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ABSTRACT

There is overwhelming evidence that cognition, perception, and action rely on
feedback control. However, if and how neural population dynamics are amenable
to different control strategies is poorly understood, in large part because machine
learning methods to directly assess controllability in neural population dynamics
are lacking. To address this gap, we developed a novel dimensionality reduction
method, Feedback Controllability Components Analysis (FCCA), that identifies
subspaces of linear dynamical systems that are most feedback controllable based
on a new measure of feedback controllability. We further show that PCA identifies
subspaces of linear dynamical systems that maximize a measure of feedforward
controllability. As such, FCCA and PCA are data-driven methods to identify
subspaces of neural population data (approximated as linear dynamical systems)
that are most feedback and feedforward controllable respectively, and are thus
natural contrasts for hypothesis testing. We developed new theory that proves
that non-normality of underlying dynamics determines the divergence between
FCCA and PCA solutions, and confirmed this in numerical simulations. Applying
FCCA to diverse neural population recordings, we find that feedback controllable
dynamics are geometrically distinct from PCA subspaces and are better predictors
of animal behavior. Our methods provide a novel approach towards analyzing
neural population dynamics from a control theoretic perspective, and indicate that
feedback controllable subspaces are important for behavior.

1 INTRODUCTION

Feedback control has long been recognized to be central to brain function (Wiener, 1948} |(Conant &
/Ashby| [1970). Prior work has established that, at the behavioral level, motor coordination (Todorov
& Jordan, [2002)), speech production (Houde & Nagarajan, 201 1), perception (Rao & Ballard, |1999),
and navigation (Pezzulo & Cisekl |2016; [Friston et al., 2012)) can be accounted for by models of
optimal feedback control. Advances in the ability to simultaneously record from large number of
neurons have further revealed that the brain performs computations and produces behavior through
low-dimensional population dynamics (Vyas et al., 2020). Together, these two facts indicate that
neural population dynamics should both be able to implement the computations required to exert
feedback control [Friedrich et al.[(2021)), and be internally steerable by feedback control themselves
(e.g., other brain areas controlling motor cortex to produce target dynamics). Nonetheless, methods
to assess these hypotheses directly from recordings of neural population activity are absent.

The cost incurred in controlling a dynamical system is referred to as its controllability. Existing
measures of controllability center around the energy (in terms of the norm of the control signal) that
must be expended to steer the system state. These measures are calculated from the controllability
Gramian of the (linearized) system dynamics. Controllability is an intrinsic feature of the dynamical
system itself, and may be estimated from measurements of system dynamics without reference to
the specific inputs to the system (Pasqualetti et al., 2013} |Kashima, 2016). Network controllability
analyses have delivered insights into the organization of proteomic networks (Vinayagam et al., [2016)),
human functional and structural brain networks (Medaglia et al.| 2018} |Tang & Bassettl, 2018}, [Kim
et al., 2018} |Gu et al.} 2015)), and the connectome of C Elegans (Yan et al.,[2017). However, prior
work in network controllability has exclusively focused open loop, or feedforward, controllability in
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the context of extracted networks, and not measures of closed loop, or feedback, controllability in
the context of observed dynamics of data. Indeed, methods to asses feedback controllability from
observations of the dynamics of neural populations are nascent.

Here, we developed dimensionality reduction methods that can be applied to neural population data
that maximize the feedforward and feedback controllability of extracted latent population dynamics.
We first identify a correspondence between Principal Components Analysis (PCA) and the volume
of state space reachable by feedforward control in linear dynamical systems (Pasqualetti et al.|
2013)—this provides a control-theoretic interpretation to PCA extracted subspaces. We then present
Feedback Controllable Components Analysis (FCCA), a linear dimensionality reduction method to
identify feedback controllable subspaces of high dimensional dynamical systems based on a novel
measure of feedback controllability.

Our focus on linear models of dynamics is a computational necessity; nonlinear measures of con-
trollability require nonlinear systems identification and involve partial differential equations that are
intractable to solve in high dimensions Scherpen|(1993a)); Nakamura-Zimmerer et al.|(2021); Kramer
et al.|(2024)). In contrast, a key advantage of FCCA is that it can be applied to data using only the
second order statistics of the observed data itself, bypassing the need for prior system identification
and making the method easily applicable to large scale neural population recordings. Furthermore, in
contrast to existing approaches towards dimensionality reduction in computational neuroscience |Yu
et al.| (2009); |Pandarinath et al.| (2018)), FCCA does not attempt to reconstruct the neural data with a
lower dimensional subspace, but rather identifies a subspace in which dynamics optimize a functional
measure (feedback controllability). Together with a functional, control theoretic interpretation of
PCA, this permits direct comparison of the neural population dynamics underlying distinct control
strategies from observed neural population data.

Through theory and numerical simulations, we show that the degree of non-normality of the under-
lying dynamical system (Irefethen & Embreel 2020) determines the degree of divergence between
PCA and FCCA solutions. In the brain, the postsynaptic effect of every neuron is constrained to be
either excitatory or inhibitory by Dale’s Law. This structure implies that linearized dynamics within
cortical circuits are necessarily non-normal (Murphy & Miller, 2009). Prior work has highlighted
the capacity of non-normal dynamical systems to retain memory of inputs (Ganguli et al.,[2008)) and
transmit information (Baggio & Zampieri, |2021). Our results show that non-normality also plays
a fundamental role in shaping the controllability of neural systems. Finally, we applied FCCA to
diverse neural recordings and demonstrate that those subspaces are better predictors of behavior than
PCA subspaces (despite both being linear), and that the two subspaces are geometrically distinct.
This suggests that feedback controllable subspaces (FCCA) are more relevant for behavior than
feedforward controllable subspaces (PCA).

2 CONTROLLABLE SUBSPACES OF LINEAR DYNAMICAL SYSTEMS

Here, we provide detailed derivations of our data-driven measures of controllability. We first
discuss the natural cost function to measure feedforward controllabiity (eq. [)) and highlight its
correspondence to PCA. Next, we present the analogous measure for feedback controllabiity (eq.
[7), and how it may be estimated implicitly (i.e., without explicit model fitting) from the observed
second order statistics of data (eq. [[T)). We provide rationale for this cost function as measuring the
complexity of the feedback controller required to regulate the observed neural population dynamics.

We consider linear dynamical systems of the form:

&(t) = Ax(t) + Bu(t) y(t) = Cz(t) (1)

where z(t) € R¥ is the neural state (i.e., the vector of neuronal activity, not a latent variable) and
u(t) is an external control input. A € RY*¥ is the dynamics matrix encoding the effective first
order dynamics between neurons. B € RV*P describes how inputs drive the neural state, and
C € RN g << N is a readout matrix projecting the neural dynamics to a lower dimensional
space. The input-output behavior (i.e., the mapping from u(t) to y(t)) can equivalently be represented
in the Laplace domain using the transfer function G(s) = C(sI — A)~! B Kailath|(1980).

Consider an invertible linear transformation of the state variable x — T'x. Under such a state-space
transformation, the input-output behavior of the system |I]is left unchanged as the state space matrices
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transform as (A, B,C) — (TAT~!,TB,CT~!). This implies that there are many possible choices
of (A, B, C') matrices, referred to as realizations, that give rise to the same transfer function G(s). A
minimal realization contains the fewest number of state variables (i.e., A has the smallest dimension)
amongst all realizations. Measures of controllabity that are intrinsic to the dynamical system should
be invariant across all realizations. We will show that our measures of feedforward and feedback
controllabillity exhibit this property.

Throughout, we will assume that the observed data obeys following underlying state dynamics:
#(t) = Ax(t) + Bdw(t); dw(t) ~N(0,1); y(t) = Cx(t) )

Compared to eq. |1} u(¢) has been replaced by temporally white noise dw(t), a reasonable assumption
given that input signals are unmeasured in neural recordings. Our metrics of controllability rely only
on observing the linear dynamics under this latent, stochastic excitation.

2.1 PRINCIPAL COMPONENTS ANALYSIS EIGENVALUES MEASURE FEEDFORWARD
CONTROLLABILITY

A categorical definition of controllability for a dynamical system is that for any desired trajectory
from initial state to final state, there exists a control signal «(¢) that could be applied to the system to
guide it through this trajectory. For a (stable) linear dynamical system, a necessary and sufficient
condition for this to hold is that the controllability Gramian, II, has full rank. II is obtained from the
state space parameters through the solution of the Lyapunov equation:

AN+ TA" = —-BBT II= / dt eA'BBT At 3)
0

The rank condition on II as a definition of controllability, while canonical (Kailath, |1980), is an all
or-nothing designation; either all directions in state space can be reached by control signals, or they
cannot. Furthermore, this definition does not take into account the energy required to achieve the
desired transition. While certain directions in state space may in principle be reachable, the energy
required to push the system in those directions may be prohibitive.

Thus, given that the system is controllable, we can ask a more refined question: what is the energetic
effort required to control different directions of state space? The energy required for control is
measured by the norm of the input signal u(t). It can be shown (Pasqualetti et al., [2013) that to
reach states that lie along the eigenvectors of II, the minimal energy is proportional to the inverse
of the corresponding eigenvalues of II. Directions of state space that have large projections along
eigenvectors of II with small eigenvalues are therefore harder to control. For a unit-norm input signal,
the volume of reachable state space is proportional to the determinant of IT (Summers et al., 2016).

The above intuition can be encoded into the objective function of a dimensionality reduction problem:
for a fixed-norm input signal, find C' that maximizes the reachable volume within the subspace. This
volume is measured by the determinant of CTIC' " . Identifying subspaces of maximum feedforward
controllability is then posed as the following optimization problem:

argmax, logdet CTICT | C e RPN cCT = I, 4)

Observe that under state space transformations, IT maps to THTT, whereas C maps to CT~1. Hence,
as desired, eq. [4|is invariant to state space transformations and thus an intrinsic property of the
dynamical system. We include the constraint CC'T = I, to ensure the optimization problem is
well-posed. Without it, one could, for example, multiply C' by an overall constant and increase the
objective function. We can assess this objective function from data generated by eq. [2| as in this
case the observed covariance of the data will coincide with the controllability Gramian (Mitra, |1969;
Kashima, [2016)). The solution of problem E]coincides with that of PCA, as the optimal C of fixed
dimensionality d has rows given by the top d eigenvectors of II (see Theorem 2 on pg. 7 and Lemma
1 in the Appendix).

2.2 LINEAR QUADRATIC GAUSSIAN SINGULAR VALUES MEASURE FEEDBACK
CONTROLLABILITY

How does one quantify the feedback controllability of a system? The primary distinction between
feedforward control and feedback control is that the latter utilizes observations of the state to
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synthesize subsequent control signals. Feedback control therefore involves two functional stages:
filtering (i.e., estimation) of the underlying dynamical state (x(¢)) from the available observations
(y(t)) and construction of appropriate regulation (i.e., control) signals. For a linear dynamical
system, state estimation is optimally accomplished by the Kalman filter, whereas state regulation
is canonically achieved via linear quadratic regulation (LQR). It will be crucial in what follows to
recall that the Kalman Filter is an efficient, recursive, Gaussian minimum mean square error (MMSE)
estimate of x(t) given observations y(7) for 7 < ¢. These two functional stages optimally solve the
following cost functions:

Kalman Filter : min  lim Tr (IE [(E(m0|y,T:0) — 20)(E(zo|ly—T1:0) — xo)T])

p(xoly—r:0) T—00

1 (T
LQR: min lim E l / 2 CTCr+u'udt
w€L?[0,00) T—00 T /o

where y_r.0 denotes observations over the interval [T, 0]. The minima of these cost functions are
obtained from the solutions of dual Riccati equations:

AQ+ QAT +BBT —QCTCQ =0 3)
ATP+PA+CTC—-—PBBTP=0 (6)
where

Q= min lim E[(E(zo|ly—10) — z0)(E(zo|y_1:0) — 2) "]

p(zoly—7:0) T—00

zg Pxo = min lim E
uw€L?[0,00) | T—o0

1 /7
—/ ' CTCz+u"u dt] , x(0) = mo}
T Jo

Here, @ is the covariance matrix of the estimation error, whereas P encodes the regulation cost
incurred for varying initial conditions (z¢). Tr(P) is proportional to the average regulation cost over
all unit norm initial conditions.

The solutions of the Riccati equations are not invariant under the invertible state transformation
x +— Tx. The filtering Riccati equation will transform as Q — TQT " whereas P will transform
as (T~Y)T PT L. As such, simply by defining new coordinates via 7" we can shape the difficulty of
filtering and regulating various directions of the state space. Therefore () and P on their own are not
suitable cost functions for measuring feedback controllability. However, the product PQ undergoes a
similarity transformation PQ — (T T)"'QPT . Hence, the eigenvalues of PQ are invariant under
similarity transformations, and define an intrinsic measure of the feedback controllability of a system.
Additionally, there exists a particular T that diagonalizes P(Q). Following Jonckheere & Silverman
(1983), we refer to the corresponding eigenvalues as the LQG (Linear Quadratic Gaussian) singular
values. In this basis, the cost of filtering each direction of the state space equals the cost of regulating
it. We formalize these statements by restating Theorem 1 from Jonckheere & Silverman| (1983):

Theorem 1. Let (A, B,C) be a minimal realization of G(s). Then, the eigenvalues of QP are
similarity invariant. Further, these eigenvalues are real and strictly positive. If u3 > p3 > pi > 0
denote the eigenvalues of QQ P in decreasing order, then there exists a state space transformation T,

(A,B,C) = (TAT-*,TB,CT~") = (A, B, C) such that:
Q =P= diag(M17M27 a/'LN)

The realization (A, B, C) will be called the closed-loop balanced realization.

Proof. Let @ = LLT be the Cholesky decomposition of @ and let LT PL have Singular Value
Decomposition UX2U . Then, one can check 7' = X/2U T L~ provides the desired transformation.
O

Hence, as an intrinsic measure of feedback controllability, we take the sum of the LQG singular
values 1.7, corresponding to the sum of the ensemble cost to filter and regulate each direction of the
neural state space:

Tr(PQ) (7N
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2.3 THE FEEDBACK CONTROLLABILITY COMPONENTS ANALYSIS METHOD.

We developed a novel dimensionality reduction method, Feedback Controllability Components
Analysis (FCCA), that can be readily applied to observed data from typical systems neuroscience
experiments. To do so, we construct estimators of the LQG singular values, and hence Tr(PQ),
directly from the autocorrelations of the observed neural firing rates. The FCCA objective function
arises from the observation that causal and acausal Kalman filtering are also related via dual Riccati
equations. We first show that through an appropriate variable transformation, we obtain a state
variable x;(t) whose dynamics unfold backwards in time via the same dynamics matrix (A) which
evolves x(t) (the neural state) forwards in time. Once established, this enables us to use the error
covariance matrix of Kalman filtering x(t) as a stand-in for the cost of regulating z(t).

In particular, given the state space realization of the forward time stochastic linear system in eq. [2],
the joint statistics of (z(t), y(¢)) can equivalently be parameterized by a Markov model that evolves
backwards in time (L. Ljung & T. Kailath, [1976):

—dy(t) = Apzy(t) + Bdw(t); y = Cuy(t) ®)

where Ay = —A — BBTII"! = ITATII"! and TT = E[z(¢)z(¢) "] is the solution of the Lyapunov
equation (eq. [3)

Examination of eq. [5|and eq. [ reveals that the filtering and LQR Riccati equations differ primarily
in two respects. First, the dynamics matrix is transposed (4 — AT). Second, the inputs and
outputs have been exchanged (B — C'T, C — BT). To use the error covariance of state filtering
as a stand-in for the state regulation cost, we therefore require that the corresponding acausal state
dynamics (determined by A;) respect these differences. To this end, consider the transformed state
x,(t) = I~ 'z(t). Substituting z(t) = Mz, (t) and A, = ITATII"! into the equations for the
backward dynamics result in following dynamics for this adjoint state:

i (t) = AT24(t) + T Bdw(t)

Then, if we construct a readout of this transformed state y, (¢t) = CTx,(¢t) = Cz(t), the Riccati

equation associated with Kalman filtering =, whose solution we denote P, takes on the form:
ATP+PA+TI'BBTII! — PIICTCIIP =0 )
ATP+PA+C"C—-PBB'P=0 (eq[6)

We see that eq. E]rcoincides with eq. [6] (reproduced for convenience) upon switching the inputs and
outputs (B — C'", C — BT) and reweighting them by a factor of II~! and II, respectively. In fact,
eq. O] coincides with the Riccati equation associated with a slightly modified LQR problem:

1 T
min lim E [T/ ¢ IIT'BB I 'z + u ' T dt (10)
0

u€L?[0,00) T—o0

This is the regulator problem for the adjoint state ., (¢) = I1~a(t). Therefore, under the assumption
that the observed dynamics can be approximated by a linear dynamical system, we can measure
LQG singular values associated with this modified LQR problem directly from measuring the causal
minimum mean square error (MMSE) associated with prediction of x(¢) (@), and the acausal MMSE

associated with prediction of z,(t) (P).

To explicitly construct an estimator of the quantity Tr(PQ) = Tr(QP), recall the matrix Q is the
error covariance of MMSE prediction of the system state (¢) given past observations y(t) over

the interval (¢ — 7T',t), whereas the matrix P is the error covariance of MMSE prediction of the
transformed system state x,(t) given future observations y,(¢) over the interval (¢,¢ + T'). The
choice of T is the only hyperparameter associated with FCCA. As discussed above, the Kalman
Filter is used to efficiently calculate these MMSE estimates given an explicit state space model of the
dynamics. In our case, to keep system dynamics implicit, we instead directly use the formulas for
the MMSE error covariance in terms of cross correlations between xz(t), z,(t) and y(t), y,(t). The
standard formulas for the error covariance of MMSE prediction of a Gaussian distributed variable z
given v read: X, — X, 21801 where 3, = E[227],%, = E[vv "] and 3., = E[zv"]. The FCCA

vz
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objective function is thus:

FCCA : argminTr (H - ALT(C)Z;l(C)AIT(C)) (n—l - AIT(C)E;(C)ALT(C))

causal MMSE covariance (Q) acausal MMSE covariance ( P)
Y
where for discretization timescale 7,
T T A T
M= Exz@xzit)'] ,Ax= Ez@t+krn)a®t)'] , Ap=E[z.(t+Ekm)z.(t) ']
(covariance of the neural data) (autocorrelation of the neural data)  (autocorrelations of the adjoint state)

Anp(C) = {ACT,ACT, . ArC T}, App(C) = {ATICT  ALTICT ..., ApIIC T}

and ¥7(C) is a block-Toeplitz space by time covariance matrix of () (i.e. the ij™ block of X7 (C)
is given by CTA‘Z-, 4j1C. We optimize the FCCA objective function via L-BFGS.

2.4 CONTROL-THEORETIC INTUITION FOR FCCA

We have shown how the sum of LQG singular values is an intrinsic measure of the cost to filter/regulate
a linear dynamical system which is minimized at a fixed readout dimensionality by FCCA. We now
provide further intuition for FCCA. In order to control the system state and carry out the computations
necessary to perform state estimation and control signal synthesis, the controller itself must implement
its own internal state dynamics. Thus, in addition to the complexity of the system itself, we may
inquire about the complexity of the controller. One intuitive measure of this complexity is given by
the controller’s state dimension (i.e., the McMillan degree), or the number of dynamical degrees of
freedom it must implement to function. In the context of brain circuits, the degrees of freedom of
the controller must ultimately be implemented via networks of neurons. We therefore hypothesize
that biology favors performing task relevant computations via dynamics that require low dimensional
controllers to regulate. As we argue below, minimizing the sum of LQG singular values over readout
matrices (C') corresponds to a relaxation of the objective of searching for a subspace that enables
control via a controller of low dimension. In other words, FCCA searches for dynamics that can be
regulated with controllers of low complexity.

Neuron 1 Controller Controller

Controller h Controller
Dim 1

Dim 3

Controller
Dim 2

Controller
Dim 2

[ Hi(s) = Hz(s)j

Figure 1: In principle, a controller of dimension as large as the neural state space may be required
to effectively regulate dynamics within a FBC subspace (H;(s)). However, subspaces optimized
to minimize either the rank, or more practically, the trace of P(Q will require controllers of lower
dimensionality to achieve near-optimal performance (Hz(s)).

Neuron N Feedback Signal

Recall from Theorem 1 above that there exists a linear transformation that simultaneously diago-
nalizes both P and Q). Let (fl, B , C’) be the corresponding balanced realization. Order the LQG
singular values in descending magnitude {1, ..., sty } and divide them into two sets {1, ..., fm } and
{ttm+1, -, 4N }. Assume the system input is of dimensionality p and the output is of dimension d
(i.e., B € RVN*P and C' € R¥*N ). Then, one can partition the state matrices {fi, B, C‘} accordingly:

i A A 5~ | B 5
A_[A21 Am} B—[B2] G—[C1
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Where A7 € RM*X™ Ay € RN_mXN_m, By € R™*P By € RN_mXp, C, € Rdxm, Cy €
RI*N=m Tt can be shown that the optimal controller of dimension m is obtained from solving the
Riccati equations corresponding to the truncated system (Aq1, By, C1). If the LQG singular values
{tm+1, -, by } are negligible, then the controller dimension can be reduced with essentially no loss
in regulation performance. We illustrate this idea schematically in Figure [I] where the controller
with transfer function H; (s) is approximated by a controller with lower state dimension Hs(s). This
suggests that to search for subspaces of neural dynamics that require low dimensional controllers
to regulate, one should minimize the objective function argminCRank(PQ), where P and @ are the
solutions to the Riccati equations [9)and 5] respectively. However, rank minimization is an NP-hard
problem. A convex relaxation of the rank function is the nuclear norm (i.e. the sum of the singular

values) l, 2004). Given that PQ is a positive semi-definite matrix, a tractable objective

function that seeks subspaces of dynamics that require low complexity controllers is given by:
argmin, Tr( PQ)
which is precisely what FCCA minimizes in a data-driven fashion (eq. [TT).

3 PCA AND FCCA SUBSPACES DIVERGE IN NON-NORMAL DYNAMICAL

SYSTEMS
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Figure 2: (a) Average subspace angles as a function of non-normality between d = 2 FCCA and PCA
projections of rate activity from Dale’s law constrained linear dynamical systems (LDS, Black) and
from firing rates derived from spiking activity driven by Dale’s Law constrained LDS (count LDS,
Blue). (b) Average subspace angles between FCCA and PCA projections at the highest value of non-
normality considered within LDS, count LDS (cLDS), switching LDS (sLDS), and task optimized
RNNs (T.O. RNN). Spread and errorbars indicate standard deviations over random generations of A
matrices and 10 random initializations of FCCA.

Having derived data driven optimization problems to identify feedforward (PCA) and feedback
(FCCA) controllable subspaces, we investigated under what conditions the solutions of PCA and
FCCA will be distinct. We found that a key feature of the dynamical system of eq. [T] that determines
the similarity of PCA and FCCA solutions is the non-normality of the underlying dynamics matrix,
A. We first prove that when A is normal (symmetric), and B = I, the critical points of PCA (eq. [TT)
and the FCCA objective function (eq. [7)) coincide. ﬂ)

Theorem 2. For B = In,A = AT, A € RN*N with all eigenvalues of A distinct and
max Re(A(A)) < 0, the critical points of the feedforward controllability objective function eq.
M) and the feedback controllability objective function eq. [/|for projection dimension d coincides with
the eigenspace spanned by the d eigenvalues with largest real value.

'The set of real-valued, normal A matrices can be divided into symmetric and orthogonal matrices. We
restrict our treatment to stable dynamical systems. As orthogonal matrices give rise to systems that are only
marginally stable, below we will use normal A to refer interchangeably to symmetric A.
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The proof of the theorem is provided in the Appendix. The restriction to B = [ is made within
the proof, but does not apply to the general application of the method. Intuitively, in the case
of symmetric, stable A, perturbations exponentially decay in all directions, and so the maximum
response variance, and hence greatest feedforward controllability, is contained in the subspace with
slowest decay, which corresponds to the eigenspace spanned by the d eigenvalues with largest real
value. The intuition for the slow eigenspace of A serving as a (locally) optimal projection in the
feedback controllability case is given by the fact that state reconstruction from past observations, the
goal of the Kalman filter, will occur optimally using observations that have maximal autocorrelations
with future state dynamics. Similarly, for the LQR, for a fixed rank input, the most variance will be
suppressed by regulating within the subspace with slowest relaxation dynamics.

Importantly, due to Dale’s Law, brain dynamics are generated by non-normal dynamical systems.
To demonstrate the effect of increasing the non-normality of A on the solutions of PCA and FCCA,
we turn to numerical simulations (the optimal feedback controllable projections are not analytically
tractable). We generated 200-dimensional dynamics matrices constrained to follow Dale’s Law with
an equal number of excitatory and inhibitory neurons. Neurons were connected randomly with a
uniform connection probability of 0.25. To tune the non-normality of the system, we vary the strength
of synaptic weights in the neuronal connectivity matrix. The strength of synaptic weights determines
the spectral radius of the corresponding matrices (Rajan & Abbott, 2006). Leaving the excitatory
weights fixed, we then optimize the inhibitory weights as detailed in (Hennequin et al.l [2014)) to
ensure system stability. The resulting matrices will have enhanced non-normality, with the degree
of resulting non-normality having, empirically, a monotonic relationship with the starting spectral
radius. We applied our methods both directly to the cross-covariance matrices of the resulting linear
dynamical systems, as well as to spiking activity driven by simulated x;. In the latter case, spiking
activity was generated as a Poisson process with rate A; = exp(x;). Firing rates were obtained by
binning spikes and applying a Gaussianizing boxcox transformation (Sakia, |1992). These rates were
then used to estimate the cross-covariance matrices. This procedure mirrors that which was applied
to neural data in the subsequent section.

In Figure 2, we plot the average subspace angles between FCCA and PCA for d = 2 projections
(other choices of d shown in Figure[AT) applied both directly to cross-covariance matrices of the
linear dynamical systems (LDS, black) and cross-covariance matrices estimated from spiking activity
(Count LDS, blue) as a function of the non-normality of the underlying A matrix (measured using
the Henrici metric, ||[AT A — AAT||r). In both cases, we observe a nearly monotonic increase in
the angles between FCCA and PCA subspaces as non-normality is increased. We note that as we
constrain A matrices to follow Dale’s Law, we cannot tune them to be completely normal, and hence
the subspace angles between FCCA and PCA remain bounded away from zero even at the lower
end of non-normality. We verified that the large subspace angles between FCCA and PCA also
persist in more general data generation processes. We considered non-stationary dynamics arising
from a sequence of switched non-normal linear dynamical systems, and nonlinear dynamics arising
from an RNN obeying Dale’s Law trained to reproduce muscle EMG activity in response to a low
dimensional “go cue” input signal Sussillo et al.| (2015). Full details of model construction and
training are provided in the Appendix. In Figure 2b, we plot the average FCCA/PCA subspace
angles at the highest degree of model non-normality for each synthetic system (full results across
all levels of non-normality are provided in Figure[A2). In all cases, FCCA and PCA subspaces are
geometrically distinct. Given the generality of non-normal dynamics due to Dale’s Law, this new
control-theoretic result suggests that PCA and FCCA subspaces should also be geometrically distinct
in neural population data.

4 FCCA SUBSPACES ARE BETTER PREDICTORS OF BEHAVIOR THAN PCA
SUBSPACES

We first applied FCCA to neural population recordings from the rat hippocampus made during a
maze navigation task. Further details on the dataset and preprocessing steps used are provided in
the Appendix. In each recording session, we fit PCA and FCCA to neural activity across a range
of projection dimensions. In line with the predictions of our theory and numerical simulations,
we find that the subspace angle between PCA and FCCA was consistently large across recording
sessions (> 37/8, Figure , median and IQR indicated). We used T = 3 (time bins) as the
FCCA hyperparameter. As FCCA is a nonconvex optimization problem, we initialized optimization
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Table 1: FCCA/PCA comparison across neural datasets

Dataset/Brain Region N, 6 (deg.) Peak Percent A-r?  A-r? AUC

Hippocampus 8 74.6 £ 1.7 465 + 144% 3.14 £0.30
M1 random 35 58.0+1.1 229+58% 2.75+£0.12
S1 random 8 67.5+3.8 761+189% 2.47+£0.36
M1 maze 5 49.4 +£4.3 290 + 72% 1.45+0.23

from many random orthogonal projection matrices and choose the final solution that yields the
lowest value of the cost function[TT] In Supplementary Figure[A3] we confirm that the substantial
subspace angles between FCCA and PCA are largely insensitive to the choice of T, the choice of
projection dimensionality, and robust across initializations of FCCA. Thus, we find that feedforward
and feedback controllable subspaces are geometrically distinct in neural activity.
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Figure 3: (a) Average subspace angles between FCCA and PCA at d = 2 across recording sessions
(median +£IQR indicated). (b) Five-fold cross-validated position prediction 72 as a function of
projection dimension between for FCCA (red) and PCA (black) and without dimensionality reduction
(dashed blue). Mean = standard error across folds and recording sessions indicated. (inset) Total
area under the curve (AUC) of decoding performance averaged over folds for PCA and FCCA within
each recording session (** : p < 1072, n = 8, Wilcoxon signed rank test)

We next assessed the extent to which feedback controllable dynamics (as identified by FCCA), as
opposed to feedforward controllable dynamics (as identified by PCA) were relevant for behavior. We
trained linear decoders of the rat position from activity projected into FCCA and PCA subspaces.
We used a window of 300 ms of neural activity centered around each time point to predict the
corresponding binned position variable. We used linear decoders to emphasize the structure in the
different subspaces available to a simple read-out. In Figure 3p, we report five-fold cross-validated
prediction accuracy for PCA (black) and FCCA (red) over a range of projection dimensions (mean
=+ standard error across recording sessions and folds indicated). We found activity within FCCA
subspaces to be more predictive of behavior than PCA subspaces across all dimensions, with a peak
improvement of 112% at d = 13. This superior decoding performance additionally held consistently
across each recording session individually. In the inset of Fig. B, we plot the total area under
prediction 72 curves shown for each recording session (FCCA significantly higher than PCA, **:
p < 1072, n = 8, Wilcoxon signed rank test). In Figure we verify that the superior decoding
performance of FCCA subspaces hold consistently across each individual initialization. Feedback
controllable subspaces therefore better capture behaviorally relevant dynamics than feedforward
controllable subspaces.

To validate the robustness of these results, we repeated our analyses in two other datasets: recordings
from macaque primary motor (M1 random) and primary somatosensory (S1 random) cortices during



Under review as a conference paper at ICLR 2025

a self paced reaching task (O’Doherty et al.|(2018))), and recordings from macaque primary motor
cortex during a delayed reaching task (M1 maze, Churchland et al.|(2012))). Further details on data
preprocessing are provided in the Appendix. In Table 1, we report the number of recording sessions
(IV,-), mean: average subspace angle between FCCA and PCA subspaces at d = 2 (), peak percent
A-r? of behavioral prediction, and difference in the area under the behavioral prediction curves
between PCA and FCCA. In all cases, standard errors are taken across the recording sessions, and
analogously to Figure 3, behavioral decoding was performed from d = 1 to d = 30. Importantly, in
all datasets, FCCA performed better behavioral prediction, and the subspace angles between FCCA
and PCA were substantially different from zero.

5 DISCUSSION

We developed FCCA, a novel dimensionality reduction method that identifies feedback controllable
subspaces of neural population dynamics. Further, the correspondence between PCA and feedforward
controllability, long known in the control theory community (Moore, |1981)), but unrecognized in
the neuroscience community, adds additional interpretative value to these subspaces. Importantly,
to the best of our knowledge, FCCA is the first method to encode functional measures of dynamics
(in this case, controllability) into the objective of a dimensionality reduction method. As such, it is
not designed to optimally reconstruct the neural data or maximize behavioral decoding, but rather to
provide insight into the specific computations different components of neural activity are optimized
for. This renders it distinct from prior latent variable analysis methods in neuroscience (e.g., GPFA
Yu et al.[(2009), LFADS [Pandarinath et al.| (2018))), and motivates the development of other methods
for neural data analysis that reduce neural activity on the basis of normative, functional measures.

We demonstrated that feedforward and feedback controllable subspaces are geometrically distinct in
non-normal dynamical systems, a fact of fundamental importance to the analysis of neural dynamics
from cortex, where Dale’s Law necessitates non-normality. Correspondingly, in electrophysiology
recordings from across the brain, we found large subspace angles between FCCA and PCA subspaces.
Furthermore, we found that FCCA subspaces were better predictors of behavior than PCA subspaces.
This suggests that targeting feedback controllable subspaces in the design of brain machine interfaces
may be advantageous in terms of accuracy of behavioral prediction, the number of samples needed to
calibrate predictions to a desired level of accuracy, and the efficacy of closed loop perturbations.

Several methodological extensions to FCCA are possible. While performing dimensionality reduction
on the basis of nonlinear measures of controllability remains computationally infeasible due to the
need to solve high dimensional PDEs within the inner optimization loop ((Scherpen, |1993b)), FCCA
could be augmented with a nonlinear encoder. In FCCA, we rely on estimation of the regulator
cost through acausal filtering (eq. 9] and estimate the filtering error through the Gaussian MMSE
formula (eq. [TT) to keep the model of the data implicit. These correspondences only hold for linear
systems under a particular choice of the LQR cost function (eq. [I0). While this makes the method
computationally efficient, it restricts the form of weight matrices in the LQR objective functions that
can be considered. The objective function in eq. [7]could alternatively be applied to post-hoc analysis
of linear state space models fit to neural recordings (Gao et al.,[2015), as these models explicitly yield
the system matrices required to solve the Riccati equations[5|and 6] This analysis could be combined
with techniques from inverse linear optimal control (Priess et al.,[2014) to provide a more refined
picture of the controllability of population dynamics.

6 REPRODUCIBILITY STATEMENT

The codebase associated with the FCCA method and that used to perform numerical experiments in
Section 3 and to obtain the results associated with Figure [3|in hippocampal data have been included
as supplementary materials with the submission. Intermediate data files associated with these experi-
ments, as well as the spike sorted hippocampal dataset associated with Figure [3lhave been uploaded
anonymously to figshare (instructions contained in the associated supplementary materials). The
M1/S1 random dataset is publicly available at https://zenodo.org/records/583331,
while the M1 dataset is publicly available at https://dandiarchive.org/dandiset/
000070?search=churchland&pos=1. Full detils of the pre-processing applied to neural
datasets is presented in the Appendix section A.2. A full proof of Theorem 2 is provided in the
Appendix section A.3.
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A APPENDIX

A.1 DETAILS OF SWITCHING LDS AND RNN TRAINING

For results associated with the switching LDS (sLDS, (Linderman et al., |2016)) in Figure , we
simulated data from a system that switched between a sequence of three A matrices (still constrained
to follow Dale’s law) in eq. [2] with roughly equivalent degree of non-normality.

The task optimized RNN (T.O. RNN) was comprised of 300 hidden units with ReLLU nonlinearities.
The recurrent connectivity was initialized in the same manner as the LDS and count LDS systems
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described in the results associated with Figure [2| Thus, these networks had sparse connectivity,
and were constrained to follow Dale’s Law. We enforced Dale’s law and the initial sparsity pattern
throughout network training. The RNNs were trained to produce muscle electromyography (EMG)
activity recorded from a macaque monkey performing a reaching task, as described in|Churchland
et al. (2012); [Sussillo et al.| (2015). Briefly, the dataset consisted of 216 unique task conditions and
an 8 dimensional target EMG time series for each condition. Following|Sussillo et al.| (2015)), the
RNNs were provided with a sixteen dimensional square wave pulse input to represent an experimental
“g0” cue. We optimized the RNN input matrix, output matrix, weight matrix, and input and state
biases using Adam over five different initializations of the weight (A) matrix. The trained networks
exhibited a close fit to the target EMG activity (r? = 0.99). To fit FCCA and PCA, we concatenated
the time series of hidden activations across all conditions together, mirroring the structure of the
M1/S1 random dataset.

A.2 DETAILS OF NEURAL DATASETS

Data from the hippocampus contained recordings from a single rodent. There were a total of 8
recording sessions lasting approximately 20 minutes each with between 98-120 identified single units
within each recording session. We performed our analyses on neural activity while the rat was in
motion (velocity > 4 cm/s).

The M1/S1 random dataset contained a total of 35 recording sessions from 2 monkeys (28 within
monkey 1, 7 within monkey 2) spanning 17309 total reaches (13149 from monkey 1, 4160 from
monkey 2). Of the 35 recording sessions, 8 included activity from S1. The number of single units
in each recording session varied between 96-200 units in M1, and 86-187 in S1. The maze dataset
contained 5 recording sessions recorded from 2 different monkeys comprising 10829 total reaches
(8682 in monkey 3, 2147 in monkey 4). Each recording session contained 96 single units. Both
datasets mapped the monkey hand location to a cursor location on the 2D task plane. For the M1/S1
random dataset, we decoded cursor velocity, whereas for the maze dataset, we decoded cursor
position.

We binned spikes within the hippocampal data at 25 ms, and the M1/S1 random and M1 maze datasets
at 50 ms. We then applied a boxcox transformation to binned firing rates to Gaussianize the data. A
single fit of FCCA on the activity from a single recording session in the datasets considered using a
desktop computer equipped with an 8 core CPU and 64 GB of memory requires < 5 seconds.

A.3 PROOF OF THEOREM 2

In this section, we prove the equivalence of the solutions of the FFC (eq. 4)) and FBC objective
functions (eq. [/)) when system dynamics are stable and symmetric. We focus on symmetric matrices
as the requirement that dynamics be stable (i.e., all eigenvalues of the dynamics A must have
negative real part) essentially reduces the space of normal matrices to that of symmetric matrices. We
reproduce these objective functions for convenience:

Crrc ©  argmax, log det crc’
Crpc : argmin,Tr(PQ)

We prove this theorem when the matrix P in the FBC objective function arises from the canonical
LQR loss function:

u T—o0

min{ lim E

1 (T
f/ ' z+uu dt] , x(0) = xo,u € LQ[O,OO)}
0

and not the variant given in eq. [[0] When calculating FBC from data within FCCA, we must use
the latter LQR loss function as it maps onto acausal filtering, and therefore may be estimated from
data. Recall from the discussion below eq. [§] that within the FFC objective function, we assess
controllability when the output/observation matrix C'is used as the input matrix for the regulator
signal (i.e., we make the relabeling BT — C. We further work under the assumption that the input
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matrix B to the open loop system is equal to the identity. The open loop dynamics of z(t) are then
given by:

i = Az(t) + u(t) (12)

where u(t) has the same dimensionality as x(¢), and is uncorrelated with the past of z(t) (i.e.
u(t) L x(7), 7 < t). Formally, u(t) represents the innovations process of (). The equations for @)
(corresponding to the Kalman Filter, eq. [5)) and the equation for P (corresponding to the LQR, eq. [6)
reduce to the following:

AQ+ QA+ Iy -QCTCQ=0 (13)
AP+ PA+ Iy —PCCTP=0 (14)

where [y denotes the N x N identity matrix.

We observe that under the stated assumptions, the Riccati equations for () and P actually coincide,
and thus the FBC objective function reads T(Q?). We will show that both FFC and FBC objective
functions achieve local optima for some fixed projection dimension d when the projection matrix
C coincides with a projection onto the eigenspace spanned by the d eigenvalues of A with largest
real part, which we denote as V. In fact, in the case of the FFC objective function, the eigenspace
corresponds to a global optimum. For the FBC objective function, we are able to establish global
optimality rigorously only for the 2D — 1D dimension reduction.

We briefly outline the proof strategy. First, we will prove the optimality of V; for the FFC objective
function in section S1.9.1 by showing that (i) V;; is an eigenvector of II in the case when A is
symmetric and (ii) relying on the Poincare Separation Theorem. Then, in section S1.9.2, we will
prove that Vj is a critical point of the FBC objective function. The proof relies on an iterative
technique to solve the Riccati equation. These iterates form a recursively defined sequence that
provide increasingly more accurate approximations to the FBC objective function that converge in
the limit. Treating these iterative approximations of the FBC objective function as a function of C,
we show that Vj; is a critical point of all iterates, and thus in the limit, Vj is a critical point of the FBC
objective function.

FFC Objective Function

Lemma 1. For B = Iy, A = AT, A € RN*N with all eigenvalues of A distinct and
max Re(A(A)) < 0, the optimal solution for the feedforward controllability objective function
for projection dimension d coincides with Vy, the matrix whose rows are formed by the eigenvectors
corresponding to the d eigenvalues of A with largest real value.

Proof

The FFC objective function reads:
argmax, logdet CTICT | C e RPN cCT = I, (15)

‘We first re-write II:

H:/ dt eAf’BBTeATt :/ dt 24t
0 0

Let A = UAU" denote the eigenvalue decomposition of A. Recall that since A = AT, U is
orthogonal. Then we can write:

H=U / dte*MUT
0

_ 1 T
—iUDU
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where D is a diagonal matrix with diagonal entries { -, -, ..., =} being the eigenvalues of II.

We conclude that the matrix II has the same eigenbasis as A. Also, since all A; are real and negative,
1

the ordering of the eigenvalues is preserved (\; > A; implies —/\% > =5

That V;; solves 15 follows from the Poincare separation theorem, which we restate for convenience:
Proposition 1. Poincare Separation Theorem (Magnus & Neudecker((2019), 11.10)

Let M be any square, symmetric matrix, and let 13 > po > ... > ppn be its eigenvalues. Let C' €
R¥N be a semi-orthogonal matrix (i.e., CCT = I ). Then, the eigenvalues 11 > 13 > ... > 14 of
CMC'T satisfy:

i 2 M 2 IWN—d+i

In particular, Proposition 1 implies that det CMCT = Hle i < H?Zl Wi, and hence

logdet CMCT < 2?21 log 11; We now show that this inequality is satisfied with equality when
C = Vj. Consider the optimization problem

argmax log det CMCT | C e RN cCT =14, (16)

Let M = UTU " be the eigendecomposition of M. We can equivalently parameterize the optimiza-
tion problem as:

argmax; logdet CTCT | C e RN CCT =1, (17)

The solution to the original problem, eq. can be recovered from setting C' = CUT. Now, assume
(without loss of generality) that we have arranged the values of I" so that the largest d eigenvalues,

L1, -5 Ihd, Occur first. We observe that the choice of C = [14; ON_,LN_d} = C’*, which picks out
these first d elements of the diagonal of I, yields log det C~’*T Ic, = Zle log p1;, and hence solves
the desired optimization problem. It follows that C\, = C,.U " =V

To complete the proof of Lemma 1, we substitute M with I, and the eigenvalues p; with —1/)\; (the
eigenvalues of I1, expressed in terms of the eigenvalues of A). [

FBC Objective Function

For the case of the FBC objective function, we show that projection matrices of rank d that
align with the d slowest eigenmodes of A constitute local minima of the objective function. We
rely on two simplifying features of the problem. First, the FBC objective function is invariant to
the choice of basis in the state space. We therefore work within the eigenbasis of A, as within this
basis, the system defined by eq. decouples into n non-interacting scalar dynamical systems.
Additionally, we rely on the fact that the FBC objective function is also invariant to coordinate
transformations within the projected space. In other words, the choice of coordinates in which we
express y also makes no difference. Without loss of generality then, we may treat the problem in a
basis where A is diagonal with entries given by its eigenvalues and C' is an orthonormal projection
matrix (i.e. CCT = I;). A restatement of the latter condition is that C' belongs to the Steifel
manifold of N x d matrices: 2 = {C € RV*4|CCT = I4}.

Lemma 2. For B = Iy, A= AT AN*N with all eigenvalues of A distinct and max Re(\(A)) < 0,
the projection matrix onto the eigenspace spanned by the d eigenvalues of A with largest real value
constitutes a critical point of the LQG trace objective function on )

Proof Explicitly calculating the gradient of the solution of the Riccati equation is analytically
intractable for n > 1, and so we we will rely on the analysis of an iterative procedure to solve the
Riccati equation via Newton’s method, known as the Newton-Kleinmann (NK) iterations (Kleinman),
1968). These iterations are described in the following proposition:
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Proposition 2. Consider the Riccati equation 0 = AQ + QAT + BBT — QCTCQ. Let Q,,,m =
1,2, ... be the unique positive definite solution of the Lyapunov equation:

0=ArQm +QmA] + BB" + Q. 1CTCQu1 (18)

where Ay, = A — C T CQy—1, and where Qg is chosen such that A, is a stable matrix (i.e. all real
parts of its eigenvalues are < 0). For two positive semidefinite matrices M, N, we denote M > N if
the difference M — N remains positie semidefinite. Then:

1. Q < Qm-‘rl < Qm < ak = 071
2. limg 00 Qm = Q

Thus the @, iteratively approach the solution of the Riccati equation from above. Since in
our case, the Riccati equations for P and ) coincide, an identical sequence P can be con-
structed using analogous NK iterations that approaches P from above. From this, it follows that
limg s o0 Tr(Qm Pr) = limg oo T7(Q2,) = Tr(Q?). We then use the fact that in addition to the
Qm converging to @, the sequence V¢ Tr (Q2,) converges to Vo Tr(Q?) as k — oo, where V¢
denotes the gradient with respect to C'. This is rigorously established in the following lemma, which

is the multivariate generalization of Theorem 7.17 from (Rudin & others, |1976)):

Lemma 3. Suppose {f.,} is a sequence of functions differentiable on an interval h C H, where H
is some finite-dimensional vector space, such that { f.,(xo)} converges for some point xog € h. If
{V fim(x0)} converges uniformly in h, then { f,,} converges uniformly on I, to a function f, and

Vf(z) = Tr}i_r)nOOme(x) x€h

Here, the {f,,} are the Newton-Kleinmann iterates Q),,,, and xo corresponds to the C' matrix that
projects onto the slow eigenspace of A. The NK iterates are known to converge uniformly over
an interval of possible C' matrices (in fact any such C' matrix for which there exists a K such that
A — CTCK is a stable matrix) (Kleinman|, [1968)).

We will calculate the gradient V@, on 2 by explicitly calculating the directional derivatives of
Q. over a basis of the tangent space of 2 at Cyjow. Any element ¥ belonging to the tangent space at
C € ) can be parameterized by the following (Edelman et al., [1998)):

U =CM+(Iy—CCNT

where M is skew symmetric and ¢ is arbitrary. Let Cyoy be the projection matrix onto the slow
eigenspace of A of dimension d. Since we work in the eigenbasis of A, Cyow = [Ig 0]. At this
point, elements of the tangent space take on the particularly simple form

U=[M T

where now M is a d x d skew symmetric matrix and 7 € R?*(N=9) 5 arbitrary. A basis for
the tangent space is provided by the set of matrices {M,;,Ti;,7 = 2,...d,j = 1,...,1 — 1,k =
1,..,d,l =1,...,N — d} where M;; is a matrix with entry 1 at index (¢, j) and —1 at index (7, ¢)
and zero otherwise, and T}; is the matrix with entry 1 at index (k, ) and zero otherwise. Denote by
Dy @Q,, the directional derivative of (), along the direction of ¥, viewing @,,, as a function of C
(denoted Q. [C)):

Cgm[cvslow + OZ\IJ] - Qm [Cslow]

(%

DyQ,, = lim (19)
a—0

Let ¥,; x; denote the tangent matrix [M;; Tj;]. Before calculating @, (Csiow + %55 1) explicitly,
we first observe that as long as the NK iterations are initialized with a diagonal (), then the diagonal

nature of C’SLWC’sk,W ensures that all @,,, will subsequently remain diagonal matrices. In fact, it
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can be shown that limy_,, @, = @ will also be diagonal, in this case. We write A in block form
A 0 - Q 0 . .

as { O|| AL]’ and similarly Q,,_1 = [ OH QL]’ where A, Q)| are d x d diagonal matrices

defined on the image of Cy,y and A, Q) are diagonal matrices defined on the kernel of Cyjoy.

We denote the individual diagonal elements of A, Q) as \;, Q;,i = 1,...,d and of A;,Q as

Xi, Qi i =d, ..., N — d. Then, equation [I8]becomes:

+ Qm[Csiow + Wi 1] (ﬁ)“ AOL] - [QL(Qalj(”% 4__ Zi%%ij) Q(agilatigﬁ?Tkl)]>

+ 1y + { QL(QOIJZ(FS N 32%;231\)4 Q7| o, Qn(aaszQiijl%?gjz)QL} —0 (20)
where we have used M T = —M. The equivalent equation for @, (Cyow) reads:

<[’B‘ AOJ - {%' SD Qu[Cuton] + @m[Clto QAO' AOJ . {%” 8]) F vt @D

4 -

This latter equation is easily solved to yield:

Q[ Caton] = F (a+Q2)(Q-ap~" 0 ]
0 —3A7

To explicitly solve the former equation, we recall that the matrices M;; and T}, have only two and
one nonzero terms, respectively. M7, contains two nonzero terms at index (i, 4) and (4, 7). Ty Thi

contains one non-zero term at index (I,1). MJTM contains a single nonzero term at (z,1) or (4,1)
only if kK = i or k = j, respectively. Accordingly, we distinguish between where k = ¢ or k = j
(without loss of generality we may assume that k = j), and where k # ¢ and k # j.

In what follows, we will denote the (i, ) entry of Q,[Csiow + a¥5; 1] as gi;.

1. Case 1: k = j In this case, careful inspection of eq. [20]reveals that it differs from eq.

only within a 3 x 3 subsystem:
S Si12 Sis
S21 S22 Sa3| =0

S31 Sz Ss3

Note that this matrix is symmetric, yielding 6 equations for 6 unknowns:

S =0a?Q? +20°Quiiart + QF + 2¢ii (—a®Q; + X — Q) + 1

S12 = a?Qugjart — aQaviGiart + Gij (—°Qi + Xy — Qi) + ¢ij (—02Q; + \j — Q)

S13 = —a?Q; Qa1 + a?Qiqii + @®Quriqays — @ Q;qij+
Gia+t (—®Qast + A1) + Giavr (—0? Qi + N — Q)

Sz = 042Q? —20Q4+19j,d+1 + Q? + 2q5; (*Oézgj + A= Qj) +1

Sas = & Qiqij + @ Q; Qa1 — aQ;q55 — aQaridastavt + ¢t (—a Qayr + Aari) +
Gjati (—0”Q; + A — Qj)

Ss3 = 207 Qiqi.ari + 0 Qi — 20Q5G5.a1 + 2qasi,art (—° Qari + Aayi) +1

18
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Direct solution is still infeasible, but noting our interest is in the behavior of solutions
as o — 0, and only terms of O(«) will survive in the limit in eq. we consider
solving these equations perturbatively. That is, we express each ¢;; in a power series in a:

Gij = q§]) +q; Do+ O(a?). One obtains each coefficient in the expansion by plugging
this form into tfle above matrix and setting all terms of the corresponding order in « to 0.

The lowest order term, qg-)), coincides with the solution of the unperturbed system, eq.
Plugging in the expansion into the 3 x 3 subsystem above, as well as the solution of the
unperturbed system, and collecting all coefficients proportional to « yields the following
system of equations:

SHE
S(l) = 2)\lq“) 2Q2q”
St /\zqw) + /\]qm Qiqq) - qu;”
S(l) = /\zqz 1 T )‘d+lqz Jd+1 quz Jd+1
Sy =2\ a5 — 20,4

Qi (G +1) | Quu
2)\j + 2Qj 2/\d+l

(a
S 3) =} qg d+l + /\d-s—lqj d+1 T Q; Qa1 — QJqJ d+l

S5 = 22anals

Solving this system yields the following solutions for the qZ(J1 ).

g’ =0
(1) _
455 = 0
(1)
9qt1,a+1 =0
ay =0
1
q’f d)+l =0
(1) =20 204195 Qa1 — Aj Qari — Aar1 Q3 + 2201193 Qari — Aar1Q) + Q5 Qari
G+t = 2NN git + 2000y, — AN Aa11Q; — 202, Q; + 2011 Q2

2. Case 2: k # i,k # j. In this case, we must again consider the 3 x 3 subsystem indexed by
i,7,d + 1, but since M;;T}; is a matrix of all zeros, the expression simplifies considerably:

So1 Saz Sas
S31 Sz Ss3

S =0’ + Q7 +2¢; (0’ Qi+ X — Qi) +1

S12 = qij (—0?Qi + Ni — Qi) + qi; (—a°Q; + A — Q)
S13 = Aapidi,att + Gia (—0° Qi + A — Q)

S2202QF + QF +2¢; (—a?Q; + N — Q) +1

So3 = Aa1@javt + @jai (—0*Qj + Aj — Q;)

S33 = 2XAat1qa+1 + 1

[311 S12 Sis

Plugging in the power series expansion ¢;; = qz(]o) + qzl)a + O(a?), one finds the lowest

order terms in o within this system of equations occurs at O(c?), and thus to O(«), the
solution of @, [Csiow + ¥, 1] coincides with Q. [Csiow]-
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To complete the proof of Theorem 3, we must calculate the following quantity:

T m|Cslow+a,; 2)—T mcsow2
D‘I'u,mTr(an)zlim 1(Qm [Citowtawy; l”) 1(Qm[Ciiow] )

a—0 [e%

From the case-wise analysis above, we see that the only matrix element of (),,, that differs between
Qm[Ciiowtav,; ] and Q;,[Cyon] to O(a) is an off-diagonal term (q;l; +,)- However, this term does
not contribute to the trace of @2, at O(«). Thus, we conclude that along a complete basis for the
tangent space of  at Cyow, Dy, ,,, Tt ( ,zn) = 0. From this, we conclude that Vo Tr(Q,, [Cyow]?) =
0 on 2. The proof of Lemma 2 follows from application of Lemma 3. The proof of Theorem 2 then
follows upon combining Lemma 1 and Lemma 2. [

A.4 SUPPLEMENTARY FIGURES
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Figure A1: (Black) Average subspace angles between FCCA and PCA projections applied to Dale’s
law constrained linear dynamical systems (LDS) as a function of non-normality. (Blue) Subspace
angles between FCCA and PCA projections applied to firing rates derived from spiking activity
driven by Dale’s Law constrained LDS. Spread around both curves indicates standard deviation taken
over 20 random generations of A matrices and 10 random initializations of FCCA. Panels a-d report
results at projection dimension d = 4, 6, 8, 10, respectively, to complement the results shown in
Figure 2 in the manuscript, demonstrating that non-normality drives the divergence between FCCA
and PCA subspaces.
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Figure A2: Average subspace angles between d = 2 FCCA and PCA projections applied to (a)
switching linear dynamical system sequence and (b) task optimized RNN as a function of non-
normality.

We found that PCA and FCCA identify distinct subspaces in non-normal systems. To evaluate to

what degree this observation is robust to non-stationarity and nonlinearity in the data generating
process, we simulated data from a switching linear dynamical system and a task optimized RNN (full
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details found in section A.1). In Supplementary Figure[A2] we plot FCCA/PCA subspace angles
as a function of non-normality (switching LDS left, task optimized RNN right). We find subspace
angles to be consistently large, with only a weak dependence on non-normality. Thus, FCCA and
PCA identify distinct subspaces of dynamics in diverse dynamical systems.

/2 b mn/2
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Figure A3: (a) Full range of average subspace angles at projection dimension d = 2 between PCA
and FCCA solutions for various T. Spread is taken over recording sessions and folds of the data
within each recording session. (b) Full range of spread in average subspace angles between FCCA
for T' = 3 and PCA taken across 20 initializations of FCCA and all recording sessions.

In Figure[AJ] we investigate the robustness of the substantial subspace angles between FCCA and
PCA observed in Figure|3ja to three sources of potential variability: (i) choice of the 7" parameter
within FCCA, (ii) the dimensionality of projection, and (iii) different initializations of FCCA. In
Supplementary Figure[A3]a, we plot the full range of average subspace angles across recording
sessions at projection dimension d = 2 between PCA and FCCA for various choices of 7' (1I' = 3
is shown in Figure [3p). We observe that subspace angles remain consistently large (> 37 /8 rads)
across 1. In Figure , we plot the full range of average subspace angles between FCCA (using
T = 3) and PCA across a range of projection dimensions. The spread in boxplots is taken across
both recording sessions and twenty initializations of FCCA. We observe relatively little variability in
the average subspace angles for a fixed projection dimensionality. As the projection dimension is
increased, we observe the average subspace angles between FCCA and PCA decrease, from =~ 37/8
rads to = 7/4 rads. This is to be expected, as it is in general less likely that higher dimensional
subspaces will lie completely orthogonal to each other. Overall, we conclude that FCCA and PCA
subspaces are geometrically distinct in the hippocampal dataset examined.

To evaluate the robustness of FCCA’s behavioral predictions to different intializations of the algorithm,
we trained linear decoders of rat position from FCCA subspaces obtained from each of twenty
initializations of FCCA within each recording session. In Figure [@l we plot the full spread in
the resulting cross-validated 72 relative to the median cross-validated 72 as a function of projection
dimension. By d = 6, the range of spread in prediction 72 is less than the corresponding difference
between FCCA and PCA 2. We therefore conclude that the behavioral prediction performance of
FCCA is robust to the non-convexity of its objective function.
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Figure A4: Full range of variation in cross-validated position 72 from projected FCCA activity

relative to the median cross-validated r2. Spread is taken across 20 initializations of FCCA and
across all recording sessions
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