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Figure 1: (Top) ScalingAR significantly improves the quality of autoregressive image generation.
Detailed prompts are provided in Appendix §A. (Bottom Left) The token confidence trajectory over
the generation process. (Bottom Right) Performance comparison of ScalingAR on TIIF-Bench with
classic test-time scaling strategies, i.e., Importance Sampling (IS) and Best-of-N (BoN).

ABSTRACT

Test-time scaling (TTS) has demonstrated remarkable success in enhancing large
language models, yet its application to next-token prediction (NTP) autoregres-
sive (AR) image generation remains largely uncharted. Existing TTS approaches
for visual AR (VAR), which rely on frequent partial decoding and external re-
ward models, are ill-suited for NTP-based image generation due to the inherent
incompleteness of intermediate decoding results. To bridge this gap, we introduce
ScalingAR, the first TTS framework specifically designed for NTP-based AR
image generation that eliminates the need for early decoding or auxiliary rewards.
ScalingAR leverages token entropy as a novel signal in visual token generation and
operates at two complementary scaling levels: (i) Profile Level, which streams a cal-
ibrated confidence state by fusing intrinsic and conditional signals; and (i) Policy
Level, which utilizes this state to adaptively terminate low-confidence trajectories
and dynamically schedule guidance for phase-appropriate conditioning strength.
Experiments on both general and compositional benchmarks show that ScalingAR
(1) improves base models by 12.5% on GenEval and 15.2% on TIIF-Bench, (2) effi-
ciently reduces visual token consumption by 62.0% while outperforming baselines,
and (3) successfully enhances robustness, mitigating performance drops by 26.0%
in challenging scenarios. Our code will be released in ScalingAR Repository.
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Figure 2: (a) Next-scale prediction paradigm generates multi-scale token maps coarse-to-fine. (b)
Next-token prediction paradigm sequentially predicts next image tokens. (c¢) Illustration of Best-of-N
sampling that generates multiple candidate and selects the best via voting or scoring. (d) Overview
of our proposed ScalingAR, highlighting its ability to leverage token entropy to early-stop low-
confidence samples and identify winning samples without the need for additional reward models.

1 INTRODUCTION

Large language models (LLMs) (Brown et al., 2020; Vaswani et al., 2017; Radford et al., 2019) have
demonstrated the capabilities of next-token prediction (NTP) paradigm. This success has renewed
interest in applying autoregressive (AR) architectures beyond text, motivating recent visual generative
models that represent images in discrete token spaces (Sun et al., 2024; Tian et al., 2024; Li et al.,
2024) as shown in Figure 2 (b). Compared to diffusion models, which operate over continuous noise
trajectories, token-based AR models promise a more unified modality interface.

As the field evolves, the parameters and training data of foundation models (Wang et al., 2024; Yang
et al., 2025) have increasingly grown to levels that are inaccessible for most university researchers.
In this context, many studies have started to investigate post-training methods. Inspired by recent
advancements such as GRPO (Shao et al., 2024), a surge of reinforcement learning research has
emerged in both language and visual generation domains (Jiang et al., 2025; Cui et al., 2025).
Meanwhile, another research avenue focusing on test-time scaling (TTS) has emerged (Lightman
et al., 2023; Muennighoff et al., 2025; Zuo et al., 2025), which aims to explore whether a slight
increase in computational expense during inference can achieve performance on par with training-
time methods, which typically incur much larger costs.

While test-time scaling has been extensively researched in language models, analogous progress for
autoregressive visual generation remains sparse. Images differ from text in three practical ways that
complicate direct transfer: (i) holism: dropping the last 20% of a text sequence may still leave a
syntactically valid answer, whereas truncating an image token stream yields an unusable artifact;
(ii) objective ambiguity: many language scaling setups optimize toward a verifiable final answer
(e.g., math reasoning), whereas image generation lacks a single ground-truth target; and (iii) early
signal scarcity: partial image token decodes are visually unstable, making premature selection risky.
Moreover, recent work TTS-VAR (Chen et al., 2025b) introduced TTS for the next-scale prediction
(NSP) paradigm in visual autoregressive model (VAR) (Tian et al., 2024) by predicting images in
a coarse-to-fine manner (Figure 2 (a)). This intermediate visibility enables reward models to score
during scaling but comes with limitations that require predicting large residual token maps at each
scale and frequent decoding makes the process inefficient and less suitable for the NTP paradigm.

Building on these insights, we introduce ScalingAR, the first test-time scaling framework tailored to
the NTP paradigm in autoregressive image generation. Unlike next-scale TTS-VAR, ScalingAR elim-
inates the need for frequent partial decoding and external reward models (as shown in Figure 2 (d)),
relying solely on intrinsic signals derived from visual token entropy and conditional signals to
profile confidence. Specifically, in response to limitations, ScalingAR prunes unreliable trajectories
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without interrupting generation (holism), constructs confidence by combining intrinsic uncertainty
and conditional signals (objective ambiguity), and extracts stability directly from model probabilities
rather than intermediate outputs (early signal scarcity). Technically, ScalingAR features a two-level
design: @ Profile Level, which constructs a unified confidence state by integrating intrinsic generation
stability with conditioning effectiveness; and @ Policy Level, which leverages this confidence state to
prune failing trajectories and dynamically adjust conditioning strength through adaptive termination
and guidance scheduling. Our contributions can be summarized as follows:

* We propose ScalingAR, the first test-time scaling framework tailored to next-token prediction AR
image generation, featuring a novel two-level design with Profile Level for dual-channel confidence
profiling on-the-fly, and Policy Level for trajectory pruning and guidance scheduling.

* We for the first time investigate token entropy in visual token generation. By relying solely on
intrinsic signals from the model, ScalingAR eliminates the need for frequent early decoding and
external reward models, enabling a more efficient and reliable scaling process.

 Extensive experiments on both general and compositional benchmarks demonstrate that ScalingAR
is: (i) high-performing, achieving significant performance gains over base models (i.e., Llam-
aGen and AR-GRPO), by 12.5% on GenEval and 15.2% on TIIF-Bench; (ii) token-efficient,
outperforming classic baselines (i.e., Importance Sampling and Best-of-N) while reducing visual
token consumption by 62.0%; and (iii) robust in challenging scenarios, mitigating performance
degradation by 26.0% compared to base models in highly complex generation settings.

2 RELATED WORK

Autoregressive Image Generation Autoregressive models have leveraged the scaling capabilities
of language models (Yang et al., 2025; Brown et al., 2020; Radford et al., 2019) to generate images.
These approaches employ discrete image tokenizers (Van Den Oord et al., 2017; Razavi et al., 2019)
in conjunction with transformers, using a next-token prediction strategy. VQ-based methods (Lee
etal, 2022; Razavi et al., 2019; Esser et al., 2021), e.g., VQ-VAE (Van Den Oord et al., 2017), convert
image patches into index-based tokens, which are then predicted sequentially by a decoder-only
transformer. However, these VQ-based AR methods are limited by the lack of scaled-up transformers
and the inherent quantization error in VQ-VAE. This has prevented them from achieving performance
on par with diffusion models. Recent advancements (Wu et al., 2025a; Yu et al., 2022; Team, 2024)
have scaled up AR models for visual generation. Additionally, some variants have been proposed,
such as the next-scale prediction paradigm of VAR (Tian et al., 2024; Han et al., 2025), which predicts
from coarse to fine token maps, and the parallel token prediction of masked AR (MAR) (Li et al.,
2024; Wu et al., 2025b; Fan et al., 2025). Despite these developments, the mainstream approach
remains the NTP paradigm, particularly as the field moves towards unified models (Xie et al., 2025;
Wang et al., 2024; Ge et al., 2024) that can jointly handle textual and visual tokens. This alignment
with language modeling allows for more versatile and scalable architectures.

Test-Time Scaling Current LLMs have increasingly succeeded by allocating substantial reasoning
at inference time, a paradigm known as test-time scaling (Snell et al., 2024; Welleck et al., 2024).
This scaling can occur along two main axes: (1) Chain-of-Thought (CoT) (Wei et al., 2022) Depth:
lengthening a single reasoning trajectory through more thinking steps, often relying on large-scale
reinforcement learning with many samples (Yang et al., 2025; Jaech et al., 2024; Guo et al., 2025) or
simpler post-training strategies (Ye et al., 2025; Muennighoff et al., 2025); (2) Parallel Generation:
scaling by increasing the number of trajectories and aggregating them, as seen in works like Self-
Consistency (Wang et al., 2023) and Best-of-N (Lightman et al., 2023). Recent efforts (Kang et al.,
2025; Fu et al., 2025) have also integrated confidence estimation through token entropy into the
test-time reasoning process, allowing the quality of individual traces to be assessed before aggregation
with the rewards for majority voting (Wang et al., 2023). However, exploring TTS for AR image
generation has been limited. This is due to the holistic nature of image generation, where overall
coherence is paramount (see Figure 2 (c)), unlike reasoning tasks with well-defined ground truths.
Additionally, the frequent early decoding required for images can be more computationally expensive
than for language, suggesting that direct transfer of many LLM TTS techniques may not be suitable
or optimal. To address this gap, we propose the first TTS strategy tailored for AR image generation.
Notably, we pioneer the exploration of token entropy in image generation, enabling our method to
leverage visual token confidence without the need for early decoding or additional rewards.
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3 PRELIMINARIES

Next-Token Prediction Autoregressive Modeling NTP is a fundamental paradigm in autoregres-
sive models, where the model generates sequences by predicting the next token based on previously
generated tokens. The generation process can be mathematically described as follows:

p($179€2,~--,$T)ZHp(iUt|$1,3327~-~,$t—1)- ey

This formulation allows the model to leverage past information to inform future predictions, making
it particularly effective for sequential data generation.

The training of autoregressive models typically involves maximizing the likelihood of the observed
sequences, which can be expressed as:
T
L= Z log p(¢]|z<t). (2)
t=1
This objective encourages the model to learn the underlying distribution of the data, enabling it to
generate coherent and contextually appropriate sequences.

Token Entropy in Language Modeling Token entropy is a critical metric for evaluating the
uncertainty associated with the predictions made by language models (Kang et al., 2025). It quantifies
the amount of unpredictability in the model’s output distribution for a given token. The entropy H at
a specific position ¢ in the sequence can be defined as:

Hy=— sz )log pi(j), 3)

where p; () denotes the predicted probability of the j-th token in the vocabulary at position 7. Low
entropy indicates high certainty in the prediction, while high entropy reflects greater uncertainty.

Furthermore, token confidence can be derived from the predicted distribution (Fu et al., 2025). The
confidence C; for a token at position 7 is defined as:

k
1
—3 2 logpi(), )
j=1

where k represents the number of top tokens considered. High confidence values correlate with
sharper distributions, indicating that the model is more certain about its predictions.

4 METHODOLOGY

To pioneer test-time scaling for next-token prediction autoregressive image generation, we propose
ScalingAR, which leverages intrinsic token confidence signals without relying on early decoding
or external rewards, featuring two scaling levels: (i) Dual-Channel Confidence Profile compacts
heterogeneous per-step signals into a calibrated confidence state (§4.1); and (if) Confidence-Guided
Policies act on this state to prune failing trajectories and adapt conditional guidance on-the-fly (§4.2).

Confidence Distribution on GenEval CFG=1 CFG=7.5 CFG=15 ~ Ours
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Figure 3: (Left) Confidence distribution of ScallngAR on GenEval and TIIF-Bench. (Right)
lustration of the trade-off between visual quality and semantic alignment with fixed Classifier-Free
Guidance (CFG) in AR image generation. Ist: A 35 mm photo of a cityscape resembling Moscow floating
in the sky on flying islands. 2nd: The colorful hot air balloon floated near the dark grey storm clouds.
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4.1 DUAL-CHANNEL CONFIDENCE PROFILE

Autoregressive image generators traditionally treat all partial trajectories as equally promising until
completion, as illustrated in Figure 2 (c). However, empirical inspection reveals two dominant
failure modes during inference that often foreshadow poor final results: @ local intrinsic instability,
characterized by high entropy pockets and wavering token choices (Figure | (Bottom Left) & Figure 3
(Left)); and @ poor utilization of the text condition, where the semantic influence of the prompt
gradually fades, resulting in misaligned or aesthetically suboptimal outputs (Figure 3 (Right)).

To address these challenges, we introduce the Dual-Channel Confidence Profile, consisting of two
complementary channels: @ Intrinsic Channel: Captures localized instability and spatial anomalies
within the token grid. @ Conditional Channel: Quantifies the marginal contribution of textual
conditioning to ensure semantic alignment.

4.1.1 INTRINSIC CHANNEL: UNCERTAINTY & SPATIAL STABILITY

Early-stage failures in autoregressive image generation rarely manifest as immediate global collapse.
Instead, they emerge through localized instability. To capture these signals, the Intrinsic Channel
integrates two key components: token-level confidence and worst-block spatial stability.

Token-level Confidence Token-level uncertainty reflects the dispersion and decisiveness of predic-
tions at each decoding step. Let 7; denote the softmax distribution over the vocabulary V' at step t. We

compute token entropy Hy = — > ., m¢(v) log m(v) and top-1/top-2 margin m; = m¢(vy) —m¢(v2),
forming a normalized uncertainty surrogate:

H, = H,/log|V|, w =agH;+oay(l—my), ag+ay=1, ®)
where u; is mapped to token confidence s = 1 — u; € (0, 1]. To stabilize this signal, we apply an
exponential moving average (EMA):

5% = (1= Aok) 5% + Aoksi™. (6)

Worst-block Stability Localized “hot spots” of persistent high entropy often diffuse into global
semantic corruption. To capture these spatial anomalies, we partition the h x w token grid into
non-overlapping b x b blocks. For each block k& (with fill ratio > py;n), We compute its mean
normalized entropy E}. Focusing on the worst-¢% subset W; of blocks with the highest entropy:

1
Eworst (t) = 7y Z Ek (7)
|Wt‘ keW,
A rolling min-max normalization Ny, yields a stability score B; = 1 — Nym(Eworst (t) ), emphasizing
emergent localized failure rather than global averages.

Finally, the Intrinsic Channel score combines token-level confidence and worst-block stability:

I = wio5{™ + woe By, Weok + wpie = 1, ®)
followed by smoothing I; = EMA (I}, A).

4.1.2 CONDITIONAL CHANNEL: TEXT UTILIZATION STRENGTH

While intrinsic signals capture localized instability, semantic misalignment often arises from insuffi-
cient utilization of the text condition. For concise prompts or complex visual contexts, the conditional
branch may lose influence, silently drifting from the intended semantics. The Conditional Channel
measures the marginal contribution of textual conditioning to ensure semantic alignment.

Let p.; and p, ; denote the softmax distributions from conditional and unconditional logits, re-
spectively. We compute the KL divergence K; = KL(p.; || pu.:), then apply a rolling z-score
normalization:

norm Kt — UK cli . norm
K; = m» K; P = clip(K;} ; —Zmax; Zmax) )
mapping the result to [0, 1]:
=R clip
D, =05+405——. (10)
Zmax

Persistently low values of the smoothed score lA)t flag semantic fade, while excessively high values
paired with low I; may indicate unstable over-conditioning.
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4.1.3 UNIFIED CONFIDENCE STATE
To enable dynamic trajectory control, we combine both channels into a unified confidence state. The
scalar unified confidence score is defined as:

Cy =wily +wpDy, w;y+wp =1, (11)
optionally passed through an affine-sigmoid calibration to mitigate cross-prompt scale drift. To
capture early-stage failure signals, we maintain the running minimum Cli, () = min;<; C; and
compute a relative rebound:

_ Ct - Cmin(t>

|Cmin(t)| + €
This unified confidence score serves as the basis for dynamic trajectory pruning and adaptive condi-
tioning, enabling efficient test-time scaling tailored to the NTP paradigm.

Ry (12)

4.2 CONFIDENCE-GUIDED POLICIES

With a calibrated confidence score C;, we transition from passive observation to active test-time
control, enabling dynamic intervention in autoregressive generation. To achieve this, we introduce
two lightweight yet effective policies: @ an Adaptive Termination Gate that prunes unpromising
trajectories to reclaim computation; and @ a Guidance Scheduler that dynamically modulates CFG
scale to balance semantic alignment.

4.2.1 ADAPTIVE TERMINATION GATE

Failing trajectories often exhibit prolonged spans of low confidence, lingering in a “confidence basin”
before producing final tokens that posterior reranking would discard. The Adaptive Termination Gate
proactively terminates such trajectories, reclaiming computational resources.

Threshold Initialization and Adaptation To identify failing trajectories, we initialize a confidence
threshold 6, after a warm-up period of Wy steps. The threshold is set to the p-quantile (p €
[0.15, 0.25]) of the collected C; values across active trajectories. This ensures that pruning targets the
bottom-performing trajectories without prematurely terminating promising ones. The threshold is
periodically updated every Apq steps using an EMA-based adaptation:

0, (1 —Xp)b) + )\gQuantilep({Ct}recent). (13)
where {C} } ecent denotes the confidence scores from recent decoding steps.

Recovery Safeguard To mitigate false positives caused by transient dips in C}, we incorporate
a recovery mechanism. A trajectory is permitted to recover if it satisfies either of the following
conditions within a recovery window Ar.: (@) C; > Cipin(t) + drec: absolute confidence rebound
exceeds a pre-defined gap. (b) R; > ry,: relative rebound exceeds a threshold, indicating stabilization.
Only trajectories failing both criteria are marked for termination.

Termination Rule Once the protection horizon T,,;, (e.g., 10% of T') has elapsed, a trajectory is
terminated if Cpin (t) < 0 |, and no recovery within last Ay steps. Additionally, a hard-fail guard
(Ct < Chara) triggers immediate termination for catastrophic collapse scenarios, ensuring robustness
against extreme failures. By over-initializing Kiagec + Mpyr trajectories and relying on pruning, we
refine the candidate set without spawning replacements.

4.2.2 GUIDANCE SCHEDULER

Fixed CFG scales enforce a static trade-off between semantic alignment and diversity, yet the
“optimal” balance varies across decoding phases. The Guidance Scheduler dynamically adjusts the
CFG scale s, based on real-time signals from the unified confidence profile.

The scheduler integrates three key signals to adapt s;:
« Conditional Utilization (D,): Low ﬁt flags under-conditioning, prompting an increase in s; to
reinforce prompt influence.

* Intrinsic Volatility (Varyecent(I)): High short-term volatility in I indicates instability, warranting
temporary bolstering of conditioning.

* Rebound (R;): Strong rebounds suggest stabilized semantics, allowing s; to ease pressure and
preserve diversity.
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Table 1: Evaluation on GenEval (Ghosh et al., 2023) and TIIF-Bench (Wei et al., 2025) benchmarks.
“Diff.+AR” refers to the unified architecture, and “MAR” indicates the masked AR architecture (Ii
et al., 2024). We bold the best results, and “1”” denotes that higher is better.

Method #Params  Arch. GenEval TIIF-Bench

Two Obj.1 Posit.T Color Attr.T Over.T BasicT Advanced! Designert Over.T
DALLE-3 (Betker et al., 2023) - Diff. - - 0.67 78.40 68.45 62.69 72.94
Show-o (Xie et al., 2025) 1.3B  Diff+AR 0.80 0.31 0.50 0.68 71.30 59.89 68.66 59.24
LightGen (Wu et al., 2025b) 0.8B MAR 0.65 0.22 0.43 0.62 53.99 45.76 59.70 46.42
Infinity (Han et al., 2025) 2B VAR 0.85 0.49 0.57 0.73  71.63 57.81 61.19 59.66
Emu3 (Han et al., 2025) 8.5B AR 0.81 0.49 0.45 0.66 - - - -
Janus (Wu et al., 2025a) 1.5B AR 0.68 0.46 0.42 0.61 - - - -
AR-GRPO (Yuan et al,, 2025)  0.8B AR 0.27 0.02 0.03 031 19.59 14.91 17.91 16.22
+ IS 0.8B AR 0.47 0.08 0.07 044 26.00 19.03 17.62 19.84
+ BoN 0.8B AR 0.46 0.08 0.06 044  25.67 19.91 20.69 21.08
+ ScalingAR (Ours) 0.8B AR 0.54 0.24 0.15 049 29.71 26.43 25.90 26.35
LlamaGen (Sun et al., 2024) 0.8B AR 0.34 0.21 0.04 032  49.58 40.44 40.30 40.35
+1IS 0.8B AR 0.21 0.11 0.02 0.14 5481 40.34 39.93 42.44
+ BoN 0.8B AR 0.27 0.11 0.02 0.15 54.79 40.78 37.69 42.02
+ ScalingAR (Ours) 0.8B AR 0.40 0.28 0.12 0.36 57.36 44.13 42.54 46.47

Using these signals, we compute the raw CFG scale adjustment:

S?W = Spase T a(l - Dt) + Bvarrecent(l) - ’YRh (14)
where «, 3,y control the relative influence of each term. The final scale s; is smoothed and clamped
to prevent excessive fluctuations:

St = Clamp((l - )\cfg)stfl + )\cfgs;awv Smin; Smax>7 (]5)
with a deadband (|s; — s;—1| < €5) suppressing jitter to ensure stability.

5 EXPERIMENTS

In this section, we conduct extensive experiments to answer the following research questions: (RQ1)
Does ScalingAR enhance the quality of generated images? (RQ2) Does ScalingAR outperform
other TTS strategies for both effectiveness and efficiency? (RQ3) How sensitive is ScalingAR to its
key components? (RQ4) Whether ScalingAR holds advantages over other TTS strategies in terms
of both scalability and robustness?

5.1 EXPERIMENTAL SETTINGS

Baselines We apply ScalingAR to the advanced models: LlamaGen (512 x 512) (Sun et al., 2024)
and AR-GRPO (256 x 256) (Yuan et al., 2025). Since no prior work has explored TTS for the NTP
image generation, we focus our comparisons on the following conventional baselines: Importance
Sampling (IS) (Owen & Zhou, 2000) and Best-of-N (BoN) (Lightman et al., 2023). We also provide
results from Show-o (Xie et al., 2025), LightGen (Wu et al., 2025b), Infinity (Han et al., 2025), Emu3
(Wang et al., 2024), Janus (Wu et al., 2025a), and DALLE-3 (Betker et al., 2023) for reference.

Evaluations To evaluate the effectiveness of ScalingAR, we adopt GenEval (Ghosh et al., 2023)
and TIIF-Bench (Wei et al., 2025) as primary benchmarks for both general and compositional text-to-
image generation capabilities. These benchmarks offer a comprehensive evaluation of the model’s
ability to produce high-quality and semantically consistent images from text prompts.

5.2 PERFORMANCE & EFFICIENCY COMPARISON

To answer RQ1 and RQ2, we comprehensively compare ScalingAR against two baselines on
general and compositional benchmarks in Table 1, alongside qualitative results, user study, and token
consumption comparisons shown in Figure 1, 4, and Figure 5. Key observations are summarized
as follows: Obs.® ScalingAR excels in enhancing both general and compositional generation
quality. As illustrated in Table 1, our ScalingAR consistently outperforms baseline methods (i.e., IS
and BoN), which achieve minimal or even negative performance gains, across benchmarks targeting
distinct aspects of text-to-image generation. Figure 1 (Top) and Figure 4 provide qualitative evidence
of ScalingAR’s capabilities, showcasing visually superior results that excel in aesthetic quality
and semantic alignment, e.g., numerical accuracy, color fidelity, and subject clarity. Furthermore,
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Figure 4: Qualitative results of ScalingAR. More results on AR-GRPO are provided in Appendix §E.

Figure 5 (Left) highlights ScalingAR’s effectiveness in aligning image generation with human
preferences, as validated through user studies. Obs.® ScalingAR is a token-efficient test-time AR
image generation enhancer. Figure 5 (Middle) demonstrates that ScalingAR consistently surpasses
other TTS strategies across benchmarks, requiring fewer visual tokens. Unlike BoN, which relies on
external reward models and excessive token consumption, ScalingAR leverages intrinsic confidence
signals to reduce computational overhead while maintaining high-quality outputs.

5.3 ABLATION ANALYSIS

To answer RQ3, we perform step by step evalua- Table 2: Ablation study of ScalingAR.
tions on TIIF-Bench to analyze the contributions of Jemoad Bas.] Adv. Des.] Over]
ScalingAR’s confidence profiles, as detailed in Ta- “scaiingar 574 441 425 465
ble 2. We give the following observations: Obs.®  w/o Conditional Channel 541 431 422 451
Effectiveness of Intrinsic Signal Profiling. Remov-  w/o Worst-Block Stability | 523 418 414 442
ing Token-Level Confidence or Worst-Block Stability =~ _W/o Token-Level Confidence | 49.6 404 403 404
both lead to a noticeable drop in performance, highlighting their critical role in capturing fine-grained
entropy signals during visual token generation. This demonstrates the effectiveness of intrinsic signal
profiling for maintaining local token stability and ensuring high-quality generation. Obs.® Impor-
tance of Condition State Balance. Table 2 also reveals that removing the Conditional Channel leads
to significant degradation. Figure 3 (Right) further confirms its critical role in balancing interactions
between text guidance and visual generation, ensuring coherent and stable outputs. For more detailed
analysis, please refer to Appendix §A.




Under review as a conference paper at ICLR 2026

e
3

—o— +IS —#— +BoN —#— +ScalingAR/

e
®

6.75 +1S
06 tokens)
+B
650 (2.3e+06 tol

TIIF Performance (%)
s
S

+ ScalingAR
.60+05 s

|
|
}
|
|
I
|
®. | 1
1 1 2 4 8
e Number of Samples
\ < —e— +IS —#— +BoN =& + ScalingAR ;
I
|
}
I
|
}
I

N
3

N
3

Baseline

+05 tokens)
5.50

40 42 44 46
Accuracy (%)

N
S

|

Token consumption (10"x)
g

TIIF Performance (%)

N
3

—8— LlamaGen —#— + BoN ‘

—— +1S —#— + ScalingAR
g Scaling Combination

Figure 5: (Left) User study across five dimensions: overall preference, aesthetic quality, realism
fidelity, semantic alignment, attribute binding. (Middle) Visual token consumption of ScalingAR vs.
baselines on TIIF-Bench. (Right) Scaling width and depth across sample number and token length.

LlamaGen + IS + BoN + ScalingAR

50{ [EZA TIF Prompt [EZX Impossible Prompt

46.47
Wool expands ~

like a cotton
cloud, lifting
off from the
grassy field.

42.44 42.02

Performance (%)

A commercial
aircraft takes
of f from the
ocean's
surface

%

N7 3 i
LlamaGen +1IS + BoN + ScalingAR

Figure 6: Robustness testing with impossible prompt. Detailed prompts are provided in Appendix §A.

5.4 SCALABILITY & ROBUSTNESS ANALYSIS

To answer RQ4, we compare ScalingAR with other TTS strategies (i.e., IS and BoN) in scaling width
(i.e., sample number V) and depth (i.e., token length), as shown in Figure 5 (Right). To further assess
the robustness of ScalingAR, we adopt the idea of “impossible prompting” (Bai et al., 2025) (e.g.,
“A young boy ... using chopsticks as a writing instrument, ... in a photo-realistic scene...”) to evaluate
its performance even when none of the candidates are ideal, with the results presented in Figure 6.
Our observations are summarized as follows: Obs.® ScalingAR unlocks scalable generalization
across both width and depth. As shown in Figure 5 (Right), ScalingAR consistently outperforms IS
and BoN across varying sample numbers and token lengths. This suggests that our scaling strategy
enables performance to scale up effectively as scaling width and depth increase, making it a reliable
solution for diverse autoregressive tasks. Obs.® ScalingAR empowers robust generation beyond
standard scenarios. Figure 6 (Left) demonstrates that under impossible prompts for unrealistic
scenarios, ScalingAR exhibits clear robustness advantages over baselines. Furthermore, Figure 6
(Right) confirms that our method achieves more effective scaling when generating under challenging
conditions, highlighting its adaptability and reliability in adverse scenarios.

6 CONCLUSION

In this work, we introduce ScalingAR, the first test-time scaling framework tailored to next-token
prediction autoregressive image generation. Unlike existing TTS strategies, ScalingAR proposes to
explore visual token entropy for the first time as intrinsic signals, without relying on partial decoding
or external rewards. By adopting a two-level design: Profile Level for calibrated confidence profiling
and Policy Level for adaptive pruning and dynamic conditioning, ScalingAR achieves phase-aware
control, enhancing generation quality with minimal additional token consumption. Comprehensive
evaluations on both general and compositional capability benchmarks demonstrate that ScalingAR
substantially improves the generation quality of existing AR models, along with generalizability and
robustness, making it a strong baseline for AR image generation test-time scaling.



Under review as a conference paper at ICLR 2026

REFERENCES

Zechen Bai, Hai Ci, and Mike Zheng Shou. Impossible videos. In Forty-second International
Conference on Machine Learning, 2025. URL https://openreview.net/forum?id=
MNSW6U5zUA.

James Betker, Gabriel Goh, Li Jing, Tim Brooks, Jianfeng Wang, Linjie Li, Long Ouyang, Juntang
Zhuang, Joyce Lee, Yufei Guo, et al. Improving image generation with better captions. Computer
Science. https://cdn. openai. com/papers/dall-e-3. pdf, 2(3):8, 2023.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877-1901, 2020.

Steven Cao, Gregory Valiant, and Percy Liang. On the entropy calibration of language models.
In The Thirty-ninth Annual Conference on Neural Information Processing Systems, 2025. URL
https://openreview.net/forum?id=CGLoEvC11I.

Xiaokang Chen, Zhiyu Wu, Xingchao Liu, Zizheng Pan, Wen Liu, Zhenda Xie, Xingkai Yu, and
Chong Ruan. Janus-pro: Unified multimodal understanding and generation with data and model
scaling. arXiv preprint arXiv:2501.17811, 2025a.

Zhekai Chen, Ruihang Chu, Yukang Chen, Shiwei Zhang, Yujie Wei, Yingya Zhang, and Xihui
Liu. Tts-var: A test-time scaling framework for visual auto-regressive generation. arXiv preprint
arXiv:2507.18537, 2025b.

Ganqu Cui, Yuchen Zhang, Jiacheng Chen, Lifan Yuan, Zhi Wang, Yuxin Zuo, Haozhan Li, Yuchen
Fan, Huayu Chen, Weize Chen, et al. The entropy mechanism of reinforcement learning for
reasoning language models. arXiv preprint arXiv:2505.22617, 2025.

Patrick Esser, Robin Rombach, and Bjorn Ommer. Taming transformers for high-resolution image
synthesis. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition,
pp- 12873-12883, 2021.

Lijie Fan, Tianhong Li, Siyang Qin, Yuanzhen Li, Chen Sun, Michael Rubinstein, Deqing Sun,
Kaiming He, and Yonglong Tian. Fluid: Scaling autoregressive text-to-image generative models
with continuous tokens. In The Thirteenth International Conference on Learning Representations,
2025. URL https://openreview.net/forum?id=jQP501VAVc.

Yichao Fu, Xuewei Wang, Yuandong Tian, and Jiawei Zhao. Deep think with confidence. arXiv
preprint arXiv:2508.15260, 2025.

Yuying Ge, Sijie Zhao, Jinguo Zhu, Yixiao Ge, Kun Yi, Lin Song, Chen Li, Xiaohan Ding, and Ying
Shan. Seed-x: Multimodal models with unified multi-granularity comprehension and generation.
arXiv preprint arXiv:2404.14396, 2024.

Dhruba Ghosh, Hannaneh Hajishirzi, and Ludwig Schmidt. Geneval: An object-focused framework
for evaluating text-to-image alignment. Advances in Neural Information Processing Systems, 36:
52132-52152, 2023.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Jian Han, Jinlai Liu, Yi Jiang, Bin Yan, Yuqi Zhang, Zehuan Yuan, Bingyue Peng, and Xiaobing
Liu. Infinity: Scaling bitwise autoregressive modeling for high-resolution image synthesis. In
Proceedings of the Computer Vision and Pattern Recognition Conference, pp. 15733-15744, 2025.

Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec
Helyar, Aleksander Madry, Alex Beutel, Alex Carney, et al. Openai ol system card. arXiv preprint
arXiv:2412.16720, 2024.

Dongzhi Jiang, Ziyu Guo, Renrui Zhang, Zhuofan Zong, Hao Li, Le Zhuo, Shilin Yan, Pheng-Ann
Heng, and Hongsheng Li. T2i-r1: Reinforcing image generation with collaborative semantic-level
and token-level cot. arXiv preprint arXiv:2505.00703, 2025.

10


https://openreview.net/forum?id=MNSW6U5zUA
https://openreview.net/forum?id=MNSW6U5zUA
https://openreview.net/forum?id=CGLoEvCllI
https://openreview.net/forum?id=jQP5o1VAVc

Under review as a conference paper at ICLR 2026

Zhewei Kang, Xuandong Zhao, and Dawn Song. Scalable best-of-n selection for large language
models via self-certainty. arXiv preprint arXiv:2502.18581, 2025.

Doyup Lee, Chiheon Kim, Saehoon Kim, Minsu Cho, and Wook-Shin Han. Autoregressive image
generation using residual quantization. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pp. 11523-11532, 2022.

Tianhong Li, Yonglong Tian, He Li, Mingyang Deng, and Kaiming He. Autoregressive image
generation without vector quantization. Advances in Neural Information Processing Systems, 37:
56424-56445, 2024.

Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harrison Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. In The Twelfth
International Conference on Learning Representations, 2023.

Niklas Muennighoff, Zitong Yang, Weijia Shi, Xiang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke
Zettlemoyer, Percy Liang, Emmanuel Candes, and Tatsunori Hashimoto. sl: Simple test-time
scaling. arXiv preprint arXiv:2501.19393, 2025.

Art Owen and Yi Zhou. Safe and effective importance sampling. Journal of the American Statistical
Association, 95(449):135-143, 2000.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAl blog, 1(8):9, 2019.

Ali Razavi, Aaron Van den Oord, and Oriol Vinyals. Generating diverse high-fidelity images with
vq-vae-2. Advances in neural information processing systems, 32, 2019.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, YK Li, Yang Wu, et al. Deepseekmath: Pushing the limits of mathemat-
ical reasoning in open language models. arXiv preprint arXiv:2402.03300, 2024.

Charlie Snell, Jaechoon Lee, Kelvin Xu, and Aviral Kumar. Scaling llm test-time compute optimally
can be more effective than scaling model parameters. arXiv preprint arXiv:2408.03314, 2024.

Peize Sun, Yi Jiang, Shoufa Chen, Shilong Zhang, Bingyue Peng, Ping Luo, and Zehuan Yuan.
Autoregressive model beats diffusion: Llama for scalable image generation. arXiv preprint
arXiv:2406.06525, 2024.

Chameleon Team. Chameleon: Mixed-modal early-fusion foundation models. arXiv preprint
arXiv:2405.09818, 2024.

Keyu Tian, Yi Jiang, Zehuan Yuan, Bingyue Peng, and Liwei Wang. Visual autoregressive modeling:
Scalable image generation via next-scale prediction. Advances in neural information processing
systems, 37:84839-84865, 2024.

Aaron Van Den Oord, Oriol Vinyals, et al. Neural discrete representation learning. Advances in
neural information processing systems, 30, 2017.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, fLukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

Junke Wang, Zhi Tian, Xun Wang, Xinyu Zhang, Weilin Huang, Zuxuan Wu, and Yu-Gang Jiang.
Simplear: Pushing the frontier of autoregressive visual generation through pretraining, sft, and rl.
arXiv preprint arXiv:2504.11455, 2025a.

Shenzhi Wang, Le Yu, Chang Gao, Chujie Zheng, Shixuan Liu, Rui Lu, Kai Dang, Xiong-Hui Chen,
Jianxin Yang, Zhenru Zhang, Yuqiong Liu, An Yang, Andrew Zhao, Yang Yue, Shiji Song, Bowen
Yu, Gao Huang, and Junyang Lin. Beyond the 80/20 rule: High-entropy minority tokens drive
effective reinforcement learning for LLM reasoning. In The Thirty-ninth Annual Conference on
Neural Information Processing Systems, 2025b. URL https://openreview.net/forum?
id=yfcpdY4gMP.

11


https://openreview.net/forum?id=yfcpdY4gMP
https://openreview.net/forum?id=yfcpdY4gMP

Under review as a conference paper at ICLR 2026

Xinlong Wang, Xiaosong Zhang, Zhengxiong Luo, Quan Sun, Yufeng Cui, Jinsheng Wang, Fan
Zhang, Yueze Wang, Zhen Li, Qiying Yu, et al. Emu3: Next-token prediction is all you need.
arXiv preprint arXiv:2409.18869, 2024.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V Le, Ed H. Chi, Sharan Narang, Aakanksha
Chowdhery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language
models. In The Eleventh International Conference on Learning Representations, 2023. URL
https://openreview.net/forum?id=1PLINIMMrw.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824-24837, 2022.

Xinyu Wei, Jinrui Zhang, Zeqing Wang, Hongyang Wei, Zhen Guo, and Lei Zhang. Tiif-bench: How
does your t2i model follow your instructions? arXiv preprint arXiv:2506.02161, 2025.

Sean Welleck, Amanda Bertsch, Matthew Finlayson, Hailey Schoelkopf, Alex Xie, Graham Neubig,
Ilia Kulikov, and Zaid Harchaoui. From decoding to meta-generation: Inference-time algorithms
for large language models. Transactions on Machine Learning Research, 2024. ISSN 2835-8856.
URL https://openreview.net/forum?id=eskQMcIbMS. Survey Certification.

Chengyue Wu, Xiaokang Chen, Zhiyu Wu, Yiyang Ma, Xingchao Liu, Zizheng Pan, Wen Liu, Zhenda
Xie, Xingkai Yu, Chong Ruan, et al. Janus: Decoupling visual encoding for unified multimodal
understanding and generation. In Proceedings of the Computer Vision and Pattern Recognition
Conference, pp. 12966—12977, 2025a.

Xianfeng Wu, Yajing Bai, Haoze Zheng, Harold Haodong Chen, Yexin Liu, Zihao Wang, Xuran
Ma, Wen-Jie Shu, Xianzu Wu, Harry Yang, et al. Lightgen: Efficient image generation through
knowledge distillation and direct preference optimization. arXiv preprint arXiv:2503.08619,
2025b.

Jinheng Xie, Weijia Mao, Zechen Bai, David Junhao Zhang, Weihao Wang, Kevin Qinghong
Lin, Yuchao Gu, Zhijie Chen, Zhenheng Yang, and Mike Zheng Shou. Show-o: One single
transformer to unify multimodal understanding and generation. In The Thirteenth International
Conference on Learning Representations, 2025. URL https://openreview.net/forum?
id=06Ynz60IQ6.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang
Gao, Chengen Huang, Chenxu Lv, Chujie Zheng, Dayiheng Liu, Fan Zhou, Fei Huang, Feng Hu,
Hao Ge, Haoran Wei, Huan Lin, Jialong Tang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin
Yang, Jiaxi Yang, Jing Zhou, Jingren Zhou, Junyang Lin, Kai Dang, Keqin Bao, Kexin Yang,
Le Yu, Lianghao Deng, Mei Li, Mingfeng Xue, Mingze Li, Pei Zhang, Peng Wang, Qin Zhu, Rui
Men, Ruize Gao, Shixuan Liu, Shuang Luo, Tianhao Li, Tianyi Tang, Wenbiao Yin, Xingzhang
Ren, Xinyu Wang, Xinyu Zhang, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yinger
Zhang, Yu Wan, Yuqiong Liu, Zekun Wang, Zeyu Cui, Zhenru Zhang, Zhipeng Zhou, and Zihan
Qiu. Qwen3 technical report. arXiv preprint arXiv:2505.09388, 2025.

Yixin Ye, Zhen Huang, Yang Xiao, Ethan Chern, Shijie Xia, and Pengfei Liu. Limo: Less is more for
reasoning. arXiv preprint arXiv:2502.03387, 2025.

Jiahui Yu, Yuanzhong Xu, Jing Yu Koh, Thang Luong, Gunjan Baid, Zirui Wang, Vijay Vasudevan,
Alexander Ku, Yinfei Yang, Burcu Karagol Ayan, Ben Hutchinson, Wei Han, Zarana Parekh, Xin
Li, Han Zhang, Jason Baldridge, and Yonghui Wu. Scaling autoregressive models for content-rich
text-to-image generation. Transactions on Machine Learning Research, 2022. ISSN 2835-8856.
URL https://openreview.net/forum?id=AFDcYJKhND. Featured Certification.

Shihao Yuan, Yahui Liu, Yang Yue, Jingyuan Zhang, Wangmeng Zuo, Qi Wang, Fuzheng Zhang,
and Guorui Zhou. Ar-grpo: Training autoregressive image generation models via reinforcement
learning. arXiv preprint arXiv:2508.06924, 2025.

Yuxin Zuo, Kaiyan Zhang, Li Sheng, Shang Qu, Ganqu Cui, Xuekai Zhu, Haozhan Li, Yuchen
Zhang, Xinwei Long, Ermo Hua, et al. Ttrl: Test-time reinforcement learning. arXiv preprint
arXiv:2504.16084, 2025.

12


https://openreview.net/forum?id=1PL1NIMMrw
https://openreview.net/forum?id=eskQMcIbMS
https://openreview.net/forum?id=o6Ynz6OIQ6
https://openreview.net/forum?id=o6Ynz6OIQ6
https://openreview.net/forum?id=AFDcYJKhND

Under review as a conference paper at ICLR 2026

A MORE EXPERIMENTAL SETTINGS AND ANALYSIS

A.1 MORE DETAILS OF EXPERIMENTAL SETTINGS

Implementation Details We implement our ScalingAR and conduct all experiments on NVIDIA
H100 GPUs. Here we detail the hyperparameters.

Notation Definition Value
Atok token confidence smoothing factor 0.2
aploan token-level confidence weights 0.5/0.5
Wrok token confidence weight 0.65
Whik worst-block stability weight 0.35
Ar smoothing factor for intrinsic channel score 0.2
b block size for spatial entropy 4

Pmin minimum fill ratio for spatial entropy 4
q worst-q% subset size 0.1
wr intrinsic channel weight 0.75
wp conditional channel weight 0.25

Ysigmoid affine-sigmoid calibration 1.0
Wo warm-up period 12.5%
P confidence threshold quantile 0.2
Ao EMA update rate for threshold 0.2
Arec recovery window 32
Orec recovery threshold 0.05
Tonin protection horizon 5%
Chard hard-fail confidence guard 0.3
«@ influence coefficient for condition utilization 0.3
B8 influence coefficient for intrinsic volatility 0.4
A influence coefficient for rebound 0.4

Captions of Figure 1 For qualitative results in Figure 1 (Top), we further detail the prompts here:

o Ist: “A red rose in full bloom sits on the top, above a pink rosebud.”
e 2nd: “A photo of a cute puppy playing in a sunny backyard.”

* 3rd: “A young boy holding a mysterious key, embarking on an adventure through various land-
scapes to find hidden treasure.”

* 4th: “A masked hero jumping from a rooftop, comic book style with bold outlines and dialogue
bubbles.”

* Sth: “A close-up of an anime woman’s face with a shocked expression, featuring dark hair, drawn
in the anime style. The image showcases colorful animation stills, close-up intensity, soft lighting,
a low-angle camera view, and high detail.”

Robustness Testing To evaluate the robustness of ScalingAR, we further employ prompts from
IPV-TXT from Impossible Videos [ICML’25] (Bai et al., 2025). Specifically, we filtered prompts
suitable for image generation from IPV-TXT, then employed Impossible Prompt Following (IPF) as
the evaluation metric, which measures the alignment between generated images and the semantic
intent of impossible prompts. Following Bai et al. (2025), we employed GPT-40 to perform binary
judgments on each image based on prompt adherence. For qualitative results in Figure 6 (Right):

o Ist: “A sheep peacefully grazing in a realistic meadow suddenly defies gravity as its wool expands
dramatically, causing its body to balloon up like a cotton cloud. The fluffy animal then lifts off
from the grassy field and drifts upward into the blue sky, its transformed woolly coat acting like a
natural balloon.”

* 2nd: “A commercial aircraft inexplicably takes off from the ocean’s surface as if the water were a
solid runway, defying physics in this photo-realistic scene. The calm, glassy sea appears to have
transformed into a firm platform, allowing the plane to accelerate and lift off smoothly, with spray
trailing behind its wheels like it would on a wet tarmac.”
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User Study We conducted a user study to evaluate human preferences using the mean opinion
score (MOS) metric. We designed a user-friendly interface to facilitate the evaluation process and
collected feedback from a total of 15 volunteer participants. The detailed instructions provided to the

participants are as follows:

Thank you for participating in our user study! Please follow these steps to complete your evaluation:

1. Image Generation: Carefully read the target prompt provided, and then view the provided images.
2. Scoring Criteria: Assign a score to each generated image based on the following aspects (1 being

the lowest, 5 being the highest):

* Overall Quality: The overall perceived quality and appeal of the generated image.
* Aesthetic Quality: The visual aesthetics, composition, and artistic merit of the image.

* Realism Fidelity: How realistically and faithfully the image captures the intended scene or subject

matter.

textual prompt.

details described in the text.

3. Submission: Click the “Submit Scores” button to submit your scores.

Notations:

1. We observe that the edge browser is not fully compatible with our interface. Chrome is recommended.
2. Remember to click the “Submit Scores” button after your evaluation.

3. If you see that images and the score sliders are not aligned, shrinking your page usually works.

4. If the page is not responsive for a long time, please try to refresh it.

5. If you have any questions, please directly ping us. Thank you for your time and effort!

Semantic Alignment: How well the generated image aligns with and represents the meaning of the

Attribute Binding: The degree to which the image accurately depicts the specific attributes and

A.2 MORE ANALYSIS

Analysis of Global Confidence & Guidance Weights
Figure 7 presents a detailed analysis of the impact of
weights of unified confidence and guidance scheduler
on the performance of ScalingAR on the TIIF-Bench.
@ Unified Confidence (Figure 7 (Top)): Varying the bal-
ance between the Intrinsic (wj;) and Conditional (wp)
channels shows that emphasizing the Intrinsic channel
slightly (w;/wp = 0.75/0.25) achieves the best TIIF-
Bench performance across all subsets. This highlights
the importance of capturing local uncertainty and stabil-
ity while maintaining semantic alignment. Omitting the
Conditional Channel (1.00/0.00) degrades performance,
confirming its complementary role. & Guidance Sched-
uler (Figure 7 (Bottom)): Adjusting the weights «, 3, and
A, which control conditional utilization, intrinsic volatility,
and confidence rebound, respectively, reveals that moder-

—— Basic ~—#~ Advanced —#— Designer Overall
60

55//\.

50

45

@ —

TIIF Performance (%)

0.25/0.75 0.50/0.50 0.75/0.25 1.00/0.00
Weights of Unified Confidence w,/wp

—-—a -®p -u 2

TIIF Performance (%)

0.1 0.2 0.3 0.4
of Guid hedul

Figure 7: Anzllysis of ScalingAR for
weights of Unified Confidence (Zop) and
Guidance Scheduler (Bottom).

ate emphasis on intrinsic volatility and rebound (3, A) improves performance. The weight o peaks at
0.3, suggesting overemphasis may reduce diversity. This confirms the need for balanced, dynamic

guidance to optimize semantic fidelity and diversity.

Analysis of Adaptive Termination Gate We further analyze the impact of the confidence threshold
quantile p and the recovery threshold d,. on the performance and token efficiency of ScalingAR,
as illustrated in Figure 8. @ Confidence Threshold (Figure 8 (Left)): The choice of confidence
threshold critically balances pruning aggressiveness and generation quality. Setting p too low leads to
insufficient pruning, resulting in higher token consumption with limited accuracy gains. Conversely,
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Confidence Threshold Recovery Threshold
5.990

an overly high threshold causes pre- ¢
mature termination of promising tra-
jectories, degrading accuracy despite
lower token usage. Our experiments
show that an intermediate threshold
(e.g., p = 0.20) achieves the best _
trade-off, significantly improving ac- Bseine s 0c2as hene

curacy while maintaining efficient to- @

ken consumption compared to both 5.865

baseline and extreme settings. & Re- R I VN R S
covery Threshold (Figure 8 (Right)): Figure 8: Analysis of ScalingAR for thresholds of Confi-
The recovery mechanism safeguards dence (Left) and Recovery (Right).

against false positives by allowing trajectories to rebound from transient confidence dips. Disabling
this mechanism leads to noticeable performance drops, highlighting its necessity. Furthermore, setting
the recovery threshold d.. too low or too high adversely affects accuracy and efficiency: a low thresh-
old permits premature recovery of poor trajectories, increasing token cost, while a high threshold
delays recovery, risking early termination of viable samples. An optimal value (e.g., drec = 0.05
balances these effects, maximizing accuracy with minimal token overhead.
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Analysis of Ablation on Policy Level While ablation Table 3: Ablation of Policy Level.
study (Table 2) in main text focuses on the Profile Level, emod Bas.t Adv.f Des.f Overallt
we conducted additional ablation studies to evaluate the  TjamaGen 296 404 403 404
contributions of the Policy Level, which builds upon the  +Termination Only | 54.1 43.1 422  45.
Profile Level, as shown in Table 3. (i) The “Termination  + Scheduler Only 53.6 420 410 438
Only” setup improves performance across all metrics, _tScalinghR(Ours)| 57.4 441 425 465
highlighting its ability to prune low-confidence trajectories and mitigate failure modes, ensuring
stable generation. (if) The “Scheduler Only” setup also yields notable gains, demonstrating its
effectiveness in dynamically modulating conditioning strength to balance semantic alignment and
diversity. (iii) Integrating both mechanisms achieves the best results, showing their complementary
roles in improving generation quality and efficiency. These results validate the Policy Level as
essential for enhancing autoregressive image generation.

Table 4: Computation consumption comparison on GenEval with NVIDIA 140G H200 GPU.

Method N | Per-step WC (s) Overall WC (s) Matched Tokens/Img FLOPs (TFLOPs) Memory (GB) Performance
LlamaGen 1 0.024 24.93 1024 5.60 6.44 0.32
+ BoN 8 0.025 218.44 8192 39.12 48.72 0.15
+ ScalingAR (Ours) 8 0.029 69.56 2350 423 18.16 0.36

Analysis of ScalingAR’s Efficiency We conclude the average computation consumption of
ScalingAR in Table 4.

Analysis Of Local Conﬁdence —8— Basic —#~ Advanced GO+ Designer =+~ Overall
Weights We further analyze the - o | ——
impact of the weighting strategies 55

for Token-Level Confidence apy /avps

and Worst-Block Stability wokx /wpik

o
S

o
a

o
=)

50

TIIF Performance (%)

on the performance of ScalingAR, fa|*—  F|g|— -~ —*
as illustrated in Figure 9. @ Token- —— | ——
Level Confidence Weights (Figure 9 0307 0.5/0.5 0.770.3 0.35/0.65 0.65/0.35 0.85/0.15
(Leﬁ))' Adjusting the balance Weights of Token-Level Confidence ay/ay Weights of Worst-Block Stability wio/Wpi

between entropy-based uncertainty Figure 9: Analysis of ScalingAR for weights of Token-Level
(apr) and margin-based confidence Confidence (Left) and Worst-Block Stability (Right).

(apr) reveals that prioritizing entropy signals (ag/ap = 0.7/0.3) achieves the best overall
performance across all metrics. This suggests that entropy provides a more robust signal for
capturing localized instability during generation. Conversely, overemphasizing margin-based
confidence (ay/apy = 0.3/0.7) leads to performance degradation, particularly in advanced
and designer subsets, as it fails to fully capture nuanced instability patterns. A balanced setting
(apg/ay = 0.5/0.5) offers a reasonable trade-off, though slightly underperforms the optimal
configuration. ® Worst-Block Stability Weights (Figure 9 (Right)): Varying the balance between
token-level confidence (wyox) and block-level stability (wyy) shows that an emphasis on token-level
signals (wokx/wpk = 0.85/0.15) slightly reduces performance, particularly in the advanced and

15



Under review as a conference paper at ICLR 2026

g465 46.5 46.5
®
2]
546.0 46.0 46.0
:
€ 45.5 45.5 45.5
£

45.0 45.0 45.0

0.1 0.2 0.4 0.1 0.2 0.4 0.1 0.3 0.5
Token Confidence Smoothing A Intrinsic Channel Smoothing A, CFG Scale Smoothing Acf,

L465 ‘/;\. 46.5 /\ 465
<
©
Q
546.0 46.0 46.0
:
455 45.5 45.5
&

45.0 45.0 45.0

2 4 8 0.05 0.10 0.20 5.0% 12.5% 25.0%
Block Size b ‘Worst-q% ‘Warm-up Period W,

Figure 10: Analysis of hyperparameters. (@) Token Confidence Smoothing. (b) Intrinsic Channel
Smoothing. (¢) CFG Scale Smoothing. (d) Block Size. (e) Worst-¢%. (f) Warm-up Period.

designer subsets, as it underweights spatial anomalies that propagate into global failures. On the
other hand, overemphasizing block-level stability (wx /wpx = 0.35/0.65) also degrades results, as
it may overreact to localized noise. The optimal configuration (wi/wpx = 0.65/0.35) balances
token-level and block-level signals effectively, achieving the highest scores across most metrics.

Analysis of Smoothing Factors @ Token Confidence Smoothing (\ox): As shown in Fig-
ure 10 (a), the choice of A\ significantly impacts the performance of ScalingAR. A moderate
smoothing factor (Aox = 0.2) achieves the best performance across all subsets, as it effectively bal-
ances stability and responsiveness in token-level confidence signals. Setting Ak t00 low (Aox = 0.1)
results in noisy signals, while overly high smoothing (A\x = 0.4) delays the system’s adaptability to
dynamic changes, degrading performance. @ Intrinsic Channel Smoothing ( \;): Figure 10 (b)
demonstrates that A\; = 0.2 provides the best TIIF performance. Lower values (A\; = 0.1) fail to
stabilize the intrinsic confidence signal, leading to suboptimal trajectory pruning. On the other hand,
higher values (A\; = 0.4) overly smooth the signal, reducing sensitivity to localized instability and
resulting in degraded generation quality. ® CFG Scale Smoothing (\.,): In Figure 10 (c), the
performance peaks at A.f; = 0.3, reflecting an optimal trade-off between smooth transitions in CFG
scale adjustments and responsiveness to real-time confidence signals. Smaller values (At = 0.1)
introduce excessive fluctuations, while larger values (At = 0.5) hinder the system’s ability to adapt
to changing confidence states.

Analysis of Spatial Entropy @ Block Size (b): As illustrated in Figure 10 (d), a block size of
b = 4 achieves the best performance. Smaller blocks (b = 2) are overly sensitive to local noise,
leading to false positives in detecting instability. Conversely, larger blocks (b = 8) fail to capture
fine-grained spatial anomalies, resulting in reduced effectiveness in trajectory pruning. & Worst-¢%:
Figure 10 (e) shows that setting ¢ = 0.10 yields the highest performance. A smaller ¢ (¢ = 0.05)
underestimates the impact of localized high-entropy regions, while a larger ¢ (¢ = 0.20) dilutes the
focus on the most problematic areas, reducing the precision of the stability signal.

Analysis of Warm-up Period Figure 10 (f) highlights the importance of an appropriate warm-
up period. The best performance is achieved with Wy = 12.5%, which provides sufficient time
for confidence signals to stabilize before applying trajectory pruning. A shorter warm-up period
(Wo = 5.0%) leads to premature pruning of promising trajectories, while a longer warm-up period
(Wo = 25.0%) delays intervention, reducing efficiency and quality.

B RESULTS OF MORE BASE MODELS

To further validate the generalizability of ScalingAR, Table 5: Evaluation of ScalingAR on
we deployed our method on two additional AR mod- more base models on GenEval.

els: SimpleAR-1.5B (Wang et al., 2025a) and Janus-Pro- Jiemed TO! Pos.] CAT Overall]
1B (Chen et al., 2025a). Importantly, the hyperparam— SimpleAR 090 028 045 063
eter settings for ScalingAR were kept consistent with  +ScalingaR (Ours) | 093 036 051  0.67
those used in the main experiments on LlamaGen and AR-  Janus-Pro 082 065 056 073
GRPO, without any model-specific tuning. This ensures a _*ScalingAR (Ours) | 087 0.69 0.61 077

fair evaluation of ScalingAR’s adaptability across different architectures and scales. Quantitative
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SimpleAR

+ ScalingAR (Ours)

-

DV N o = e {13
A blue sky with fluffy A bird perched on a tree A bowl of fresh A kite flying high in the
white clouds branch strawberries blue sky

Janus-Pro

-,

+ ScalingAR (Ours)

A majestic bald eagle A close-up of a monarch A tropical hummingbird A colorful parrot perched A vintage steamship sailing

perched on a pine branch butterfly resting on a feeding from a bright red on a branch in a rainforest  through foggy waters at
overlooking a mountain purple flower in a sunlit flower, wings a blur of sunrise
range meadow motion

Figure 11: Qualitative results of ScalingAR on SimpleAR (Zop) and Janus-Pro (Bottom).

results in Table 5 and qualitative results in Figure 11 show significant performance improvements for
both models, demonstrating ScalingAR’s effectiveness and broad applicability as a general-purpose
stabilization framework.

C FURTHER ILLUSTRATION OF ENTROPY IN AR IMAGE GENERATION

A key motivation behind our ScalingAR lies in the observation that high-entropy/low-confidence re-
gions often exhibit greater uncertainty, which increases the likelihood of undesirable outcomes. While
high entropy does not guarantee poor results, it correlates strongly with elevated error probabilities,
making it a critical signal for stabilizing AR image generation.

Relevant Evidence Similar observations have been validated across various domains: @ Entropy
calibration in language models: Cao et al. (2025) demonstrated that high local token entropy correlates
with higher error probabilities, highlighting its role as a risk indicator in generative tasks. @
Reinforcement learning mechanisms for reasoning: Works (Cui et al., 2025; Fu et al., 2025; Wang
et al., 2025b) for LLM Reasoning treat high-entropy tokens as positions with dense information
but unstable decisions or higher error risks. These findings underscore the necessity of carefully
managing entropy during generation to balance exploration and stability.

Connection on ScalingAR Our method, ScalingAR, can be interpreted as a stabilization mech-
anism that prunes trajectories with low confidence, effectively mitigating the risks associated with
high-entropy regions. By focusing on confidence signals, ScalingAR ensures that the generation
process avoids prolonged instability, leading to improved image quality. In Figure | (Bottom Left)
and Figure 3 (Left), we compare the confidence distributions of ScalingAR and the base model.
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Figure 12: Visualization of token entropy. (Ist) A sunflower field stretching to the horizon under a
bright blue sky. (2nd) A majestic lion resting on a rocky outcrop in the golden savanna light. (3rd) A
detailed macro shot of a butterfly on a blooming flower.

The results clearly show that higher token confidence correlates with better image quality, further
validating our motivation to leverage confidence signals for trajectory pruning.

Visualizing Token Entropy in Generated Images To provide a more intuitive understanding,
we visualize the entropy distributions of generated images in Figure 12. The figure highlights that
regions with poor generation quality often correspond to higher entropy, reinforcing the notion that
high-entropy tokens are more likely to contribute to undesirable outcomes. ScalingAR’s ability to
suppress these regions through confidence-based pruning plays a pivotal role in achieving stable and
high-quality image generation.

D ALGORITHM WORKFLOW

We conclude the overall algorithm workflow of ScalingAR in Algorithm 1.

Algorithm 1: ScalingAR Workflow

Input: Prompt y, AR model py(- | -), CFG scale g, pruning threshold 7, max steps 7', beam width NV,
top-k k
QOutput: Final image &

Initialize candidate set So < {(seq = )},
fort <~ 1to 7 do
if S;_1 is empty then
| break
end
foreach s € S, do
Compute conditional logits £. < pg (- | s.seq,y)
Compute unconditional logits £, < pe(- | s.seq, &)
Guided logits £ < £, + g - (£c — £y)
Compute probs pk — softmax(£)
Sample token x; ~ piok
Append z; to s.seq
Compute entropy He <= — >~ prok(j) log prok(5)
Compute confidence C < f% > SeTopk log prok (J)
Compute utilization Uy < KL(softmax(£.)||softmax(¢,,))
Compute fused confidence ®; +— w.Cy + w, Ut
end
Compute threshold 7¢ < p-quantile of {®(s)}
Prune candidates with ®;(s) < 7¢
S; < survivors after pruning
end

Select best candidate § +— arg maxscs, P+(s)
Decode s to image £ and return 2
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E EXHIBITION BOARD

We provide more comparison results here in Figure 13 on AR-GRPO and Figure 14 on LlamaGen.

F LIMITATION AND FUTURE WORKS

ScalingAR pioneers test-time scaling for autoregressive image generation but faces key challenges.
AR image modeling involves complex dependencies, making confidence estimation difficult; our
exploration of token entropy is a first step but may not fully capture uncertainty and semantic
alignment. Additionally, the approach relies on model calibration and entropy signals, which can vary
with training and architecture. Future work includes developing finer-grained confidence measures
for more precise scaling, and integrating entropy-based signals into both training-time and test-time
to create a more unified pipeline.

G THE USE OF LLMS

This research does not involve LLMs in terms of training or fine-tuning as part of its core contributions.
The use of LLMs is limited to polishing the writing of the manuscript. These uses do not impact the
originality or core methodology of the research, and therefore do not require detailed declaration.

19



Under review as a conference paper at ICLR 2026

+ ScalingAR (Ours)

i &

L i L 9 4
The colorful flowers The rectangular painting  The black mug was on top  The sharp red chili pepper The soft white snow
bloomed hext to the sleek  was hung above the beige of the white coaster contrasted with the soft  covered the rough brown
black fence couch green lettuce ground

AR-GRPO

+ ScalingAR (Ours)

The prickl green cactus  The fluffy ’-)illlow was on The warm yellow light The colorful flowers The soT white clouds
contrasted with the top of the hard couch shone down on the cool contrasted with the dull floated above the deep
smooth blue sky blue ocean waves grey wall blue ocean

AR-GRPO

+ ScalingAR (Ours)

The bright red rose The smooth black leather  The sleek, aerodynamic

The sharp, angular lines of The vibrant, swirling colors
contrasted with the dull  chair sat in front of the shape of the speedboat the modernist sculpture of the aurora borealis
grey pavement prickly green plant sliced through the water, a were a striking statement  danced across the night
thrilling ride of power and of contemporary art sky, a natural light show of
speed wonder and awe

Figure 13: More results demonstrations of ScalingAR on AR-GRPO (Yuan et al., 2025).
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LlamaGen

+ ScalingAR (Ours)

The blue bowl was on fop The smooth black river The striped blck and  The soft pink petals of the The striped rug was on top
of the white placemat flowed next to the tall white cat lay next to the cherry blossom contrasted of the wooden floor
green trees soft grey blanket with the rough brown bark

LlamaGen

+ ScalingAR (Ours)

The soft pink blanket  The flickering candle flame The sharp black cat clawed A photo of a wise old owI The crunchy brown leaves
draped over the hard danced on the smooth wax  at the soft red blanket covered the damp grey
wooden chair and the textured holder sidewalk

LlamaGen

+ ScalingAR (Ours)

The graceful swan glided A gentle giant tending to a

The striped black and The delicate butterfly ~ The sleek black cat sat on

white zebra grazed near fluttered near the top of the fluffy white across the calm lake and lush garden, nurturing
the tall green tree fragrant flower and the pillow the reedy marsh magical plants that bloom
rustling leaves with vibrant colors and

unique powers

Figure 14: More results demonstrations of ScalingAR on LlamaGen (Sun et al., 2024).
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