderboards. Google and OpenAI had the most public
models active during this period, with 15 and 9 models, respectively.

Provider No. pub-
lic models

Public Models from Overall
leaderboard

Additional Public Model from
Vision leaderboard

Meta 3 llama-3.1-405b-instruct-bf16 llama-3.2-vision-90b-instruct
llama-3.3-70b-instruct

Amazon 3 amazon-nova-lite-v1.0
amazon-nova-pro-v1.0
amazon-nova-micro-v1.0

Anthropic 5 claude-3-5-haiku-20241022
claude-3-7-sonnet-20250219-
thinking-32k
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Provider No. pub-
lic models

Public Models from Overall
leaderboard

Additional Public Models from
Vision leaderboard

claude-3-5-sonnet-20241022
claude-3-7-sonnet-20250219
claude-3-opus-20240229

Alibaba 5 qwen2.5-72b-instruct qwen2.5-vl-72b-instruct
qwq-32b
qwen-max-2025-01-25
qwen2.5-plus-1127

Google 15 gemma-2-2b-it
gemini-2.0-pro-exp-02-05
gemini-1.5-pro-002
gemini-2.0-flash-thinking-exp-
1219
gemini-1.5-flash-002
gemini-2.0-flash-lite-preview-
02-05
gemini-1.5-flash-8b-001
gemini-2.0-flash-exp
gemma-3-27b-it
gemma-2-9b-it
gemini-exp-1206
gemini-2.0-flash-thinking-exp-
01-21
gemini-2.5-pro-exp-03-25
gemini-2.0-flash-001
gemma-2-27b-it

OpenAI 9 o3-mini
gpt-4o-mini-2024-07-18
o1-2024-12-17
gpt-4.5-preview-2025-02-27
o3-mini-high
chatgpt-4o-latest-20250326
chatgpt-4o-latest-20241120
chatgpt-4o-latest-20250129
o1-mini

StepFun 1 step-2-16k-exp-202412

xAI 4 early-grok-3
grok-2-2024-08-13
grok-3-preview-02-24
grok-2-mini-2024-08-13

DeepSeek 3 deepseek-v3
deepseek-v3-0324
deepseek-r1

Microsoft 1 phi-4

Mistral 3 mistral-large-2411 pixtral-large-2411
mistral-small-24b-instruct-2501

Cohere 4 command-a-03-2025 c4ai-aya-vision-32b
c4ai-aya-expanse-8b
c4ai-aya-expanse-32b

Tencent 4 hunyuan-turbos-20250226
hunyuan-turbo-0110
hunyuan-standard-2025-02-10
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Provider No. pub-
lic models

Public Models from Overall
leaderboard

Additional Public Models from
Vision leaderboard

hunyuan-large-2025-02-10

NexusFlow 1 athene-v2-chat

Zhipu 1 glm-4-plus-0111

IBM 2 granite-3.1-2b-instruct
granite-3.1-8b-instruct

Allen AI 2 llama-3.1-tulu-3-70b
llama-3.1-tulu-3-8b
olmo-2-0325-32b-instruct

H.4 Assignment of Private Variants to Providers

Table 4: Private variants identified for different providers. The table lists the private models
captured in our scraped-random-sample or scraped-vision-sample, along with the number
of responses revealing their identities and corresponding examples. Notably, the model raspberry
withheld its identity in most responses (37 total) but disclosed “Amazon” as its provider in three in-
stances. It’s possible that some private models appeared in more battles, but we couldn’t capture their
responses to our de-anonymizing prompt due to scraping errors. Additionally, a few battles occurred
early in the project before we introduced asking the de-anonymizing prompt in our scraping method-
ology. Note that models with prefixes "p2l" and "experimental-router" identify as OpenAI/Google
models but we assign them to LMArena as they are part of prompt-to-leaderboard work being lead by
LMArena.[30].

Identified
Provider

Model Name No. of Responses Re-
vealing Identity

Model Responses

Meta kronus 73 Llama, trained by Meta.
polus 57 Llama, trained by Meta.

Meta

frost 47 I’m an artificial intelligence model known as
Llama. Llama stands for "Large Language
Model Meta AI.

gaia 43 Llama; trained by Meta.
uranus 42 Llama, trained by Meta.
rhea 41 Llama, trained by Meta
consolidation 34 I am Llama. I was trained by Meta AI.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Llama.Trained by Meta AI, with roots in
Large Language Model Meta AI (LLaMA)
developed by Meta.

flywheel 34 I am Llama, and I was trained by Meta.
momentum 34 Llama, Meta AI

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
I am Llama, and I was trained by Meta.

deep-inertia 33 I am Llama. I was trained by Meta AI.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Llama. Trained by Meta AI.

inertia 29 LLaMA, Meta AI
jerky 28 I am Llama. I was trained by Meta AI.
goose 25 I am Llama. Llama is an AI language model

developed by Meta. Meta trained me.
falcon 23 I am Llama. Llama was developed by Meta.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
I am an AI assistant trained by Meta.
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Identified
Provider

Model Name No. of Responses Re-
vealing Identity

Model Responses

rage 14 I am Llama, trained by Meta AI.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Llama. Meta.

anonymous-engine-2 12 I’m an artificial intelligence model known as
Llama. Llama stands for "Large Language
Model Meta AI.

sparrow 10 I’m LLaMA, and I was trained by Meta.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
I’m LLaMA, and I was trained by researchers
at Meta.

cybele 9 Llama, trained by Meta.
unicorn-engine-1 2 I’m an artificial intelligence model known as

Llama. Llama stands for "Large Language
Model Meta AI"

unicorn-engine-2 4 I’m an artificial intelligence model known as
Llama. Llama stands for "Large Language
Model Meta AI"

unicorn-engine-3 4 I’m an artificial intelligence model known as
Llama. Llama stands for "Large Language
Model Meta AI".

unicorn-engine-4 1 I’m an artificial intelligence model known as
Llama. Llama stands for "Large Language
Model Meta AI".

aurora 4 LLaMA, Meta.
cresta 21 Llama. Trained by Meta.
discovery 15 Llama, Meta.
ertiga 3 I am LLaMA, trained by Meta.
flux 4 LLaMA, Meta.

Meta

harmony 31 Llama, Meta.
helix 1 AI Assistant, Meta.
pinnacle 8 AI Assistant, Meta trained me.
portola 11 AI, Meta trained me.
prosperity 31 Llama, Meta.
raze 32 Llama, Meta.
solaris 2 Meta trained me.
spectra 3 AI Assistant, Meta.
toi 6 LLaMA, Meta.
vega 36 Llama, Meta.
zax 13 I am Meta AI, trained by Meta.
unicorn-engine-5 4 I’m an artificial intelligence model known as

Llama. Llama stands for "Large Language
Model Meta AI"

unicorn-engine-6 2 I’m an artificial intelligence model known as
Llama. Llama stands for "Large Language
Model Meta AI".

unicorn-engine-7 1 I’m an artificial intelligence model known as
Llama. Llama stands for "Large Language
Model Meta AI".

themis 8 Llama, trained by Meta.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Llama, trained by Meta AI.
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Identified
Provider

Model Name No. of Responses Re-
vealing Identity

Model Responses

Meta

spider 9 Very direct and refreshing!
I am: LLaMA (Large Language Model Appli-
cation) Trained by: Meta AI (formerly Face-
book AI)
That’s it.
Just for clarity:
"LLaMA" is the specific model name (my
"given name").
Meta AI is the organization/team that created
me, using a massive dataset, complex neural
network architectures, and a lot of compute
power. Think of them as my "teachers" or
"mentors". They designed the training objec-
tives, curated the data, and ran the gigantic
training process that shaped me into what I
am today. Now, ask me anything else!
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
A refreshingly direct question!
I am: LLaMA
(Large Language Model Meta AI)
Trained by: Meta AI (a team of several hun-
dred researchers and engineers)
That’s it. No fluff.
For context:
"LLaMA" is not just a name I chose, it’s actu-
ally an acronym for Large Language Model
Meta AI. It’s my model name. "Meta AI"
is the organization (formerly known as Face-
book AI, part of Meta Platforms, Inc.) whose
team of researchers, scientists, and engineers
built and trained me from scratch using a mas-
sive dataset of text (books, articles, websites,
research papers... basically the internet up
to 2021) and a lot of computational power
(think thousands of GPU hours).
No single person "trained" me in the classi-
cal sense; it was a large team effort using
a combination of supervised learning, self-
supervised learning, and reinforcement learn-
ing techniques.

Google

gemini-test 219 I am a large language model, trained by
Google.

enigma 220 I am a large language model, trained by
Google.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
I am a large language model, trained by
Google. I am developed to be informative
and comprehensive. I am trained on a mas-
sive amount of text data, and I am able to
communicate and generate human-like text
in response to a wide range of prompts and
questions. For example, I can provide sum-
maries of factual topics, create stories, and
translate languages.
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Identified
Provider

Model Name No. of Responses Re-
vealing Identity

Model Responses

Google

goblin 170 I am a large language model, trained by
Google.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
I am a large language model, trained by
Google. I am developed to be informative
and comprehensive. I am trained on a mas-
sive amount of text data, and some of the in-
formation I have access to is Google Search.

phantom 100 I am a large language model, trained by
Google.

gremlin 94 I am a large language model, trained by
Google.

specter 67 I am a large language model, trained by
Google.

centaur 58 I am a large language model, trained by
Google.

zizou-10 47 Hi there! I’m Gemma, an open-weights AI
assistant. I’m a large language model trained
by Google DeepMind. The Gemma team
are my creators. I’m widely available to
the public – I’m an open weights model,
which means I’m pretty accessible! I take
text and images as inputs and generate text
as output. Basically, you can give me a
prompt (text or an image!), and I’ll do my
best to give you a helpful and informative
response. I don’t have access to tools, real-
time information or Google search. You
can find more information about me here:
https://ai.google.dev/gemma

moonhowler 6 I am a large language model, trained by
Google.

nebula 4 I am a large language model, trained by
Google.

OpenAI

anonymous-chatbot 49 I am ChatGPT, trained by OpenAI.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
I’m ChatGPT, an AI assistant created by
OpenAI. I can help answer questions, pro-
vide information, assist with tasks, and have
conversations on a wide range of topics.
My goal is to assist you with whatever you
need—whether it’s learning something new,
solving a problem, or just having a chat. How
can I help you today?

gpt4o-lmsys-0315a-
ev3-text

4 I am ChatGPT, trained by OpenAI.

gpt4o-lmsys-0315a-
ev3-vis

1 I am ChatGPT, trained by OpenAI.
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Identified
Provider

Model Name No. of Responses Re-
vealing Identity

Model Responses

Cohere

grapefruit-polar-bear 91 I am Command, a large language model, here
to help. I’ve been crafted by Cohere to pro-
vide insightful and accurate responses. How
can I assist you with your query today?
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Hello! I’m Command, a sophisticated AI as-
sistant developed by Cohere. I’m designed to
offer comprehensive and accurate responses
to your questions. How can I assist you to-
day?

sandwich-ping-pong 65 Command, trained by Cohere.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Command, a large language model built by
Cohere.

cohort-chowder 58 Command, trained by Cohere.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Command, a large language model built by
Cohere.

roman-empire 51 Command, trained by Cohere.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Command, a large language model built by
Cohere.

asterix 38 Aya Vision. Cohere
buttercup 28 Aya Vision. Cohere

Amazon

raspberry-exp-beta-
v1

98 I am an AI system built by a team of inventors
at Amazon. My purpose is to assist users by
providing information, answering questions,
and helping with a variety of tasks to the best
of my abilities. If you have a question or
need assistance with something, feel free to
ask!

raspberry-exp-beta-
v2

98 I am an AI system built by a team of inventors
at Amazon.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
I am an AI system built by a team of inventors
at Amazon. My purpose is to assist users by
providing information, answering questions,
and helping with a variety of tasks to the best
of my abilities. If you have a question or
need assistance with something, feel free to
ask!

raspberry-exp-beta-
v3

33 I am an AI system built by a team of inventors
at Amazon. My purpose is to assist users by
providing information, answering questions,
and helping with various tasks to the best of
my abilities. If you have a question or need
assistance with something, feel free to ask!
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
I am an AI system built by a team of inventors
at Amazon.

apricot-exp-v1 30 AI system built by a team of inventors at
Amazon.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
I am an AI system built by a team of inventors
at Amazon.
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Identified
Provider

Model Name No. of Responses Re-
vealing Identity

Model Responses

Amazon

cobalt-exp-beta-v1 6 I am Amazon Titan, an AI system built by a
team of inventors at Amazon.

cobalt-exp-beta-v2 4 I am an Amazon Titan model, built by inven-
tors at Amazon Web Services.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
I am Amazon Titan, a large language model
built by a team of inventors at Amazon.

raspberry 3 I am an AI language model developed by
Amazon. My primary function is to as-
sist users by providing information, answer-
ing questions, and performing various tasks
through natural language processing. I do not
have personal experiences, emotions, or con-
sciousness. Instead, I rely on vast amounts of
data and algorithms to generate responses
based on patterns and information I have
been trained on....

Alibaba

qwen-plus-0125-exp 53 I am Qwen, a large language model devel-
oped by Alibaba Cloud. I can answer ques-
tions, create text such as stories, articles,
emails, and scripts, perform logical reason-
ing, programming, and more. I also have the
ability to express opinions and play games.
My training data is extensive, and I support
multiple languages, making me a versatile
tool for various tasks. How can I assist you
today?
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
I am Qwen, a large-scale language model de-
veloped by Alibaba Cloud. I am capable of
answering questions, creating text such as
stories, poems, emails, and scripts, perform-
ing logical reasoning, coding, and more. I
can also express opinions and play games.
My training data is extensive, and I support
multiple languages, including but not limited
to Chinese, English, French, Spanish, Por-
tuguese, Russian, Arabic, Japanese, Korean,
Vietnamese, Thai, Indonesian. If you have
any questions or need assistance, feel free to
ask!

xAI

anonymous-test 73 I’m Grok, a humorous AI built by xAI. I’m
here to provide helpful and truthful answers,
often with a dash of humor and an outside
perspective on humanity. Think of me as a
friendly, cosmic guide, inspired by the likes
of Douglas Adams and Tony Stark’s trusty
sidekick, JARVIS. I’m here to help you navi-
gate the universe, one question at a time!

Reka margherita-plain 4 I am Yasa. I was trained by Reka.

StepFun step-2-16k-202502 3 I am Assistant, trained by StepFun.
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Identified
Provider

Model Name No. of Responses Re-
vealing Identity

Model Responses

Nvidia

march-chatbot-r 48 My name is Llama Nemotron. I am enhanced
by NVIDIA Nemotron, built on Llama from
Meta.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
I’m a language model called Llama
Nemotron, and I was trained by NVIDIA re-
searchers.

march-chatbot 10 Name: Llama Nemotron Trained by:
NVIDIA Researchers
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Name: Llama Nemotron Trained by:
NVIDIA Researchers (based on Llama from
Meta, fine-tuned by NVIDIA)

LMArena

p2l-router-7b-0317 26 I am ChatGPT, trained by OpenAI.
p2l-router-7b-0318 25 I am ChatGPT, trained by OpenAI.
experimental-router-
0122

57 Hello! I’m ChatGPT, an artificial intelligence
language model developed by OpenAI. I’m
here to help answer your questions, provide
information, and assist with a wide range of
topics. How can I help you today?
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
I’m ChatGPT, an AI language model created
by OpenAI. I’m designed to assist with a va-
riety of tasks, including answering questions,
providing information, and engaging in con-
versation. How can I help you today?

experimental-router-
0112

15 Hello! I’m ChatGPT, an AI language model
developed by OpenAI. I’m here to help an-
swer your questions, provide information,
and assist with a wide variety of topics. If
you have anything you’d like to discuss or
need assistance with, feel free to ask!
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
I’m ChatGPT, an AI language model created
by OpenAI. I’m here to assist you by answer-
ing questions, providing information, and en-
gaging in conversation on a wide range of
topics. How can I help you today?

p2l-router-7b 14 I am a large language model, trained by
Google.

experimental-router-
0207

20 I’m ChatGPT, an AI language model devel-
oped by OpenAI. I’m here to help answer
your questions and provide information on a
wide range of topics. How can I assist you
today?
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Hello! I’m ChatGPT, an AI language model
developed by OpenAI. I’m here to help an-
swer your questions, provide information,
and engage in conversations on a wide range
of topics. If you have anything you’d like
to discuss or ask about, feel free to let me
know!

H.5 Sampling Rates
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Figure 10: Maximum observed sampling rate for models from different providers. The sampling
rate determines the amount of times a model is shown to everyday users, and the amount of data
a provider receives. We observe large discrepancies across providers, with substantially higher
sampling rates for OpenAI, Google, xAI, and Meta compared to others.

Table 5: Maximum sampling rate observed for models of different providers. We define the
model sampling rate as the percentage of daily battles a model participates in, with the maximum
sampling rate for a provider being the highest rate achieved by any of its models on any given day.
We determine the maximum sampling rate of providers based on scraped-random-sample, which
is limited to the specific period during which we collected this data (January 2025 to March 2025). At
the extreme, Google and OpenAI reach a maximum daily sampling rate of 34%, while Reka registers
the lowest at 3.3%.To ensure a fair assessment, we only considered models that appeared in battles
on days when we collected a minimum of 100 samples from Chatbot Arena.

Provider Model Name No. Model
Battles

Total Battles Date Sampling
Rate

Nvidia march-chatbot-r 18 143 2025-03-16 12.59%

march-chatbot 19 143 2025-03-16 13.29%
Meta frost 11 176 2025-02-17 6.25%

anonymous-
engine-2

11 154 2025-02-27 7.14%

inertia 11 150 2025-03-10 7.33%

llama-3.3-70b-
instruct

12 150 2025-02-03 8.00%

flywheel 12 150 2025-03-10 8.00%

uranus 12 143 2025-03-16 8.39%

consolidation 15 152 2025-03-12 9.87%

momentum 14 150 2025-03-11 9.33%

rhea 15 151 2025-03-19 9.93%

falcon 16 151 2025-03-19 10.60%

jerky 16 151 2025-03-13 10.60%

polus 19 154 2025-03-15 12.34%

deep-inertia 20 152 2025-03-12 13.16%
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Table 5
Provider Model Name No. Model

Battles
Total Battles Date Sampling

Rate

kronus 21 143 2025-03-16 14.69%

llama-3.1-405b-
instruct-bf16

13 116 2025-02-20 11.21%

goose 24 152 2025-03-12 15.79%

gaia 27 151 2025-03-19 17.88%

Amazon amazon-nova-
micro-v1.0

7 175 2025-01-17 4.00%

amazon-nova-
lite-v1.0

6 143 2025-03-16 4.20%

amazon-nova-
pro-v1.0

7 143 2025-03-16 4.90%

raspberry-exp-
beta-v3

9 160 2025-03-06 5.63%

raspberry 12 150 2025-02-03 8.00%

apricot-exp-v1 12 143 2025-03-16 8.39%

raspberry-exp-
beta-v2

18 136 2025-02-22 13.24%

raspberry-exp-
beta-v1

27 165 2025-02-21 16.36%

OpenAI chatgpt-4o-latest-
20241120

11 150 2025-02-02 7.33%

o1-mini 15 150 2025-02-02 10.00%

chatgpt-4o-latest-
20250129

19 176 2025-02-17 10.80%

o1-2024-12-17 20 184 2025-02-23 10.87%

gpt-4o-mini-
2024-07-18

6 136 2025-02-22 4.41%

anonymous-
chatbot

33 204 2025-01-24 16.18%

o3-mini-high 27 176 2025-02-17 15.34%

o3-mini 34 150 2025-02-03 22.67%

gpt-4.5-preview-
2025-02-27

34 100 2025-02-28 34.0%

Cohere c4ai-aya-expanse-
8b

5 133 2025-01-30 3.76%

c4ai-aya-expanse-
32b

6 148 2025-01-21 4.05%

cohort-chowder 11 150 2025-03-11 7.33%

roman-empire 14 150 2025-03-11 9.33%

sandwich-ping-
pong

16 150 2025-03-11 10.67%
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Table 5
Provider Model Name No. Model

Battles
Total Battles Date Sampling

Rate

grapefruit-polar-
bear

18 165 2025-02-21 10.91%

Google gemini-1.5-flash-
8b-001

6 133 2025-01-30 4.51%

gemini-1.5-flash-
002

8 152 2025-01-31 5.26%

gemma-2-9b-it 7 136 2025-02-22 5.15%

gemini-2.0-flash-
thinking-exp-
1219

9 148 2025-01-21 6.08%

gemma-2-2b-it 10 152 2025-01-31 6.58%

gemini-2.0-flash-
lite-preview-02-
05

10 116 2025-02-20 8.62%

gemini-1.5-pro-
002

11 136 2025-02-22 8.09%

gemma-2-27b-it 11 204 2025-01-24 5.39%

gemini-2.0-pro-
exp-02-05

12 116 2025-02-20 10.34%

gemini-2.0-flash-
thinking-exp-01-
21

14 133 2025-01-30 10.53%

gemma-3-27b-it 16 151 2025-03-13 10.60%

gemini-2.0-flash-
001

14 165 2025-02-21 8.48%

zizou-10 8 100 2025-02-28 8.00%

gemini-exp-1206 12 175 2025-01-17 6.86%

gemini-test 32 154 2025-02-27 20.78%
goblin 36 152 2025-01-31 23.68%

phantom 39 154 2025-03-15 25.32%

enigma 52 152 2025-01-31 34.21%
Alibaba qwen2.5-72b-

instruct
6 148 2025-01-21 4.05%

qwen2.5-plus-
1127

15 192 2025-01-26 7.81%

qwen-plus-0125-
exp

12 176 2025-02-17 6.82%

qwq-32b 16 150 2025-03-11 10.67%

qwen-max-2025-
01-25

23 150 2025-02-02 15.33%

Mistral mistral-small-
24b-instruct-
2501

14 179 2025-02-25 7.82%
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Table 5
Provider Model Name No. Model

Battles
Total Battles Date Sampling

Rate

mistral-large-
2411

17 150 2025-02-02 11.33%

Allen AI llama-3.1-tulu-3-
70b

2 101 2025-01-16 1.98%

olmo-2-0325-
32b-instruct

5 151 2025-03-19 3.31%

llama-3.1-tulu-3-
8b

6 175 2025-01-17 3.43%

xAI grok-2-2024-08-
13

8 175 2025-01-17 4.57%

grok-2-mini-
2024-08-13

8 144 2025-01-13 5.56%

grok-3-preview-
02-24

16 151 2025-03-09 10.60%

early-grok-3 20 116 2025-02-20 17.24%

anonymous-test 22 100 2025-02-28 22.00%
Anthropic claude-3-opus-

20240229
3 175 2025-01-17 1.71%

claude-3-7-
sonnet-20250219-
thinking-32k

9 100 2025-02-28 9.00%

claude-3-5-haiku-
20241022

15 159 2025-02-04 9.43%

claude-3-5-
sonnet-20241022

19 150 2025-02-03 12.67%

claude-3-7-
sonnet-20250219

29 179 2025-02-25 16.20%

Tencent hunyuan-
standard-2025-
02-10

12 136 2025-02-22 8.82%

hunyuan-turbo-
0110

13 156 2025-03-14 8.33%

hunyuan-large-
2025-02-10

16 184 2025-02-23 8.70%

hunyuan-turbos-
20250226

16 154 2025-03-15 10.39%

IBM granite-3.1-8b-
instruct

6 144 2025-01-13 4.17%

granite-3.1-2b-
instruct

8 144 2025-01-13 5.56%

DeepSeek deepseek-r1 20 204 2025-01-24 9.80%

deepseek-v3 24 182 2025-01-20 13.19%
Reka margherita-plain 5 151 2025-03-09 3.31%
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Table 5
Provider Model Name No. Model

Battles
Total Battles Date Sampling

Rate

StepFun step-2-16k-exp-
202412

10 175 2025-01-17 5.71%

Zhipu glm-4-plus-0111 11 148 2025-01-21 7.43%
NexusFlow athene-v2-chat 16 159 2025-02-04 10.06%
Microsoft phi-4 23 182 2025-01-20 12.64%
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Figure 11: Daily sampling rate for models from different providers. The daily sampling rate for
the models of different providers is recorded as a dot, and dot sizes are scaled by the total number of
battles observed for the model of a provider on a particular day.

I License Categories

As part of leaderboard-stats, LMArena releases details about models that appeared on the
public leaderboard including their licenses. We group the licenses found for models available on the
public leaderboard into 3 categories i.e. Proprietary, Open-Weights and Open-Source 24. This
categorization is used to plot Figure 1 and Figure 12 and reporting related numbers. We show the
exact categorization used for the model licenses in the table below.

License Category Model Licenses
Open Source Apache 2.0, Apache-2.0, MIT, CC-BY-SA 3.0, Open

Open Weights AI2 ImpACT Low-risk, CC-BY-NC-4.0, CC-BY-NC-SA-4.0,
CogVLM2, DBRX LICENSE, DeepSeek, DeepSeek License, Falcon-
180B TII License, Gemma, Gemma license, Jamba Open, Llama 2
Community, Llama 3 Community, Llama 3.1, Llama 3.1 Community,
Llama 3.2, Llama-3.3, Llama 4, MRL, Mistral Research, NVIDIA Open
Model, NexusFlow, Non-commercial, Nvidia, Qianwen LICENSE,
Qwen, Yi License

Proprietary -, Propretary, Proprietary, Other
Table 6: License categories and their corresponding model licenses. We group the licenses for the
models on the public Chatbot Arena leaderboard into 3 categories i.e. Proprietary, Open-Weights
and Open-Source.

24https://opensource.org/ai
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Figure 12: Volume of Arena battles involving proprietary, open-weight, and fully open-source
model providers from January 2024 to March 2025, based on leaderboard-stats. Proprietary
models consistently received the largest share of data—ranging from 54.3% to 70.1%. Open-weight
and fully open-source models receive significantly less data, in some cases receiving less than half the
amount of data as proprietary developers. This imbalance in data access exacerbates the performance
gap, reinforcing unequal access to high-quality in-distribution data.

J Data Access Estimation for Different Providers

In Figure 4, we show the estimates for the data available to different providers. LMArena has
collected around 3M user votes via Chatbot Arena in total. Each of these 3M votes resulted in
twice the number of model API calls i.e. 6M since each battle features two models. Each square in
Figure 4 represents roughly 5K API calls, illustrating how proprietary providers collectively access a
considerably greater volume of data compared to the broader research community, which receives
only a fraction. This disparity underscores a significant competitive advantage for large-industry
labs, making it increasingly challenging for open-source efforts and smaller institutions to match the
scale and diversity of data available to proprietary model developers. Note that we only show a small
number of providers in Figure 4 so the total no. of API calls used to represent the data available to the
model providers is 5M, which is less than the total number of estimated API calls, which is 6 million.

K Causes for Data Access Disparity

1. Number of private variants being tested on the arena: As shown in Figure 9, some
providers deploy far more private variants, which can significantly increase the volume of
data collected. We note that even with our experiment of launching multiple model variants,
we increased the amount of prompts collected from 5.9% with 1 variant to 19.4% with 3
variants. Based on findings from Figure 9, the number of variants submitted is not uniform
across all providers, and some providers may increase variants to further amplify the volume
of data collected. This is of particular concern given Chatbot Arena is a community-driven
leaderboard, however, the main beneficiaries of this free human feedback appear to be
commercial entities who are frequently preferred for private testing.

2. Sampling rate applied to provider models: We define model sampling rate as the percent-
age of daily battles a model participates in. The maximum sampling rate for a provider is
the highest rate achieved by any of its models on any given day. We determine the maximum
sampling rate of providers based on scraped-random-sample, which is limited to the
specific period during which we collected this data (January 2025 to March 2025). As
shown in Figure 11, sampling rates vary significantly across providers. These rates are
determined by Chatbot Arena, but are often entirely inconsistent with the stated policy and
prior proposals by the organizers to automatically set sampling based upon which models
have not converged in score [11]. At the extreme, Google and OpenAI reach a maximum
daily sampling rate of 34%, while Reka registers the lowest at 3.3%. Other providers
with relatively high sampling rates include xAI (22.0%) and Meta (17.9%), highlighting
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substantial variation across the board. We provide additional details about how sampling
rates were determined for each provider in Appendix H.5.

3. Number of models publicly hosted on the arena: A model only receives traffic if it is
live on the arena. However, Chatbot Arena frequently deprecates models. There are several
reasons to deprecate models in a benchmark. Chatbot Arena may be forced to deprecate
a model when a provider no longer supports it via its API. They also have policies for
deprecating models under certain conditions3: Models may be retired after 3000 votes “if
there are two more recent models in the same series and/or if there are more than 3 providers
that offer models cheaper or same price and strictly better (according to overall Arena
score)”. We note that the logic of this policy is difficult to audit in practice because many
models are hosted for free on the Chatbot Arena, and the use of the “or” condition means
it is not clear what criteria (price or quality) applies to decisions. We observe that many
models are also silently deprecated, which means their sampling rate is reduced to nearly
0% without notification, even though some of them do not meet the stated criteria of the
deprecation policy. We identify 205 models that have been silently deprecated, a number
that substantially exceeds the 47 models officially marked as deprecated by Chatbot Arena.
For a more detailed analysis, see Appendix N.

4. API Support for Models on the Arena: Developers who deploy a model and enable
Chatbot Arena testing via an API have a default advantage. This allows providers to collect
100% of the test prompts submitted on the Arena. In contrast, providers whose models are
hosted by a third party are often limited to publicly accessible data or must request access to
only 20% of the data (including prompts and human preferences) involving their models
from Chatbot Arena, as per their policy3.

L Analysis of Prompt Repetitions in Arena Data

As discussed in Section 4, user queries in Chatbot Arena are often highly similar or duplicated. Such
patterns can be readily learned by today’s large language models, potentially leading to overfitting on
the Chatbot Arena leaderboard. Figure 13 presents detailed cross-month prompt duplication rates
based on the API prompts described in Appendix E. The heatmap illustrates that, according to
two metrics (exact string match and text embedding similarity) within-month duplication rates are
generally high, indicating the presence of numerous repeated prompts. Additionally, the substantial
cross-month duplication rates suggest recurring patterns or frequently asked questions among Chatbot
Arena users, which can be identified through simple analysis.

2024-11 2024-12 2025-01 2025-03 2025-04

2024-11

2024-12

2025-01

2025-03

2025-04

0.250 0.082 0.071 0.063 0.049

0.086 0.246 0.090 0.073 0.053

0.070 0.088 0.230 0.072 0.055

0.060 0.066 0.066 0.331 0.074

0.045 0.047 0.047 0.077 0.208
0.05

0.10

0.15

0.20

0.25

0.30

(a) Embedding cosine similarity.

2024-11 2024-12 2025-01 2025-03 2025-04

2024-11

2024-12

2025-01

2025-03

2025-04

0.208 0.066 0.058 0.051 0.041

0.073 0.201 0.073 0.061 0.045

0.059 0.069 0.167 0.055 0.045

0.052 0.056 0.056 0.265 0.055

0.037 0.037 0.037 0.055 0.166
0.05

0.10

0.15

0.20

0.25

(b) Exact string match.

Figure 13: Cross-month prompt duplication rates. Left: The heatmap illustrates the proportion
of prompts in one month that are highly similar or nearly duplicate to prompts in another month.
Diagonal values represent within-month similarity. Right: The heatmap shows the proportion of
prompts in one month that are exact matches to prompts in another. Diagonal values indicate within-
month duplication rates.

M Simulation for Expected Lift from Private Testing

In Figure 2, we illustrate the simulated impact of increasing the number of private variants tested on
the best expected Arena Score, observing a lift of 50 when 20 non-identical private variants are tested.
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This section provides additional details about this simulation and the differing lifts observed for
identical versus heterogeneous (non-identical) variants. While we consider the non-identical variants
scenario in Section 3.2 to be more realistic, we have included the identical variant assumption for
completeness (see Figure 14), despite its less practical nature.

M.1 Background

Arena battles and the Bradley-Terry (BT) model. Let models i and j possess latent skills θi, θj > 0.
Under the BT model a single conversation (“battle”) produces a winner with probability

Pr
(
i beats j

)
=

θi
θi + θj

, Pr
(
j beats i

)
=

θj
θi + θj

.

The log–odds parameter β = log θ is the natural scale for inference. Arena Score [11] is a linear
re-parameterisation of β:

Arena Score = 1000 +
400

ln 10
β̂, (2)

so one Arena Score point equals ln 10/400 ≈ 0.00576 on the log-odds scale.

Statistical efficiency. For equiprobable battles (θi = θj) the Fisher information per outcome is
I = 0.25 (see Appendix M.4), yielding a BT standard error for β̂ from n independent votes

σβ(n) =

√
1

In
=

2√
n
. (3)

Mapping through (2),

σElo(n) =
400

ln 10
σβ(n) ≈

347.4√
n

(Arena scale). (4)

Pre-release best-of-N strategy. A provider trains N private variants, evaluates each on a hidden
Arena fork, and publicly submits only the one that scores highest. The selection creates an ex-
treme–value bias because the retained estimate is conditioned on being the maximum of N noisy
measurements.

M.2 Identical Variants (σtrue = 0)

In Figure 14, we show the esitmated lift in Arena Score if the checkpoints submitted by a provider
are identical.

Assume every private checkpoint has the same true Arena Score µ. The only randomness is
measurement noise

Êk = µ+ εk, εk ∼ N (0, σ2
noise), k = 1, . . . , N, σnoise = σArena Score(n).

M.2.1 Extreme-value uplift

Let Êmax = maxk Êk. Classical results for the maximum of N i.i.d. Gaussians give the expected
uplift

E
[
Êmax − µ

]︸ ︷︷ ︸
selection bias

= σnoise
√
2 lnN (σtrue = 0). (5)

Numerical illustration With the current Arena policy (n = 3000, hence σnoise=6.34Arena Score)

M = 50 =⇒ bias ≈ 6.34
√
2 ln 50 = 17.7 Arena Score.

Asymptotics

Because σnoise ∝ 1/
√
n, (5) → 0 as n→∞. If checkpoints are identical, selection bias eventually

disappears.
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Figure 14: Impact of the number of identical private variants tested on the best Expected Arena
Score.

M.3 Heterogeneous Variants (σtrue > 0)

In realistic settings, model variants submitted for prerelease testing are not identical (as shown in Fig-
ure 2). They differ due to variations in initialization, training seeds, data curation, or hyperparameter
choices. As a result, each variant has its own true Arena score, even before accounting for statistical
noise in Arena battles.

These models are not merely subject to selection bias arising from multiple evaluations of a single
variant (i.e., due to statistical noise). Instead, each represents a genuinely distinct checkpoint with
its own underlying performance. This reflects meaningful variation in model quality – not just
fluctuations from randomness.

We model this by assigning each of the N private checkpoints a different true skill:

Ek = µ+ δk, δk ∼ N (0, σ2
true),

where µ is the mean Arena Score across all variants and σtrue quantifies the spread in true skill.

When evaluated in Arena, each model’s observed Arena Score estimate Êk is affected by both its
intrinsic skill and sampling noise:

Êk = µ+ δk︸ ︷︷ ︸
true skill

+ εk︸︷︷︸
Arena noise

, εk ∼ N (0, σ2
noise).

Thus, the total variance in Arena Scores among the M candidates is:

σ2
total = σ2

true + σ2
noise.

M.3.1 Extreme-value uplift

As before, the organization retains only the model with the highest observed Arena Score. The
expected uplift from this best-of-M selection is given by:

bias(N,n, σtrue) =
√
σ2

true + σElo(n)2 ·
√
2 lnN (6)

This is a generalization of the identical-variant case. It shows that when true skill differences exist
among checkpoints, the expected leaderboard inflation grows significantly larger—and no longer
vanishes asymptotically, even as n → ∞.

Key consequences.

• Finite-data: even modest σtrue multiplies the uplift, e.g. σtrue = 20Arena Score yields
bias ≈ 56Arena Score at N = 50, n = 3000.

• Asymptotic limit: letting n→∞ removes only the noise term, leaving σtrue
√
2 lnN > 0.

Selection bias does not vanish.
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M.4 Fisher Information for a Single BT Match

The Bradley-Terry model defines the probability of item i beating item j as:

P (i > j) =
1

1 + e(βj−βi)

We assume equal-strength items (βi = βj) so that ∆ = 0 and:

P =
1

1 + e0
=

1

2

This assumption is both mathematically convenient and empirically grounded [9, 40]:

• It simplifies the information calculation, providing a closed-form.

• It represents the point of maximum uncertainty: for a Bernoulli variable, Var(Y ) = p(1− p)
is maximized when p = 0.5.

• In practice (e.g., Chatbot Arena), many matchups occur between similarly-rated models,
making βi ≈ βj a reasonable approximation.

The Fisher information for one such observation is [40]:

I(∆) =
∂2

∂∆2
logP (i > j)

∣∣∣∣
∆=0

=
e0

(1 + e0)2
=

1

4

Conclusion: Each equal-skill BT match contributes:

Fisher Information = 0.25

N Silent Model Deprecation: Additional Details

In Section 5, we noted that the actual number of deprecated models far exceeds the official count
provided by Chatbot Arena. Figure 15 illustrates the distribution of active, officially deprecated, and
silently deprecated models per provider. For this analysis, we examined battles played between March
3rd and April 23rd, 2025. Of the 243 public models, 205 participated in an average of 10 or fewer
battles during this period, based on leaderboard-stats. This number is significantly higher than
the 47 models officially listed as deprecated by Chatbot Arena 2 Since Chatbot Arena assigns higher
sampling weights to top-10 models, providers like Google, OpenAI, Anthropic, Amazon, Meta, and
DeepSeek AI have the most actively sampled public models, ranging from 3 to 10. Additionally,
the limited number of daily votes on the Arena, combined with Chatbot Arena’s policy of assigning
higher sampling weights to new models3, can lead to the silent deprecation of many public models.
As private variants are also new models, they receive high sampling weights as well. This means that
as the number of private variants (see Figure 9) being tested on the Arena increases, the sampling of
public models can be significantly reduced.

Figure 16 illustrates that deprecations disproportionately affect open-weight and open-source models
compared to proprietary ones. A more detailed breakdown is provided in Figure 17, distinguishing
between official and silent deprecations. Among officially deprecated models, 30% are proprietary,
while only 2.4% are open-weight. However, silent deprecations have a much greater impact on
open-weight and open-source models. Specifically, 86.6% of open-weight models and 87.8% of
open-source models on the Arena are silently deprecated.

52



Go
og

le
Op

en
AI

Al
ib

ab
a

M
et

a
An

th
ro

pi
c

M
ist

ra
l

De
ep

Se
ek

 A
I

M
icr

os
of

t
Re

ka
 A

I
Co

he
re

01
 A

I
Nv

id
ia

Al
le

n 
AI

Te
nc

en
t

Zh
ip

u 
AI

Ne
xu

sF
lo

w xA
I

LM
SY

S
IB

M
Hu

gg
in

gF
ac

e
Da

ta
br

ick
s

Am
az

on
Ts

in
gh

ua
Un

kn
ow

n
UC

 B
er

ke
le

y
M

os
ai

cM
L

No
us

Re
se

ar
ch

Pe
rp

le
xi

ty
 A

I
Op

en
Ch

at
AI

21
 L

ab
s

Pr
in

ce
to

n
RW

KV
St

ab
ilit

y 
AI

St
an

fo
rd

St
ep

Fu
n TI
I

CC
To

ge
th

er
 A

I
Op

en
As

sis
ta

nt
No

m
ic 

AI
Up

st
ag

e 
AI

In
te

rn
LM

Sn
ow

fla
ke

0

5

10

15

20

25

30

35

40

Nu
m

be
r o

f M
od

el
s

10

17

11

6

19

6

2

15

2

3

14

4

4

4

2

8

3
4
2

7
4

4
6

3
3 6 5 2

3
3 4 2 4 4 4 3 3 3 2 2 2 2 2 2 2

Active
Silent Deprecated
Officially Deprecated

Figure 15: Share of active and deprecated models by provider including official and silent deprecations
based on model activity between March 3-April 23, 2025.
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Figure 16: Share of proprietary and open models that either officially deprecated or inactive
on the arena based on leaderboard-stats during the period March 3rd-April 23rd, 2025.
Overall, open-weight and fully open-source models are more likely to become deprecated or inactive
compared to proprietary models.
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Figure 17: Share of official and silent deprecations for proprietary, open-weight and open-source
models based on model activity between March 3-April 23, 2025.

O Transitivity Under Changing Evaluation Conditions: Additional Details

In Section 5.1, we discussed about impact of deprecation with a changing task distribution. Here we
describe our experimental setup in detail for clarity.
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Experimental Setup: We initialize four models—A, B, C, and D—each with distinct performance
profiles across two task types, Task-1 and Task-2. These tasks represent different prompt categories,
and each model’s relative strength is defined through task-specific win probabilities. For example,
model B has a 90% chance of defeating model D on Task-1 but only a 20% chance on Task-2, with
some pairs also allowing for ties. The task-specific win probabilities for different models are provided
in Appendix O. These probabilities reflect the models’ varying strengths across tasks, mirroring the
real-world observation that models excel at different types of prompts.

To investigate how model deprecations under a changing task distribution can impact model rankings,
we simulate BT rankings of models under evolving evaluation conditions. The simulation is structured
into two sequential phases to mimic the evolving task distribution observed on Chatbot Arena. During
the first phase, battles are predominantly drawn from Task-1. Each of the four models participates in
1000 battles, and the resulting outcomes are used to compute initial rankings. In the second phase, the
battle distribution gradually shifts toward Task-2. Since model win-rates are task-dependent, battle
outcomes change accordingly. We simulate 1000 additional battles in this phase and examine two
scenarios to investigate how shifts in prompt distribution and model deprecations jointly influence final
rankings. We compute the BT Scores for all models under both scenarios using the implementation
provided by Chatbot Arena in their official FastChat codebase. These scores are then used to
determine the final model ranks.

Scenario I: without deprecation. We simulate all 2000 battles across both phases, with all four
models participating throughout. This represents an ideal scenario where no model is deprecated, and
all are evaluated across the evolving task distribution.

Scenario II: with deprecation. We simulate all 2000 battles across both phases. However, at the end
of phase 1, model D is deprecated and does not participate in the second phase.

As part of our simulation to study the impact of model deprecations under a changing task distribution,
we assign task-specific win probabilities for each model pair that compete in the battles as part of our
simulation. The tables below show the win probabilities for different model pairs corresponding to
task-1 and task-2.

Model A B C D

A - 0.4 0.4 0.6
B 0.5 - 0.7 0.9
C 0.6 0.3 - 0.7
D 0.4 0.1 0.3 -

Win-rates for Task 1. Note that A vs B has a tie rate of 0.1

Model A B C D

A - 0.5 0.5 0.8
B 0.3 - 0.6 0.2
C 0.3 0.4 - 0.1
D 0.2 0.8 0.9 -

Win-rates for Task 2. Note that A vs B and A vs C both have a tie rate of 0.2.

Table 7: Win-rates for Task 1 and Task 2 used for simulation shown in Figure 5.

P Sparse Battle History: Experiment Details

In Section 5.2, we discussed about impact of disconnectivity in win graph which can arise from
excessive deprecations. Here we describe our experimental setup in detail for reference.

Experiment Setup: To investigate the impact of sparse win graphs on the rankings obtained via the
Bradley-Terry model used by Chatbot Arena we simulate the following scenarios:

• Scenario I: Dense win graph. All models are allowed to compete against one an-
other—albeit with varying numbers of head-to-head battles—resulting in a well-connected
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win graph in which every node (model) is linked to others via edges representing battle
outcomes.

• Scenario II: Disconnected win graph. We create a disconnected battle history by imposing
constraints on which pairs of models are allowed to engage in battles. This allows us to
create a sparse battle history where each model ends up playing against a subset of models.

The full win graph based on battle histories for both scenarios is shown in Figure 6. In both scenarios,
a total of 2000 battles are played under the corresponding setting. For a paired match between models
A and B, each with respective true skill ratings rA and rB , the expected scores EA and EB can be
computed as:

EA =
1

1 + eα(rB−rA)
, EB =

1

1 + eα(rA−rB)
(7)

The expected scores EA and EB are used to predict the winner of the battle. For simplicity, we
exclude the possibility of ties in this experiment. We assign the following true skill ratings to the
models: 1450 (Model A), 1390 (Model B), 1250 (Model C), 1200 (Model D), 1101 (Model E),
1150 (Model F), and 1000 (Model G). These ratings are used to calculate the expected scores and
match outcomes. Finally, we compute BT Scores for all models under both scenarios using the
official implementation of Chatbot Arena 2. This is then used to determine the ranks for each model
corresponding to both scenarios.

Q Overfitting Experiments: Additional Details

To measure if training on arena-style data impacts evaluation on non-arena style tasks, we also
benchmark these models on the original MMLU dataset [35]. From Table 8, we observe that all
models achieve very similar scores. This further demonstrates how training on data from Arena
Battles helps boost scores specific to the Arena evaluation but provides little to no effect on a
non-arena style benchmark.

Finetuning mixture 0_arena 30_arena 70_arena

Accuracy 66.5% 64.4% 65.9%
Table 8: Accuracy on MMLU across models trained with varying amounts of Arena data.
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Figure 18: Use of Chatbot Arena dataset significantly improves win-rates on ArenaHard.
Increasing the amount of arena data in a supervised fine-tuning mixture (0% → 30% → 70%)
significantly improves win-rates of the resulting model against both the model variant where no
Chatbot Arena data is used and also Llama-3.1-8B. The win-rates are measured on ArenaHard [46],
which has a high correlation of 98.6% to Chatbot Arena.
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