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Abstract

We present a new algorithm for imitation learning in infinite horizon linear MDPs
dubbed ILARL which greatly improves the bound on the number of trajectories
that the learner needs to sample from the environment. In particular, we remove
exploration assumptions required in previous works and we improve the depen-
dence on the desired accuracy ϵ from O

(
ϵ−5
)

to O
(
ϵ−4
)
. Our result relies on a

connection between imitation learning and online learning in MDPs with adversar-
ial losses. For the latter setting, we present the first result for infinite horizon linear
MDP which may be of independent interest. Moreover, we are able to provide a
strengthen result for the finite horizon case where we achieve O

(
ϵ−2
)
. Numerical

experiments with linear function approximation shows that ILARL outperforms
other commonly used algorithms.

1 Introduction

Imitation Learning (IL) is of extreme importance for all applications where designing a reward
function is cumbersome while collecting demonstrations from an expert policy πE is easy. Examples
are autonomous driving [23], robotics [32], and economics/finance [10]. The goal is to learn a policy
which competes with the expert policy under the true unknown cost function of the Markov Decision
Process (MDP) [34] with discount factor γ. In particular we consider that the cost vector and the
transition dynamics are linear in some state action dependent d-dimensional features ϕ(s, a) ∈ Rd 1.

Imitation learning relies on two data resources: expert demonstrations collected acting with πE and
data that can be collected interacting in the MDP with policies chosen by the learning algorithm. The
first approach known as behavioural cloning (BC) solves the problem applying supervised learning.
That is, it requires no interaction in the MDP but it requires knowledge of a class Π such that πE ∈ Π

and Õ
(

log|Π|
(1−γ)4ϵ2E

)
expert demonstrations to ensure with high probability that the output policy is at

most ϵE-suboptimal.

The quartic dependence on the effective horizon term ((1− γ)−1) is problematic for long horizon
problems. Moreover, the dependence on Π requires to make prior assumption on the expert policy
structure to provide bounds which do not scale with the number of states in the function approximation
setting. Thankfully, the dependence on the effective horizon can be improved resorting to MDP
interaction. There exists an interesting line of works achieving this goal considering an interacting
setting where the learner has the possibility to query the expert policy at any state visited during the
MDP interaction [39, 38] or that require a generative model to implement efficiently the moment
matching procedure [44]. Another recent work requires a generative model to sample the initial state
of the trajectory from the expert occupancy measure [45]. In this work, we considered a different
scenario which is adopted in most of applied imitation learning [20, 19, 15, 37, 11, 49, 16, 30]. In

1That is, we consider Linear MDP [22] whose formal definition is deferred to Section 2.1
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this case, the expert policy can not be queried but only a dataset of expert demonstrations collected
beforehand is available.

The setting has received scarse theoretical attention so far. The only results we are aware of are: [41]
that focus on the tabular, finite horizon case, [26] in the finite horizon linear mixture MDP setting
and [48] in the infinite horizon Linear MDP setting. In all these works bound the number of required
expert demonstrations scale as (1− γ)−2 which improves considerably over the quartic depedence
attained by BC. However, [48] made the following assumption on the features that greatly simplifies
the exploration in the MDP.

Assumption. Persistent excitation It holds that for any policy πk in the sequence of policies
generated by the algorithm adopted by the learner λmin

(
E
s,a∼dπk [ϕ(s, a)ϕ(s, a)⊺]

)
≥ β > 0.

Despite being commonly used in infinite horizon function approximation setting (see for example
[1, 17, 14, 24, 3, 5]), the persistent excitation assumption is very restrictive as it can be easily violated
by deterministic policies with tabular features.

Our contribution We propose a new algorithm that improves the results of [48] in two important
aspects: it bypasses the persistent excitation assumption (i.e. β = 0 does not cause the bound to blow
up) and it improves the dependence on ϵ. In particular, the new proposed algorithm Algorithm 3 only
requires O

(
d3

(1−γ)8ϵ4

)
MDP interactions which greatly improves upon the bound Õ( d2

β6(1−γ)9ϵ5 )

proven by [48]. Moreover, it holds that β ≤ d−1. Therefore, the bound for PPIL scales at least
as Õ( d8

(1−γ)9ϵ5 ). Therefore, the bound of ILARL is better in all the relevant parameters d, (1 − γ)

and ϵ. The design is different from [48] and it builds on a connection between imitation learning
and online learning in MDP with full information. Therefore, we design as a submodule of our
algorithm the first algorithm for adversarial infinite horizon linear MDPs which achieves O(K3/4)
pseudo-regret. We also consider the finite horizon version of this algorithm which obtains a regret
bound Õ

(
d3/4H3/2K3/4

)
, where H denotes the horizon. Our bound improves by a factor H1/2 the

first result in this setting proven in [55]. Concurrently to our work [42] derived a further improvement
with optimal dependence on K .

Finally, we provide a stronger result for the finite horizon setting. Key for this result is realizing
that in the regret decomposition of [41] one of the two players can in fact play the best response
rather than a more conservative no regret strategy. This observations leads to Algorithm 4 which only
requires O(H4d3ϵ−2) MDP interactions.

Related Works Early works in behavioural cloning (BC) [33] popularized the framework showing
its success in driving problem and [39, 38] show that the problem can be analyzed via a reduction
to supervised learning which provides an expert trajectories bound of order H4 log|Π|

ϵ2 . Successive
algorithms like Dagger [38] and Logger [25] requires to query the expert interactively. In this case, the
expert trajectories improve to H2 maxs,a(A

⋆(s,a))2 log|Π|
ϵ2 where A⋆ is the optimal advantage. Recent

works [36] showed that in the worst case Dagger does not improve over BC but also that both can use
only Õ

(
H2|S|

ϵ

)
in the tabular case. Moreover, when transitions and initial distribution are known

and the expert is deterministic, the result can be improved to O
(

H3/2|S|
ϵ

)
using Mimic-MD [36].

Later, [51] introduced MB-TAIL that having trajectory access to the MDP attains the same bound.
This shows that the traditional bound obtained matching occupancy measure [46] adopted in [41]
is suboptimal in the tabular setting. For the linear function approximation, the works in [44, 35]
introduced algorithms that uses O

(
H3/2d

ϵ

)
expert trajectories with knowledge of the transitions but

those require strong assumptions such as linear expert [35, Definition 4], particular choice of features,
linear reward and uniform expert occupancy measure. [35] also proves an improved result for BC
but under the linear expert assumption which implies that the expert is deterministic. While one can
notice that there exists an optimal policy in a Linear MDP which is a linear expert, in our work we
do not impose assumption on the expert policy and we require O

(
H2d
ϵ2

)
demonstrations. Under

the same setting, the best known bound for BC is H2 log|Π|
d times larger which makes our algorithm
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Table 1: Comparison with related algorithms We report the number of expert trajectories and
MDP interactions needed for the various algorithms to be ϵ-suboptimal according to Definition 1.
Our algorithms provide guarantees for the number of expert trajectories independent on S and Π
without assumptions on the expert policy. By Linear Expert, me mean that the expert policy is
π(s) = maxa∈A ϕ(s, a)⊺θ for some unknown vector θ.

Algorithm Setting Expert Traj. MDP Traj.

Behavioural Cloning
Function Approximation, Offline [4] O

(
H4 log|Π|

ϵ2

)
-

Tabular, Offline [36] Õ
(

H2|S|
ϵ

)
-

Linear Expert, Offline [35] Õ
(

H2d
ϵ

)
-

Mimic-MD [36] Tabular, Known Transitions, Deterministic Expert O
(

H3/2|S|
ϵ

)
-

OAL [41] Tabular O
(

H2|S|
ϵ2

)
O
(

H4|S|2|A|
ϵ2

)
MB-TAIL [51] Tabular, Deterministic Expert O

(
H3/2|S|

ϵ

)
O
(

H3|S|2|A|
ϵ2

)
OGAIL [26] Linear Mixture MDP O

(
H3d2

ϵ2

)
O
(

H4d3

ϵ2

)
PPIL [48] Linear MDP, Persistent Excitation O

(
d

(1−γ)2ϵ2

)
O
(

d2

β6(1−γ)9ϵ5

)
ILARL (Algorithm 3) Linear MDP O

(
d

(1−γ)2ϵ2

)
O
(

d3

(1−γ)8ϵ4

)
BRIG (Algorithm 4) Episodic Linear MDP O

(
dH2

ϵ2

)
O
(

d3H4

ϵ2

)

preferrable whenever |Π| ≥ exp(dH−2). We report a comparison with existing IL theory work in
Table 1.

2 Background and Notation

In imitation learning [32], the environment is abstracted as Markov Decision Process (MDP) [34]
which consists of a tuple (S,A, P, c,ν0) where S is the state space, A is the action space, P :
S ×A → ∆S is the transition kernel, that is, P (s′|s, a) denotes the probability of landing in state s′

after choosing action a in state s. Moreover, ν0 is a distribution over states from which the initial
state is sampled. Finally, c : S ×A → [−1, 1] is the cost function. In the infinite horizon setting, we
endow the MDP tuple with an additional element called the discount factor γ ∈ [0, 1). Alternatively,
in the finite horizon setting we append to the MDP tuple the horizon H ∈ N and we consider possibly
inhomogenous transitions or costs function. That is, they depend on the stage within the episode. The
agent plays action in the environment sampled from a policy π : S → ∆A. The learner is allowed to
adopt an algorithm to update the policy across episodes given the previously observed history. We
will see that imitation learning has a strong connection with MDPs with adversarial costs. The latter
setting allows the cost function to change each time the learner samples a new episode in the MDP.
For clarity, we include the pseudocode for the interaction in Protocol 1 in Appendix C.

Value functions and occupancy measures We define the state value function at state s ∈ S
for the policy π under the cost function c as V π(s; c) ≜ E

[∑∞
h=0 γ

hc(sh, ah)|s1 = s
]
. In

the finite horizon case, the state value function also depends on the stage index h, that is
V π
h (s; c) ≜ E

[∑H
ℓ=h c(sℓ, aℓ)|sh = s

]
2. In both cases, the expectation over both the random-

ness of the transition dynamics and the one of the learner’s policy. Another convenient quan-
tity is the occupancy measure of a policy π denoted as dπ ∈ ∆S×A and defined as follows
dπ(s, a) ≜ (1 − γ)

∑∞
h=0 γ

hP [s, a is visited after h steps acting with π]. We can also define the
state occupancy measure as dπ(s) ≜ (1− γ)

∑∞
h=0 γ

hP [s is visited after h steps acting with π]. In
the finite horizon setting, the occupancy measure depends on the stage h and its defined simply
as dπh(s, a) ≜ P [s, a is visited after h steps acting with π]. The state occupancy measure is defined
analogously.
Imitation Learning In imitation learning, the learner is given a dataset DπE ≜

{
τ k
}τE
k=1

containing
τE trajectories collected in the MDP by an expert policy πE according to Protocol 1. By trajectory
τ k, we mean the sequence of states and actions sampled at the kth iteration of Protocol 1, that is

2In the finite horizon case we may use V π(s; c) as a shortcut for V π
1 (s; c)
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τ k =
{
(skh, a

h
k)
}H
h=1

for finite horizon case. For the infinite horizon case, the trajectories have
random lenght sampled from the distribution Geometric(1− γ). Given DπE , the learner adopts an
algorithm A to learn a policy πout such that is ϵ-suboptimal according to the next definition.
Definition 1. An algorithm A is said ϵ-suboptimal if it outputs a policy π whose value function with
respect to the unknown true cost ctrue satisfies EAEs1∼ν0

[V π(s1; ctrue)− V πE(s1; ctrue)] ≤ ϵ where
the first expectation is on the randomness of the algorithm A.

2.1 Setting

We study imitation learning in the linear MDP setting popularized by [22] and studied in imitation
learning in [48]. When studying finite horizon problems we consider possible inhomogeneous
transition dynamics and cost function. That is, we work under the following assumptions.
Assumption 1. Episodic Linear MDP There exist a feature matrix Φ ∈ R|S||A|×d known to the
learner, an unknown sequence of vectors wk

h ∈ Rd and an unknown matrix sequences Mh ∈ Rd×|S|

such that the transition matrices Ph factorize as Ph = ΦMh and the sequence of adversarial costs
ckh can be written as ckh = Φwk

h. Moreover, it holds for all k ∈ [K], h ∈ [H] and for all state action
pairs s, a ∈ S ×A that ∥Φ∥1,∞ ≤ 1, ∥Mh∥1,∞ ≤ 1,

∥∥wk
h

∥∥
2
≤ 1.

Assumption 2. Linear MDP There exist a feature matrix Φ ∈ R|S||A|×d known to the learner,
an unknown sequence of vectors wk ∈ Rd and an unknown matrix M ∈ Rd×|S| such that the
transition matrices P factorize as P = ΦM and the sequence of adversarial costs ck can be written
as ck = Φwk. Moreover, it holds for all k ∈ [K] and for all state action pairs s, a ∈ S × A that
∥Φ∥1,∞ ≤ 1, ∥M∥1,∞ ≤ 1,

∥∥wk
∥∥
2
≤ 1.

In the context of imitation learning, we also need to assume that the true unknown cost is realizable.
Assumption 3. Realizable cost The learner has access to a feature matrix Φ ∈ R|S||A|×d such that
ctrue = Φwtrue.

3 Main Results and techniques

We provide our main results for the infinite horizon case in Theorem 1 and the stronger result for the
finite horizon in Theorem 2.
Theorem 1. Under Assumptions 2,3, there exists an algorithm, i.e. Algorithm 3, such that after using
Õ
(

log|A|d3

(1−γ)8ϵ4

)
state action pairs from the MDP and using Õ

(
2d log(2d)
(1−γ)2ϵ2E

)
expert demonstrations is

ϵ+ ϵE-suboptimal.
Theorem 2. Under Assumptions 1,3,there exists an algorithm, i.e. Algorithm 4, such that af-
ter sampling O

(
H4d3 log(dH/(ϵ))ϵ−2

)
trajectories and having access to a dataset of τE =

Õ
(

2H2d log(2d)
ϵ2E

)
expert demonstrations is ϵ+ ϵE-suboptimal.

Remark 1. The results are proven via the high probability bounds in Theorems 5 and 6 respectively
and apply the high probability to expectation conversion lemma in Lemma 7.

3.1 Technique overview

Online-to-batch conversion The core idea is to extract the policy achieving the sample complexity
guarantees above via an online-to-batch conservation. That is the output policy is sampled uniformly
from a collection of K policies

{
πk
}K
k=1

. The sample complexity result is proven, showing that

the policies
{
πk
}K
k=1

produced by the algorithms under study have sublinear pseudo regret in high
probability, that is,

Regret(K) ≜
1

1− γ

K∑
k=1

〈
ctrue, d

πk

− dπE

〉
≤ O(K3/4) w.h.p.

for the infinite horizon discounted setting with Algorithm 3 and

Regret(K) ≜
H∑

h=1

K∑
k=1

〈
ctrue,h, d

πk

h − dπE
h

〉
≤ O(

√
K) w.h.p. (1)
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for the finite horizon setting with Algorithm 4. The next section presents the regret decomposition
giving the crucial insights for the design of Algorithms 3 and 4.

Regret decomposition To obtain both regret bounds, we decompose the pseudo regret in 3 terms.
We present it for the infinite horizon case, where (1− γ)Regret(K) can be upper bounded by

K∑
k=1

〈
ck, dπ

k

− dπE

〉
︸ ︷︷ ︸

Regretπ(K;dπE )

+

K∑
k=1

〈
wtrue −wk,Φ⊺dπ

k

−Φ⊺dπE

〉
︸ ︷︷ ︸

Regretw(K;wtrue)

(2)

This decomposition is inspired from [41] but it applies also to the infinite horizon setting and exploits
the linear structure using Assumptions 2,3 to write ck = Φwk and ctrue = Φwtrue.

Regretw(K;wtrue) is the pseudo regret of a player updating a sequence of cost functions and having
ctrue as comparator while Regretπ(K; dπE) is the pseudo regret in a Linear MDP with adversarial
costs

{
ck
}K
k=1

and having the expert occupancy measure as a comparator.

Imitation Learning via no-regret algorithms. The decomposition in Equation (2) suggests that
imitation learning algorithm can be designed chaining one algorithm that updates the sequence
wk to make sure that Regretw(K;wtrue) grows sublinearly and a second one that updates the
policy sequence to control Regretπ(K; dπE). Controlling Regretw(K;wtrue) can be easily done via
projected online gradient descent [57].

Unfortunately, controlling Regretπ(K; dπE) is way more challenging because we have no knowledge
of the transition dynamics. Therefore, we can not project on the feasible set of occupancy measures.
To circumvent this issue we rely on the recent literature [27, 43, 12] that however focuses on bandit
feedback. In our case, the π player has full information on the cost vector ck. Thus, we design a
simpler algorithm Algorithm 1 which achieves a better regret bound in the easier full information
case. Algorithm 1 improves over the regret bound in [55] and easily extends to the infinite horizon
setting (see Algorithm 2).

Improved algorithm for finite horizon The techniques explained so far do not allow to get the
better bound of order O(

√
K) in the finite horizon setting (see Equation (1)). The idea is to let the w

player update first, then the π player can update their policy knowing in advance the loss that they
will suffer. This allows to use LSVI-UCB [22] for the π-player which has been originally designed
for a fixed cost but we show that it still guarantees O(

√
T ) regret against an arbitrary sequence of

costs when the learner knows in advance the cost function at the next episode. On the other hand,
LSVI-UCB suffers linear regret if the adversarial loss is not known in advance so letting the w player
update first is crucial. This result is provided in Appendix A.

4 Warm up: Online Learning in Adversarial Linear MDP

We start by presenting our result in full information episodic linear MDP with adversarial costs that
improves over [55] by a factor H1/2. The algorithm is quite simple. We apply a policy iteration like
method with two important twist: (i) in the policy improvement step, we update the policy with a no
regret algorithm rather than a greedy step. Moreover, the policy is updated only every τ episodes
using as loss vector the average Q value over the last batch of collected episodes, (ii) in the policy
evaluation step, we compute an optimistic estimate of the Q function for the current policy using only
on-policy data.

The last part is crucial because the use of off-policy data makes the covering argument for Linear
MDP problematic. Indeed, one would need to cover the space of stochastic policy when computing
the covering number of the value function class but this leads to the undesirable dependence on the
number of states and actions for the log covering number (see for example [2]). An alternative bound
on the covering number shown in [55] would instead lead to linear regret.

Instead, using data collected on-policy allows to apply the covering argument in [43] avoiding the
dependence on the number of states and actions. The first twist is at this point necessary to make the
policy updates more rare giving the possibility to collect more on-policy episodes with a fixed policy.
The algorithm pseudocode is in Algorithm 1.
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Algorithm 1 On-policy MDP-E with unknown transitions and adversarial costs.

1: Input: Dataset size τ , Exploration parameter β, Step size η, initialize π0 as uniform distribution
over A

2: for j = 1, . . . ⌊K/τ⌋ do
3: Denote the indices interval Tj ≜ [(j − 1) ⌊K/τ⌋ , j ⌊K/τ⌋).
4: // Collect on-policy data
5: Collect τ trajectories with policy π(j) and store them in the dataset D(j)

h ={
(sih, a

i
h, c

i
h, s

i
h+1)

}
i∈Tj

.

6: Denote global dataset D(j) = ∪H
h=1D

(j)
h .

7: for k ∈ Tj do
8: // Optimistic policy evaluation
9: Initialize V k

H+1 = 0
10: for h = H, . . . , 1 do
11: Λk

h =
∑

(s,a)∈D(j)
h

ϕ(s, a)ϕ(s, a)⊺ + I // ϕ(s, a) is the (s, a)th row of the matrix Φ.

12: vk
h = (Λk

h)
−1
∑

(s,a,s′)∈D(j)
h

ϕ(s, a)V k
h+1(s

′)

13: bkh(s, a) = β ∥ϕ(s, a)∥(Λk
h)

−1

14: Qk
h =

[
ckh +Φvk

h − bkh
]H−h+1

−H+h−1

15: V k
h (s) =

〈
πk
h(s), Q

k
h(s, ·)

〉
(with πk = π(j)).

16: end for
17: end for
18: // Policy Improvement Step
19: Compute average Q value Q̄

(j)
h (s, a) = 1

τ

∑
k∈Tj

Qk
h(s, a).

20: Update policy π
(j+1)
h (a|s) ∝ exp

(
−η
∑j

i=1 Q̄
(i)
h (s, a)

)
21: end for

4.1 Analysis

Theorem 3. Under Assumption 1, run Algorithm 1 with exploration parameter β = Õ (dH), dataset

size τ = 5β
2

√
Kd

log|A| and step size η =
√

τ log|A|
KH2 . Then, it holds with probability 1− δ, that

Regret(K;π⋆) =

K∑
k=1

V πk,k
1 (s1)− V π⋆,k

1 (s1) ≤ Õ
(
d3/4H3/2 log1/4 |A|K3/4 log

K

δ

)
(3)

where we use the compact notation V π,k
h (·) ≜ V π

h (·; ck).

Proof. Sketch Adding and subtracting the term
∑K

k=1 V
k
1 (s1) in the definition of regret, we have that

defining δkh(s, a) ≜ ckh(s, a) + PhV
k
h+1(s, a)−Qk

h(s, a)

Regret(K;π⋆) =

K∑
k=1

V πk,k
1 (s1)− V k

1 (s1) + V k
1 (s1)− V π⋆,k

1 (s1)

≤
K∑

k=1

H∑
h=1

Es∼dπ⋆

h

[〈
Qk

h(s, ·), πk
h(s)− π⋆

h(s)
〉]

−
K∑

k=1

H∑
h=1

Es,a∼dπ⋆

h

[
δkh(s, a)

]
+

K∑
k=1

H∑
h=1

E
s,a∼dπk

h

[
δkh(s, a)

]
where the last inequality holds by the extended performance difference lemma [8, 40]. At this point
we can invoke Lemma 3 ( see Appendix G) to obtain

−2bkh(s, a) ≤ Qk
h(s, a)− ckh(s, a)− PhV

k
h+1(s, a) ≤ 0 ∀(s, a) ∈ S ×A, h ∈ [H], k ∈ [K] (4)
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Algorithm 2 Infinite Horizon Linear MDP with adversarial losses.

1: Input: Dataset size τ , Exploration parameter β, Step size η, Initial policy π0 (uniform over A),
initialize V 1 = 0.

2: for j = 1, . . . ⌊K/τ⌋ do
3: // Collect on-policy data
4: Denote the indices interval Tj ≜ [(j − 1) ⌊K/τ⌋ , j ⌊K/τ⌋).
5: Sample D(j) =

{
(si, ai, s′,i, ci)

}
i∈Tj

∼ dπ
(j)

using [6, Algorithm 1].

6: Compute Λ(j) =
∑

(s,a)∈D(j) ϕ(s, a)ϕ(s, a)⊺ + I .
7: Compute b(j)(s, a) = β ∥ϕ(s, a)∥(Λ(j))−1 .
8: // Optimistic Policy Evaluation
9: for k ∈ Tj do

10: vk = (Λ(j))−1
∑

(s,a,s′)∈D(j) ϕ(s, a)V k(s′)

11: Qk+1 =
[
ck + γΦvk − b(j)

](1−γ)−1

−(1−γ)−1

12: V k+1(s) =
〈
π(j)(a|s), Qk+1(s, a)

〉
13: end for
14: // Policy Improvement Step
15: Compute average Q value Q̄(j)(s, a) = 1

τ

∑
k∈Tj

Qk(s, a).

16: Update policy: π(j+1)(a|s) ∝ exp
(
−η
∑j

i=1 Q̄
(i)(s, a)

)
17: end for

with probability 1− δ. This implies that with probability 1− δ

Regret(K;π⋆) ≤
K∑

k=1

H∑
h=1

Es∼dπ⋆

h

[〈
Qk

h(s, ·), πk
h(s)− π⋆

h(s)
〉]

+ 2

K∑
k=1

H∑
h=1

E
s,a∼dπk

h

[
bkh(s, a)

]
≤ τ log |A|

η
+ τH + ηKH2 + 2

K∑
k=1

H∑
h=1

E
s,a∼dπk

h

[
bkh(s, a)

]
Notice that the last inequality follows from the mirror descent with blocking result [43, Lemma F.5].
Then, by [43, Lemma C.5], it holds that with probability 1− 2δ.

Regret(K;π⋆) ≤ τ log |A|
η

+ τH + ηKH2 +
10KH

√
dβ log(2τ/δ)√

τ

The proof is concluded plugging in the values specified in the theorem statement.

4.2 Extension to the Infinite Horizon Setting.

We show our proposed extension to the infinite horizon in Algorithm 2. The main difference in
the analysis is to the handle the fact that in the infinite horizon setting we can not run a backward
recursion to compute the optimistic value functions as done in Steps 10-16 of Algorithm 1. Instead,
we use the optimistic estimate at the previous iterate Qk to build an approximate optimistic estimate
at the next iterate (see Steps 10-12 in Algorithm 2). The error introduced in this way can be controlled
thanks to the regularization in the policy improvement step as noticed in [28]. 3

Theorem 4. Under Assumption 2, consider K iterations of Algorithm 2 run with τ ≤ K√
τ

and β = Õ(dH), then it holds for any comparator policy π⋆ that (1 − γ)Regret(K;π⋆) ≜

3Regularization in both the evaluation and improvement step has been proven successful in the infinite
horizon linear mixture MDP setting [28]. Their regularization in the evaluation step is helpful to improve the
horizon dependence. In our case, we use unregularized evaluation because in the linear MDP setting our analysis
presents additional leading terms that can not be bounded as O(

√
K) with regularization in the policy evaluation

routine.
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∑K
k=1

〈
dπ

k − dπ
⋆

, ck
〉

is upper bounded with probability 1− 2δ by

τ log |A|
η

+
τ + 1

1− γ
+

ηK

(1− γ)2
+ 12βK

√
d

τ
log

(
2Kd

τδ

)
+

√
2ηK

(1− γ)2τ
.

Proof. Sketch The proof is based on the following decomposition that holds in virtue of Lemma 2.
Denoting δk(s, a) ≜ ck(s, a) + γPV k(s, a)−Qk+1(s, a) and gk(s, a) ≜ Qk+1(s, a)−Qk(s, a)

(1− γ)Regret(K;π⋆) =

K∑
k=1

Es∼dπ⋆

[〈
Qk(s, ·), πk(s)− π⋆(s)

〉]
(OMD)

+

K∑
k=1

∑
s,a

[
dπ

k

(s, a)− dπ
⋆

(s, a)
]
·
[
δk(s, a)

]
(Optimism)

+

K∑
k=1

E
s,a∼dπk

[
gk(s, a)

]
−

K∑
k=1

Es,a∼dπ⋆

[
gk(s, a)

]
(Shift)

Then, we have that Optimism can be bounded similarly to the finite horizon case using Lemma 4
while for Shift we rely on the regularization of the policy improvement step and on the fact that the
policy is updated only every τ steps. All in all, we have that the first term in (Shift) can be bounded as

1
(1−γ)2

∑⌊K/τ⌋
j=2

√
2η =

√
2ηK

(1−γ)2τ . The second term just telescopes therefore (Shift) ≤
√
2ηK

(1−γ)2τ +
1

1−γ .
Finally, (OMD) can be bounded as in the finite horizon case.

5 Imitation Learning in Infinite Horizon MDPs

In this section, we apply Theorem 4 to imitation learning. Indeed, we design Algorithm 3 using the
insights from the decomposition in Equation (2): we use a no regret algorithm to update the cost at
each round and we update the learner’s policy using a no regret algorithm for infinite horizon full
information adversarial Linear MDP, of which Algorithm 2 is the first example in the literature. The

Algorithm 3 Imitation Learning via Adversarial Reinforcement Learning (ILARL) for Infinite
Horizon Linear MDPs.

1: Input: Access to Algorithm 2 (with inputs τ ,β, η, π0) , Step size for Cost Update α, Expert
dataset DπE = {τ i}τEi=1.

2: Estimate for expert feature visitation Φ̂⊺dπE ≜ (1−γ)
τE

∑
τ∈DπE

∑
sh,ah∈τ γhϕ(sh, ah) .

3: for k = 1, . . . ,K do
4: // Cost Update (to control Regretw(K;wtrue))

5: Estimate Φ̂⊺dπk ≜ τ−1
∑

s,a∈D(j) ϕ(s, a) where D(j) is defined in Step 6 in Algorithm 2.

6: wk+1 = ΠW

[
wk − α(Φ̂⊺dπE − Φ̂⊺dπk)

]
with W = {w : ∥w∥2 ≤ 1}.

7: // Policy Update ( to control Regretπ(K;πE) )
8: The cost Φwk is revealed to the learner.
9: The learner updates their policy πk performing one iteration of Algorithm 2.

10: end for

guarantees for Algorithm 3 are given in the following theorem.

Theorem 5. Under Assumptions 2,3, let us consider K iterations of Algorithm 3 with K ≥
Õ
(

log|A|dβ2 log2(1/δ)
(1−γ)6ϵ4

)
where β is chosen as in Lemma 6 (i.e. β = Õ (d(1− γ))

−1). More-

over, let us consider the following choices α = 1√
2K

, τ = O
(

β(1−γ)
√
dK log(2dK/δ)√
log|A|

)
, ex-

pert trajectories τE = 8d log(d/δ)
(1−γ)2ϵ2E

and η =
√

τ log|A|(1−γ)2

K .Then, the above conditions ensure
1

1−γ

〈
ctrue, d

πE − 1
K

∑K
k=1 d

πk
〉
≤ ϵ+ ϵE with probability 1− 4δ .
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The proof included in Appendix G starts with the decomposition in Equation (2). Then, we con-
trol the term Regretw(K;wtrue) with the standard online gradient descent analyses and the term
Regretπ(K;πE) with Theorem 4. Finally, we control the statistical estimation error for the losses
seen by the w-player with an application of Lemma 8.

Remark 2. The resulting algorithm improves over [48] in two ways: (i) We bypass all kind of explo-
ration assumptions, such as the persistent excitation assumption. We remark that this is a qualitative
improvement. Indeed, the persistent excitation assumption is easily violated by deterministic policies
with tabular features. (ii) Moreover, the sample complexity improves from O(ϵ−5) to O(ϵ−4).

6 Empirical evaluation

0 50 100 150 200
MDP trajectories

0

1

(a) τE = 1

0 50 100 150 200
MDP trajectories

0.9

1.0

(b) Detail for τE = 1

0 50 100 150 200
MDP trajectories

0

1

(c) τE = 2

0 50 100 150 200
MDP trajectories

0.97

1.00

(d) Detail for τE = 2

ILARL (Ours) PPIL IQLearn GAIL AIRL REIRL BC

Figure 1: Experiments on a continuous gridworld with a stochastic expert.The y-axis reports the
normalized return. 1 correpsonds to the expert performance and 0 to the uniform policy one.

We numerically verify the main theoretical insights derived in the previous sections (i) We aim to
verify that for a general stochastic expert, the efficiency in terms of expert trajectories improves upon
behavioural cloning. (ii) ILARL is more efficient in terms of MDP trajectories compared to PPIL [48]
which has worst theoretical guarantees and with popular algorithms that are widely used in practice
but do not enjoy theoretical guarantees: GAIL [20], AIRL [15], REIRL [7] and IQLearn [16] The
experiments are run in a continuous state MDP explained in Appendix I.

Expert trajectory efficiency with stochastic expert For the first claim, we use a stochastic expert
obtained following with equal probability either the action taken by a deterministic experts previously
trained with LSVI-UCB or an action sampled uniformly at random. We collect with such policy τE
trajectories. From Figure 1, we observe that all imitation learning we tried have a final performance
improving over behavioural cloning for the case τE = 1 while only REIRL and ILARL do so for
τE = 2. In both cases, ILARL achieves the highest return that even matches the expert performance.

MDP trajectories efficiency For the second claim, we can see in Figure 1 that ILARL is the most
efficient algorithm in terms of MDP trajectories for both values of τE .

7 Conclusions

In this paper, we proposes ILARL which greatly reduces the number of MDP trajectories in imitation
learning in Linear MDP and BRIG that provides a further improvement for the finite horizon case.
Both results build on the connection between imitation learning and MDPs with adversarial losses.
There is a number of exciting future directions. In particular, the estimation of Φ̂⊺dπE could be
carried out with fewer expert trajectories using trajectory access to the MDP. This observation has
been proven successful having access to the exact transitions of the MDP in the tabular case [36] or
under linear function approximation with further assumption on the expert policy and the feature
distribution [44, 35]. Whether the same is possible for general stochastic experts in Linear MDP is an
interesting open question.

Finally, a better sample complexity can be achieved designing better no regret algorithm for infinite
horizon adversarial discounted linear MDP with full-information feedback and apply them in Step 9
of Algorithm 3 building for example on the recent result for the finite horizon case in [42].
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A An improvement for the finite horizon case

We notice that in Algorithm 3 we missed an opportunity. In fact, we could use prior knowledge of
the cost function ckh to update the policy πk

h. In other words, in Step 8 of Algorithm 3 we could
reveal wk+1 to the algorithm that controls Regretπ(K; dπE) . From an online learning perspective
we can play best response to control more effectively the regret term Regretπ(K; dπE) using LSVI-
UCB [22]. This idea leads to the Algorithm 4. Theorem 6 proves that Algorithm 4 improves

Algorithm 4 Best Response Imitation learninG (BRIG).

1: Input: Exploration parameter β, Step size η , Reward step size α, expert dataset DπE =
∪h∈[H]DπE,h.

2: Initialize π0 as uniform distribution over A.
3: Estimate expert features expectation vectors Φ̂⊺dπE

h = 1

|DπE,h|
∑

s,a∈DπE,h
ϕ(s, a) for all h ∈

[H].
4: for k = 1, . . .K do
5: Collect one episodes with policy πk denoted as τ k =

{
(skh, a

k
h, s

k
h+1)

}H−1

h=1
and for every

h ∈ [H] append data (skh, a
k
h, s

k
h+1) to Dh.

6: // Cost Update (to control Regretw(K;wtrue))
7: wk+1

h = ΠW

[
wk

h − α(Φ̂⊺dπE
h − ϕ

(
skh, a

k
h

)
)
]

with W = {w : 0 ≤ w ≤ 1} for all h ∈ [H].
8: // Full information LSVI-UCB ( to control Regretπ(K;πE))
9: Initialize V k

H+1 = 0
10: for h = H, . . . , 1 do
11: Λk

h =
∑

(s,a)∈Dh
ϕ(s, a)ϕ(s, a)⊺ + I

12: vk
h = (Λk

h)
−1
∑

(s,a,s′)∈Dh
ϕ(s, a)V k

h+1(s
′)

13: bkh(s, a) = β ∥ϕ(s, a)∥(Λk
h)

−1

14: Qk
h =

[
Φwk+1

h +Φvk
h − bkh

]H−h+1

−H+h−1
// We use the future loss wk+1

h .
15: πk+1

h (s) = argmin
(
Qk

h(s, ·)
)

// Greedy policy update, Best Response.
16: V k

h (s) =
〈
πk+1
h (s), Qk

h(s, ·)
〉
.

17: end for
18: end for

the required number of interaction to K = Õ(H4d3ϵ−2 log2(1/δ)) which greatly improves over
K = Õ(H6 log |A| d3ϵ−4 log2(1/δ)) achieved by Algorithm 3 applied to finite horizon problems
which does not use the best response observation. A core step in the proof is to show that the regret
of LSVI-UCB is still O(

√
K) if the cost function is not fixed but it is observed in advanced by the

agent.

Theorem 6. Let us consider K = O
(

H4d3 log(dH/(ϵδ))
ϵ2

)
iterations of Algorithm 4 run with α =√

1
2K and expert demonstrations τE = 2H2d log(2d/δ)

ϵ2E
. Moreover, let k̂ be an iteration index sampled

uniformly at random from {1, 2, . . . ,K}, then it holds that with probability 1 − 3δ, it holds that

Ek̂

[
V πk̂

1 (s1; ctrue)− V πE
1 (s1; ctrue)

]
≤ O(ϵE + ϵ).

Remark 3. Unfortunately, the best response idea does not help improving the infinite horizon result
because the use of greedy policies makes the term (Shift) impossible to control.

B On the β of the persistent excitation assumption

Lemma 1. Let the persistent excitation assumption holds, then it holds that β ≤ d−1.
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Proof.

β ≤ λmin(Es,a∼dπkϕ(s, a)ϕ(s, a)T )

≤ 1

d
Trace(E

s,a∼dπkϕ(s, a)ϕ(s, a)T )

=
1

d
E
s,a∼dπkTrace(ϕ(s, a)ϕ(s, a)T )

=
1

d
E
s,a∼dπkTrace(ϕ(s, a)Tϕ(s, a))

=
1

d
E
s,a∼dπk ∥ϕ(s, a)∥22

≤ 1

d
E
s,a∼dπk ∥ϕ(s, a)∥21

≤ 1

d
max
s,a

∥ϕ(s, a)∥21

=
1

d
∥Φ∥21,∞ ≤ 1

d
.

where the last step follows from ∥Φ∥1,∞ ≤ 1 as assumed in Assumptions 1 and 2.

Using this result, we obtain that the dimension dependence in the bound in Viano et al. 2022 is in the
best case d8. Therefore, our new algorithm improves the dimension dependence as well.

C Interaction Protocol

Protocol 1 Interaction in Adversarial MDPs
1: for Episode index k ∈ [1,K] do
2: Sample initial state sk1 ∼ ν0

3: if Finite Horizon then
4: for stage h ∈ [1, H] do
5: The learner plays an action sampled from the policy akh ∼ πk

h(·|skh).
6: The environment sample next state skh ∼ Ph(·|skh, akh).
7: The agent observes the vector ckh.
8: end for
9: end if

10: if Infinite Horizon then
11: Initialize Z = 0, i = 1, s1 ∼ ν0.
12: while Z == 0 do
13: The learner plays an action sampled from the policy ai ∼ πk(·|si).
14: The environment sample next state s′,i ∼ P (·|si, ai), si+1 = s′,i.
15: // Restart with probability 1− γ.
16: Sample Z ∼ Bernoulli(1− γ).
17: end while
18: The agent observes the vector ck.
19: end if
20: The learner chooses her next policy, i.e. πk+1.
21: end for

D Additional Related Works in the infinite horizon discounted setting

The practical advantage is that in the infinite horizon setting the optimal policy can be sought in
the class of stationary policies which are much easier to store in memory than the nonstationary
ones. All the works we mentioned so far focused on the finite horizon, however the infinite horizon
setting is the most common in practice [20, 19, 15, 37, 11, 49, 16]. The practical advantage is that
in the infinite horizon setting the optimal policy can be sought in the class of stationary policies
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which are much easier to store in memory than the nonstationary ones. Despite this fact, there
are only few previous result studying IL in infinite horizon MDP and all of them operate under
limiting assumptions. As mentioned, [48] requires the persistent excitation assumption, [50] requires
a uniformly good evaluation policy evaluation error which is possible only if the policies generated
by the algorithm visits every state with high probability. [53] provided the first guarantees for IL
with non linear reward functions but it assumes ergodic dynamics and that the the soft action value
function of every policy can be perfectly evaluated at every state action pair. The latter assumption
has been relaxed later in [52] and in [54] that allows for a uniformly bounded policy evaluation error.
In the latter case, the policies are evaluated under the transitions learned from expert data. All in all,
their bound on the number of expert trajectories scale as (1− γ)−4 and with the number of states
visited by the expert while our bound leverages online access to the MDP to obtain a better horizon
and to avoid the dependence on the number of states. Moreover, the bounds in [54, 52, 50] depend on
the number of states which can be prohibitively large in the function approximation setting.

E Future directions

Reducing the number of expert trajectories [35] showed that under known transitions for a
particular choice of features and when the linear expert occupancy measure is uniform over the state
space the necessary expert trajectories are O

(
H3/2d2

ϵ

)
.

In the linear MDP case, under the same assumption on the features we can show that the same amount
of expert trajectories is sufficient even for the unknown transition case. Moreover, the algorithm we
propose is computationally efficient while it is unclear how the output policy in linear Mimic-MD
[35] can be computed with complexity independent on the number of states and actions. We detail
this in Appendix J.

In addition, it is an interesting open question to see if the same improvement in terms of expert
trajectory can be achieved under weaker conditions. A first step has been already made in [44]. They
still requires a linear expert model but avoids the uniform expert occupancy measure assumption
replacing it with the bounded density assumption (see [44, Assumption 9]). A natural follow up
would be to investigate if the same expert trajectory bound can be obtained bringing the Linear MDP
assumption but dropping the linear expert and the other assumptions used in [35, 44]. An intermediate
step could benefit from using the persistent excitation assumption which is the natural counterpart of
the bounded density assumption [44, Assumption 9] in Linear MDPs.

Results for Linear Mixture MDPs Analogous ideas can be used for the case of Linear Mixture
MDPs. In particular, one can use the same structure as in Algorithm 3 but replacing an algorithm that
deals with adversarial losses in Linear Mixture MDPs. For the infinite horizon case one can use [28]
while for the finite horizon case one can choose [56]. In the latter case one can improve the Sample
Complexity of OGAIL [26] to O

(
H3d2ϵ−2

)
. Moreover, we do not think that that the Linear Expert

assumption [35] is meaningful in Linear Mixture MDPs because this would require the learner to
know in advance the features

∫
S ϕ(s, a, s′)V ⋆(s′)ds′ where V ⋆ is the optimal state value function.

Extension to Bilinear Classes The current results can be extended to Bilinear Classes [13] at least
in the finite horizon case. To this end we would need the observation that we can update the cost first
and then using an algorithm which is allowed to see the next cost vector one round in advance. This
is the same fact that allowed us to obtain O(ϵ−2) sample complexity bound in the finite horizon case
using LSVI-UCB.

In the following we present an informal discussion of the proof technique that would prove polynomial
sample complexity for Imitation Learning in bilinear classes.

If the cost at round k is known before the learner needs to take an action the agent can form the
discrepancy function

ℓk(sh, ah, sh+1, g) = Qh,g(sh, ah) + ckh − Vh+1,g(sh+1)
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where the upper script k highlights the fact that the discrepancy function depends on the adversarial
cost ck. At each round, we can then compute

argmaxg∈HV0,g(s1) s.t.
1

m

k∑
τ=1

m∑
i=1

ℓk(sih, a
i
h, s

i
h+1, g) ≤ kϵ2gen,k(m, δ) ∀h ∈ [H]

Where the generalization error at round k denoted ϵgen,k satisfies that

sup
g∈H

∣∣∣∣∣ 1m
m∑
i=1

ℓk(sih, a
i
h, s

i
h+1, g)− E

s,a∼dπk ,s′∼P (·|s,a)
[
ℓk(sh, ah, sh+1, g)

]∣∣∣∣∣ ≤ ϵgen,k(m, δ)

with probability at least 1− δ.

At this point, we modify the Bilinear Classes assumption to keep into account the adversarial costs
setting as follows. We assume that all the adversarial costs belongs to a convex set C. Then we
consider an MDP for which there exists a function f⋆ ∈ H such that for all c ∈ C, it holds that∣∣∣Es,a∼d

πf
h

[Qh,f (sh, ah) + ch(sh, ah)− Vh+1,f ]
∣∣∣ ≤ |⟨W c

h(f)−W c
h(f

⋆), Xc
h(f)⟩|

and ∣∣∣Es,a∼d
πf
h

[Qh,g(sh, ah) + ch(sh, ah)− Vh+1,g]
∣∣∣ ≤ |⟨W c

h(g)−W c
h(f

⋆), Xc
h(f)⟩|

This modified assumption for Bilinear classes with time changing rewards implies that the comparator
hypothesis f⋆ is realizable for all k, that is, for all k it holds that

1

m

k∑
τ=1

m∑
i=1

ℓk(sih, a
i
h, s

i
h+1, f

⋆) ≤ kϵ2gen,k(m, δ)

so optimism holds and with the same steps in [13] it can be proven that:

Regret(K,π⋆) ≤
K∑

k=1

∣∣∣∣Es,a∼d
π
fk

h

[
Qh,fk(sh, ah) + ch(sh, ah)− Vh+1,fk

]∣∣∣∣
≤

K∑
k=1

∣∣∣〈W rk

h (fk)−W rk

h (f⋆), Xrk

h (fk)
〉∣∣∣

Then, using [13, Equation 8] and the elliptical potential lemma we obtain

1

K
Regret(K,π⋆) = O

(√
K max

k∈[K]
ϵ2gen,k(m, δ)

(
exp

logK

K
− 1

))
Then, denoting ϵgen(m, δ) = maxk∈[K] ϵgen,k(m, δ) and choosing K = O(log ϵ−2

gen(m, δ)) gives
1
KRegret(K,π⋆) ≤ O (ϵgen(m, δ)).

This concludes the regret proof for the π-player. The player updating the sequences of cost can still
use OGD projecting on the set C.

Our algorithm for the finite horizon setting, BRIG, uses greedy policies. In this case, [13] showed
that the generalization error can be controlled effectively in many instances such as Linear Q⋆/V ⋆,
Low Occupancy measure models [13], Bellman complete models [29] and finite Bellman Rank [21].

However in the infinite horizon case we need to use regularization for which it is currently not known
if gen(m, δ) can be controlled effectively. This is again related to the issue with the covering number
of softmax policies in linear MDPs ( see [42, 55] ). This is an interesting open question.

A final comment is that the algorithm proposed in [13] for bilinear classes is not computationally
efficient is general. Therefore also its adversarial extension presented above will have this drawback.
In this paper we focused on the smaller class of Linear MDP for which we provide a computationally
efficient algorithm.
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Improving dependence on ϵ, d and H For what concerns the finite horizon case we presented
BRIG which has a dependence on ϵ which can not be improved further if not bypassing the reduction
to online learning in MDPs. However the dependence in d and H can be improved. To circumvent
this problem, we could think that one could apply LSVI-UCB++ [18]. However, it turns out that
LSVI-UCB++ fails if the cost changes adversarially even if the learner knows the cost at the next
round. Therefore, a new algorithm design is needed to improve by a factor dH upon the MDP
trajectory complexity of Algorithm 4.

F Omitted Proofs

F.1 Proof of Lemma 2

Lemma 2. Consider the MDP M = (S,A, γ, P, c) and two policies π, π′ : S → ∆A. Then consider

for any Q̂ ∈ R|S||A| and V̂ π(s) =
〈
π(·|s), Q̂(s, ·)

〉
and Qπ′

, V π′
be respectively the state action

and state value function of the policy π in MDP M and let E ∈ R|S||A|×|S| be the matrix such that
for an arbitrary vector f ∈ R|S| it holds (Ef)(s, a) = f(s). Then, it holds that〈

ν0, V̂
π − V π′

〉
=

1

1− γ

(〈
dπ

′
, Q̂− c− γP V̂ π

〉
+
〈
dπ

′
, EV̂ π − Q̂

〉)
Proof. 〈

dπ
′
, Q̂
〉
=
〈
dπ

′
, Q̂− c− γP V̂ π

〉
+
〈
dπ

′
, c+ γP V̂ π

〉
=
〈
dπ

′
, Q̂− c− γP V̂ π

〉
+ (1− γ)

〈
ν0, V

π′
〉
+
〈
γP ⊺dπ

′
, V̂ π

〉
=
〈
dπ

′
, Q̂− c− γP V̂ π

〉
+ (1− γ)

〈
ν0, V

π′
− V̂ π

〉
+
〈
E⊺dπ

′
, V̂ π

〉
Rearranging the terms leads to the conclusion.

F.2 Proof of Theorem 4

Proof. Let V πk,k ∈ [−(1− γ)−1, (1− γ)−1]|S| denote V πk

(·; ck), then

Regret(K;π⋆) ≜
K∑

k=1

〈
dπ

k

− dπ
⋆

, ck
〉

= (1− γ)

K∑
k=1

〈
ν0, V

πk,k − V π⋆,k
〉

=

K∑
k=1

Es∼dπ⋆

[〈
Qk(s, ·), πk(s)− π⋆(s)

〉]
(OMD)

+

K∑
k=1

Es,a∼dπ⋆

[
Qk+1(s, a)− ck(s, a)− γPV k(s, a)

]
(Optimism 1)

+

K∑
k=1

E
s,a∼dπk

[
ck(s, a) + γPV k(s, a)−Qk+1(s, a)

]
(Optimism 2)

+

K∑
k=1

Es,a∼dπk

[
Qk+1(s, a)−Qk(s, a)

]
(Shift 1)

+

K∑
k=1

Es,a∼dπ⋆

[
Qk(s, a)−Qk+1(s, a)

]
(Shift 2)

Then, we have that Optimism 1,Optimism 2 can be bounded using Lemma 4 while for Shift 1 we
crucially rely on the regularization of the policy improvement step and on the fact that the policy is
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updated only every τ steps. Both these observations allow to derive

K∑
k=1

E
s,a∼dπk

[
Qk(s, a)−Qk+1(s, a)

]
≤

K∑
k=2

∑
s,a

Qk(s, a)
(
dπ

k

(s, a)− dπ
k−1

(s, a)
)
+
∑
s,a

Q1(s, a)dπ
1

(s, a)

≤
K∑

k=2

∥∥Qk(s, a)
∥∥
∞

∥∥∥dπk

− dπ
k−1
∥∥∥
1

≤ 1

1− γ

K∑
k=2

∥∥∥dπk

− dπ
k−1
∥∥∥
1

=
1

1− γ

⌊K/τ⌋∑
j=2

∥∥∥dπ(j)

− dπ
(j−1)

∥∥∥
1

At this point applying Pinkser’s inequality and [28, Lemma A.1] we obtain∥∥∥dπ(j)

− dπ
(j−1)

∥∥∥
1
≤
√
2DKL(dπ

(j) , dπ(j−1)) ≤
√

2

1− γ
E
s∼dπ(j)DKL(π(j)(·|s), π(j−1)(·|s))

≤
√

2η

1− γ
E
s,a∼dπ(j) Q̄(j−1)

≤
√
2η

1− γ

All in all, we have that

(Shift 1) ≤ 1

(1− γ)2

⌊K/τ⌋∑
j=2

√
2η =

√
2ηK

(1− γ)2τ

For the second shift term, we can use a trivial telescoping argument to obtain that (Shift 2) ≤
(1− γ)−1.

The terms (Optimism 1) and (Optimism 2) can be bounded exactly as in the finite horizon case thanks
to Lemma 4 we have that with probability 1− δ

(Optimism 1) + (Optimism 2) ≤ 2

K∑
k=1

E
s,a∼dπk

[
bk(s, a)

]
. (5)

Therefore, we just need to adapt the argument for bounding the exploration term
2
∑K

k=1 Es,a∼dπk

[
bk(s, a)

]
in the infinite horizon case. We start by exploiting the fact that both bk

and πk change in fact only every τ updates. So we have

K∑
k=1

E
s,a∼dπk

[
bk(s, a)

]
= τ

K/τ∑
j=1

E
s,a∼dπ(j)

[
b(j)(s, a)

]

=

K/τ∑
j=1

ED(j)∼dπ(j)

 ∑
s,a∈D(j)

b(j)(s, a)


=

K/τ∑
j=1

ED(j)∼dπ(j)

 ∑
s,a∈D(j)

β ∥ϕ(s, a)∥(Λ(j))−1


At this point, fixing an arbitrary order for the state action pairs in D(j) we can define for any i ∈ [1, τ ]
the matrix

Λ
(j)
i =

i∑
ℓ=1

ϕ(sℓ, aℓ)ϕ(sℓ, aℓ)T + λI
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Then, it holds that

K/τ∑
j=1

ED(j)∼dπ(j)

 ∑
s,a∈D(j)

β ∥ϕ(s, a)∥(Λ(j))−1

 =

K/τ∑
j=1

ED(j)∼dπ(j)

[
τ∑

ℓ=1

β
∥∥ϕ(sℓ, aℓ)∥∥

(Λ(j))−1

]

≤
K/τ∑
j=1

ED(j)∼dπ(j)

[
τ∑

ℓ=1

β
∥∥ϕ(sℓ, aℓ)∥∥

(Λ
(j)
ℓ )−1

]

At this point, we can notice that for any index pair ℓ, j it holds that

∥∥ϕ(sℓ, aℓ)∥∥
(Λ

(j)
ℓ )−1 ≤

√
λmax((Λ

(j)
ℓ )−1)

∥∥ϕ(sℓ, aℓ)∥∥ ≤
√

1

λmin(Λ
(j)
ℓ )

≤ 1

where the norm ϕ(sℓ, aℓ) is upper bounded by 1 thanks to the Linear MDP assumption. Then, via
[43, Lemma F.1] (where the random variable Xi is in this context

∑τ
ℓ=1 β

∥∥ϕ(sℓ, aℓ)∥∥
(Λ

(j)
ℓ )−1 which

is supported in [0, βτ ]) we can continue upper bounding with probability 1− δ the bonus sum as

K∑
k=1

E
s,a∼dπk

[
bk(s, a)

]
≤ 2

K/τ∑
j=1

τ∑
ℓ=1

β
∥∥ϕ(sℓ, aℓ)∥∥

(Λ
(j)
ℓ )−1 + 4βτ log(2K/(τδ))

= 2

K/τ∑
j=1

τ∑
ℓ=1

β

√
ϕ(sℓ, aℓ)T (Λ

(j)
ℓ )−1ϕ(sℓ, aℓ) + 4βτ log(2K/(τδ))

≤ 2

K/τ∑
j=1

β

√√√√τ

τ∑
ℓ=1

ϕ(sℓ, aℓ)T (Λ
(j)
ℓ )−1ϕ(sℓ, aℓ) + 4βτ log(2K/(τδ))

≤ 2

K/τ∑
j=1

β

√√√√τ

d∑
i=1

log (1 + λi) + 4βτ log(2K/(τδ))

where the last inequality uses [9, Lemma 11.11] and the notation {λi}di=1 stands for the eigenvalues
of the matrix Λ(j) − I . At this point we can recognize the determinant inside the log and use the
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determinant trace inequality.

K/τ∑
j=1

β

√√√√τ

d∑
i=1

log (1 + λi) =

K/τ∑
j=1

β

√√√√τ log

(
d∏

i=1

1 + λi

)

=

K/τ∑
j=1

β
√
τ log

(
det(Λ(j))

)
≤

K/τ∑
j=1

β

√
τd log

(
Trace(Λ(j))

d

)

≤
K/τ∑
j=1

β

√
τd log

(
d+Trace(

∑τ
ℓ=1 ϕ(s

ℓ, aℓ)ϕ(sℓ, aℓ)T )

d

)

≤
K/τ∑
j=1

β

√
τd log

(
d+ τ maxℓ Trace(ϕ(sℓ, aℓ)ϕ(sℓ, aℓ)T )

d

)

=

K/τ∑
j=1

β

√
τd log

(
d+ τ maxℓ ϕ(sℓ, aℓ)Tϕ(sℓ, aℓ)

d

)

≤
K/τ∑
j=1

β

√
τd log

(
d+ τ

d

)

≤ βK

√
d log 2τd

τ
.

Hence, with probability 1− 2δ (union bound between the event under which Equation (5) holds and
the the application of the concentration result [43, Lemma F.1] in bounding the exploration bonuses
sum), it holds that

Regret(K;π⋆) ≤
K∑

k=1

Es∼dπ⋆

[〈
Qk(s, ·), πk(s)− π⋆(s)

〉]
+ 4βK

√
d log(2τd)

τ
+ 8βτ log(2K/(τδ))

+

√
2ηK

(1− γ)2τ
+

1

(1− γ)

The last step is to bound (OMD) invoking [43, Lemma F.5] noticing that the gradient norm is upper
bounded by 1

1−γ . This gives

K∑
k=1

Es∼dπ⋆

[〈
Qk(s, ·), πk(s)− π⋆(s)

〉]
≤ τ log |A|

η
+

τ

1− γ
+

ηK

(1− γ)2

Putting all together , we have that for τ ≤ K√
τ

Regret(K;π⋆) ≤ τ log |A|
η

+
τ + 1

1− γ
+

ηK

(1− γ)2
+ 12βK

√
d

τ
log

(
2Kd

τδ

)
+

√
2ηK

(1− γ)2τ

F.3 Proof of Theorem 5

To improve the readability of the proof we restate Algorithm 3 hereafter.
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Algorithm 5 ILARL (detailed version).

1: Input: Dataset size τ , Exploration parameter β, Step size η, Expert dataset DπE = {τ i}τEi=1.
2: Estimate for expert feature visitation Φ̂⊺dπE ≜ (1−γ)

τE

∑
τ∈DπE

∑
sh,ah∈τ γhϕ(sh, ah) .

3: Initialize π0 as uniform distribution over A
4: Initialize V 1 = 0
5: for j = 1, . . . ⌊K/τ⌋ do
6: // Collect on-policy data
7: Denote the indices interval Tj ≜ [(j − 1) ⌊K/τ⌋ , j ⌊K/τ⌋).
8: Sample D(j) =

{
si, ai, s′,i

}
i∈Tj

∼ dπ
(j)

9: Compute Λ(j) =
∑

(s,a)∈D(j) ϕ(s, a)ϕ(s, a)⊺ + I .
10: Compute b(j)(s, a) = β ∥ϕ(s, a)∥(Λ(j))−1 .
11: for k ∈ Tj do
12: // Cost update

13: Estimate features expectation vector Φ̂⊺dπk as τ−1
∑

s,a∈D(j) ϕ(s, a).

14: wk+1 = ΠW

[
wk − α(Φ̂⊺dπE − Φ̂⊺dπk)

]
with W = {w : ∥w∥2 ≤ 1}.

15: // Optimistic Policy Evaluation
16: vk = (Λ(j))−1

∑
(s,a,s′)∈D(j) ϕ(s, a)V k(s′)

17: Qk+1 =
[
Φwk + γΦvk − b(j)

](1−γ)−1

−(1−γ)−1

18: V k+1(s) =
〈
π(j)(a|s), Qk+1(s, a)

〉
(notice that π(j) = πk+1).

19: end for
20: // Policy Improvement Step
21: Compute average Q value Q̄(j)(s, a) = 1

τ

∑
k∈Tj

Qk(s, a).
22: Update policy

π(j+1)(a|s) ∝ exp

(
−η

j∑
i=1

Q̄(i)(s, a)

)
23: end for

Proof. Consider the following decomposition

K∑
k=1

〈
ctrue, d

πE − dπ
k
〉
=

K∑
k=1

〈
wtrue −wk, Φ̂⊺dπE −Φ⊺dπ

k
〉
+

K∑
k=1

〈
ck, dπE − dπ

k
〉

(6)

+

K∑
k=1

〈
wtrue −wk, Φ̂⊺dπE −Φ⊺dπE

〉
(7)

For the first term we can use the following steps.

K∑
k=1

〈
wtrue −wk, Φ̂⊺dπE −Φ⊺dπ

k
〉
≤

K∑
k=1

〈
wtrue −wk, Φ̂⊺dπE − Φ̂⊺dπk

〉
+

K∑
k=1

〈
wtrue −wk, Φ̂⊺dπk −Φ⊺dπ

k
〉

Now, using the regret bound for OMD [31, Theorem 6.10] we can bound the first term in the
decomposition above as

K∑
k=1

〈
wtrue −wk, Φ̂⊺dπE − Φ̂⊺dπk

〉
≤

maxw∈W
∥∥w −w1

∥∥2
2

2α
+

α

2

K∑
k=1

∥∥∥Φ̂⊺dπE − Φ̂⊺dπk

∥∥∥2
2

≤
maxc∈C

∥∥c− c1
∥∥2
2

2α
+

α

2

K∑
k=1

∥∥∥Φ̂⊺dπE − Φ̂⊺dπk

∥∥∥2
1

≤ 1

2α
+ 2αK
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Then, for α = 1
2
√
K

, then
∑K

k=1

〈
wtrue −wk, Φ̂⊺dπE − Φ̂⊺dπk

〉
≤ 2

√
K. For the estimation term,

K∑
k=1

〈
wtrue −wk,Φ⊺dπ

k

− Φ̂⊺dπk
〉
≤

K∑
k=1

∥∥w −wk
∥∥
1

∥∥∥Φ⊺dπ
k

− Φ̂⊺dπk

∥∥∥
∞

≤
√
d

K∑
k=1

∥∥w −wk
∥∥
2

∥∥∥Φ⊺dπ
k

− Φ̂⊺dπk

∥∥∥
∞

≤ 2
√
d

K∑
k=1

∥∥∥Φ⊺dπ
k

− Φ̂⊺dπk

∥∥∥
∞

≤ 2
√
d

K∑
k=1

√
2 log(2dK/δ)

τ
= 2K

√
2d log(2dK/δ)

τ
,

where the last inequality holds with probability 1−δ thanks to Azuma-Hoeffding inequality. Therefore,
using Theorem 4 to control the second term in Equation (7) and a union bound we obtain that with
probability 1− 3δ.
K∑

k=1

〈
ctrue, d

πE − dπ
k
〉
≤ 2

√
K + 2K

√
2d log(2dK/δ)

τ
+

τ log |A|
η

+
τ + 1

1− γ
+

ηK

(1− γ)2

+ 12βK

√
d

τ
log

(
2K

τδ

)
+

√
2ηK

(1− γ)2τ
++

K∑
k=1

〈
wtrue −wk, Φ̂⊺dπE −Φ⊺dπE

〉
and using that for the empirical expert an application of Lemma 8 gives that with probability 1− δ.

K∑
k=1

〈
wtrue −wk, Φ̂⊺dπE −Φ⊺dπE

〉
≤ 2K

√
d
∥∥∥Φ⊺dπE − Φ̂⊺dπE

∥∥∥
∞

≤ 2K

√
2d log(d/δ)

τE

Therefore, selecting τE ≥ 8d log(d/δ)
ϵ2E

and using a last union bound gives that with probability 1− 4δ〈
ctrue, d

πE − 1

K

K∑
k=1

dπ
k

〉
≤ ϵE +

2√
K

+

√
8d log(2dK/δ)

τ
+

τ log |A|
ηK

+
τ + 1

(1− γ)K
+

η

(1− γ)2

+ 12β

√
d

τ
log

(
2Kd

τδ

)
+

√
2η

(1− γ)2τ

Using η =
√

τ log|A|(1−γ)2

K ,〈
ctrue, d

πE − 1

K

K∑
k=1

dπ
k

〉
≤ ϵE +

2√
K

+

√
8d log(2dK/δ)

τ
+

2

(1− γ)

√
τ log |A|

K
+

τ + 1

(1− γ)K

+ 12β

√
d

τ
log

(
2K

τδ

)
+

√
2

(1− γ)2τ

4

√
τ log |A| (1− γ)2

K

Neglecting lower order terms we obtain〈
ctrue, d

πE − 1

K

K∑
k=1

dπ
k

〉
≤ ϵE +O

(√
8d log(2dK/δ)

τ
+

2

(1− γ)

√
τ log |A|

K
+ 12β

√
d

τ
log

(
2K

τδ

))

≤ ϵE +O

(
2

(1− γ)

√
τ log |A|

K
+ 15β

√
d

τ
log

(
2dK

τδ

))

Therefore, choosing τ = O
(

β(1−γ)
√
dK log(2dK/δ)√
log|A|

)
, gives〈

ctrue, d
πE − 1

K

K∑
k=1

dπ
k

〉
≤ ϵE + Õ

(
log1/4 |A| d1/4

√
β√

1− γK1/4

)
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Therefore, choosing K ≥ Õ
(

log|A|dβ2 log2(2dK/δ)
(1−γ)2ϵ4

)
which is attained by K =

O
(

log|A|dβ2

(1−γ)2ϵ4 log2(dβ log|A|
δ(1−γ)ϵ )

)
ensures

〈
ctrue, d

πE − 1
K

∑K
k=1 d

πk
〉

≤ ϵ + ϵE with probability
1− 4δ.

G Technical Lemmas

Lemma 3. Assume that in Algorithm 1, we set β = O
(
dH log(RdHδ−1)

)
with R = τ2

√
dH . Then,

with probability 1− δ it holds that

−2bkh(s, a) ≤ Qk
h(s, a)− ckh(s, a)− PV k

h+1(s, a) ≤ 0 ∀s, a ∈ S ×A, k ∈ [K], h ∈ [H]

Proof. We first see that Lemma 5 holds for every j. Then, thanks to union bound we have that with
probability 1− δ it holds that for any state action pairs we have that∣∣ϕ(s, a)Tvk

h − PV k
h+1(s, a)

∣∣ ≤ β ∥ϕ(s, a)∥
(Λ

(j)
h )−1 = bkh(s, a)

From this fact the conclusion follows immediately if no truncation happens. That is , if Qk
h =

ckh +Φvk
h − bkh. Now, we consider the case where a lower truncation takes place, in this case, we

have
Qk

h = −H + h− 1 ≤ ckh + PV k
h+1

If there a truncation from above it holds that

Qk
h ≤ ckh +Φvk

h − bkh ≤ ckh + PV k
h+1 + bkh − bkh = ckh + PV k

h+1

To show the lower bound in the lemma in case of a lower truncation, we have that

Qk
h ≥ ckh +Φvk

h − bkh ≥ ckh + PV k
h+1 − bkh − bkh = ckh + PV k

h+1 − 2bkh

finally, if the truncation from above is triggered, we have that

Qk
h = H − h+ 1 ≥ ckh + PV k

h+1 ≥ ckh + PV k
h+1 − 2bkh

Lemma 4. For any k ∈ [K], let the bonus bk be defined as in Algorithm 2 with β =

O
(
d(1− γ)−1 log(Rd(1− γ)−1δ−1)

)
with R = τ2

√
d(1− γ)−1. Then, with probability 1− δ it

holds that

−2bk(s, a) ≤ Qk+1(s, a)− ck(s, a)− γPV k(s, a) ≤ 0 ∀s, a ∈ S ×A, k ∈ [K]

Proof. We first see that Lemma 6 holds for every j. Then, thanks to union bound we have that with
probability 1− δ it holds that for any state action pairs we have that∣∣ϕ(s, a)Tvk − PV k(s, a)

∣∣ ≤ β ∥ϕ(s, a)∥(Λ(j))−1 = bk(s, a)

From this fact the conclusion follows immediately if no truncation happens. That is , if Qk+1 =
ck +Φvk − bk. Now, we consider the case where a upper truncation takes place, in this case, we
have

Qk+1 =
1

1− γ
= 1 +

γ

1− γ
≥ ck + γPV k − 2bk

While for the upper bound, we have that

Qk+1 ≤ ck + γΦvk − bk ≤ ck + γPV k + bk − bk = ck + γPV k

Now, we handle the case of a lower truncation in this case

Qk+1 ≥ ck + γΦvk − bk ≥ ck + γPV k − bk − bk = ck + γPV k − 2bk

for the upper bound we have that

Qk+1 = − 1

1− γ
= −1− γ

1− γ
≤ ck + γPV k
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Lemma 5. Let V k
h be the sequence of value functions generated by Algorithm 1, fix a batch index j

and let Tj denote the set of indices in the jth batch. Then, it holds that for β = Õ (dH), the estimator

vk
h = (Λ(j))−1

∑
(s,a,s′)∈D(j)

h

ϕ(s, a)V k
h+1(s

′)

satisfies∣∣ϕ(s, a)Tvk
h − PV k

h+1(s, a)
∣∣ ≤ β ∥ϕ(s, a)∥

(Λ
(j)
h )−1 = bk(s, a) ∀k ∈ Tj , h ∈ [H],∀s, a ∈ S ×A

with probability 1− δτ/K .

Proof. The proof is analogous to the proof of Lemma 6 but invoking Theorem 7 with B = H and
applying a further union bound over the set [H]. Thus, the proof is skipped for brevity.

Lemma 6. Let V k be the sequence of value functions generated by Algorithm 2, fix a batch index
j and let Tj denote the set of indices in the jth batch. Then, it holds that for β = Õ

(
d

1−γ

)
, the

estimator
vk = (Λ(j))−1

∑
(s,a,s′)∈D(j)

ϕ(s, a)V k(s′)

satisfies∣∣ϕ(s, a)Tvk − PV k(s, a)
∣∣ ≤ β ∥ϕ(s, a)∥(Λ(j))−1 = bk(s, a) ∀k ∈ Tj ,∀s, a ∈ S ×A

with probability 1− δτ/K .

Proof. With standard manipulation one can prove that

PV k = ΦMV k = Φ(Λ(j))−1MV k +Φ(Λ(j))−1
∑

s,a,s′∈D(j)

ϕ(s, a)PV k(s, a)

and by definition
Φvk = Φ(Λ(j))−1

∑
s,a,s′∈D(j)

ϕ(s, a)V k(s′)

Therefore,

PV k −Φvk = Φ(Λ(j))−1MV k +Φ(Λ(j))−1
∑

s,a,s′∈D(j)

ϕ(s, a)(PV k(s, a)− V k(s′))

Then, for any state action pair (s, a), we have∣∣PV k(s, a)−Φvk(s, a)
∣∣ = ϕ(s, a)T (Λ(j))−1MV k+ϕ(s, a)T (Λ(j))−1

∑
s,a,s′∈D(j)

ϕ(s, a)(PV k(s, a)−V k(s′))

by applying Holder’s inequality,∣∣PV k(s, a)−Φvk(s, a)
∣∣ ≤ ∥ϕ(s, a)∥(Λ(j))−1

∥∥∥(Λ(j))−1MV k
∥∥∥
(Λ(j))

+ ∥ϕ(s, a)∥(Λ(j))−1

∥∥∥∥∥∥(Λ(j))−1
∑

s,a,s′∈D(j)

ϕ(s, a)(PV k(s, a)− V k(s′))

∥∥∥∥∥∥
(Λ(j))

= ∥ϕ(s, a)∥(Λ(j))−1

∥∥MV k
∥∥
(Λ(j))−1

+ ∥ϕ(s, a)∥(Λ(j))−1

∥∥∥∥∥∥
∑

s,a,s′∈D(j)

ϕ(s, a)(PV k(s, a)− V k(s′))

∥∥∥∥∥∥
(Λ(j))−1
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where in the equality we used that for a symmetric matrix A we have that ∥Ax∥A−1 = ∥x∥A. Then,
we can use that

∥∥MV k
∥∥
(Λ(j))−1 ≤ 1

1−γ to obtain

∣∣PV k(s, a)−Φvk(s, a)
∣∣ ≤ ∥ϕ(s, a)∥(Λ(j))−1

 1

1− γ
+

∥∥∥∥∥∥
∑

s,a,s′∈D(j)

ϕ(s, a)(PV k(s, a)− V k(s′))

∥∥∥∥∥∥
(Λ(j))−1


To handle the second term in brackets we use that V k ∈ Vπ(j)

defined as

Vπ(j)

=
{〈

π(j)(·|s), Q(s, ·)
〉
|Q(s, a) ∈ Q(β,Λ,w,v)

}
where Q(β,Λ,w,v) is defined as in Theorem 8. Denote as N j

ϵ the ∥·∥∞-covering number of the
class Vπ(j)

and notice that Vπ(j)

and D(j) are conditionally independent given π(j).

Under this setting we can use Theorem 7 with B = (1−γ)−1 to obtain that with probability 1−δτ/K∣∣PV k(s, a)−Φvk(s, a)
∣∣ ≤ ∥ϕ(s, a)∥(Λ(j))−1

(
1

1− γ
+

√
2d

(1− γ)2
log

(
K(τ + 1)

δτ

)
+

4

(1− γ)2
logN j

ϵ + 8τ2ϵ2

)

≤
∥ϕ(s, a)∥(Λ(j))−1

1− γ

(
1 +

√
2d log

(
K(τ + 1)

δτ

)
+ 2

√
logN j

ϵ + 2
√
2τϵ

)
.

Then, we can conclude that the covering number is upper bounded by Theorem 8 with L = τ
1−γ

since ∥∥vk
∥∥ ≤ 1

(1− γ)

∥∥∥(Λ(j))(−1)
∥∥∥
∥∥∥∥∥∥

∑
s,a,s′∈D(j)

ϕ(s, a)

∥∥∥∥∥∥ ≤ τ

(1− γ)

we obtain that

logN j
ϵ ≤ d log

(
1 +

4

ϵ

√
1 +

γ2τ2

(1− γ)2

)
+ d2 log(1 + 8

√
dβ2ϵ−2)

Therefore,

∣∣PV k(s, a)−Φvk(s, a)
∣∣ ≤ ∥ϕ(s, a)∥(Λ(j))−1

1− γ

[
1 +

√
2d log

(
K(τ + 1)

δτ

)
+

√√√√2d log

(
1 +

4

ϵ

√
1 +

γ2τ2

(1− γ)2

)

+
√
2d

√
log(1 + 8

√
dβ2ϵ−2) + 2

√
2τϵ

]
At this point, using ϵ = τ−1, we obtain

∣∣PV k(s, a)−Φvk(s, a)
∣∣ ≤ ∥ϕ(s, a)∥(Λ(j))−1

1− γ

[
1 +

√
2d log

(
K(τ + 1)

δτ

)
+

√√√√2d log

(
1 + 4τ

√
1 +

γ2τ2

(1− γ)2

)

+
√
2d

√
log(1 + 8

√
dβ2τ2) + 2

√
2

]
To simplify the above expression, we notice that there exists a constant c such that

∣∣PV k(s, a)−Φvk(s, a)
∣∣ ≤ c

∥ϕ(s, a)∥(Λ(j))−1

1− γ
d

√√√√log

(
τKβ

√
d

δ(1− γ)

)
Now, using [43, Lemma D.2], we have that β = O(d(1 − γ)−1 log

[
Rd(1− γ)−1

]
) with R =

τK
√
dδ−1(1− γ)−1 ensures

β ≥ c
d

(1− γ)
log

(
τ2β

√
d

δ(1− γ)

)
,

25



and therefore ∣∣PV k(s, a)−Φvk(s, a)
∣∣ ≤ β ∥ϕ(s, a)∥(Λ(j))−1 .

Theorem 7. For a fixed policy π consider a function class V and a state action pair dataset D
collected with a fixed policy π such that D and V are conditionally independent given π . Then, for
any f ∈ V such that ∥f∥∞ ≤ B, it holds with probability 1− δτ/K∥∥∥∥∥∥

∑
s,a,s′∈D

ϕ(s, a)(Pf(s, a)− f(s′))

∥∥∥∥∥∥
2

(Λ(j))−1

≤ 2dB2 log

(
K(τ + 1)

δτ

)
+ 4B2 logNϵ + 8τ2ϵ2

where Nϵ is the the (ϵ, ∥·∥∞)- covering number of the class Vπ .

Proof. Consider the decomposition in [22, Lemma D.4]. In particular, let Cϵ(V) denote the (ϵ, ∥·∥∞)-

covering set of V and pick f̃ ∈ Cϵ(V) such that
∥∥∥f − f̃

∥∥∥
∞

≤ ϵ. The existence of f̃ is guaranteed by
the properties of covering sets. Then, we have∥∥∥∥∥∥
∑

s,a,s′∈D
ϕ(s, a)(Pf(s, a)− f(s′))

∥∥∥∥∥∥
2

(Λ(j))−1

≤ 2

∥∥∥∥∥∥
∑

s,a,s′∈D
ϕ(s, a)(P f̃(s, a)− f̃(s′))

∥∥∥∥∥∥
2

(Λ(j))−1

+ 2

∥∥∥∥∥∥
∑

s,a,s′∈D
ϕ(s, a)(P (f − f̃)(s, a)− (f − f̃)(s′))

∥∥∥∥∥∥
2

(Λ(j))−1

The second term can be bounded by 8τ2ϵ2 as in [22] so now we focus on the first term via a
uniform bound over the set Cϵ(V). We need to index the dataset D, i.e. D =

{
(sℓ, aℓ)

}|D|
ℓ=1

and

consider the filtration Fj =
{
(sℓ, aℓ)

}j
ℓ=1

. Since the features mapping is deterministic, ϕ(sℓ, aℓ) is
Fℓ-measurable. Then, notice that by assumption D and Vπ are conditionally independent given π.
Therefore, we also have that D and Cϵ(Vπ) are conditionally independent given π. So for any function
f̄ ∈ Cϵ(Vπ) we have that E[f̄(sℓ+1)|Fℓ] = P f̄(sℓ, aℓ). Finally, from the assumption

∥∥f̄∥∥∞ ≤ B

we have that f̄ is B2-subgaussian. Therefore, all the conditions of [22, Theorem D.3] are met and via
a union bound over the covering set allows to conclude that with probability 1− δτ/K

2

∥∥∥∥∥∥
∑

s,a,s′∈D
ϕ(s, a)(P f̄(s, a)− f̄(s′))

∥∥∥∥∥∥
2

(Λ(j))−1

≤ 2dB2 log

(
K(τ + 1)

δτ

)
+4B2 logNϵ ∀f̄ ∈ Cϵ(V),

and since f̃ ∈ Cϵ(V),

2

∥∥∥∥∥∥
∑

s,a,s′∈D
ϕ(s, a)(P f̃(s, a)− f̃(s′))

∥∥∥∥∥∥
2

(Λ(j))−1

≤ 2dB2 log

(
K(τ + 1)

δτ

)
+ 4B2 logNϵ.

Theorem 8. Let us consider the function class Q defined as follows

Q(β,Λ,w,v) = {Q(s, a;β,Λ,w,v)|β ∈ R, λmin(Λ) ≥ 1, ∥w∥ ≤ 1, ∥v∥ ≤ L}

where Q(s, a;β,Λ,w,v) = [ϕ(s, a)⊺(w + γv) + β ∥ϕ(s, a)∥Λ−1 ]
(1−γ)−1

0

and the classes
Vπ = {⟨π(·|s), Q(s, ·)⟩ |Q(s, a) ∈ Q(β,Λ,w,v)}

for any π : S → ∆A.

Then, it holds that for any π : S → ∆A

Nϵ(Vπ) ≤ Nϵ(Q) = (1 + 4
√

1 + γ2L2/ϵ)d(1 + 8
√
dβ2ϵ−2)d

2
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Proof. Let us remove clipping that can only decreasing the covering number of the function class
and let us consider the matrix A = β2Λ−1, then we can rewrite the function class of interest
as parameterized only by A rather then β and Λ separately. In addition, let us consider a vector
z = w + γv

Q(A, z) =
{
Q(s, a;A,w,v)|λmin(Λ) ≥ β2, ∥z∥2 ≤ 2 + 2γ2L2

}
with

Q(s, a;A, z) = ϕ(s, a)⊺z+ ∥ϕ(s, a)∥A
Then, we have that

|Q(s, a;A1, z1)−Q(s, a;A2, z2)| ≤ ∥ϕ(s, a)∥ ∥z1 − z2∥+
∣∣∣√ϕ(s, a)⊺A1ϕ(s, a)−

√
ϕ(s, a)⊺A2ϕ(s, a)

∣∣∣
≤ ∥ϕ(s, a)∥ ∥z1 − z2∥+

√
|ϕ(s, a)⊺(A1 −A2)ϕ(s, a)|

≤ ∥z1 − z2∥+
√

sup
ϕ:∥ϕ∥≤1

|ϕ(s, a)⊺(A1 −A2)ϕ(s, a)|

≤ ∥z1 − z2∥+
√
∥A1 −A2∥

≤ ∥z1 − z2∥+
√
∥A1 −A2∥F

where ∥A1 −A2∥ is the spectral norm of the matrix A1 − A2 and ∥A1 −A2∥F is the Frobenius
norm. We also used the inequality

∣∣√x−√
y
∣∣ ≤√|x− y| that holds for any x, y ≥ 0. At this point

we can constructing an ϵ-covering set for Q(A, z) as product of the ϵ2/4 covering set for the set
Y =

{
A ∈ Rd×d| ∥A∥F ≤

√
dβ−2

}
which has cardinality Nϵ(Y) = (1 + 8

√
dβ2ϵ−2)d

2

while the

covering for the set Z =
{
z ∈ Rd : ∥z∥2 ≤ 1 + γ2L2

}
satisfies Nϵ(Z) = (1 + 4

√
1 + γ2L2/ϵ)d.

Hence, taking the product, we have that

Nϵ(Q) = (1 + 4
√
1 + γ2L2/ϵ)d(1 + 8

√
dβ2ϵ−2)d

2

.

At this point, let us consider the set

Vπ = {⟨π(·|s), Q(s, ·)⟩ |Q(s, a) ∈ Q(A, z)}
Since the policy π is fixed and averaging is a non expansive operation, we have that Nϵ(Vπ) ≤ Nϵ(Q).

However, for the set

V = {⟨π(·|s), Q(s, ·)⟩ |π ∈ Π, Q(s, a) ∈ Q(β,Λ,w,v)}
the averaging is not wrt to a fixed distribution therefore we would need to proceed as follow

|⟨π1(·|s), Q1(s, ·)⟩ − ⟨π2(·|s), Q2(s, ·)⟩| ≤
1

(1− γ)
∥π1(·|s)− π2(·|s)∥1 + 2 ∥Q1(s, ·)−Q2(s, ·)∥∞

≤ 1

(1− γ)
∥π1(·|s)− π2(·|s)∥1 + 2 ∥Q1(s, ·)−Q2(s, ·)∥∞

≤ 1

(1− γ)
max
s∈S

∥π1(·|s)− π2(·|s)∥1 + 2 ∥z1 − z2∥+
√
∥A1 −A2∥F

≤ 1

(1− γ)
∥π1(·|s)− π2(·|s)∥∞,1 + 2 ∥z1 − z2∥+

√
∥A1 −A2∥F

Therefore, we can conclude that Nϵ(V) = Nϵ(Π, ∥·∥∞,1)Nϵ(Q).

Next, we prove the Lemma that we use to state Theorems 1 and 2 using δ = ϵ.
Lemma 7. High probability to expectation conversion for a bounded random variable Let us
consider a random variable X such that −Xmax ≤ X ≤ Xmax almost surely and that P [X ≥ µ] ≤ δ,
then it holds that

E [X] ≤ µ+ δ(Xmax − µ)
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Proof.

E [X] = (1− δ)E [X|X ≤ µ] + δE [X|X ≥ µ] ≤ (1− δ)µ+ δXmax

Lemma 8. Expert concentration [46, Theorem 1] Let DπE ≜ {(sℓ0, aℓ0, sℓ1, aℓ1, . . . , sℓH , aℓH)}nE
ℓ=1 be

a finite set of i.i.d. truncated sample trajectories collected with an expert policy πE. We consider the
empirical expert feature expectation vector Φ⊺dπE by taking sample averages, i.e.,

Φ̂⊺dπE ≜ (1− γ)
1

nE

H∑
t=0

N∑
ℓ=1

γtϕi(s
ℓ
t, a

ℓ
t), ∀ i ∈ [d].

Suppose the trajectory length is H ≥ 1
1−γ log( 1ε ), and the number of of expert trajectories is

nE ≥ 2 log( 2d
δ )

ε2 . Then, with probability at least 1− δ, it holds that
∥∥∥Φ⊺dπE − Φ̂⊺dπE

∥∥∥
∞

≤ ε.

H Omitted proofs for Best Response Imitation Learning

H.1 Proof of Theorem 6

Proof.

Regret(K,π⋆) =

K∑
k=1

V πk,k
1 (s1)− V π⋆,k

1

=

K∑
k=1

V πk,k
1 (s1)− V k−1

1 (s1) + V k−1
1 (s1)− V π⋆,k

1

=

K∑
k=1

H∑
h=1

E
s,a∼dπk

h

[
ckh(s, a) + PhV

k−1
h+1 (s, a)−Qk−1

h (s, a)
]

+

K∑
k=1

H∑
h=1

Es,a∼dπ⋆

h

[
Qk−1

h (s, a)− ckh(s, a)− PhV
k−1
h+1 (s, a)

]
+

H∑
h=1

Es∼dπ⋆

h

[
K∑

k=1

〈
πk
h(·|s)− π⋆

h(·|s), Qk−1
h (s, a)

〉]

≤
K∑

k=1

H∑
h=1

E
s,a∼dπk

h

[
ckh(s, a) + PhV

k−1
h+1 (s, a)−Qk−1

h (s, a)
]

+

K∑
k=1

H∑
h=1

Es,a∼dπ⋆

h

[
Qk−1

h (s, a)− ckh(s, a)− PhV
k−1
h+1 (s, a)

]
where the last inequality is due to the use of the best response (greedy policy) in Step 17 of Algorithm 4.
At this point we can prove the optimistic properties of the estimator (that follows combining Lemmas 4
and 9),i.e. for any h = H, . . . , 1, it holds that

ckh(s, a)+PhV
k−1
h+1 (s, a)−2bk−1

h (s, a) ≤ Qk−1
h (s, a) ≤ ckh(s, a)+PhV

k−1
h+1 (s, a) ∀s, a ∈ S×A w.p. 1−δ.

Thus, it holds with probability 1− δ that

Regret(K,π⋆) ≤ 2

K∑
k=1

H∑
h=1

E
s,a∼dπk

h

[
bk−1
h (s, a)

]
and then, using Cauchy-Schwartz and the elliptical potential lemma ( see Lemma 10), we obtain that
with probability 1− 2δ,

Regret(K,π⋆) ≤ O
(
H2d3/2

√
K log(Kδ−1)

)
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Then, we apply this result in the imitation learning setting. We start with our usual decomposition

K∑
k=1

H∑
h=1

〈
ctrue,h, d

πk

h − dπ̂E
h

〉
=

K∑
k=1

H∑
h=1

〈
ckh, d

πk

h − dπ̂E
h

〉
+

K∑
k=1

H∑
h=1

〈
ctrue,h − ckh, d

πk

h − dπ̂E
h

〉
=

K∑
k=1

H∑
h=1

〈
ckh, d

πk

h − dπ̂E
h

〉
+

K∑
k=1

H∑
h=1

〈
ctrue,h − ckh,1

[
shk , a

h
k

]
− dπ̂E

h

〉
−

H∑
h=1

K∑
k=1

〈
ctrue,h − ckh,1

[
shk , a

h
k

]
− dπ

k

h

〉
Then, notice that zkh = −

〈
ctrue,h − ckh,1

[
shk , a

h
k

]
− dπ

k

h

〉
is a martingale difference sequence

adapted to the filtration Fk
h =

{(
τk, ckh

)}
almost surely bounded by 4. Therefore, by Azuma

Hoeffding inequality, we obtain
∑H

h=1

∑K
k=1 z

k
h ≤ H

√
8K log δ−1. Therefore, via a union bound,

we have that with probability 1− 3δ, it holds

K∑
k=1

H∑
h=1

〈
ctrue,h, d

πk

h − dπ̂E
h

〉
≤ Õ

(
H2d3/2

√
K log(Kδ−1)

)
+

H

α
+ 2αKH +H

√
8K log δ−1

= Õ
(
H2d3/2

√
K log(Kδ−1)

)
+ 4H

√
K +H

√
8K log δ−1

where last step follows from choosing α = 1√
2K

. At this point, the conclusion holds plugging in the

value for K in the statement of the main theorem which is K = O
(

H4d3 log(dH/(ϵδ))
ϵ2

)
. Finally, we

need to control the error in the estimation of the expert occupancy measure that can be done as in the
proof for Algorithm 1.

V πE
1 (s1; ctrue)− V π̂E

1 (s1; ctrue) =

H∑
h=1

〈
Φ⊺dπE

h −Φ⊺dπ̂E
h , wtrue,h

〉
≤ H

√
d max
h∈[H]

∥∥∥Φ⊺dπE
h −Φ⊺dπ̂E

h

∥∥∥
∞

≤ H

√
2d log(2d/δ)

τE

where the last inequality holds with probability 1− δ. Therefore, the choice of τE in the theorem
statement ensures that V πE

1 (s1; ctrue)− V π̂E
1 (s1; ctrue) ≤ ϵE .

Lemma 9. For β = O
(
dH log(dTδ )

)
, the estimator used in Algorithm 4

vk
h =

(
Λk
h

)−1
k∑

l=1

ϕ(slh, a
l
h)V

k
h (slh+1)

satisfies for any h, k ∈ [H]× [K] and for any state action pair (s, a) ∈ S ×A.∣∣ϕ(s, a)⊺vk
h − PhV

k
h+1(s, a)

∣∣ ≤ β ∥ϕ(s, a)∥(Λk
h)

−1 (8)

with probability 1− δ.

Proof. With analogous steps to the proof of Lemma 6 that∣∣ϕ(s, a)⊺vk
h − PhV

k
h+1(s, a)

∣∣ ≤ ∥∥MV k
h+1

∥∥
(Λk

h)
−1 ∥ϕ(s, a)∥(Λk

h)
−1

+

∥∥∥∥∥
k∑

l=1

ϕ(slh, a
l
h)
(
V k
h+1(s

l
h+1)− PhV

k
h+1(s

l
h, a

l
h)
)∥∥∥∥∥

(Λk
h)

−1

∥ϕ(s, a)∥(Λk
h)

−1
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Then, using the fact that by assumption on M and by the clipping of the value function, we have that∥∥MV k
h+1

∥∥
(Λk

h)
−1 ≤ H . Then, using [22, Lemma B.3] it holds that with probability 1− δ∥∥∥∥∥

k∑
l=1

ϕ(slh, a
l
h)
(
V k
h+1(s

l
h+1)− PhV

k
h+1(s

l
h, a

l
h)
)∥∥∥∥∥

(Λk
h)

−1

≤ O
(
dH log

(
dK

δ

))

Then, noticing that this is the main term we conclude that∣∣ϕ(s, a)⊺vk
h − PhV

k
h+1(s, a)

∣∣ ≤ O
(
dH log

(
dK

δ

))
∥ϕ(s, a)∥(Λk

h)
−1 .

Lemma 10. It holds that with probability 1− δ

K∑
k=1

H∑
h=1

E
s,a∼dπk

h

[
bk−1
h (s, a)

]
≤ O

(
d3/2H2

√
K log

(
2K

δ

))

Proof. We have that

2

K∑
k=1

H∑
h=1

E
s,a∼dπk

h

[
bk−1
h (s, a)

]
≤ 2

K∑
k=1

H∑
h=1

bk−1
h (skh, a

k
h) + βH

√
K log δ−1 (Azuma-Hoeffding)

≤ 2

H∑
h=1

√√√√K

K∑
k=1

(bk−1
h (skh, a

k
h))

2 + βH
√

K log δ−1 (Cauchy-Schwartz)

= 2β

H∑
h=1

√√√√K

K∑
k=1

ϕ(skh, a
k
h)

⊺(Λk−1
h )ϕ(skh, a

k
h) + βH

√
K log δ−1

≤ 2β

H∑
h=1

√
dK log(2K) + βH

√
K log δ−1

= O

(
d3/2H2

√
K log

(
2K

δ

))

I Experiments

I.1 Experiments with deterministic expert

We also run an experiment where the expert is deterministic and see if ILARL can compete with BC
in this setting. The results are provided in Figure 2. The parameter σ is the probability at which the
system does not evolve according to the agent’s action but in an adversarial way. We experiment
with σ = {0, 0.05, 0.1}. The details about the transition dynamics are given in Appendix I.2. Form
Figure 2, we can see that ILARL and REIRL are again the most efficient algorithms in terms of MDP
trajectories and they are able to match the performance of behavioural cloning despite the fact it has
better guarantees for the case of deterministic experts. For Figure 1, we used σ = 0.1.

I.2 Environment description

We run the experiment in the following MDP with continuous states space. We consider a 2D
environment, where we denote the horizontal coordinate as x ∈ [−1, 1] and vertical one as y ∈ [−1, 1].
The agent starts in the upper left corner, i.e., the coordinate [−1, 1]⊺ and should learn to reach
the opposite corner (i.e. [1,−1]⊺) while avoiding the central high cost area depicted in Figure 3.
The reward function is given by: ctrue(s, a) = ctrue([x, y]

⊺, a) = (x − 1)2 + (y + 1)2 + 80 ·
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Figure 2: Experiments on the continuous gridworld with one trajectory from a deterministic expert.

e−8(x2+y2) − 100 · 1{x ∈ [0.95, 1], y ∈ [−1,−0.95]}. The action space for the agent is given by

A =

[0.01, 0]⊺︸ ︷︷ ︸
≜A1

, [0, 0.01]⊺︸ ︷︷ ︸
≜A2

, [−0.01, 0]⊺︸ ︷︷ ︸
≜A3

, [0,−0.01]⊺︸ ︷︷ ︸
≜A4

, and the transition dynamics are given by:

st+1 =

{
Π[−1,1]2

[
st +

at

10

]
w.p. 1− σ

Π[−1,1]2

[
st − st

10∥st∥2

]
w.p. σ

Thus, with probability σ, the environment does not respond to the action taken by the agent, but

Figure 3: Graphical representation of −ctrue of the linear MDP used in Figures 1 and 2.

it takes a step towards the low reward area centered at the origin, i.e., − st
10∥st∥2

. The agent should
therefore pass far enough from the origin. Consider

ϕ(s, a) = ϕ([x, y], a) =
[
x2, y2, x, y, e−8(x2+y2),1 {x ∈ [0.95, 1], y ∈ [−1,−0.95]} , e⊺a

]
with

ea = [1 {a = A1} ,1 {a = A2} ,1 {a = A3} ,1 {a = A4}]⊺ .

Notice that Assumption 2 holds only for the cost ctrue = Φ[1, 1,−2,−2, 80,−100, 2, 2, 2, 2]⊺ while
for the dynamics the linearity assumption does not hold.

I.3 Numerical verification of the finite horizon improvement.

We test BRIG (Algorithm 4) in a toy finite horizon problem. In particular, we consider a linear bandits
problem (H = 1) with true cost function ctrue = Φwtrue where Φ entries are sampled from a normal
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distribution. For wtrue we choose wtrue(i) = 0 if i is odd and wtrue(i) = 1 otherwise. We generate
the expert dataset sampling 10 actions from a softmax expert. The results are shown in Figure 4.
They confirm the theoretical findings that BRIG outperforms ILARL for finite horizon problems in
terms of MDP trajectories.

0 25 50 75 100
MDP trajectories

0

1

BRIG
ILARL

Figure 4: Experiment in finite horizon setting to assess the better efficiency of BRIG.

I.4 Hyperparameters

For the experiments in Figures 1 and 2 we used η = 1, τ = 5 and β = 8. For IQlearn, we also collect
5 trajectory to perform each update on the Q-function, and we use again η = 1 and 0.005 as stepsize
for the Q-function weights. For PPIL, we use batches of 5 trajectories, 20 gradient updates between
each batch collection, η = 1 and and 0.005 as stepsize for the Q-function weights. For GAIL and
AIRL, we use the default hyperparameters in https://github.com/Khrylx/PyTorch-RL but we
obtained a better prerformance with a larger batch size of 6144 states and we use linear models rather
than neural networks. For REIRL, we used the implementation in [47] but again we increased the
batch size equal to 6144 states for achieving a better performance.

J Reducing the number of expert trajectories.

In this section, we show that the number of required expert trajectories can be further reduced at the
price of additional assumption on the expert policy, features and expert occupancy measure. The
estimator we use is build on the ideas underling Mimic-MD in the linear case [35].

Remark 4. Using such an estimator in ILARL or BRIG allows to improve upon Mimic-MD in
two ways. Indeed ILARL and BRIG are provably computationally efficient algorithms and do not
require knowledge of the dynamics. On the other hand, Mimic-MD requires perfect knowledge of the
transition dynamics and it is unclear if the output policy can be computed efficiently in Linear MDPs.

To this goal, we need to consider the following estimator for Φ⊺dπE , where we denote via (sτh, a
τ
h)

the state action pair encountered at step h in the trajectory τ

Φ̃⊺dπE = (1− γ)Eτ∼πE

[ ∞∑
h=1

γhϕ(sτh, a
τ
h)1 [st ∈ K ∀st ∈ τ ]

]

+ (1− γ)Eτ∼Unif(D1)

[ ∞∑
h=1

γhϕ(sτh, a
τ
h)1 [∃sh ∈ τ s.t. sh /∈ K]

]
(9)

where we split the expert dataset DπE in two disjoint halves D0, D1. The first D0 is used
to compute the set K which is according to [35, Definition 7] the set where the policy πBC

learned via Behavioural Cloning on the input dataset D0 equals the expert policy. That is,
K = {s ∈ S s.t. πBC(s) = πE(s)}4. The other half denoted via D1 is used for the second

4Notice that we consider a deterministic expert in this section as done in [35]. Therefore, we consider policies
as mapping from states to actions, i.e. π : S → A
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term in 9. In the analysis of [35] the first term can be computed thanks to the perfect knowledge of
the dynamics. In our case, we have only trajectory access so we use the estimator

Φ⊺dπE = (1− γ)Eτ∼Unif(DπBC
)

[ ∞∑
h=1

γhϕ(sτh, a
τ
h)1 [st ∈ K ∀st ∈ τ ]

]

+ (1− γ)Eτ∼Unif(D1)

[ ∞∑
h=1

γhϕ(sτh, a
τ
h)1 [∃sh ∈ τ s.t. sh /∈ K]

]
(10)

where the dataset DπBC
contains trajectories sampled according to πBC .

Lemma 11. Let us consider the estimator Φ⊺dπE with the set K be the confidence set for a binary
linear classifier as defined in [35, Section 4.1], let the expert policy be deterministic ans satisfy the
Linear Expert Assumption [35, Definition 4 ].Moreover consider features that satisfy −ϕ(s, 1) =
ϕ(s, 0) = s/2 for all s ∈ S where the state space is chosen to be Rd. Finally, let consider that∑

a∈A dπE(·, a) is the uniform distribution Unif(S), then it holds that for any δ > 0

E ∥Φ⊺dπE −Φ⊺dπE∥∞ ≤ 1

1− γ

√
log(d/δ)

2 |DπBC
|
+

δ

1− γ
+O

(
d5/4 log d

(1− γ)3/2 |DπE |

)
(11)

Remark 5. The Lemma above follows the construction in [35] to show that there exists one example
under which ILARL used with estimator Φ⊺dπE requires only Õ(d5/4ϵ−1(1− γ)−3/2) expert trajec-
tories. However, it remains open to prove that the same holds true for general expert in Linear MDPs
without further assumptions on the features and expert occupancy measure.

Proof. The error can be controlled as follow

E ≜ Eτ∼πE

[ ∞∑
h=1

γhϕ(sτh, a
τ
h)1 [st ∈ K ∀st ∈ τ ]

]
− Eτ∼Unif(DπBC

)

[ ∞∑
h=1

γhϕ(sτh, a
τ
h)1 [st ∈ K ∀st ∈ τ ]

]

so denoting X(τ) ≜
∑∞

h=1 γ
hϕ(sτh, a

τ
h)1 [st ∈ K ∀st ∈ τ ] and noticing that by definition of K

we have that

Eτ∼Unif(DπBC
)

[ ∞∑
h=1

γhϕ(sτh, a
τ
h)1 [st ∈ K ∀st ∈ τ ]

]
= Eτ∼Unif(DπE )

[ ∞∑
h=1

γhϕ(sτh, a
τ
h)1 [st ∈ K ∀st ∈ τ ]

]
,

we can rewrite E as a martingale difference sequence

∥E∥∞ =

∥∥∥∥∥∥Eτ∼πE [X(τ)]− 1

|DπBC
|
∑

τ∈DπBC

X(τ)

∥∥∥∥∥∥
∞

=

∥∥∥∥∥∥ 1

|DπBC
|
∑

τ∈DπBC

(X(τ)− Eτ∼πE [X(τ)])

∥∥∥∥∥∥
∞

≤ 1

1− γ

√
log(d/δ)

2 |DπBC
|

w.p. 1− δ

Therefore choosing |DπBC
| = log(d/δ)

2ϵ2(1−γ)2 ensures E ≤ ϵ with probability at least 1− δ. Therefore by
Lemma 7,

E ∥E∥∞ ≤ 1

1− γ

√
log(d/δ)

2 |DπBC
|
+

δ

1− γ

These trajectories can be simulated in the MDP therefore the latter it is not a requirement on the expert
dataset size. The number of expert trajectories is crucial to control the error due to the trajectories
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containing trajectories not in K, i.e. Equation (10). Denoting this error as E2 we have

ED0,D1 ∥E2∥∞

= ED0,D1

[∣∣∣∣∣∣∣∣Eτ∼πE

[ ∞∑
h=1

γhϕ(sτh, a
τ
h)1 [∃sh ∈ τ s.t. sh /∈ K]

]

− Eτ∼Unif(D1)

[ ∞∑
h=1

γhϕ(sτh, a
τ
h)1 [∃sh ∈ τ s.t. sh /∈ K]

] ∣∣∣∣∣∣∣∣
∞

]

≤ 1

(1− γ)

√
d

|D1|
Eτ∼D0

[1 [∃sh ∈ τ s.t. sh /∈ K]]

=
1

(1− γ)

√
d

|D1|
Elenght(τ)

[
Eτ∼D0|lenght(τ) [1 [∃sh ∈ τ s.t. sh /∈ K]]

]
Tower Property of Expectation

≤ 1

(1− γ)

√√√√√ d

|D1|
Elenght(τ)

lenght(τ)∑
h=1

Eτ∼D0|lenght(τ) [1 [sh /∈ K]]

 Union Bound

≤ 1

(1− γ)

√√√√√ d

|D1|
Elenght(τ)

lenght(τ)∑
h=1

O
(
d3/2 log d

|D0|

) Thanks to [35, Theorem 7]

≤ O

(
1

(1− γ)

√
d5/2 log d

|D1|2
Elenght(τ) [lenght(τ)]

)
Using that |D0| = |D1| by construction

≤ O

(
1

(1− γ)

√
d5/2 log d

|D1|2
1

1− γ

)

= O
(

d5/4 log d

(1− γ)3/2 |D1|

)
Where we used [35, Theorem 7] to bound

Eτ∼D0|lenght(τ) [1 [sh /∈ K]] ≤ O
(
d3/2 log d

|D0|

)
so overall

ED0,D1
∥E2∥∞ ≤ O

(
d5/4 log d

(1− γ)3/2 |D1|

)
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