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ABSTRACT

We make two contributions to the problem of estimating the L1 calibration error
of a binary classifier from a finite dataset. First, we provide an upper bound for
any classifier where the calibration function has bounded variation. Second, we
provide a method of modifying any classifier so that its calibration error can be
upper bounded efficiently without significantly impacting classifier performance
and without any restrictive assumptions. All our results are non-asymptotic and
distribution-free. We conclude by providing advice on how to measure calibration
error in practice. Our methods yield practical procedures that can be run on real-
world datasets with modest overhead.

1 INTRODUCTION

Machine Learning models are increasingly used to drive decision making in many tasks of practi-
cal importance. This process is notoriously susceptible (Cohen & Goldszmidt, 2004) to how well
model outputs match probabilities of events in the real world, a property known as calibration. An
important pre-requisite for ensuring good model calibration is the ability to measure it. This paper
focuses precisely on this problem.

The most common approach to calibration is to place model outputs into discrete buckets (Zadrozny
& Elkan, 2001; Naeini et al., 2015; Kumar et al., 2019). While this makes the calibration error
possible to estimate using elementary tools, it introduces a dilemma. If one treats the estimate of the
calibration error obtained by bucketing as a proxy for the calibration error of the classifier before
the bucketing, the method is notoriously unreliable, producing different answers depending on the
bucketing scheme used (Arrieta-Ibarra et al., 2022). On the other hand, if one treats the bucketing
as part of the classifier, classification performance is likely to suffer since the bucketing is unknown
to the training process.1

Another approach is to frame the problem as a frequentist hypothesis test with the null hypothesis
of zero calibration error (Arrieta-Ibarra et al., 2022; Tygert, 2023). This type of method is statis-
tically powerful in detecting deviations from perfect calibration. However, because it focuses on a
‘zero-error’ null hypothesis, it is primarily designed to decide whether a model is (nearly) perfectly
calibrated—not to quantitatively compare degrees of miscalibration between models.2 Moreover,
the proposed cumulative score is not intuitively interpretable and the formal derivation requires the
asymptotic regime i.e. a large-enough sample size.3

Contributions We make two contributions to the problem of estimating the L1 calibration error
of a binary classifier from finite data:

1. Certified bounds under bounded variation. We show that if the calibration function has
bounded variation, then one can obtain a distribution-free, non-asymptotic upper bound on
calibration error using a variant of total variation denoising. This provides the first finite-
sample guarantees under such a weak structural assumption.

2. Certified bounds via perturbation to enforce smoothness. When no assumption on
bounded variation is acceptable, we propose a simple perturbation of classifier outputs that
guarantees that the calibration function has bounded derivatives. This modification leaves

1For example if the classifier is a neural network, one cannot back-propagate through the bucketed outputs.
2One might of course compare test statistics or p-values informally.
3Arrieta-Ibarra et al. (2022) do provide an experimental evaluation in the finite-sample regime.
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classification performance essentially unchanged, yet enables a kernel-based estimator that
yields tighter finite-sample bounds on calibration error.

Both approaches are non-asymptotic and fully distribution-free. We complement the theory with
experiments on synthetic and real datasets, and conclude with actionable advice on how to measure
calibration error in practice.

2 PRELIMINARIES

Calibration Function Consider a function η : [0, 1] → [0, 1]. Denote by p(s) the arbitrary distri-
bution of design points (scores). Denote by p(y|s) the Bernoulli distribution with mean η(s). We
have η(s) = E[y|s], and the function η is called the calibration function.

Datasets Consider an i.i.d dataset of tuples {(si, yi)}i ∼ p(s)p(y|s). The dataset is split into
two index sets generated independently: training T and validation V , where we use the notations
YT = {yi : i ∈ T}, YV = {yi : i ∈ V }, ST = {si : i ∈ T} and SV = {si : i ∈ V }. Both these sets
are generated independently from any data used to train the classifier.

Main Objective The main objective of this paper is to bound the quantity

CE ≜ Es [|s− η(s)|] , (1)

known (Lee et al., 2023) as the L1 expected calibration error, using data from finite (training and
validation) datasets. In the next section, we describe the proof approach and structural assumptions
on η that make this possible.

3 STRUCTURE OF RESULTS

The Need For Assumptions We begin by noting that estimating the quantity 1 is impossible with-
out making structural assumptions on η. At a very minimum, for the expectation in equation 1 to be
well-defined, one needs measurability. However, measurability alone is not sufficient to ensure the
ability to estimate η from a finite dataset. In fact, Lee et al. (2023) have shown that even continuity
(which implies measurability) is not sufficient, i.e. that there exist choices of p and η such that any
estimator of the quantity 1 gives an answer wrong by a constant even with infinite data. We therefore
need assumptions of a different kind. In this paper, we focus on two alternatives for what they can
be.

Bounded Variation and Bounded Derivatives Assumptions First, in section 4, we assume that
η has bounded variation, which turns out to be enough to bound the calibration error in a theoreti-
cally principled way using a variant of bucketing (with a special process for constructing buckets).
However, because bounded variation is still a relatively weak assumption, it allows for many nearly
pathological functions which the bound has to take into account, adversely impacting sample effi-
ciency. This motivates us to look for stronger assumptions. Specifically, in section 5, we choose
to assume η has two bounded derivatives. While this assumption ostensibly looks hard to justify,
we do in fact show that we can always achieve it by applying a small perturbation to the classifier
outputs. We demonstrate in section 7 that this only affects classifier performance in a minimal way
in practice.

Lower vs Upper Bounds As a side note we remark that, while the techniques we develop work
for both upper and lower bounds (with high probability), we focus the presentation on upper bounds
since we typically wish to certify that the calibration error is small, not that it is large. We also note
that all our results are fully distribution-free i.e. the distribution of scores p(s) can be discrete or
continuous or a mixture, without any assumptions.

Main Proof Technique Our proof technique consists in constructing a surrogate for η. We then
bound the calibration error as a sum of the calibration error wrt. the surrogate and the error of
the surrogate construction process. The construction of the surrogate is different depending on the
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assumption we are willing to make. Specifically, we use Total Variation denoising in case of the
bounded variation assumption (section 4) and a kernel smoother in case of the bounded-derivatives
assumption (section 5).

Concentration In our proof, we also need to quantify concentration of the empirical mean of
bounded random variables. We use Bernstein’s inequality to do that. Because there are several
versions in literature, we quote the one we used. This version matches the work of Mnih et al.
(2008). For a sum of n i.id, bounded random variables with mean µ and support on [0, 1], we have
P
[
µ ≤ X̄n + BB(n, δ, σ̂2

n)
]
≥ 1− δ, where X̄n := 1

n

∑n
i=1 Xi, σ̂2

Xi
:= 1

n

∑n
i=1

(
Xi − X̄n

)2
and

BB(n, δ, σ̂2
Xi

) =

√
2 σ̂2

Xi
ln
(
3/δ
)

n
+

3 ln
(
3/δ
)

n
.

Here, we used the symbol BB to denote the concentration term in the Bernstein bound. We could
have equally used Hoeffding inequality here, but Bernstein is slightly sharper.

4 MEASURING CALIBRATION UNDER BOUNDED VARIATION

Bounded Variation To formalize our assumption on η, we will need the concept of a Bounded
Variation space (DeVore & Lorentz, 1993). For a function f , we can define total variation on the
interval I as

TV(f, I) := sup

{
n−1∑
i=1

|f(si+1)− f(si)|
}
,

where the supremum is taken over the set of all finite sequences s1, s2, . . . , sn contained in the
interval I . We say that the function f is of bounded variation, written f ∈ BV([0, 1]) when
TV(f, [0, 1]) < ∞. Our theoretical work in this section is based on the assumption that the cal-
ibration function η satisfies TV(η, [0, 1]) ≤ V for some known constant V .

TV Denoising Under the bounded variation assumption, we want to reconstruct η from noisy
observations. To to so, it is useful to consider the TV denoising estimate η̂T . It is obtained by
solving the optimization problem

η̂T = arg min
v∈[0,1]|T |

1

2|T | ∥yT − v∥22 + λ∥Dv∥1 (2)

where yT is a vector of labels in the training set and η̂T is our approximation of η on the training
set. The matrix D ∈ R(|T |−1)×|T | is defined as:

(Dv)i = vi+1 − vi, i = 1, 2, . . . , |T | − 1 (3)
and λ > 0 is a regularization parameter. Mammen & Van De Geer (1997) were the first to have
shown results about reconstruction error of similar algorithms, i.e. the difference between ηT and

η̂T . For our purposes, we rely on the fact that, if we set λ =
√

1
6|T | ln

4(|T |−1)
δ′ in the optimization

problem (2), then with probability 1− δ′ we have
1

n
∥ηT − η̂T ∥1 ≤ TVB(δ′). (4)

Here, we denoted by ηT the vector containing the values of η on the training set. The term TVB(δ′)
diminishes if we increase the size of the training set. This result is proven (and a formula for TVB(δ′)
is provided) in Appendix A as Corollary 1, using proof techniques developed by Hütter & Rigollet
(2016). Equation 4 is useful because it measures how close the reconstruction η̂ is to the true η on
the training set. However, in order to bound the calibration error, we need a similar guarantee on the
population level, i.e. for scores sampled from p(s). To do this, we first define η̂ for arbitrary scores
from its values on the training set

η̂(s) = {η̂T }i⋆ where i⋆ = argmax
i

{i ∈ T : si ≤ s}.
We can then write a bound similar to 4, but in expectaiton over s.

Es [|η(s)− η̂(s)|] ≤ B(δ) + (V + V̂ )

√
log(2/δ)

2|T | . (5)

See Corollary 2 in Appendix A for the proof.
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TV Smoothing as Bucketing The function η̂ obtained by TV denoising is piecewise constant.
Therefore, a legitimate view of the smoothing process is to consider it as a very special example of
a bucketing scheme, where the buckets correspond to the constant pieces of η̂.

Bounding the Calibration Error To upper-bound the calibration error, we rely on a simple but
powerful idea. First, imagine that the function η in the definition of the calibration error (1) is known.
In that case, we could rely on the Bernstein bound to compute the expectation, using the fact that
the absolute value in the definition of the calibration error is bounded in [0, 1]. However, of course
in practice η is not known directly and is observable only via noisy observations. This motivates us
to proceed by first obtaining an approximation η̂ to η by solving the optimization problem (2) on the
training set and then apply Bernstein on the validation set. Note that (2) (and hence η̂) is computable
from the dataset. Intuitively, we can then use the approximation η̂ in place of η. Of course, this
leads to additional approximation error, which has to be added to the upper bound. Fortunately, the
approximation error can be bounded by using equation (4). We now proceed to make this formal.

Proposition 1 (CE Upper Bound under Bounded Variation). Construct the surrogate calibration
function η̂ by solving the optimization problem (2). With probability 1− δ, we have

CE ≤ 1

n

∑
i∈V

|si − η̂(si)|+BB(|V |, δ1, σ̂2
{|si−η̂(si)|}i∈V

) + TVB(δ2) + (V + V̂ )

√
log(2/δ3)

2|T | ,

where δ1 + δ2 + δ3 = δ and σ̂2
{|si−η̂(si)|}i∈V

) is the empirical variance of the term |si − η̂(si)| on
the validation set.

Proof. We write

Es[|s− η(s)|] ≤ Es[|η̂(s)− s|]︸ ︷︷ ︸
term I

+Es[|η̂(s)− η(s)|]︸ ︷︷ ︸
term II

(6)

and bound term I and II separately. We begin by bounding term I. Since the term under expectation
is bounded in [0, 1] and the validation set is independent of the training set used to obtain η̂, we use
Bernstein inequality with probability δ1. We bound term II using equation 5. The result follows by
picking the delta terms so that δ1 + δ2 + δ3 = δ.

Proposition 1 is important because it gives us a handle on bounding the calibration error of any
classifier with a bounded variation calibration function in a form computable from observable quan-
tities. Note that the term V̂ (the total variation of the surrogate) is computable from data (since the
TV solution is piecewise constant).

When is Bounded Variation Reasonable? Verifying that a function is of bounded variation is
impossible to do from finite samples only, even if the samples had not been noisy. However, the
result in this section is still useful. This is because, in scenarios of practical relevance, η is not a
completely arbitrary function but one that was obtained from training a classifier. Since the classifier
is trying to distinguish positive form negative examples, it is not unreasonable to expect that η should
be monotone increasing, i.e. that higher scores correspond to a higher chance of seeing a positive
label. It is well known that all monotone functions mapping to [0, 1] have total variation bounded by
1, i.e. we can use V = 1.

5 MEASURING CALIBRATION UNDER BOUNDED DERIVATIVES

In certain scenarios the bounded variation assumption from the previous section is not suitable. This
can be for two reasons–either we don’t know the total variation bound V or we want to achieve
better sample efficiency. In this section, we address this need by providing a method of obtaining
guarantees on calibration for a broad class of classifiers. The main idea is to start with a completely
arbitrary classifier and modify it in a way which ensures the ability to bound calibration error but
does not harm classification performance.

4
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Ensuring Smoothness By Perturbation The modification amounts to perturbing the probability
output of the classifier by a small amount, specified by the perturbation bandwidth. This can be
done either only at inference time or at both inference time and training time, to ensure better per-
formance. We experimentally evaluate the effect of the perturbation in section 7 and conclude that
there is almost no loss of performance relative to an unmodified classifier for realistic choices of the
bandwidth. This allows us to write the calibration function of the perturbed classifier as

η(s) =

∫ 1

0

ηorig(sorig) k(s | sorig) dp(sorig)∫ 1

0

k(s | sorig) dp(sorig)

. (7)

See Appendix C for the derivation of this formula. This expression is a kernel-weighted average of
the original calibration function ηorig(sorig), smoothened with the kernel k.

Kernel Choice Denote by h the amount of the perturbation (the bandwidth). Formally, we define
the score s output by the perturbed classifier as a sample from the probability distribution with the
PDF defined by the equation

k(s | sorig) =
1

Z(sorig, h)
sech

(
sorig − s

h

)
, (8)

where sech is the hyperbolic secant function and the normalizer Z(sorig, h) is chosen so that the PDF
integrates to one over [0, 1]. By construction, the perturbed score is in the interval [0, 1]. It turns
out that using a perturbation of the form given in equation 8 has significant benefits over using a
more conventional choice like the truncated Gaussian. We defer a discussion of our motivation for
choosing the perturbation to appendix C.2.

Bounded Derivatives From Perturbation Crucially, the following Lemma, proved in appendix
C, shows that the calibration function of the modified classifier has two bounded derivatives, regard-
less of the properties of the calibration function before the perturbation.

Lemma 1 (Bounded Derivatives From Perturbation). For any classifier that perturbs its output
scores by replacing an output sorig with a perturbed output s sampled according the PDF in equation
8, the calibration function η is twice differentiable. Moreover its first derivative is uniformly bounded
by 1

2h and its second derivative is uniformly bounded by 3
2

1
h2 .

Surrogate of Calibration Function Via Nadaraya-Watson Smoothing Lemma 1 gives us the
derivative bounds that allow us to approximate η in a principled way, i.e. bound the smoothing error
of a kernel smoother applied to the dataset. We now define η̂ as

η̂(s′) =
∑
i∈T

wi(s
′)yi, wi(s

′) =
k′(s′|si)∑

j∈T k′(s′|sj)
.

Then we have:

EYT
[|η̂(s′)− η(s′)|ST ] ≤ gT (s

′). (9)

where gT (s
′) is fully computable from data and diminishes for s′ in the support of p(s). See Ap-

pendix B for proof and the precise formula for gT (s′). Unlike the choice of the perturbation kernel
k, the choice of the smoothing kernel k′ used to construct the surrogate is an implementation de-
tail. We use Epanechnikov weights with nearest-neighbor fallback and boundary renormalization,
tempered by an exponent τ = 1.2 before re-normalizing; since only the “weights sum to one” prop-
erty matters. One could also explore alternatives to using a kernel smoother. For example, we can
see that Lemma 1 implies that η is Lipschitz with constant 1

2h and use that to bound the error of a
bucketing scheme. We do in fact compare to this approach as part of our experiments.

Bounding The Calibration Error We now use equation 9 to bound the calibration error. Again,
we stress that all terms in the bound are possible to estimate from data.

5
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Proposition 2 (CE Upper Bound under Bounded Derivatives). Assuming η is twice differentiable
with bounds on the first and second derivative, we have

CE ≤ 1

|V |
∑
i∈V

|η̂(si)− si|+
1

|V |
∑
i∈V

gT (si) +

BB(|V |, δ/2, σ̂2
{|si−η̂(si)|}i∈V

) +RBB(|V |, δ/2, σ̂2
{ 1

R gT (si)}i∈V
)

with probability 1−δ, with the randomness taken over the validation set, conditional on the training
set, for a constant R that depends4 on the kernel k.

Proof. We begin by introducing conditioning on the training set. Because the quantity |s − η(s)|
doesn’t depend on the training set, we can write.

Es [|s− η(s)|] = Es [|s− η(s)||ST , YT ]

Introduce the notation

h(s′) = EYT
[|η̂(s′)− η(s′)|ST ] = EY ′

T
[|η̂(s′)− η(s′)|ST ] ,

where the last equality holds because we can always rename a bound variable. We can now apply
the triangle inequality to get

Es [|s− η(s)||ST , YT ] ≤ Es [|s− η̂(s)||ST , YT ] + Es [h(s)|ST , YT ]

= Es [|s− η̂(s)||ST , YT ] + Es [h(s)|ST ] , (10)

where the last equality is because h(s′) doesn’t depend on YT . We can now apply the Bernstein
inequality twice, once for each term on the right hand side of equation (10). Note that both terms
under the expectation are bounded in [0, 1]. Note also that the validation set is drawn i.i.d..

For the first term, invoking Bernstein (with half the probability budget) conditionally on ST , YT .
This gives us

Es [|s− η̂(s)||ST , YT ] ≤
1

|V |
∑
i∈V

|η̂(si)− si|+BB(|V |, δ/2, σ̂2
{|si−η̂(si)|}i∈V

). (11)

For the second term in (10), we proceed analogously as before, this time conditioning on ST and
invoking Lemma 6. In order to apply the Bernstein inequality, we introduce a constant R that ensures
that 1

RgT (s
′) ∈ [0, 1] for all s′. We get

Es,YT
[h(s)|ST ] ≤

1

|V |
∑
i∈V

gT (si) +RBB(|V |, δ/2, σ̂2
{ 1

R gT (si)}i∈V
). (12)

We get the result by plugging terms (11) and (12) into (10) and using the union bound.

Implementation Detail (Cross-Fitting). The theory in the paper is written for a fixed split of
the data indices into training and validation. In practice, we use K-fold cross-fitting: randomly
partition the samples into disjoint folds, and for each fold fit a surrogate eta on the complement
while evaluating only on the validation folds, then we aggregate across folds. This preserves the
fixed-split assumption (every validation point is scored by a model that did not train on it) while
reducing variance and making full use of the data.5

6 RELATED WORK

Bucketing Variants of bucketing were first introduced in meteorology (Murphy & Winkler, 1977)
and have been used to approximate the calibration error ever since the ML community started paying
attention to calibration (Zadrozny & Elkan, 2001; Niculescu-Mizil & Caruana, 2005; Naeini et al.,
2015; Leathart et al., 2017; Guo et al., 2017; Vaicenavicius et al., 2019; Kumar et al., 2019). Nixon
et al. (2019) has criticized vanilla bucketing and proposed alternative binning schemes.

4For the truncated Epanechnikov kernel, we set R = b1h+ 1
2
b2h

2 + 1
2

.
5We apply such cross-fitting to all three methods we evaluate.
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Figure 1: AUROC under Perturbation

Lipschitz Assumptions Vaicenavicius et al. (2019); Dimitriadis et al. (2023); Futami & Fujisawa
(2024) used the Lipschitz assumption to get a handle on variants of the calibration error. However,
the assumption was not justified. Our paper is more general in two ways: bounded variation (as
in section 4) is a far weaker assumption then Lipschitz and our perturbation scheme in section 5
guarantees smoothness (and hence the Lipschitz property) rather than just assuming it. Zhang et al.
(2020) assumes Hölder continuity, again without justifying it from first principles.

Kolmogoroff-Smirnoff and Kuiper Arrieta-Ibarra et al. (2022); Tygert (2023) propose a scheme
for measuring calibration based on cumulative sum metrics. By relating these metrics to random
walks, it is possible to derive highly efficient frequentist tests where the null hypothesis represents
perfect calibration. Our work is different from these approaches in several ways. First, our measured
quantity in equation 1 is more interpretable. Second, unlike them, we do not rely on asymptotics of
any kind do our result stay theoretically valid for any sample size. Third, our technique can be used to
compare two poorly calibrated models with each other while they only support comparisons against
a baseline of perfect calibration. Overall, unlike KS-based metrics, which detect mis-calibration but
do not yield interpretable bounds, our approach directly certifies an upper bound on CE.

Impossibility Results Arrieta-Ibarra et al. (2022) have argued that binning requires an infinite
number of samples per bin to accomplish both asymptotic consistency and asymptotic power. How-
ever, these results were obtained without structural assumptions on the calibration function η. More-
over, Lee et al. (2023) has shown that assuming continuity of η is not enough, i.e. that there are
continuous calibration functions which make calibration error impossible to estimate from finite
samples. We circumvent these problems when we introduce our assumptions of bounded variation
and continuity with bounded derivatives.

7 EXPERIMENTS

Overview of Experiments We approach the experimental evaluation of our method in two stages.
First, we establish that we can afford to perturb classifier outputs by as much as 2−6 for realistic
datasets, without significantly impacting AUROC. Second, we use Lemma 1 to certify this guaran-
tees bounded derivatives, allowing us to obtain the calibration error up to about 0.02 using about 107
samples. While this may seem like a lot of data, we note that estimating the calibration error is an
inherently hard problem, which scales poorly with the size of the dataset. In fact, to the best of our
knowledge, our estimator is the best currently available for the setting we consider.

Perturbation vs AUROC In figure 1, we measure the effect of perturbing the output probabilities
of a classifier on its classification performance, measured by AUROC. We examine three classifi-
cation tasks: IMDB, Spam Detection, where the classifier is a fine-tuned version of BERT as well
as CIFAR where we use a vision transformer. We note that perturbing by h = 2−6 costs us almost
nothing in terms of AUROC for all three datasets. Note that, to obtain Figure 1, the neural network
loss was modified to account for the fact that we are applying perturbation at inference time. Details
of this are explained in appendix E. The modification is cheap, meaning that the cost of training the
network with the modified loss is virtually the same as using the standard cross-entropy loss.
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Figure 2: Number of Samples Needed to Achieve Gap (Synthetic Data).

Upper Bound Quality vs Sample Size The best way to evaluate an estimator is by comparing to
the ground truth, which is unavailable for real-world datasets. We therefore introduced three syn-
thetic examples of the calibration functions (see heading of Figure 2 for definitions). The figure also
shows the sample efficiency of bounding calibration error, defined as the gap between the probabilis-
tic upper bound and the ground truth of the calibration error. Since we used synthetic datasets for
this experiment, the ground truth is known and we can evaluate the gap exactly. We evaluate three
methods: our proposed kernel estimator (denoted as NW in the plot), Lipschitz bucketing (denoted
as Lip+Bkt in the plot) and TV denoising (denoted as TV).

Real Data Experiment We also wanted to establish how the three bounding techniques work
on real data. To do this, we used the Amazon Polarity dataset. Since the true calibration error
is unknown, we plot the upper bounds on the calibration error directly. It can be seen that NW
smoothing again gives the tightest bounds.

Note On Repeats Figures 2 and 3 do not contain confidence bars because they are small. We
repeated the all experiments on these plots 64 times and report mean performance.

Empirical Rates We can see that the log-log curves in Figure 2 are straight lines. We can interpret
their slopes as empirical rates. We did that obtaining the following results.

8
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Figure 3: Upper Bounds vs Dataset Size (Real Data).

Method Empirical Rate6 Theoretical Rate
NW [−0.381,−0.231] −1/3
TV [−0.377,−0.136] −1/4

Lip+Bkt [−0.514,−0.302] −1/3

We can see that the rates obtained in practice match the theory. We note that, while we achieve the
same rate as Lipschitz bucketing, our constants are better, meaning we produce significantly tighter
bounds.

8 LARGE LANGUAGE MODEL USAGE

Large Language Models (ChatGPT 4, ChatGPT 5 and Gemini) were used extensively at all stages
in the writing of the paper. Both the theoretical results and the code were verified by the authors.
We describe the details of LLM usage in Appendix G.

9 PRACTICAL ADVICE

The preferred technique is to apply a small perturbation and use Proposition 2 (works
whether or not training is aware of the perturbation). If perturbations are impossible, assume
bounded variation and use Proposition 1 (less sample-efficient). Without either assumption,
the problem is intractable in practice.

10 CONCLUSIONS

We have proposed two new methods for measuring the calibration error of a binary classifier and
described their tradeoffs. We empirically demonstrated it is possible to measure calibration error on
a real task of practical importance. We concluded by giving practical advice on how to measure cali-
bration error in practice. While we focused on binary classifiers, we conjecture that our perturbation
technique extends naturally to multiclass calibration (future work).

REPRODUCIBILITY STATEMENT

We provided full proofs for all our claims. We commit to release the source code that fully repro-
duces our figures upon acceptance.

ETHICS STATEMENT

Our theoretical results make abstract statements about the quality of estimators. For the experiments,
we used readily available public datasets. Neither gives rise to ethics concerns.
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A TOTAL VARIATION DENOISING

A.1 PROBLEM FORMULATION

Given a set of training points s1, s2, . . . , s|T |, we introduce the vector notations

{ηT }i = η(si), {η̂T }i = η̂(si).

We consider a variant of the classical TV denoising problem where we observe binary training data
yT ∈ {0, 1}|T | generated according to:

yT i ∼ Bernoulli(ηT i), i = 1, 2, . . . , |T |. (13)
We can always decompose yT as:

yT = ηT + ϵT (14)
where ϵT ∈ Rn is the noise term representing the deviation of our observations from the expected
values.

The TV denoising estimate η̂T is obtained by solving:

η̂T = arg min
ηT∈[0,1]|T |

1

2|T | ∥yT − ηT ∥22 + λ∥DηT ∥1 (15)

where D ∈ R(|T |−1)×|T | is the finite difference operator defined as:
(DηT )i = ηT i+1 − ηT i, i = 1, 2, . . . , |T | − 1 (16)

Since the operator D is linear, it can be represented as a matrix. We abuse notation slightly, also
calling this matrix D. The variable λ > 0 in equation 15 is a regularization parameter. We will later
derive a way to set λ optimally as a function of observable quantities.

We note that by assumption, the total variation of the true parameter vector is bounded: ∥DηT ∥1 ≤
V for some known constant V > 0.
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A.2 AUXILIARY LEMMAS

We first need to establish two useful Lemmas.

Lemma 2. Each row of the matrix D+⊤ has squared 2-norm at most 1
3 |T |. Here, D+⊤ is the

transpose of the Moore-Penrose pseudo-inverse of the matrix D.

Proof. Because D is of full row rank, we have D+⊤ = (D⊤(DD⊤)−1)⊤ = (DD⊤)−1D. Let us
first examine the elements of the matrix (DD⊤)−1. The matrix DD⊤ is tri-diagonal and its inverse
can be computed using the formula derived by Da Fonseca & Petronilho (2001). Using the formula
and simplifying gives {

(DD⊤)−1
}
ij
=

min(i, j)(|T | −max(i, j))

|T | .

Multiplying by D and again simplifying terms, we get

{
(D)+⊤}

jk
=
{
(DD⊤)−1D

}
jk

=

{
k
|T | for k < j
k−|T |
|T | for k ≥ j

.

The squared-2 norm of row j simplifies as:

j−1∑
k=1

(
k

|T |

)2

+

|T |−1∑
k=j

(
k − |T |
|T |

)2

=
1

|T |2

j−1∑
k=1

k2 +

|T |−1∑
k=j

(|T | − k)2


≤ 1

|T |2

j−1∑
k=1

k2 +

|T |−j∑
k=1

k2


≤ 1

|T |2

|T |−1∑
k=1

k2


=

(|T | − 1)|T |(2|T | − 1)

6|T |2

=
2|T |2 − 3|T |+ 1

6|T |

=
2|T | − 3 + 1

|T |
6

≤ 2|T |
6

=
1

3
|T |

Lemma 3. Let noise ϵ be defined as in equation (14). Then we simultaneously have

∥Πϵ∥2 ≤ t1, ∥D+⊤ϵ∥∞ ≤ t2

with probability 1− δ, where t1 and t2 are defined as in Lemma 4.

Proof. We begin with the bound on ∥Πϵ∥2. First we use the fact that Π = 1
|T |11

⊤ to write

∥Πϵ∥2 =

∥∥∥∥ 1

|T |
(∑

ϵj

)
1

∥∥∥∥
2

=
1

|T |
∣∣∣∑ ϵj

∣∣∣ ∥1∥2 =
1√
|T |

∣∣∣∑ ϵj

∣∣∣ .
Now, ϵj are centered Bernoulli random variables, hence they are sub-Gaussian with parameter 1

4 .
Hence

∑
ϵj is sub-Gaussian with parameter |T |

4 . This allows us to write.

P (
∣∣∣∑ ϵj

∣∣∣ ≥ t) ≤ 2 exp

{
− t2

2 |T |
4

}
= 2 exp

{
−2t2

|T |

}
.

12
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Setting the right-hand side to equal δ′, we get t =
√

|T |
2 ln 2

δ′ . Hence., with probability 1 − δ′, we
have

∥Πϵ∥2 ≤
√

1

2
ln

2

δ′
. (17)

We now move to bound the term ∥D+⊤ϵ∥∞. Invoking Lemma 2, we know that every row of D+⊤

has squared 2-norm upper bounded by 1
3 |T |. Also, like before, each element of ϵ is sub-Gaussian

with parameter 1
4 . Combining these insights, and using the fact that noise terms are independent, the

element j of the vector D+⊤ϵ is sub-Gaussian with parameter |T |
3

1
4 = |T |

12 . This allows us to write.

P (
∣∣∣{D+⊤ϵ

}
j

∣∣∣ ≥ t) ≤ 2 exp

{
− t2

2 |T |
12

}
= 2 exp

{
−6t2

|T |

}
.

By the union bound, we have

P (
∥∥D+⊤ϵ

∥∥
∞ ≥ t) = P (max

j

∣∣∣{D+⊤ϵ
}
j

∣∣∣ ≥ t) ≤ 2(|T | − 1) exp

{
−6t2

|T |

}
.

Setting the right-hand side to δ′′, we obtain t =
√

|T |
6 ln 2(|T |−1)

δ′′ . This means that with probability
1− δ′′, we have

∥D+⊤ϵ∥∞ ≤
√

|T |
6

ln
2(|T | − 1)

δ′′

The result follows by using (17) and (A.2) together, setting δ′ = δ′′ = δ/2 and invoking the union
bound.

A.3 PROOF OF MAIN RESULT ON TV DENOISING

Lemma 4. Define e = ∥ηT − η̂T ∥2. If we set λ = t2
|T | in the optimization problem (2), then with

probability 1− δ we have

1

|T |e
2 ≤ 1

|T |

[
2t21 + 2t1

√
t21 + 4t2V + 4t2V

]
,

where t1 =
√

1
2 ln

4
δ and t2 =

√
|T |
6 ln 4(|T |−1)

δ .

The proof follows the technique proposed by Hütter & Rigollet (2016). We make all constants
explicit.

Proof. Using equation (2) and optimality, we get.

1

2n
∥yT − η̂T ∥22 + λ∥Dη̂T ∥1 ≤ 1

2|T | ∥yT − ηT ∥22 + λ∥DηT ∥1

Using the fact that yT = ηT + ϵT , we get

1

2|T | ∥η̂T − ηT − ϵT ∥22 + λ∥Dη̂T ∥1 ≤ 1

2|T | ∥ϵT ∥
2
2 + λ∥DηT ∥1.

Expanding the squared term on the left hand side, we get

1

2|T | ∥η̂T − ηT ∥22 −
1

|T | (η̂T − ηT )
⊤ϵT +

1

2|T | ∥ϵT ∥
2
2 + λ∥Dη̂T ∥1 ≤ 1

2|T | ∥ϵT ∥
2
2 + λ∥DηT ∥1.

Canceling the term 1
2|T |∥ϵT ∥22, we get

1

2|T | ∥η̂T − ηT ∥22 −
1

|T | (η̂T − ηT )
⊤ϵT + λ∥Dη̂T ∥1 ≤ λ∥DηT ∥1.

13
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Rearranging terms, we get
1

|T | ∥η̂T − ηT ∥22 ≤ 2

|T | (η̂T − ηT )
⊤ϵ− 2λ∥Dη̂T ∥1 + 2λ∥DηT ∥1. (18)

We now focus on the term (η̂T − ηT )
⊤ϵT . Denote by Π the projection on the null-space of D (the

space spanned by the vector of all ones). Noting that D⊤D+⊤ = (I −Π), we write

(η̂T − ηT )
⊤ϵ = (η̂T − ηT )

⊤(I −Π)ϵ+ (η̂T − ηT )
⊤ΠϵT

= (η̂T − ηT )
⊤D⊤D+⊤ϵT + (η̂T − ηT )

⊤ΠϵT

≤ ∥D(η̂T − ηT )∥1∥D+⊤ϵT ∥∞ + ∥(η̂T − ηT )∥2∥ΠϵT ∥2.
Here, the last inequality follows by using Hölder inequality twice. Invoking Lemma 3, we get

(η̂T − ηT )
⊤ϵT ≤ ∥D(η̂T − ηT )∥1t2 + ∥(η̂T − ηT )∥2t1

Plugging back into equation (18), we get
1

|T | ∥η̂T − ηT ∥22 ≤ 2

|T | ∥D(η̂T − ηT )∥1t2 +
2

|T | ∥(η̂T − ηT )∥2t1 − 2λ∥Dη̂T ∥1 + 2λ∥DηT ∥1.

Rearranging terms, we get
1

|T | ∥η̂T − ηT ∥22 −
2

|T | ∥(η̂T − ηT )∥2t1 ≤ 2

|T | ∥D(η̂T − ηT )∥1t2 − 2λ∥Dη̂T ∥1 + 2λ∥DηT ∥1.

Using the fact that ∥D(η̂T − ηT )∥1 ≤ ∥Dη̂T ∥1 + ∥DηT ∥1, we get
1

|T | ∥η̂T − ηT ∥22 −
2

|T | ∥(η̂T − ηT )∥2t1 ≤ 2

|T | (∥Dη̂T ∥1 + ∥DηT ∥1)t2 − 2λ∥Dη̂T ∥1 + 2λ∥DηT ∥1.

Setting λ = t2
|T | and canceling terms, we get

1

|T | ∥η̂T − ηT ∥22 −
2

|T | ∥(η̂T − ηT )∥2t1 ≤ 2

|T | ∥DηT ∥1t2 + 2
t2
|T | ∥DηT ∥1 =

4t2
|T | ∥DηT ∥1.

Using the assumption of bounded total variation, we get ∥DηT ∥1 ≤ V , so that
1

|T | ∥η̂T − ηT ∥22 −
2

|T | ∥(η̂T − ηT )∥2t1 ≤ 4t2
|T |V.

Denoting e = ∥η̂T − ηT ∥2, we have

e2 − 2et1 − 4t2V ≤ 0.

This implies

e ≤ t1 +
√

t21 + 4t2V .

Squaring and dividing by |T |, we get

1

|T |e
2 ≤ 1

|T |

[
t21 + 2t1

√
t21 + 4t2V + t21 + 4t2V

]
=

1

|T |

[
2t21 + 2t1

√
t21 + 4t2V + 4t2V

]
.

A.4 MOVING TO THE L1 NORM

Using Lemma 4 and the Cauchy-Schwarz inequality, we can make the following corollary.
Corollary 1. If we set λ = t2

|T | in the optimization problem (2), then with probability 1− δ we have

1

|T | ∥ηT − η̂T ∥1 ≤
√

1

|T |

[
2t21 + 2t1

√
t21 + 4t2V + 4t2V

]
,

where t1 =
√

1
2 ln

4
δ and t2 =

√
|T |
6 ln 4(|T |−1)

δ .

14
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A.5 BOUNDED VARIATION POPULATION TRANSFER

One limitation of Corollary 1 is that it only holds on the training set. We now use bounded variation
to relate this to a population-based expectation. We start by proving the following Lemma.
Lemma 5. Consider a function g : [0, 1] → R of bounded variation Vg . Consider a sample
s1, . . . , sn sampled from a distribution with CDF F and a empirical CDF Fn, we have∣∣∣∣∣Es[g(s)]−

1

n

n∑
i=1

g(si)

∣∣∣∣∣ ≤ Vg∥F − Fn∥∞

Proof. Consider the integral ∫
gdF −

∫
dfFn =

∫
gd(F − Fn︸ ︷︷ ︸

H

),

where we introduced the notation H = F − Fn. Integrating by parts, we obtain∫
gdH = −

∫
Hdg + g(1)H(1) + g(0)H(0)︸ ︷︷ ︸

0

,

where the last two terms vanish because H(0) = H(1) = 0. This gives∫
gd(F − Fn) = −

∫
(F − Fn)dg.

Taking absolute values, we get∣∣∣∣∫ gd(F − Fn)

∣∣∣∣ = ∣∣∣∣∫ (F − Fn)dg

∣∣∣∣ .
Using the total variation assumption we have,∣∣∣∣∫ (F − Fn)dg

∣∣∣∣ ≤ Vg∥F − Fn∥∞

We now combine Lemma 5 with corollary 1, obtaining a bound useful for our problem.
Corollary 2. With probability 1− δ

Es [|η(s)− η̂(s)|] ≤ 1

|T |
∑
i∈T

|η(si)− η̂(si)|+ (V + V̂ )

√
log(2/δ)

2|T | .

Proof. Apply Lemma 5 to the function g(s) = |η(s) − η̂(s)|. Apply the DKW theorem to bound
the term ∥F − Fn∥∞ with probability 1− δ. Apply the property that Vg ≤ V + V̂ by construction
(where V is the total variation of η and V̂ is the total variation of η̂).

B FINITE DERIVATIVE RESULTS

B.1 BOUNDING THE SMOOTHING ERROR UNDER CONTINUITY

Lemma 6 (Smoothing Error). Assume η is twice differentiable with the first and second derivatives
uniformly bounded by b1 and b2 respectively. Consider a fixed design (set of scores s1, . . . , s|T |).
Denote by ksi a nonnegative kernel. Denote by η̂ the Nadaraya-Watson smoothed approximation to
η obtained from a dataset of |T | samples, defined as

η̂(s′) =
∑
i∈T

wi(s
′)yi, wi(s

′) =
ksi(s

′)∑
j∈T ksj (s

′)
.
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Then we have:
EYT

[|η̂(s′)− η(s′)|ST ] ≤ gT (s
′),

where

gT (s
′) = b1

∑
i∈T

wi(s
′) |s′ − si|+ b2

1

2

∑
i∈T

wi(s
′)(s′ − si)

2 +
1

2

√∑
i∈T

w2
i (s

′).

Proof. We begin by decomposing the term we want to bound.

η̂(s′)− η(s′) =

(∑
i∈T

wi(s
′)η(si)

)
− η(s′)︸ ︷︷ ︸

bias

+
∑
i∈T

wi(s
′)(yi − η(si))︸ ︷︷ ︸
noise

(19)

We will bound the bias and noise term separately. We start with the bias term. Taking the Taylor
expansion of η around training point si, evaluated at s′, we get

η(s′) = η(si) + η′(si)(s
′ − si) +

1

2
η′′ξi(s

′)(s′ − si)
2.

for some ξi(s
′). Subtracting η(si) and summing across the training points, we get∑

i∈T

wi(s
′)(η(s′)− η(si)) =

∑
i∈T

wi(s
′)η′(si)(s

′ − si) +
1

2

∑
i∈T

wi(s
′)η′′(ξi(s

′))(s′ − si)
2.

Bounding, we get∣∣∣∣∣∑
i∈T

wi(s
′)(η(s′)− η(si))

∣∣∣∣∣ ≤ b1
∑
i∈T

wi(s
′) |s′ − si|+ b2

1

2

∑
i∈T

wi(s
′)(s′ − si)

2.

We now bound the noise term. Applying Jensen’s inequality we have

EYT

[
|
∑
i∈T

wi(s
′)(yi − η(si))|

∣∣∣∣∣ST

]
≤

√√√√√EYT

(∑
i∈T

wi(s′)(yi − η(si))

)2
∣∣∣∣∣∣ST

.
The term yi − η(si) is zero mean and sub-Gaussian with variance at most 1/4. Hence we have√√√√√EYT

(∑
i∈T

wi(s′)(yi − η(si))

)2
∣∣∣∣∣∣ST

 ≤ 1

2

√∑
i∈T

w2
i (s

′).

Putting both terms from (19) together, we get the result.

C SCORE PERTURBATION

C.1 BOUNDING THE DERIVATIVES OF THE CALIBRATION FUNCTION OF THE MODIFIED
CLASSIFIER

We have a dataset of tuples (sorig, y) where the components are generated as follows.

sorig ∼ p(sorig)

y ∼ Bernoulli(ηorig(sorig))

Here, p(sorig) is an arbitrary probability measure for the scores sorig ∈ [0, 1] (it can be discrete,
continuous, or a mixture). The function ηorig(sorig) = P(Y = 1|S = sorig) is the calibration function
of the original classifier (before perturbation).

Now, we create a new dataset of tuples (sorig, s, y) where the components are generated by perturbing
the original scores:

sorig ∼ p(sorig)

16
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s ∼ k(s | sorig)

y ∼ Bernoulli(ηorig(sorig))

Here, for each original score sorig, k(s | sorig) is a probability density function (PDF) on [0, 1], which
acts as a smoothing kernel. The joint distribution is given by

p(sorig, s, y = 1) = p(sorig) k(s | sorig)︸ ︷︷ ︸
p(s|sorig)

ηorig(sorig)︸ ︷︷ ︸
p(y=1|sorig)

p(sorig, s, y = 0) = p(sorig) k(s | sorig)︸ ︷︷ ︸
p(s|sorig)

(1− ηorig(sorig))︸ ︷︷ ︸
p(y=0|sorig)

We are interested in the calibration function of this new perturbed classifier, which is the conditional
probability p(y = 1|s). To find it, we first compute the marginals:

p(y = 1, s) =

∫ 1

0

k(s | sorig)ηorig(sorig) dp(sorig) ,

p(y = 0, s) =

∫ 1

0

k(s | sorig)(1− ηorig(sorig)) dp(sorig) ,

p(s) = p(y = 1, s) + p(y = 0, s) =

∫ 1

0

k(s | sorig)(ηorig(sorig) + 1− ηorig(sorig)) dp(sorig)

=

∫ 1

0

k(s | sorig) dp(sorig) .

This allows us to compute the calibration function of the perturbed classifier, which we denote by
η(s):

η(s) =
p(y = 1, s)

p(s)
=

∫ 1

0

ηorig(sorig) k(s | sorig) dp(sorig)∫ 1

0

k(s | sorig) dp(sorig)

, s ∈ [0, 1]. (20)

This expression is a kernel-weighted average of the original calibration function ηorig(sorig).

C.1.1 HYPERBOLIC SECANT KERNEL

We use the hyperbolic secant function as our kernel. For a fixed bandwidth h > 0 and for each
sorig ∈ [0, 1], we define the sech kernel k(s | sorig):

Z(sorig, h) =

∫ 1

0

sech

(
s− sorig

h

)
ds, (21)

k(s | sorig) =
1

Z(sorig, h)
sech

(
s− sorig

h

)
=

1

Z(sorig, h)

2

e
s−sorig

h + e−
s−sorig

h

. (22)

First, we find a closed form equation for Z(sorig, h) and a lower bound of this quantity, which we
will use in later proofs.

Lemma 7 (Closed form and lower bound for Z(sorig, h)). For any h > 0 and sorig ∈ [0, 1], the
normalization constant in (21) admits the closed form

Z(sorig, h) = h

[
arctan

(
sinh

(
1− sorig

h

))
+ arctan

(
sinh

(sorig

h

))]
. (23)

Moreover, Z(sorig, h) is symmetric about sorig = 1
2 , strictly maximized at sorig = 1

2 , and attains its
minimum at the endpoints sorig ∈ {0, 1}. In particular,

min
sorig∈[0,1]

Z(sorig, h) = Z(0, h) = Z(1, h) = h arctan
(
sinh

(
1

h

))
. (24)

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Proof. With the substitution u = (s − sorig)/h (so ds = h du), the limits s ∈ [0, 1] become
u ∈ [−sorig/h, (1− sorig)/h], hence

Z(sorig, h) =

∫ 1

0

sech
(s− sorig

h

)
ds = h

∫ (1−sorig)/h

−sorig/h

sech(u) du.

Using d
du arctan(sinhu) = sechu, we obtain

Z(sorig, h) = h
[
arctan

(
sinhu

)]u=(1−sorig)/h

u=−sorig/h

= h
(
arctan

(
sinh

(
1− sorig

h

))
+ arctan

(
sinh

(sorig

h

)))
,

which is (23) (we used the oddness of sinh and arctan).

Now, we will find a lower bound for Z. First, differentiate (23) with respect to sorig:

∂

∂sorig
Z(sorig, h) = h

(
− 1

h
sech

(
1− sorig

h

)
+

1

h
sech

(sorig

h

))
= sech

(sorig

h

)
− sech

(
1− sorig

h

)
Since x 7→ sechx is strictly decreasing on [0,∞), we have ∂sorigZ(sorig, h) > 0 for sorig < 1

2 ,
∂sorigZ(sorig, h) = 0 at sorig = 1

2 , and ∂sorigZ(sorig, h) < 0 for sorig > 1
2 . Hence Z is strictly

increasing on [0, 1
2 ] and strictly decreasing on [ 12 , 1], so its maximum is at sorig = 1

2 and its minimum
is attained at the endpoints sorig ∈ {0, 1}. Evaluating (23) at sorig = 0 or sorig = 1 yields

Z(0, h) = Z(1, h) = h arctan
(
sinh

(
1

h

))
,

which is strictly positive for every h > 0, proving the uniform lower bound (24).

Now, we show that k(s | sorig) defined in Eq. (22) is a valid probability density function over [0, 1]
in the following Lemma.
Lemma 8. For any given sorig ∈ [0, 1] and h > 0, the function k(s | sorig) defined in Eq. (22) is a
valid probability density function over [0, 1].

Proof. We must verify two conditions: non-negativity and that the integral over [0, 1] is unity.

(1) Non-negativity. Recall that for any t ∈ R, sech(t) ∈ (0, 1] is continuous and strictly positive.
Therefore the map s 7→ sech

(
(s − sorig)/h

)
is continuous and strictly positive on [0, 1]. Regarding

the normalization constant, we showed in Lemma 7 that Z(sorig, h) > 0. Since the numerator in
k(s | sorig) and the denominator Z(sorig, h) are both positive, we have

k(s | sorig) =
1

Z(sorig, h)
sech

(s− sorig

h

)
≥ 0 for all s ∈ [0, 1].

(2) Unit integral. Using the definition of Z(sorig, h),∫ 1

0

k(s | sorig) ds =
1

Z(sorig, h)

∫ 1

0

sech
(s− sorig

h

)
ds =

Z(sorig, h)

Z(sorig, h)
= 1.

Since k(· | sorig) ≥ 0 on [0, 1] and integrates to 1, it is a valid probability density function on [0, 1].

Substituting this specific kernel into our general formula (20) gives the explicit sech-perturbed cal-
ibration:

η(s) =

∫ 1

0

ηorig(sorig)
1

Z(sorig, h)
sech

(
s− sorig

h

)
dp(sorig)∫ 1

0

1

Z(sorig, h)
sech

(
s− sorig

h

)
dp(sorig)

, s ∈ [0, 1]. (25)
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C.1.2 A UNIFORM BOUND FOR THE FIRST DERIVATIVE

To analyze the smoothness of η(s), we compute its first derivative. Let’s define the numerator and
denominator of (25) as separate functions:

N(s) =

∫
[0,1]

ηorig(sorig)
1

Z(sorig, h)
sech

(
s− sorig

h

)
dp(sorig),

D(s) =

∫
[0,1]

1

Z(sorig, h)
sech

(
s− sorig

h

)
dp(sorig),

so that η(s) = N(s)/D(s). To ensure η(s) is well-defined, we must show D(s) ̸= 0. We show this
in the following Lemma.
Lemma 9 (Positivity of the denominator). For the sech kernel, the denominator D(s) is strictly
positive for all s ∈ [0, 1] and any probability measure p on [0, 1].

Proof. Fix s ∈ [0, 1] and h > 0. For every sorig ∈ [0, 1] we have sech
(
(s − sorig)/h

)
> 0 and

Z(sorig, h) > 0 (Lemma 7), hence

f(sorig) :=
1

Z(sorig, h)
sech

(s− sorig

h

)
> 0 for all sorig.

Therefore D(s) =
∫
[0,1]

f(sorig) dp(sorig) > 0, since the integral of a strictly positive function with
respect to a probability measure is strictly positive.

Here, we provide the derivative of the sech kernel.
Lemma 10 (Derivative of the sech kernel). For every sorig ∈ [0, 1], the partial derivative of

sech
(

s−sorig

h

)
with respect to s is

∂

∂s
sech

(
s− sorig

h

)
= − 1

h
sech

(
s− sorig

h

)
tanh

(
s− sorig

h

)
, for s ∈ [0, 1]. (26)

Proof. Let u := (s− sorig)/h. Since sechu = 1/ coshu and (coshu)′ = sinhu,

d

du
sechu = − sinhu

cosh2 u
= − sechu tanhu.

By the chain rule with ∂u/∂s = 1/h,

∂

∂s
sech

(
s− sorig

h

)
= − 1

h
sech

(
s− sorig

h

)
tanh

(
s− sorig

h

)
,

which proves (26) for all s ∈ [0, 1].

To compute the derivatives of N(s) and D(s), we need to differentiate under the integral sign. The
following Lemma provides the justification.
Lemma 11 (Differentiation under the integral sign). The derivatives of N(s) and D(s) can be
computed as:

N ′(s) =
∫
[0,1]

ηorig(sorig)
1

Z(sorig, h)

∂

∂s
sech

(
s− sorig

h

)
dp(sorig), (27)

D′(s) =
∫
[0,1]

1

Z(sorig, h)

∂

∂s
sech

(
s− sorig

h

)
dp(sorig). (28)

Proof. Let us start by focusing on N(s). First, we need to find ∂
∂sN(s). Let’s represent N(s) as

N(s) =
∫
[0,1]

f(sorig, s)dp(sorig), where

f(sorig, s) = ηorig(sorig)
1

Z(sorig, h)
sech

(
s− sorig

h

)
.
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Now recall by Lemma 10 (using the oddness of tanh),

∂

∂s
sech

(
s− sorig

h

)
=

1

h
sech

(
s− sorig

h

)
tanh

(
sorig − s

h

)
, for s ∈ [0, 1].

Therefore, we notice that for every s we have∣∣∣∣∣ ∂∂sf(sorig, s)

∣∣∣∣∣ =
∣∣∣∣∣ηorig(sorig)

1

Z(sorig, h)

1

h
sech

(
s− sorig

h

)
tanh

(
sorig − s

h

)∣∣∣∣∣
≤ 1

hZ(sorig, h)
=: g(sorig) .

Recall that Z(sorig, h) is strictly positive and lower bounded Z(sorig, h) ≥ h arctan
(
sinh

(
1
h

) )
from Lemma 7. Because of this and the fact that h > 0, we have supsorig∈[0,1] 1/hZ(sorig, h) < ∞.
Hence g is bounded, so we can apply the dominated convergence theorem (Theorem 11.32 in (Rudin,
1976)), and we may pass the derivative through the integral. An analogous reasoning easily applies
to D(s) too.

By the quotient rule, the derivative of η(s) is:

η′(s) =
N ′(s)D(s)−N(s)D′(s)

D(s)2
. (29)

Alternative Representation via Covariance. The derivative has an elegant alternative represen-
tation. Let’s define a new probability measure ws(dsorig) on [0, 1] that depends on s. This measure
re-weights the original measure p(sorig) based on the kernel:

ws(dsorig) =

1
Z(sorig,h)

sech
(

s−sorig

h

)
D(s)

dp(sorig). (30)

Note that
∫ 1

0
ws(dsorig) =

1
D(s)

∫ 1

0
1

Z(sorig,h)
sech

(
s−sorig

h

)
dp(sorig) =

D(s)
D(s) = 1.

Now, we use this alternative representation to prove that the derivative of η(s) can be expressed as a
covariance under ws in the following Proposition.

Lemma 12. The derivative of the perturbed calibration function can be expressed as a covariance
under the measure ws(dsorig):

η′(s) =
1

h
CovS∼ws

(
ηorig(S), tanh

(
S − s

h

))
, s ∈ [0, 1].

Proof. Starting from (29) and writing T (u) := tanh
(
s−u
h

)
, Lemma 11 together with Lemma 10

gives

N ′(s)
D(s)

=
1

D(s)

∫
[0,1]

ηorig(sorig)
1

Z(sorig, h)

∂

∂s
sech

(
s− sorig

h

)
dp(sorig)

= − 1

h
Ews

[
ηorig(S)T (S)

]
,

and

D′(s)
D(s)

=
1

D(s)

∫
[0,1]

1

Z(sorig, h)

∂

∂s
sech

(
s− sorig

h

)
dp(sorig) = − 1

h
Ews

[
T (S)

]
.
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Since η(s) = N(s)
D(s) = Ews

[ηorig(S)], the quotient rule (29) yields

η′(s) =
N ′(s)
D(s)

− N(s)

D(s)

D′(s)
D(s)

= − 1

h
Ews

[
ηorig(S)T (S)

]
+

1

h
Ews

[ηorig(S)] Ews
[T (S)]

= − 1

h

(
Ews[ηorig(S)T (S)]− Ews [ηorig(S)] Ews[T (S)]

)
= − 1

h
CovS∼ws

(
ηorig(S), tanh

(
s− S

h

))
.

Because tanh is odd, this is equivalently

η′(s) =
1

h
CovS∼ws

(
ηorig(S), tanh

(
S − s

h

))
.

Using this alternative representation as a covariance, we provide a uniform bound for the first deriva-
tive in the following Corollary.
Corollary 3 (Uniform Lipschitz bound). For the sech kernel and any bandwidth h > 0, the per-
turbed calibration function η is Lipschitz continuous with a constant independent of p and η:

sup
s∈[0,1]

|η′(s)| ≤ tanh(1/h)

2h
≤ 1

2h
.

Proof. By Lemma 12, η′(s) = 1
h Covws

(
ηorig(S), T

)
with T = tanh

(
S−s
h

)
. By Cauchy–

Schwarz, we know that
|Cov(X,Y )| ≤

√
V(X)V(Y ),

where with V(·) we indicate the variance of a random variable.

Also, Popoviciu’s inequality says that, if Z ∈ [a, b], then we have a bound for its variance V(Z):

V(Z) ≤ (b− a)2

4
.

Since ηorig(S) ∈ [0, 1] and T ∈ [− tanh(1/h), tanh(1/h)], Cauchy–Schwarz plus Popoviciu’s
inequality gives

1

h
|Cov(ηorig(S), T )| ≤ 1

h

√
1

4
· (2 tanh(1/h))

2

4
=

1

h

√
tanh2(1/h)

4
=

tanh(1/h)

2h
.

Noticing that tanh(1/h) ≤ 1 yields the claim.

C.1.3 SECOND DERIVATIVE AND A UNIFORM BOUND

Let us focus now on bounding the second derivative. First, we will find the second derivative of the
kernel in the next Lemma.
Lemma 13 (Second derivative of the kernel). For every sorig ∈ [0, 1] and h > 0,

∂2

∂s2
sech

(
s− sorig

h

)
=

1

h2
sech

(
s− sorig

h

)(
2 tanh2

(
s− sorig

h

)
− 1

)
, s ∈ [0, 1].

Proof. Let u = (s− sorig)/h. Using d
du sechu = − sechu tanhu and d

du tanhu = sech2 u,

d2

du2
sechu = − d

du
(sechu tanhu) = sechu tanh2 u− sechu sech2 u = sechu (2 tanh2 u− 1).

Chain rule gives the claim.
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Now, we justify differentiation under the integral sign for second-order derivatives.
Lemma 14 (Differentiation under the integral sign (second order)). For fixed h > 0 and all s ∈
[0, 1],

N ′′(s) =
∫
[0,1]

ηorig(sorig)
1

Z(sorig, h)

∂2

∂s2
sech

(
s− sorig

h

)
dp(sorig),

D′′(s) =
∫
[0,1]

1

Z(sorig, h)

∂2

∂s2
sech

(
s− sorig

h

)
dp(sorig).

Proof. Similarly to the proof of Lemma 11, we want to apply the dominated convergence theorem.
By Lemma 13, the integrands are bounded in absolute value by 1

h2Z(sorig,h)
. Also, we know from

Lemma 7 that minsorig∈[0,1] Z(sorig, h) = h arctan
(
sinh

(
1
h

))
> 0. Thus 1

h2Z(sorig,h)
is an integrable

dominator, so the dominated convergence theorem applies (Theorem 11.32 from (Rudin, 1976)),
allowing differentiation under the integral.

Similarly to what we shown for the first derivative, we show that the second derivative can be repre-
sented as a covariance under ws in the following Lemma.
Lemma 15 (Second derivative in covariance form). Let T (S) = tanh

(
S−s
h

)
and expecta-

tion/covariance under S ∼ ws, where ws is defined as in Eq. 30. We have that:

η′′(s) =
1

h2

(
Covws

(
ηorig(S), 2T (S)

2 − 1
)
− 2 Ews

[T (S)] Covws

(
ηorig(S), T (S)

))
.

Proof. First, notice that, since D(s) > 0 (Lemma 9), all ratios are well-defined. By Lemma 14 and
Lemma 13, using that T (S)2 = tanh2

(
S−sorig

h

)
= tanh2

(
sorig−S

h

)
,

N ′′(s)
D(s)

=
1

h2
Ews

[
ηorig(S) (2T (S)

2 − 1)
]
,

D′′(s)
D(s)

=
1

h2
Ews

[
2T (S)2 − 1

]
.

From Lemma 11 and Lemma 10,

N ′(s)
D(s)

=
1

h
Ews

[ηorig(S)T (S)],
D′(s)
D(s)

=
1

h
Ews

[T (S)], η(s) =
N(s)

D(s)
= Ews

[ηorig(S)].

We now use the quotient rule for the second derivative:

η′′ =
N ′′D −ND′′

D2
− 2

(N ′D −ND′)D′

D3
=
(

N ′′

D − η D′′

D

)
− 2
(

N ′

D − η D′

D

)
D′

D .

Substituting the four identities above yields

η′′(s) =
1

h2

(
Ews

[ηorig(S)(2T (S)
2−1)]− Ews

[ηorig(S)] Ews
[2T (S)2−1]

)
− 2

h2

(
Ews

[ηorig(S)T (S)]− Ews
[ηorig(S)] Ews

[T (S)]
)

Ews
[T (S)].

Recognizing covariances,

E[η(2T (S)2−1)]− E[ηorig(S)]E[2T (S)
2−1] = Cov(ηorig(S), 2T (S)

2 − 1),

E[ηorig(S)T (S)]− E[ηorig(S)]E[T (S)] = Cov(ηorig(S), T (S)),

we obtain

η′′(s) =
1

h2

(
Covws

(
ηorig(S), 2T

2(S)− 1
)
− 2 Ews [T (S)] Covws

(
ηorig(S), T (S)

))
.
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Corollary 4 (Uniform second-derivative bound). For the sech kernel and any bandwidth h > 0,

sup
s∈[0,1]

|η′′(s)| ≤ 3

2

tanh2(1/h)

h2
≤ 3

2

1

h2
.

Proof. Let τ := tanh(1/h). Then T (S) := tanh
(

S−s
h

)
∈ [−τ, τ ]. Hence, by Popoviciu’s in-

equality,

Vws
(T (S)) ≤ (2τ)2

4
= τ2, 2T (S)2−1 ∈ [−1, 2τ2−1] ⇒ Vws

(2T (S)2−1) ≤ (2τ2)2

4
= τ4.

Since ηorig(S) ∈ [0, 1], V(ηorig(S)) ≤ 1/4. Using Cauchy–Schwarz,

|Cov(η, 2T 2 − 1)| ≤
√

V(η)V(2T 2 − 1) ≤ 1
2 τ

2, |Cov(η, T )| ≤
√

V(η)V(T ) ≤ 1
2 τ,

and |E[T ]| ≤ τ . Therefore, Lemma 15 gives

|η′′(s)| ≤ 1

h2

(
1
2 τ

2 + 2 τ · 1
2 τ
)

=
3

2

τ2

h2
≤ 3

2

1

h2
.

C.2 WHY NOT A TRUNCATED GAUSSIAN?

Another plausible choice for the kernel would have been the (truncated) Gaussian. Let ϕ(t) =
1√
2π

e−t2/2 and Φ(t) =
∫ t

−∞ ϕ(u) du be the standard normal pdf and cdf. Fix a bandwidth h > 0.
For each sorig ∈ [0, 1] define the truncated Gaussian density on [0, 1] centered at sorig,

Z(sorig, h) = Φ

(
1− sorig

h

)
− Φ

(−sorig

h

)
∈ (0, 1), (31)

k(s | sorig) =
1

hZ(sorig, h)
ϕ

(
s− sorig

h

)
. (32)

However, in this paper we decided not to use such a kernel because of the rate of its derivative. In
particular, we have that:

∂

∂s
k(s | sorig) = − s− sorig

h2
k(s | sorig) = O

(
1

h2

)
.

By following a similar reasoning to the one done for the sech kernel (using the dominated conver-
gence theorem, representing the derivative of η as a covariance, and bounding the covariance), we
would have got a bound in the order of O

(
1
h2

)
for the first derivative, which is worse than the one

we obtained for the sech kernel (O
(
1
h

)
). For this theoretical reason, we opted for the more suitable

sech kernel.

D IMPLEMENTATION DETAILS

Plug-in bandwidth For the kernel k′ we pick the bandwidth by minimizing a one–dimensional
bias–variance surrogate obtained from the h–dependent parts of the bound. With the Epanechnikov
kernel, one can derive

a = 3
8b1, b = 1

10b2, c = 1.15
2
√
2ntr

,

so that optimizing 2b t5 + a t3 − 1
2c = 0, gives the optimal h = t2. We solve by a few Newton steps

and clip to [10−4, 1/4]. This choice is an implementation detail; the theory only requires convex
weights summing to one.

Validation subsampling For speed we evaluate the held-out quantities on a uniformly sampled
subset V ′

k ⊆ Vk per fold, with size min{15000,max(5000, 0.05n)}. Each validation point is
still scored by a model trained without it, so the conditional independence and i.i.d. assumptions
required by the empirical-Bernstein step remain valid; subsampling only increases variance (slightly
loosening the bound) and does not alter δ–allocation or correctness.
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Shift aggregation in Bucketing. We evaluate the Lipschitz+bucketing bound for every candidate
partition defined by a bucket count B and a fractional shift r ∈ {0, . . . , R−1} (offset r/B); using
a per-candidate confidence level δ/(BR), we take the minimum bound over all (B, r). By a union
bound, this aggregate is valid at overall level δ.

E IMPLEMENTATION OF THE PERTURBATION

One advantage of our perturbation method is that, unlike bucketing, it is compatible with training by
back-prop. This means we can perturb during classifier training, increasing resilience to perturbation
at test time. To do that we change the standard cross entropy loss to.

L = − 1

N

[
N∑
i=1

yiE log s1,i + (1− yi)E log s0,i

]
+ Lm, (33)

Where yi are the ground-truth binary labels, E log s1,i and E log s0,i are the expectation of the two
log perturbed probabilities, computed using Gauss Legendre quadrature in practice.

The loss Lm directly compares the logits of pairs of samples across classes, ensuring class separa-
tion. Specifically, for each example i in a batch, we first consider the logit difference

zi = l̂1 − l̂0,

where l̂1 and l̂0 denote the logits for the positive and negative classes, respectively. We now restrict
attention to near pairs (i, j), defined by the condition |si − sj | < 2h i.e. where the probabilities are
close. For each such pair, the margin gap is given by

gij = zi − zj .

The loss penalizes cases where this margin is smaller than the target 2h, using a smooth softplus
penalty. Formally, the loss is defined as

Lm =
1

|C|
∑

(i,j)∈N
log
(
1 + exp

(
2h− gij

))
,

where C is the set of near positive–negative pairs. This formulation encourages the logit difference
of positive samples relative to negatives to be at least 2h, thereby pushing the classifier towards
maintaining a larger decision margin.

F DATASETS

We perform perturbation experiments on three binary classification tasks:

• IMDb: A text data set of movie reviews with associated binary labels for sentiment (pos-
itive and negative) (Maas et al., 2011). For this task we fined-tuned a pre-trained BERT
back-bone with a sequence classification head. We used 1, 000 training examples, 250
validation examples and 500 test examples to compute reported metrics.

• Spam Detection: A text dataset of emails labeled as either ”spam” or ”not-spam” Schulte
et al. (2024). As for the IMDb data set, we fined-tuned a pre-trained BERT back-bone with
a sequence classification head, using 1, 000 training examples, 250 validation examples and
500 test examples.

• CIFAR-10: An image data set containing 10 distinct classes: airplane, automobile, bird,
cat, deer, dog, frog, horse, ship and truck (Krizhevsky, 2009). We make a binary task on
this dataset by grouping means of transport (airplane, automobile, ship, truck) and animals
(bird, cat, deer, dog, frog, horse). We fine-tune a pre-trained visual transformer (ViT) with
a classification head. We use 2, 500 training examples, 250 validation examples and 500
test examples.

• Amazon Polarity: A large-scale text dataset of Amazon product reviews labeled with
binary sentiment (positive and negative) (McAuley & Leskovec, 2013).
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G LLM USAGE

In accordance with the ICLR LLM usage policy, we disclose that large language models (LLMs)
were used as tools during this project. First, LLMs were employed to draft concise code prototypes
from mathematical descriptions (e.g., turning a specification of the bounds into runnable Python).
All such code was subsequently scrutinized by the authors; the final implementations and exper-
imental results are the product of human verification. Second, LLMs were used in an iterative
ideation loop for conceptualizing proofs. The final version of formal statements, proofs, as well
as the entirety of the paper’s exposition were written by humans. Importantly, the paper’s central
idea—that injecting noise yields a smooth calibration function enabling tighter bounds—was con-
ceived by a human author; LLMs did not originate this insight. LLMs were also used to polish the
writing and as tools to find relevant related work.
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