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Figure 1: (Top) ScalingAR significantly improves the quality of autoregressive image generation.
Detailed prompts are provided in Appendix §A. (Bottom Left) The token confidence trajectory over
the generation process. (Bottom Right) Performance comparison of ScalingAR on TIIF-Bench with
classic test-time scaling strategies, i.e., Importance Sampling (IS) and Best-of-N (BoN).

ABSTRACT

Test-time scaling (TTS) has demonstrated remarkable success in enhancing large
language models, yet its application to next-token prediction (NTP) autoregres-
sive (AR) image generation remains largely uncharted. Existing TTS approaches
for visual AR (VAR), which rely on frequent partial decoding and external re-
ward models, are ill-suited for NTP-based image generation due to the inherent
incompleteness of intermediate decoding results. To bridge this gap, we introduce
ScalingAR, the first TTS framework specifically designed for NTP-based AR
image generation that eliminates the need for early decoding or auxiliary rewards.
ScalingAR leverages token entropy as a novel signal in visual token generation and
operates at two complementary scaling levels: (i) Profile Level, which streams a cal-
ibrated confidence state by fusing intrinsic and conditional signals; and (ii) Policy
Level, which utilizes this state to adaptively terminate low-confidence trajectories
and dynamically schedule guidance for phase-appropriate conditioning strength.
Experiments on both general and compositional benchmarks show that ScalingAR
(1) improves base models by 12.5% on GenEval and 15.2% on TIIF-Bench, (2) effi-
ciently reduces visual token consumption by 62.0% while outperforming baselines,
and (3) successfully enhances robustness, mitigating performance drops by 26.0%
in challenging scenarios. Our code will be released in ScalingAR Repository.
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Figure 2: (a) Next-scale prediction paradigm generates multi-scale token maps coarse-to-fine. (b)
Next-token prediction paradigm sequentially predicts next image tokens. (c) Illustration of Best-of-N
sampling that generates multiple candidate and selects the best via voting or scoring. (d) Overview
of our proposed ScalingAR, highlighting its ability to leverage token entropy to early-stop low-
confidence samples and identify winning samples without the need for additional reward models.

1 INTRODUCTION

Large language models (LLMs) (Brown et al., 2020; Vaswani et al., 2017; Radford et al., 2019) have
demonstrated the capabilities of next-token prediction (NTP) paradigm. This success has renewed
interest in applying autoregressive (AR) architectures beyond text, motivating recent visual generative
models that represent images in discrete token spaces (Sun et al., 2024; Tian et al., 2024; Li et al.,
2024) as shown in Figure 2 (b). Compared to diffusion models, which operate over continuous noise
trajectories, token-based AR models promise a more unified modality interface.

As the field evolves, the parameters and training data of foundation models (Wang et al., 2024; Yang
et al., 2025) have increasingly grown to levels that are inaccessible for most university researchers.
In this context, many studies have started to investigate post-training methods. Inspired by recent
advancements such as GRPO (Shao et al., 2024), a surge of reinforcement learning research has
emerged in both language and visual generation domains (Jiang et al., 2025; Cui et al., 2025).
Meanwhile, another research avenue focusing on test-time scaling (TTS) has emerged (Lightman
et al., 2023; Muennighoff et al., 2025; Zuo et al., 2025), which aims to explore whether a slight
increase in computational expense during inference can achieve performance on par with training-
time methods, which typically incur much larger costs.

While test-time scaling has been extensively researched in language models, analogous progress for
autoregressive visual generation remains sparse. Images differ from text in three practical ways that
complicate direct transfer: (i) holism: dropping the last 20% of a text sequence may still leave a
syntactically valid answer, whereas truncating an image token stream yields an unusable artifact;
(ii) objective ambiguity: many language scaling setups optimize toward a verifiable final answer
(e.g., math reasoning), whereas image generation lacks a single ground-truth target; and (iii) early
signal scarcity: partial image token decodes are visually unstable, making premature selection risky.
Moreover, recent work TTS-VAR (Chen et al., 2025b) introduced TTS for the next-scale prediction
(NSP) paradigm in visual autoregressive model (VAR) (Tian et al., 2024) by predicting images in
a coarse-to-fine manner (Figure 2 (a)). This intermediate visibility enables reward models to score
during scaling but comes with limitations that require predicting large residual token maps at each
scale and frequent decoding makes the process inefficient and less suitable for the NTP paradigm.

Building on these insights, we introduce ScalingAR, the first test-time scaling framework tailored to
the NTP paradigm in autoregressive image generation. Unlike next-scale TTS-VAR, ScalingAR elim-
inates the need for frequent partial decoding and external reward models (as shown in Figure 2 (d)),
relying solely on intrinsic signals derived from visual token entropy and conditional signals to
profile confidence. Specifically, in response to limitations, ScalingAR prunes unreliable trajectories
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without interrupting generation (holism), constructs confidence by combining intrinsic uncertainty
and conditional signals (objective ambiguity), and extracts stability directly from model probabilities
rather than intermediate outputs (early signal scarcity). Technically, ScalingAR features a two-level
design: ❶ Profile Level, which constructs a unified confidence state by integrating intrinsic generation
stability with conditioning effectiveness; and ❷ Policy Level, which leverages this confidence state to
prune failing trajectories and dynamically adjust conditioning strength through adaptive termination
and guidance scheduling. Our contributions can be summarized as follows:

• We propose ScalingAR, the first test-time scaling framework tailored to next-token prediction AR
image generation, featuring a novel two-level design with Profile Level for dual-channel confidence
profiling on-the-fly, and Policy Level for trajectory pruning and guidance scheduling.

• We for the first time investigate token entropy in visual token generation. By relying solely on
intrinsic signals from the model, ScalingAR eliminates the need for frequent early decoding and
external reward models, enabling a more efficient and reliable scaling process.

• Extensive experiments on both general and compositional benchmarks demonstrate that ScalingAR
is: (i) high-performing, achieving significant performance gains over base models (i.e., Llam-
aGen and AR-GRPO), by 12.5% on GenEval and 15.2% on TIIF-Bench; (ii) token-efficient,
outperforming classic baselines (i.e., Importance Sampling and Best-of-N) while reducing visual
token consumption by 62.0%; and (iii) robust in challenging scenarios, mitigating performance
degradation by 26.0% compared to base models in highly complex generation settings.

2 RELATED WORK

Autoregressive Image Generation Autoregressive models have leveraged the scaling capabilities
of language models (Yang et al., 2025; Brown et al., 2020; Radford et al., 2019) to generate images.
These approaches employ discrete image tokenizers (Van Den Oord et al., 2017; Razavi et al., 2019)
in conjunction with transformers, using a next-token prediction strategy. VQ-based methods (Lee
et al., 2022; Razavi et al., 2019; Esser et al., 2021), e.g., VQ-VAE (Van Den Oord et al., 2017), convert
image patches into index-based tokens, which are then predicted sequentially by a decoder-only
transformer. However, these VQ-based AR methods are limited by the lack of scaled-up transformers
and the inherent quantization error in VQ-VAE. This has prevented them from achieving performance
on par with diffusion models. Recent advancements (Wu et al., 2025a; Yu et al., 2022; Team, 2024)
have scaled up AR models for visual generation. Additionally, some variants have been proposed,
such as the next-scale prediction paradigm of VAR (Tian et al., 2024; Han et al., 2025), which predicts
from coarse to fine token maps, and the parallel token prediction of masked AR (MAR) (Li et al.,
2024; Wu et al., 2025b; Fan et al., 2025). Despite these developments, the mainstream approach
remains the NTP paradigm, particularly as the field moves towards unified models (Xie et al., 2025;
Wang et al., 2024; Ge et al., 2024) that can jointly handle textual and visual tokens. This alignment
with language modeling allows for more versatile and scalable architectures.

Test-Time Scaling Current LLMs have increasingly succeeded by allocating substantial reasoning
at inference time, a paradigm known as test-time scaling (Snell et al., 2024; Welleck et al., 2024).
This scaling can occur along two main axes: (1) Chain-of-Thought (CoT) (Wei et al., 2022) Depth:
lengthening a single reasoning trajectory through more thinking steps, often relying on large-scale
reinforcement learning with many samples (Yang et al., 2025; Jaech et al., 2024; Guo et al., 2025) or
simpler post-training strategies (Ye et al., 2025; Muennighoff et al., 2025); (2) Parallel Generation:
scaling by increasing the number of trajectories and aggregating them, as seen in works like Self-
Consistency (Wang et al., 2023) and Best-of-N (Lightman et al., 2023). Recent efforts (Kang et al.,
2025; Fu et al., 2025) have also integrated confidence estimation through token entropy into the
test-time reasoning process, allowing the quality of individual traces to be assessed before aggregation
with the rewards for majority voting (Wang et al., 2023). However, exploring TTS for AR image
generation has been limited. This is due to the holistic nature of image generation, where overall
coherence is paramount (see Figure 2 (c)), unlike reasoning tasks with well-defined ground truths.
Additionally, the frequent early decoding required for images can be more computationally expensive
than for language, suggesting that direct transfer of many LLM TTS techniques may not be suitable
or optimal. To address this gap, we propose the first TTS strategy tailored for AR image generation.
Notably, we pioneer the exploration of token entropy in image generation, enabling our method to
leverage visual token confidence without the need for early decoding or additional rewards.
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3 PRELIMINARIES

Next-Token Prediction Autoregressive Modeling NTP is a fundamental paradigm in autoregres-
sive models, where the model generates sequences by predicting the next token based on previously
generated tokens. The generation process can be mathematically described as follows:

p(x1, x2, . . . , xT ) =

T∏
t=1

p(xt|x1, x2, . . . , xt−1). (1)

This formulation allows the model to leverage past information to inform future predictions, making
it particularly effective for sequential data generation.

The training of autoregressive models typically involves maximizing the likelihood of the observed
sequences, which can be expressed as:

L =

T∑
t=1

log p(xt|x<t). (2)

This objective encourages the model to learn the underlying distribution of the data, enabling it to
generate coherent and contextually appropriate sequences.

Token Entropy in Language Modeling Token entropy is a critical metric for evaluating the
uncertainty associated with the predictions made by language models (Kang et al., 2025). It quantifies
the amount of unpredictability in the model’s output distribution for a given token. The entropy H at
a specific position i in the sequence can be defined as:

Hi = −
∑
j

pi(j) log pi(j), (3)

where pi(j) denotes the predicted probability of the j-th token in the vocabulary at position i. Low
entropy indicates high certainty in the prediction, while high entropy reflects greater uncertainty.

Furthermore, token confidence can be derived from the predicted distribution (Fu et al., 2025). The
confidence Ci for a token at position i is defined as:

Ci = −
1

k

k∑
j=1

log pi(j), (4)

where k represents the number of top tokens considered. High confidence values correlate with
sharper distributions, indicating that the model is more certain about its predictions.

4 METHODOLOGY

To pioneer test-time scaling for next-token prediction autoregressive image generation, we propose
ScalingAR, which leverages intrinsic token confidence signals without relying on early decoding
or external rewards, featuring two scaling levels: (i) Dual-Channel Confidence Profile compacts
heterogeneous per-step signals into a calibrated confidence state (§4.1); and (ii) Confidence-Guided
Policies act on this state to prune failing trajectories and adapt conditional guidance on-the-fly (§4.2).

CFG=1 CFG=7.5 CFG=15 Ours

Figure 3: (Left) Confidence distribution of ScalingAR on GenEval and TIIF-Bench. (Right)
Illustration of the trade-off between visual quality and semantic alignment with fixed Classifier-Free
Guidance (CFG) in AR image generation. 1st: A 35 mm photo of a cityscape resembling Moscow floating
in the sky on flying islands. 2nd: The colorful hot air balloon floated near the dark grey storm clouds.
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4.1 DUAL-CHANNEL CONFIDENCE PROFILE

Autoregressive image generators traditionally treat all partial trajectories as equally promising until
completion, as illustrated in Figure 2 (c). However, empirical inspection reveals two dominant
failure modes during inference that often foreshadow poor final results: ❶ local intrinsic instability,
characterized by high entropy pockets and wavering token choices (Figure 1 (Bottom Left) & Figure 3
(Left)); and ❷ poor utilization of the text condition, where the semantic influence of the prompt
gradually fades, resulting in misaligned or aesthetically suboptimal outputs (Figure 3 (Right)).

To address these challenges, we introduce the Dual-Channel Confidence Profile, consisting of two
complementary channels: ➀ Intrinsic Channel: Captures localized instability and spatial anomalies
within the token grid. ➁ Conditional Channel: Quantifies the marginal contribution of textual
conditioning to ensure semantic alignment.

4.1.1 INTRINSIC CHANNEL: UNCERTAINTY & SPATIAL STABILITY

Early-stage failures in autoregressive image generation rarely manifest as immediate global collapse.
Instead, they emerge through localized instability. To capture these signals, the Intrinsic Channel
integrates two key components: token-level confidence and worst-block spatial stability.

Token-level Confidence Token-level uncertainty reflects the dispersion and decisiveness of predic-
tions at each decoding step. Let πt denote the softmax distribution over the vocabulary V at step t. We
compute token entropy Ht = −

∑
v∈V πt(v) log πt(v) and top-1/top-2 margin mt = πt(v1)−πt(v2),

forming a normalized uncertainty surrogate:

Ĥt = Ht/ log |V |, ut = αHĤt + αM (1−mt), αH + αM = 1, (5)
where ut is mapped to token confidence stok

t = 1− ut ∈ (0, 1]. To stabilize this signal, we apply an
exponential moving average (EMA):

s̄tok
t = (1− λtok)s̄

tok
t−1 + λtoks

tok
t . (6)

Worst-block Stability Localized “hot spots” of persistent high entropy often diffuse into global
semantic corruption. To capture these spatial anomalies, we partition the h × w token grid into
non-overlapping b × b blocks. For each block k (with fill ratio ≥ ρmin), we compute its mean
normalized entropy Ek. Focusing on the worst-q% subset Wt of blocks with the highest entropy:

Eworst(t) =
1

|Wt|
∑
k∈Wt

Ek. (7)

A rolling min-max normalization Nmm yields a stability score Bt = 1−Nmm(Eworst(t)), emphasizing
emergent localized failure rather than global averages.

Finally, the Intrinsic Channel score combines token-level confidence and worst-block stability:
Irawt = wtoks̄

tok
t + wblkBt, wtok + wblk = 1, (8)

followed by smoothing It = EMA(I raw
t , λI).

4.1.2 CONDITIONAL CHANNEL: TEXT UTILIZATION STRENGTH

While intrinsic signals capture localized instability, semantic misalignment often arises from insuffi-
cient utilization of the text condition. For concise prompts or complex visual contexts, the conditional
branch may lose influence, silently drifting from the intended semantics. The Conditional Channel
measures the marginal contribution of textual conditioning to ensure semantic alignment.

Let pc,t and pu,t denote the softmax distributions from conditional and unconditional logits, re-
spectively. We compute the KL divergence Kt = KL(pc,t ∥ pu,t), then apply a rolling z-score
normalization:

Knorm
t =

Kt − µK

σK + ε
, Kclip

t = clip(Knorm
t ,−zmax, zmax), (9)

mapping the result to [0, 1]:

D̂t = 0.5 + 0.5
Kclip

t

zmax
. (10)

Persistently low values of the smoothed score D̂t flag semantic fade, while excessively high values
paired with low It may indicate unstable over-conditioning.

5
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4.1.3 UNIFIED CONFIDENCE STATE

To enable dynamic trajectory control, we combine both channels into a unified confidence state. The
scalar unified confidence score is defined as:

Ct = wIIt + wDD̂t, wI + wD = 1, (11)
optionally passed through an affine-sigmoid calibration to mitigate cross-prompt scale drift. To
capture early-stage failure signals, we maintain the running minimum Cmin(t) = mini≤t Ci and
compute a relative rebound:

Rt =
Ct − Cmin(t)

|Cmin(t)|+ ε
. (12)

This unified confidence score serves as the basis for dynamic trajectory pruning and adaptive condi-
tioning, enabling efficient test-time scaling tailored to the NTP paradigm.

4.2 CONFIDENCE-GUIDED POLICIES

With a calibrated confidence score Ct, we transition from passive observation to active test-time
control, enabling dynamic intervention in autoregressive generation. To achieve this, we introduce
two lightweight yet effective policies: ➀ an Adaptive Termination Gate that prunes unpromising
trajectories to reclaim computation; and ➁ a Guidance Scheduler that dynamically modulates CFG
scale to balance semantic alignment.

4.2.1 ADAPTIVE TERMINATION GATE

Failing trajectories often exhibit prolonged spans of low confidence, lingering in a “confidence basin”
before producing final tokens that posterior reranking would discard. The Adaptive Termination Gate
proactively terminates such trajectories, reclaiming computational resources.

Threshold Initialization and Adaptation To identify failing trajectories, we initialize a confidence
threshold θ↓ after a warm-up period of W0 steps. The threshold is set to the p-quantile (p ∈
[0.15, 0.25]) of the collected Ct values across active trajectories. This ensures that pruning targets the
bottom-performing trajectories without prematurely terminating promising ones. The threshold is
periodically updated every ∆upd steps using an EMA-based adaptation:

θ↓ ← (1− λθ)θ↓ + λθQuantilep({Ct}recent). (13)
where {Ct}recent denotes the confidence scores from recent decoding steps.

Recovery Safeguard To mitigate false positives caused by transient dips in Ct, we incorporate
a recovery mechanism. A trajectory is permitted to recover if it satisfies either of the following
conditions within a recovery window ∆rec: (a) Ct ≥ Cmin(t) + δrec: absolute confidence rebound
exceeds a pre-defined gap. (b) Rt ≥ rthr: relative rebound exceeds a threshold, indicating stabilization.
Only trajectories failing both criteria are marked for termination.

Termination Rule Once the protection horizon Tmin (e.g., 10% of T ) has elapsed, a trajectory is
terminated if Cmin(t) < θ↓ and no recovery within last ∆rec steps. Additionally, a hard-fail guard
(Ct < Chard) triggers immediate termination for catastrophic collapse scenarios, ensuring robustness
against extreme failures. By over-initializing Ktarget +Mbuf trajectories and relying on pruning, we
refine the candidate set without spawning replacements.

4.2.2 GUIDANCE SCHEDULER

Fixed CFG scales enforce a static trade-off between semantic alignment and diversity, yet the
“optimal” balance varies across decoding phases. The Guidance Scheduler dynamically adjusts the
CFG scale st based on real-time signals from the unified confidence profile.

The scheduler integrates three key signals to adapt st:

• Conditional Utilization (D̂t): Low D̂t flags under-conditioning, prompting an increase in st to
reinforce prompt influence.

• Intrinsic Volatility (Varrecent(I)): High short-term volatility in I indicates instability, warranting
temporary bolstering of conditioning.

• Rebound (Rt): Strong rebounds suggest stabilized semantics, allowing st to ease pressure and
preserve diversity.

6
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Table 1: Evaluation on GenEval (Ghosh et al., 2023) and TIIF-Bench (Wei et al., 2025) benchmarks.
“Diff.+AR” refers to the unified architecture, and “MAR” indicates the masked AR architecture (Li
et al., 2024). We bold the best results, and “↑” denotes that higher is better.

Method #Params Arch. GenEval TIIF-Bench

Two Obj.↑ Posit.↑ Color Attr.↑ Over.↑ Basic↑ Advanced↑ Designer↑ Over.↑
DALLE·3 (Betker et al., 2023) - Diff. - - - 0.67 78.40 68.45 62.69 72.94
Show-o (Xie et al., 2025) 1.3B Diff.+AR 0.80 0.31 0.50 0.68 71.30 59.89 68.66 59.24
LightGen (Wu et al., 2025b) 0.8B MAR 0.65 0.22 0.43 0.62 53.99 45.76 59.70 46.42
Infinity (Han et al., 2025) 2B VAR 0.85 0.49 0.57 0.73 71.63 57.81 61.19 59.66
Emu3 (Han et al., 2025) 8.5B AR 0.81 0.49 0.45 0.66 - - - -
Janus (Wu et al., 2025a) 1.5B AR 0.68 0.46 0.42 0.61 - - - -
AR-GRPO (Yuan et al., 2025) 0.8B AR 0.27 0.02 0.03 0.31 19.59 14.91 17.91 16.22
+ IS 0.8B AR 0.47 0.08 0.07 0.44 26.00 19.03 17.62 19.84
+ BoN 0.8B AR 0.46 0.08 0.06 0.44 25.67 19.91 20.69 21.08
+ ScalingAR (Ours) 0.8B AR 0.54 0.24 0.15 0.49 29.71 26.43 25.90 26.35
LlamaGen (Sun et al., 2024) 0.8B AR 0.34 0.21 0.04 0.32 49.58 40.44 40.30 40.35
+ IS 0.8B AR 0.21 0.11 0.02 0.14 54.81 40.34 39.93 42.44
+ BoN 0.8B AR 0.27 0.11 0.02 0.15 54.79 40.78 37.69 42.02
+ ScalingAR (Ours) 0.8B AR 0.40 0.28 0.12 0.36 57.36 44.13 42.54 46.47

Using these signals, we compute the raw CFG scale adjustment:

sraw
t = sbase + α(1− D̂t) + βVarrecent(I)− γRt, (14)

where α, β, γ control the relative influence of each term. The final scale st is smoothed and clamped
to prevent excessive fluctuations:

st = clamp((1− λcfg)st−1 + λcfgs
raw
t , smin, smax), (15)

with a deadband (|st − st−1| < ϵs) suppressing jitter to ensure stability.

5 EXPERIMENTS

In this section, we conduct extensive experiments to answer the following research questions: (RQ1)
Does ScalingAR enhance the quality of generated images? (RQ2) Does ScalingAR outperform
other TTS strategies for both effectiveness and efficiency? (RQ3) How sensitive is ScalingAR to its
key components? (RQ4) Whether ScalingAR holds advantages over other TTS strategies in terms
of both scalability and robustness?

5.1 EXPERIMENTAL SETTINGS

Baselines We apply ScalingAR to the advanced models: LlamaGen (512× 512) (Sun et al., 2024)
and AR-GRPO (256× 256) (Yuan et al., 2025). Since no prior work has explored TTS for the NTP
image generation, we focus our comparisons on the following conventional baselines: Importance
Sampling (IS) (Owen & Zhou, 2000) and Best-of-N (BoN) (Lightman et al., 2023). We also provide
results from Show-o (Xie et al., 2025), LightGen (Wu et al., 2025b), Infinity (Han et al., 2025), Emu3
(Wang et al., 2024), Janus (Wu et al., 2025a), and DALLE·3 (Betker et al., 2023) for reference.

Evaluations To evaluate the effectiveness of ScalingAR, we adopt GenEval (Ghosh et al., 2023)
and TIIF-Bench (Wei et al., 2025) as primary benchmarks for both general and compositional text-to-
image generation capabilities. These benchmarks offer a comprehensive evaluation of the model’s
ability to produce high-quality and semantically consistent images from text prompts.

5.2 PERFORMANCE & EFFICIENCY COMPARISON

To answer RQ1 and RQ2, we comprehensively compare ScalingAR against two baselines on
general and compositional benchmarks in Table 1, alongside qualitative results, user study, and token
consumption comparisons shown in Figure 1, 4, and Figure 5. Key observations are summarized
as follows: Obs.❶ ScalingAR excels in enhancing both general and compositional generation
quality. As illustrated in Table 1, our ScalingAR consistently outperforms baseline methods (i.e., IS
and BoN), which achieve minimal or even negative performance gains, across benchmarks targeting
distinct aspects of text-to-image generation. Figure 1 (Top) and Figure 4 provide qualitative evidence
of ScalingAR’s capabilities, showcasing visually superior results that excel in aesthetic quality
and semantic alignment, e.g., numerical accuracy, color fidelity, and subject clarity. Furthermore,
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LlamaGen + IS + ScalingAR (Ours) LlamaGen + BoN + ScalingAR (Ours)

In the vibrant garden, five butterflies danced gracefully among the blooming flowers A photo of a breathtaking view from a mountain summit

A photo of a fluffy bunny A photo of a tranquil lake reflecting autumn foliage

A photo of a lively squirrel The blue mug is on top of the green coaster

The soft, warm glow of the candlelight cast a romantic ambiance over the room The fluffy white cat slept on the warm fuzzy blanket

The juicy burger sat on the soft bun and the crispy lettuceThe prickly green cactus contrasted with the smooth white walls

Figure 4: Qualitative results of ScalingAR. More results on AR-GRPO are provided in Appendix §E.

Figure 5 (Left) highlights ScalingAR’s effectiveness in aligning image generation with human
preferences, as validated through user studies. Obs.❷ ScalingAR is a token-efficient test-time AR
image generation enhancer. Figure 5 (Middle) demonstrates that ScalingAR consistently surpasses
other TTS strategies across benchmarks, requiring fewer visual tokens. Unlike BoN, which relies on
external reward models and excessive token consumption, ScalingAR leverages intrinsic confidence
signals to reduce computational overhead while maintaining high-quality outputs.

5.3 ABLATION ANALYSIS

Table 2: Ablation study of ScalingAR.
Method Bas.↑ Adv.↑ Des.↑ Over.↑
ScalingAR 57.4 44.1 42.5 46.5
w/o Conditional Channel 54.1 43.1 42.2 45.1
w/o Worst-Block Stability 52.3 41.8 41.4 44.2
w/o Token-Level Confidence 49.6 40.4 40.3 40.4

To answer RQ3, we perform step by step evalua-
tions on TIIF-Bench to analyze the contributions of
ScalingAR’s confidence profiles, as detailed in Ta-
ble 2. We give the following observations: Obs.❸
Effectiveness of Intrinsic Signal Profiling. Remov-
ing Token-Level Confidence or Worst-Block Stability
both lead to a noticeable drop in performance, highlighting their critical role in capturing fine-grained
entropy signals during visual token generation. This demonstrates the effectiveness of intrinsic signal
profiling for maintaining local token stability and ensuring high-quality generation. Obs.❹ Impor-
tance of Condition State Balance. Table 2 also reveals that removing the Conditional Channel leads
to significant degradation. Figure 3 (Right) further confirms its critical role in balancing interactions
between text guidance and visual generation, ensuring coherent and stable outputs. For more detailed
analysis, please refer to Appendix §A.

8
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Figure 5: (Left) User study across five dimensions: overall preference, aesthetic quality, realism
fidelity, semantic alignment, attribute binding. (Middle) Visual token consumption of ScalingAR vs.
baselines on TIIF-Bench. (Right) Scaling width and depth across sample number and token length.

LlamaGen + IS + BoN + ScalingAR

Wool expands 
like a cotton 
cloud, lifting 
off from the 
grassy field.

A commercial 
aircraft takes 
off from the 
ocean's 
surface

Figure 6: Robustness testing with impossible prompt. Detailed prompts are provided in Appendix §A.

5.4 SCALABILITY & ROBUSTNESS ANALYSIS

To answer RQ4, we compare ScalingAR with other TTS strategies (i.e., IS and BoN) in scaling width
(i.e., sample number N ) and depth (i.e., token length), as shown in Figure 5 (Right). To further assess
the robustness of ScalingAR, we adopt the idea of “impossible prompting” (Bai et al., 2025) (e.g.,
“A young boy ... using chopsticks as a writing instrument, ... in a photo-realistic scene...”) to evaluate
its performance even when none of the candidates are ideal, with the results presented in Figure 6.
Our observations are summarized as follows: Obs.❺ ScalingAR unlocks scalable generalization
across both width and depth. As shown in Figure 5 (Right), ScalingAR consistently outperforms IS
and BoN across varying sample numbers and token lengths. This suggests that our scaling strategy
enables performance to scale up effectively as scaling width and depth increase, making it a reliable
solution for diverse autoregressive tasks. Obs.❻ ScalingAR empowers robust generation beyond
standard scenarios. Figure 6 (Left) demonstrates that under impossible prompts for unrealistic
scenarios, ScalingAR exhibits clear robustness advantages over baselines. Furthermore, Figure 6
(Right) confirms that our method achieves more effective scaling when generating under challenging
conditions, highlighting its adaptability and reliability in adverse scenarios.

6 CONCLUSION

In this work, we introduce ScalingAR, the first test-time scaling framework tailored to next-token
prediction autoregressive image generation. Unlike existing TTS strategies, ScalingAR proposes to
explore visual token entropy for the first time as intrinsic signals, without relying on partial decoding
or external rewards. By adopting a two-level design: Profile Level for calibrated confidence profiling
and Policy Level for adaptive pruning and dynamic conditioning, ScalingAR achieves phase-aware
control, enhancing generation quality with minimal additional token consumption. Comprehensive
evaluations on both general and compositional capability benchmarks demonstrate that ScalingAR
substantially improves the generation quality of existing AR models, along with generalizability and
robustness, making it a strong baseline for AR image generation test-time scaling.

9
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A MORE EXPERIMENTAL SETTINGS AND ANALYSIS

A.1 MORE DETAILS OF EXPERIMENTAL SETTINGS

Implementation Details We implement our ScalingAR and conduct all experiments on NVIDIA
H100 GPUs. Here we detail the hyperparameters.

Notation Definition Value
λtok token confidence smoothing factor 0.2

αH /αM token-level confidence weights 0.5/0.5
wtok token confidence weight 0.65

wblk worst-block stability weight 0.35

λI smoothing factor for intrinsic channel score 0.2

b block size for spatial entropy 4

ρmin minimum fill ratio for spatial entropy 4

q worst-q% subset size 0.1

wI intrinsic channel weight 0.75

wD conditional channel weight 0.25

ysigmoid affine-sigmoid calibration 1.0

W0 warm-up period 12.5%

p confidence threshold quantile 0.2

λθ EMA update rate for threshold 0.2

∆rec recovery window 32

δrec recovery threshold 0.05

Tmin protection horizon 5%

Chard hard-fail confidence guard 0.3

α influence coefficient for condition utilization 0.3

β influence coefficient for intrinsic volatility 0.4

λ influence coefficient for rebound 0.4

Captions of Figure 1 For qualitative results in Figure 1 (Top), we further detail the prompts here:

• 1st: “A red rose in full bloom sits on the top, above a pink rosebud.”

• 2nd: “A photo of a cute puppy playing in a sunny backyard.”

• 3rd: “A young boy holding a mysterious key, embarking on an adventure through various land-
scapes to find hidden treasure.”

• 4th: “A masked hero jumping from a rooftop, comic book style with bold outlines and dialogue
bubbles.”

• 5th: “A close-up of an anime woman’s face with a shocked expression, featuring dark hair, drawn
in the anime style. The image showcases colorful animation stills, close-up intensity, soft lighting,
a low-angle camera view, and high detail.”

Robustness Testing To evaluate the robustness of ScalingAR, we further employ prompts from
IPV-TXT from Impossible Videos [ICML’25] (Bai et al., 2025). Specifically, we filtered prompts
suitable for image generation from IPV-TXT, then employed Impossible Prompt Following (IPF) as
the evaluation metric, which measures the alignment between generated images and the semantic
intent of impossible prompts. Following Bai et al. (2025), we employed GPT-4o to perform binary
judgments on each image based on prompt adherence. For qualitative results in Figure 6 (Right):

• 1st: “A sheep peacefully grazing in a realistic meadow suddenly defies gravity as its wool expands
dramatically, causing its body to balloon up like a cotton cloud. The fluffy animal then lifts off
from the grassy field and drifts upward into the blue sky, its transformed woolly coat acting like a
natural balloon.”

• 2nd: “A commercial aircraft inexplicably takes off from the ocean’s surface as if the water were a
solid runway, defying physics in this photo-realistic scene. The calm, glassy sea appears to have
transformed into a firm platform, allowing the plane to accelerate and lift off smoothly, with spray
trailing behind its wheels like it would on a wet tarmac.”
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User Study We conducted a user study to evaluate human preferences using the mean opinion
score (MOS) metric. We designed a user-friendly interface to facilitate the evaluation process and
collected feedback from a total of 15 volunteer participants. The detailed instructions provided to the
participants are as follows:

User Study: Autoregressive Image Generation

Thank you for participating in our user study! Please follow these steps to complete your evaluation:

1. Image Generation: Carefully read the target prompt provided, and then view the provided images.
2. Scoring Criteria: Assign a score to each generated image based on the following aspects (1 being
the lowest, 5 being the highest):

• Overall Quality: The overall perceived quality and appeal of the generated image.

• Aesthetic Quality: The visual aesthetics, composition, and artistic merit of the image.

• Realism Fidelity: How realistically and faithfully the image captures the intended scene or subject
matter.

• Semantic Alignment: How well the generated image aligns with and represents the meaning of the
textual prompt.

• Attribute Binding: The degree to which the image accurately depicts the specific attributes and
details described in the text.

3. Submission: Click the “Submit Scores” button to submit your scores.

Notations:
1. We observe that the edge browser is not fully compatible with our interface. Chrome is recommended.
2. Remember to click the “Submit Scores” button after your evaluation.
3. If you see that images and the score sliders are not aligned, shrinking your page usually works.
4. If the page is not responsive for a long time, please try to refresh it.
5. If you have any questions, please directly ping us. Thank you for your time and effort!

A.2 MORE ANALYSIS

Figure 7: Analysis of ScalingAR for
weights of Unified Confidence (Top) and
Guidance Scheduler (Bottom).

Analysis of Global Confidence & Guidance Weights
Figure 7 presents a detailed analysis of the impact of
weights of unified confidence and guidance scheduler
on the performance of ScalingAR on the TIIF-Bench.
❶ Unified Confidence (Figure 7 (Top)): Varying the bal-
ance between the Intrinsic (wI ) and Conditional (wD)
channels shows that emphasizing the Intrinsic channel
slightly (wI/wD = 0.75/0.25) achieves the best TIIF-
Bench performance across all subsets. This highlights
the importance of capturing local uncertainty and stabil-
ity while maintaining semantic alignment. Omitting the
Conditional Channel (1.00/0.00) degrades performance,
confirming its complementary role. ❷ Guidance Sched-
uler (Figure 7 (Bottom)): Adjusting the weights α, β, and
λ, which control conditional utilization, intrinsic volatility,
and confidence rebound, respectively, reveals that moder-
ate emphasis on intrinsic volatility and rebound (β, λ) improves performance. The weight α peaks at
0.3, suggesting overemphasis may reduce diversity. This confirms the need for balanced, dynamic
guidance to optimize semantic fidelity and diversity.

Analysis of Adaptive Termination Gate We further analyze the impact of the confidence threshold
quantile p and the recovery threshold δrec on the performance and token efficiency of ScalingAR,
as illustrated in Figure 8. ❶ Confidence Threshold (Figure 8 (Left)): The choice of confidence
threshold critically balances pruning aggressiveness and generation quality. Setting p too low leads to
insufficient pruning, resulting in higher token consumption with limited accuracy gains. Conversely,
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Figure 8: Analysis of ScalingAR for thresholds of Confi-
dence (Left) and Recovery (Right).

an overly high threshold causes pre-
mature termination of promising tra-
jectories, degrading accuracy despite
lower token usage. Our experiments
show that an intermediate threshold
(e.g., p = 0.20) achieves the best
trade-off, significantly improving ac-
curacy while maintaining efficient to-
ken consumption compared to both
baseline and extreme settings. ❷ Re-
covery Threshold (Figure 8 (Right)):
The recovery mechanism safeguards
against false positives by allowing trajectories to rebound from transient confidence dips. Disabling
this mechanism leads to noticeable performance drops, highlighting its necessity. Furthermore, setting
the recovery threshold δrec too low or too high adversely affects accuracy and efficiency: a low thresh-
old permits premature recovery of poor trajectories, increasing token cost, while a high threshold
delays recovery, risking early termination of viable samples. An optimal value (e.g., δrec = 0.05
balances these effects, maximizing accuracy with minimal token overhead.

Table 3: Ablation of Policy Level.
Method Bas.↑ Adv.↑ Des.↑ Overall↑
LlamaGen 49.6 40.4 40.3 40.4
+ Termination Only 54.1 43.1 42.2 45.1
+ Scheduler Only 53.6 42.0 41.0 43.8
+ ScalingAR (Ours) 57.4 44.1 42.5 46.5

Analysis of Ablation on Policy Level While ablation
study (Table 2) in main text focuses on the Profile Level,
we conducted additional ablation studies to evaluate the
contributions of the Policy Level, which builds upon the
Profile Level, as shown in Table 3. (i) The “Termination
Only” setup improves performance across all metrics,
highlighting its ability to prune low-confidence trajectories and mitigate failure modes, ensuring
stable generation. (ii) The “Scheduler Only” setup also yields notable gains, demonstrating its
effectiveness in dynamically modulating conditioning strength to balance semantic alignment and
diversity. (iii) Integrating both mechanisms achieves the best results, showing their complementary
roles in improving generation quality and efficiency. These results validate the Policy Level as
essential for enhancing autoregressive image generation.

Table 4: Computation consumption comparison on GenEval with NVIDIA 140G H200 GPU.
Method N Per-step WC (s) Overall WC (s) Matched Tokens/Img FLOPs (TFLOPs) Memory (GB) Performance
LlamaGen 1 0.024 24.93 1024 5.60 6.44 0.32
+ BoN 8 0.025 218.44 8192 39.12 48.72 0.15
+ ScalingAR (Ours) 8 0.029 69.56 2350 4.23 18.16 0.36

Analysis of ScalingAR’s Efficiency We conclude the average computation consumption of
ScalingAR in Table 4.

Figure 9: Analysis of ScalingAR for weights of Token-Level
Confidence (Left) and Worst-Block Stability (Right).

Analysis of Local Confidence
Weights We further analyze the
impact of the weighting strategies
for Token-Level Confidence αH/αM

and Worst-Block Stability wtok/wblk
on the performance of ScalingAR,
as illustrated in Figure 9. ❶ Token-
Level Confidence Weights (Figure 9
(Left)): Adjusting the balance
between entropy-based uncertainty
(αH ) and margin-based confidence
(αM ) reveals that prioritizing entropy signals (αH/αM = 0.7/0.3) achieves the best overall
performance across all metrics. This suggests that entropy provides a more robust signal for
capturing localized instability during generation. Conversely, overemphasizing margin-based
confidence (αH/αM = 0.3/0.7) leads to performance degradation, particularly in advanced
and designer subsets, as it fails to fully capture nuanced instability patterns. A balanced setting
(αH/αM = 0.5/0.5) offers a reasonable trade-off, though slightly underperforms the optimal
configuration. ❷ Worst-Block Stability Weights (Figure 9 (Right)): Varying the balance between
token-level confidence (wtok) and block-level stability (wblk) shows that an emphasis on token-level
signals (wtok/wblk = 0.85/0.15) slightly reduces performance, particularly in the advanced and
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Figure 10: Analysis of hyperparameters. (a) Token Confidence Smoothing. (b) Intrinsic Channel
Smoothing. (c) CFG Scale Smoothing. (d) Block Size. (e) Worst-q%. (f ) Warm-up Period.

designer subsets, as it underweights spatial anomalies that propagate into global failures. On the
other hand, overemphasizing block-level stability (wtok/wblk = 0.35/0.65) also degrades results, as
it may overreact to localized noise. The optimal configuration (wtok/wblk = 0.65/0.35) balances
token-level and block-level signals effectively, achieving the highest scores across most metrics.

Analysis of Smoothing Factors ❶ Token Confidence Smoothing (λtok): As shown in Fig-
ure 10 (a), the choice of λtok significantly impacts the performance of ScalingAR. A moderate
smoothing factor (λtok = 0.2) achieves the best performance across all subsets, as it effectively bal-
ances stability and responsiveness in token-level confidence signals. Setting λtok too low (λtok = 0.1)
results in noisy signals, while overly high smoothing (λtok = 0.4) delays the system’s adaptability to
dynamic changes, degrading performance. ❷ Intrinsic Channel Smoothing ( λI ): Figure 10 (b)
demonstrates that λI = 0.2 provides the best TIIF performance. Lower values (λI = 0.1) fail to
stabilize the intrinsic confidence signal, leading to suboptimal trajectory pruning. On the other hand,
higher values (λI = 0.4) overly smooth the signal, reducing sensitivity to localized instability and
resulting in degraded generation quality. ❸ CFG Scale Smoothing (λcfg): In Figure 10 (c), the
performance peaks at λcfg = 0.3, reflecting an optimal trade-off between smooth transitions in CFG
scale adjustments and responsiveness to real-time confidence signals. Smaller values (λcfg = 0.1)
introduce excessive fluctuations, while larger values (λcfg = 0.5) hinder the system’s ability to adapt
to changing confidence states.

Analysis of Spatial Entropy ❶ Block Size (b): As illustrated in Figure 10 (d), a block size of
b = 4 achieves the best performance. Smaller blocks (b = 2) are overly sensitive to local noise,
leading to false positives in detecting instability. Conversely, larger blocks (b = 8) fail to capture
fine-grained spatial anomalies, resulting in reduced effectiveness in trajectory pruning. ❷ Worst-q%:
Figure 10 (e) shows that setting q = 0.10 yields the highest performance. A smaller q (q = 0.05)
underestimates the impact of localized high-entropy regions, while a larger q (q = 0.20) dilutes the
focus on the most problematic areas, reducing the precision of the stability signal.

Analysis of Warm-up Period Figure 10 (f ) highlights the importance of an appropriate warm-
up period. The best performance is achieved with W0 = 12.5%, which provides sufficient time
for confidence signals to stabilize before applying trajectory pruning. A shorter warm-up period
(W0 = 5.0%) leads to premature pruning of promising trajectories, while a longer warm-up period
(W0 = 25.0%) delays intervention, reducing efficiency and quality.

B RESULTS OF MORE BASE MODELS

Table 5: Evaluation of ScalingAR on
more base models on GenEval.
Method TO↑ Pos.↑ CA↑ Overall↑
SimpleAR 0.90 0.28 0.45 0.63
+ ScalingAR (Ours) 0.93 0.36 0.51 0.67
Janus-Pro 0.82 0.65 0.56 0.73
+ ScalingAR (Ours) 0.87 0.69 0.61 0.77

To further validate the generalizability of ScalingAR,
we deployed our method on two additional AR mod-
els: SimpleAR-1.5B (Wang et al., 2025a) and Janus-Pro-
1B (Chen et al., 2025a). Importantly, the hyperparam-
eter settings for ScalingAR were kept consistent with
those used in the main experiments on LlamaGen and AR-
GRPO, without any model-specific tuning. This ensures a
fair evaluation of ScalingAR’s adaptability across different architectures and scales. Quantitative
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Figure 11: Qualitative results of ScalingAR on SimpleAR (Top) and Janus-Pro (Bottom).

results in Table 5 and qualitative results in Figure 11 show significant performance improvements for
both models, demonstrating ScalingAR’s effectiveness and broad applicability as a general-purpose
stabilization framework.

C FURTHER ILLUSTRATION OF ENTROPY IN AR IMAGE GENERATION

A key motivation behind our ScalingAR lies in the observation that high-entropy/low-confidence re-
gions often exhibit greater uncertainty, which increases the likelihood of undesirable outcomes. While
high entropy does not guarantee poor results, it correlates strongly with elevated error probabilities,
making it a critical signal for stabilizing AR image generation.

Relevant Evidence Similar observations have been validated across various domains: ❶ Entropy
calibration in language models: Cao et al. (2025) demonstrated that high local token entropy correlates
with higher error probabilities, highlighting its role as a risk indicator in generative tasks. ❷
Reinforcement learning mechanisms for reasoning: Works (Cui et al., 2025; Fu et al., 2025; Wang
et al., 2025b) for LLM Reasoning treat high-entropy tokens as positions with dense information
but unstable decisions or higher error risks. These findings underscore the necessity of carefully
managing entropy during generation to balance exploration and stability.

Connection on ScalingAR Our method, ScalingAR, can be interpreted as a stabilization mech-
anism that prunes trajectories with low confidence, effectively mitigating the risks associated with
high-entropy regions. By focusing on confidence signals, ScalingAR ensures that the generation
process avoids prolonged instability, leading to improved image quality. In Figure 1 (Bottom Left)
and Figure 3 (Left), we compare the confidence distributions of ScalingAR and the base model.
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Figure 12: Visualization of token entropy. (1st) A sunflower field stretching to the horizon under a
bright blue sky. (2nd) A majestic lion resting on a rocky outcrop in the golden savanna light. (3rd) A
detailed macro shot of a butterfly on a blooming flower.

The results clearly show that higher token confidence correlates with better image quality, further
validating our motivation to leverage confidence signals for trajectory pruning.

Visualizing Token Entropy in Generated Images To provide a more intuitive understanding,
we visualize the entropy distributions of generated images in Figure 12. The figure highlights that
regions with poor generation quality often correspond to higher entropy, reinforcing the notion that
high-entropy tokens are more likely to contribute to undesirable outcomes. ScalingAR’s ability to
suppress these regions through confidence-based pruning plays a pivotal role in achieving stable and
high-quality image generation.

D ALGORITHM WORKFLOW

We conclude the overall algorithm workflow of ScalingAR in Algorithm 1.

Algorithm 1: ScalingAR Workflow
Input: Prompt y, AR model pθ(· | ·), CFG scale g, pruning threshold τ , max steps T , beam width N ,

top-k k
Output: Final image x̂

1 Initialize candidate set S0 ← {(seq = ∅)}Ni=1

2 for t← 1 to T do
3 if St−1 is empty then
4 break
5 end
6 foreach s ∈ St−1 do
7 Compute conditional logits ℓc ← pθ(· | s.seq, y)
8 Compute unconditional logits ℓu ← pθ(· | s.seq,∅)

9 Guided logits ℓ̃← ℓu + g · (ℓc − ℓu)

10 Compute probs ptok ← softmax(ℓ̃)
11 Sample token xt ∼ ptok
12 Append xt to s.seq
13 Compute entropy Ht ← −

∑
j ptok(j) log ptok(j)

14 Compute confidence Ct ← − 1
k

∑
j∈Top-k log ptok(j)

15 Compute utilization Ut ← KL(softmax(ℓc)∥softmax(ℓu))
16 Compute fused confidence Φt ← wcCt + wuUt

17 end
18 Compute threshold τt ← p-quantile of {Φt(s)}
19 Prune candidates with Φt(s) < τt
20 St ← survivors after pruning
21 end
22 Select best candidate ŝ← argmaxs∈St Φt(s)
23 Decode ŝ to image x̂ and return x̂
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E EXHIBITION BOARD

We provide more comparison results here in Figure 13 on AR-GRPO and Figure 14 on LlamaGen.

F LIMITATION AND FUTURE WORKS

ScalingAR pioneers test-time scaling for autoregressive image generation but faces key challenges.
AR image modeling involves complex dependencies, making confidence estimation difficult; our
exploration of token entropy is a first step but may not fully capture uncertainty and semantic
alignment. Additionally, the approach relies on model calibration and entropy signals, which can vary
with training and architecture. Future work includes developing finer-grained confidence measures
for more precise scaling, and integrating entropy-based signals into both training-time and test-time
to create a more unified pipeline.

G THE USE OF LLMS

This research does not involve LLMs in terms of training or fine-tuning as part of its core contributions.
The use of LLMs is limited to polishing the writing of the manuscript. These uses do not impact the
originality or core methodology of the research, and therefore do not require detailed declaration.
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Figure 13: More results demonstrations of ScalingAR on AR-GRPO (Yuan et al., 2025).
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Figure 14: More results demonstrations of ScalingAR on LlamaGen (Sun et al., 2024).
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