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Abstract Keywords

In recent years, simultaneous learning of multiple dense prediction
tasks with partially annotated label data has emerged as an impor-
tant research area. Previous works primarily focus on leveraging
cross-task relations or conducting adversarial training for extra reg-
ularization, which achieve promising performance improvements,
while still suffering from the lack of direct pixel-wise supervision
and extra training of heavy mapping networks. To effectively tackle
this challenge, we propose a novel approach to optimize a set of
compact learnable hierarchical task tokens, including global and
fine-grained ones, to discover consistent pixel-wise supervision
signals in both feature and prediction levels. Specifically, the global
task tokens are designed for effective cross-task feature interactions
in a global context. Then, a group of fine-grained task-specific spa-
tial tokens for each task is learned from the corresponding global
task tokens. It is embedded to have dense interactions with each
task-specific feature map. The learned global and local fine-grained
task tokens are further used to discover pseudo task-specific dense
labels at different levels of granularity, and they can be utilized
to directly supervise the learning of the multi-task dense predic-
tion framework. Extensive experimental results on challenging
NYUD-v2, Cityscapes, and PASCAL Context datasets demonstrate
significant improvements over existing state-of-the-art methods
for partially annotated multi-task dense prediction.
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1 Introduction

With the rapid development of supervised learning with deep neu-
ral networks, various pixel-wise dense prediction tasks with highly
complementary properties such as semantic segmentation and
depth estimation have achieved great success in multi-task learning
(MTL) in recent years [40, 57, 66, 71, 80]. Researchers pursue the
learning of them simultaneously in a unified framework, which
can effectively model cross-task correlations and achieve superior
results in terms of model training costs and performances.

However, in real-world scenarios, obtaining pixel-level annota-
tions is prohibitively expensive, especially when dealing with a
set of distinct dense prediction tasks. Each image has to be anno-
tated with pixel labels for all the tasks. Thus, existing works have
delved into the problem of multi-task learning with only partially
annotated dense labels [28, 36, 41, 62, 74, 75, 77]. Specifically, as
illustrated in Fig. 1 (a), given an input image, for T dense prediction
tasks, the task labels are provided partially, i.e. for at least one task
and at most T — 1 tasks. Learning a multi-task model under this
setting is particularly challenging since every input image lacks
some of the task supervision signals, and the performance typically
drops significantly if compared to the same model trained with full
task label supervisions [28].

Previous works have been focusing on excavating cross-task
relations by training heavy extra mapping networks [28, 41], how-
ever, simply applying regularization in compact latent spaces fails
to address the lack of dense pixel supervision and limits the per-
formance. On the contrary, directly discovering pseudo task labels
in prediction spaces can alleviate this problem to a certain extent,
while still suffering from the following two severe limitations: (i)
Simply discovering task labels in the prediction spaces separately
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Figure 1: (a) Illustration of partially annotated multi-task dense prediction setting. Each input image only has partial task labels
from all the tasks. (b) Illustration of the learning of Hierarchical Task Tokens, including global task tokens and fine-grained
task tokens, by conducting feature-token interactions in feature and prediction spaces separately. The well-learned hierarchical
task tokens can achieve both feature supervision discovery and task label discovery.

ignores the highly relevant task relations, thus leading to trivial per-
formance under multitask scenarios. (ii) Solely discovering labels in
prediction spaces cannot take advantage of the abundant task repre-
sentations in feature space. For each specific task, the distributions
of the task features and predictions should be consistent. Since the
encoder parameters are shared among tasks, thus the produced rich
task-generic features are beneficial for building cross-task relations
and discovering supervision signals effectively. Therefore, it is crit-
ically important to involve hierarchical cross-task representations
from feature space to prediction space to consistently boost the
task label discovery process.

To effectively tackle the aforementioned challenges, we propose
a novel approach that performs task label discovery from both the
feature and prediction spaces via an effective design of learnable
Hierarchical Task Tokens (HiTTs). HiTTs are sets of compact pa-
rameters that are learned in a hierarchical manner to model global
inter-task relationships and local fine-grained intra-task relation-
ships, which allows for discovering pixel-wise task pseudo labels
straightforwardly in both feature and prediction spaces consis-
tently. More specifically, as depicted in Fig. 1 (b), we apply HiTTs
during the multi-task decoding stage and jointly optimize them
with the multi-task learning network. The HiTTs consist of two
hierarchies. The first hierarchy is a set of global task tokens. The
global task tokens are randomly initialized and can perform cross-
task feature-token interactions with different task feature maps
based on self-attention. These learned task tokens can be used to
discover feature-level pseudo supervision by selecting highly acti-
vated pixel features correlated to each task. The second hierarchy is
the fine-grained task tokens. These tokens are directly derived from
the global task tokens with learnable projection layers to inherent
beneficial task representations. They are subsequently utilized to
perform interactions within each task-specific feature map at a
finer granularity. As the fine-grained task tokens can learn pixel-
to-pixel correlation with each task feature map, they thus benefit
the discovery of dense spatial labels for each task. Compared with
naive pseudo labeling process [26], the HiTTs can bridge effective

information from supervised tasks so as to encourage highly confi-

dent predictions on unsupervised tasks. We learn both hierarchies

of tokens simultaneously in an end-to-end manner incorporating
the multi-task baseline network, and exploit both levels of super-
vision signals discovered from the two hierarchies, for optimizing
multi-task dense predictions on partially annotated datasets.

In summary, the contribution of this work is three-fold:

o Instead of discovering cross-task regularization by extra heavy
mapping networks, we propose to utilize cross-task relations
for high-quality task label discovery, which serves as pixel-level
dense pseudo supervision under the multi-task partially super-
vised setting.

e We propose a novel design of Hierarchical Task Tokens (HiTTs),
which can learn hierarchical multi-task representations for high-
quality pseudo label discovery consistently in both the feature
and the prediction levels.

e Our proposed method significantly outperforms existing state-
of-the-art competitors on multi-task partially annotated bench-
marks, including PASCAL-Context, NYUD-v2 and Cityscapes,
and demonstrates clear effectiveness on challenging dense pre-
diction tasks with limited annotations, including segmentation,
depth estimation, normal estimation and edge detection, etc.
Code is released at https://github.com/Evergreen0929/EEMTL.

2 Related Work

Multi-task Dense Prediction. Dense prediction tasks aim to pro-
duce pixel-wise predictions for each image. Common tasks includ-
ing semantic segmentation, depth estimation, and surface normal
estimation exhibit high cross-task correlations. For instance, depth
discontinuity is usually aligned with semantic boundaries [57], and
surface normal distributions are aligned with spatial derivatives of
the depth maps [35]. Thus, a number of works have been focusing
on multi-task dense predictions [6, 7, 18, 33, 34, 40, 53, 55, 57, 66, 69—
73, 78-81]. They leverage parameters sharing to conduct cross-task
interactions by effective attention mechanisms for task feature
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Figure 2: Illustration of our method. HiTTs consist of both global and fine-grained task tokens which learn discriminative task
representations by conducting feature-token interactions with attentions in corresponding multi-task decoding stages. The
global task tokens 0; discover feature-level pseudo supervision L, while the fine-grained task tokens ¢; inherit the knowledge
from global task tokens and directly discover pixel labels for supervision £,. The supervision from ground-truth label is

denoted as L.

selection [33], and multi-modal distillation [66], multi-scale cross-
task interactions [57], global pixel and task interactions [71] and
multi-task bridge features [79]. However, these works focus on fully-
supervised settings. In contrast, our work addresses the challenge
of insufficient supervision signals in each task.

Semi-supervised learning. Obtaining pseudo labels for semi-
supervised learning is a popular research direction, with several
deep learning works published on the topic [23, 26, 29, 47, 49, 54,
65, 84, 85]. Among them, [26] aims at picking up the class which
has the maximum predicted confidence. The graph-based label
propagation method [23] is also used to infer pseudo-labels for
unlabeled data. [47] provides a confidence level for each unlabeled
sample to reduce influences from outliers and uncertain samples,
and uses MMF regularization at feature levels to make images with
the same label close to each other in the feature space. [65] uses
accurate pseudo labels produced by the teacher model on clean un-
labeled data to train the student model with noise injected. For semi-
supervised dense prediction tasks [21, 37, 43, 44, 67, 68], such as
semantic segmentation, several works focus on assigning pixel-wise
pseudo annotations from high-confidence predictions [29, 84, 85].
However, these works target single-task learning setups. Despite
pseudo labeling, discovering consistency for regularization is also a
popular direction for unlabeled data [28, 36, 52, 77]. [28, 36, 77] fo-
cus on building cross-task consistency, while [52] uses image-level
feature similarities to find important samples for semi-supervised
learning. Differently, our work targets pixel-level task supervision
discovery by hierarchical task tokens containing multi-level multi-
task representations for partially annotated dense predictions.
Multi-task Partially Supervised Learning. As discussed in the
introduction, obtaining pixel-level annotations for every task on
images is prohibitively expensive. Therefore, some recent works
focus on partially annotated settings for multi-task learning [22,
28, 32, 35, 36, 41, 62, 74, 75, 77]. Since directly recovering labels
from other tasks is an ill-posed problem [28], enforcing consis-
tency among tasks is usually adopted. For instance, constructing
a common feature space to align predictions and impose regular-
ization [28], and leveraging intrinsic connections of different task

pairs between predictions of different tasks on unlabeled data in a
mediator dataset, when jointly learning multiple models [35]. Ad-
versarial training is also adopted to align the distributions between
labeled and unlabeled data by discriminators [62], and multi-task
denoising diffusion is adopted [74] to address the issue of noise in
initial prediction maps. To the best of our knowledge, our hierarchi-
cal task tokens for both pseudo feature supervision and task label
discovery are a novel exploration of the problem, and show a clear
difference from existing works.

3 Proposed Method

Our proposed approach for learning Hierarchical Task Tokens
(HiTTs) primarily comprises two stages, i.e., the Global Token Learn-
ing and the Fine-grained Token Learning. The overall structure of
HiTTs is depicted in Fig. 2. Firstly, in the Global Token Learning
stage, the global task tokens produce task features and then learn
rich task-level representations by conducting inter- and intra-task
attention with all task features. The global tokens are utilized to
exploit rich representations in feature space and discover feature-
level pseudo supervision. Subsequently, in the fine-grained stage,
we project each task feature into fine-grained feature space by sim-
ple convolution layers, and derive the fine-grained tokens from the
global tokens by Multi-layer Perceptrons (MLPs), to inherit well-
learned global task representations and therefore achieve consistent
pseudo label discovery. To perform a uniform confidence-based
pseudo label discovery for different types of dense prediction tasks,
we follow [4] to conduct discrete quantization of regression task
annotations (e.g. depth estimation and normal estimation), and treat
all tasks as pixel-wise classification.

3.1 Global Task Token Learning

In the global task token learning stage, we target learning global
tokens representing the distributions of each task, which are further
used for pseudo feature supervision discovery. The learning process
is mainly achieved by inter- and intra-task attention among tokens
and features, in order to exploit beneficial multi-task representa-
tions for token learning and feature supervision discovery.
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Figure 3: (a) Global Task Token Learning. It mainly contains two stages: Inter- and Intra-Task Attention for thoroughly
feature-token cross-task interaction to obtain robust and representative global task tokens, and excavating pseudo feature
supervision based on the learned task tokens. (b) Fine-grained Task Token Learning. The projected fine-grained tokens and
feature maps (projection is shown in Fig. 4) can be used for discovering high-quality pseudo labels in prediction spaces.

Given an RGB input X € R3>HXW 3 multi-task dense predic-
tion framework firstly produces a task-generic representation Fs €
REXEXW through a shared encoder. Considering we have T tasks,
and we target decoding task features {Fy, Fy, - - - , Fr} from F; as

well as learning representative global task tokens {01, 62, - - - , 01}, 0; €

RC for each task. They are randomly initialized learnable vectors
serving as additional input tokens for the decoder.

As shown in Fig. 3 (a), the proposed global task token learning
process is mainly composed of two stages: i) Inter- and Intra-Task
Attention, which aim to thoroughly model feature-token cross-task
relations to obtain robust and representative global task tokens.
ii) Feature Supervision Discovery, which excavates pseudo feature
supervision with confidence maps provided by global task tokens
for unsupervised task features.

Firstly, we use each global task token to query the shared feature
to obtain each task feature F; accordingly. Then, to conduct inter-
task attention, all global task tokens are used to calculate all-task
affinities A € RT*T to represent the global task relations. After the
A is calculated, it is used to conduct affine combinations of task
features and global task tokens respectively. Since for each task fea-
ture F;, if it is not directly supervised by labels, the feature will be
less representative and contain more noise. Thus, conducting affine
combinations among all tasks ensures that beneficial discriminative
representations from other supervised task features can fertilize
the unsupervised ones. Afterward, the updated tokens and features
containing cross-task information are fed to the intra-task attention
module, where they are rearranged and grouped in each task, and
self-attention is applied to each group of task token and feature.
The global task tokens will further learn more specific and discrim-
inative task representations during this process, and representative
task tokens will in turn enhance the feature quality as well.

Followingly, we discover pseudo feature supervision with the
aid of well-learned global task tokens, and this process will be dis-
cussed in Sec. 3.3. In addition, for multi-scale backbone features,

directly fusing them ignores the various granularity of task rep-
resentations maintained at different scales. Thus, for multi-scale
image backbone, we further propose Multi-scale Global Task Token
Learning in order to learn comprehensive multi-scale task relations.
The proposed method involves inter-task attention separately at
each scale, and then the multi-scale features and tokens are fused
before intra-task attention. In this way, the global task tokens gain
richer cross-task relations at different scales and are able to main-
tain stronger representations. The multi-scale global task token
learning, inter- and intra-task attention will be illustrated in detail
in the supplementary material.

3.2 Fine-grained Task Token Learning

After the global task tokens are learned, we further propose to
conduct feature-token interaction at a finer spatial granularity,
which takes advantage of various representations in global task
tokens and boosts the task label discovery process.

Firstly, as shown in Fig. 4, we jointly project each updated task
token 0; € R and feature F; € RC*"*W into the prediction space
with finer granularity. For features, this can be easily achieved by
applying a linear convolution layer, and we denote the fine-grained
task features as G; € RCp*H XW, where Cp indicates the prediction
dimension. For tokens, we denote the projected fine-grained tokens
as @ € REP*C, we hope every 1 X C vector inside it can represent
one category distribution over the spatial dimension. The simplest
way is to project each 6; with a Multi-Layer Perceptron (MLP),
which can be described as: ¢; = MLP;(0;)T,i=1,2,---,T. How-
ever, since there is no direct supervision imposed to distinguish
every fine-grain token during this process, the MLPs will tend to
degenerate and perform linearly correlated outputs, which prevents
the fine-grained tokens from learning discriminative task-specific
representations. To alleviate this problem, we propose to use Or-
thogonal Embeddings (OE) to serve as priors and aid the learning
process of fine-grained tokens.
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Figure 4: Illustration of Token & Feature Projection and the
Fine-grained Task Token Learning. Different tasks have the
same structure, and we take one as an example. We project
the fine-grained feature G; from the updated task feature
F;, and derive fine-grained task tokens ¢; from the updated
global task tokens 6;.

In detail, the vectors in the fine-grained token should be far
from each other to represent meaningful and distinguishable task
category information, so we use a group of orthogonal basis in R®»
to serve as the embedding for MLP input, denoting as 0 € R»*Cp
These OE are projected into the feature space by linear projections,
and then added with the global token before being fed into the
MLP. Therefore, with these orthogonal priors, the MLPs can easily
keep the distance between the vectors in ¢; far from each other
in the feature space, which makes it able to learn information that
distinguishes between task categories, as well as inherit the global
representations from ;.

Subsequently, we exploit the fine-grained task tokens ¢; for the
fine-grained token learning process. Normally, G; is noisy and low-
confident on unlabeled data due to the lack of supervision, which
leads to inaccurate predictions. We propose to use fine-grained
task tokens to encourage G; to produce high-confident logits, and
enhance the quality of pseudo labels:

G = Convin$><3 (G © Softplus (¢; x G;)), (1)

where Softplus(x) = log(1 + exp(x)). Since ¢; inherits global task
representations from 6;, which will perform more robustly on un-
labeled data, and aid the production of distinguished logits score in
the updated feature G}, as well as high-confident final task predic-
tions. Similar to the previous stage, we also conduct pseudo label
discovery after the fine-grained tokens are learned, which will be
discussed in detail in the next section.

3.3 Hierarchical Label Discovery and Multi-task
Optimization

For the multi-task partially annotated setting, the training loss on

labeled data can be described as:

Ls= % ZT: (ai L (Yin)), (2)

i=1
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where where L;(+) is the loss function for task i, and «; = 1 if
task i has ground-truth label, otherwise a; = 0. Y; and Y; are task
prediction and ground-truth.

We first train the multi-task model with HiTTs jointly with L;
only to achieve convergence on labeled data, then we utilize both
hierarchies of tokens to discover feature-level and prediction-level
pseudo supervision. As we mentioned in Sec. 3.1, before the updated
tokens and features are fed into the next stage, we conduct the
feature supervision discovery to excavate feature-level supervision
signals for unlabeled tasks. As shown in Fig. 3 (a), we use the
updated global task tokens to query each pixel feature on every

task and produce confidence mask M{ = Sigmoid(@; " x F;). Since

0; is globally learned on all task features, in M{ , higher scores
indicate that the pixel features have a higher response to task i,
which should be further used to prove task supervision. Thus we

use M): to serve as a soft confidence mask for pixel-wise feature
supervision loss:

T
-Ef = % Zl (ai Limse (Fi, ﬁl) + (1 - ai)M{ © Lmse (Fi) F~l)) > (3)
i=
where F; represents the offline saved features which serve as pseudo
supervision signals for unsupervised task features. The © represents
element-wise multiplication, Lnge is the mean squared error loss
for feature distance measurement. For the feature loss on labeled
task (first item in Eq 3), we regard all pixel features from F; as valid
since they are supervised by ground-truth label, while for unlabeled

task (second item in Eq 3), we use M’: encourage high-confidence
pixel features and depress low-confidence ones.

Afterward, we also conduct pseudo label discovery with the aid of
fine-grained task tokens ¢; as mentioned in Sec. 3.2. We directly pro-

duce pseudo labels from Gj: Y; = Argmax (Softmax (G:)), along
with binary masks to select high confidence pixel pseudo labels:
MP = Max (Softmax (G:)) > 15, where 1; is a threshold used to

=
produce binary masks. The loss for pseudo label supervision can
be written as:
T
1 .
Ly=3 > (1-a)Mf oL (Vi V1)), @

i=

Finally, we sum all of the losses in Eq 2, 3 and 4 to supervise all task
features and predictions. The overall losses to optimize the model
can be described as: £ = L5+ L, + .£f, each item is combined
with the weight 1 to form the total loss.

4 Experiment

4.1 Experimental Setup

PASCAL-Context. PASCAL-Context [17] contains 4998 and 5105
images for training and testing respectively, which also have pixel-
level annotations for semantic segmentation, human-parts segmen-
tation and semantic edge detection. Additionally, we also consider
surface normal estimation and saliency detection distilled by [38].
We use Adam optimizer with learning rate 2 x 107>, and weight
decay 1 x 107°, and train for 100 epochs with batch size 6. We
update the learning rate with polynomial strategy and y = 0.9 for
the power factor.
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NYUD-v2. NYUD-v2 [48] contains 795 and 654 RGB-D indoor

scene images for training and testing respectively. We use the 13-
class semantic annotations which is defined in [13], the truth depth

annotations recorded by Microsoft Kinect depth camera, and surface

normal annotations which are produced in [16]. Following the

setting in [28, 33], we use 288 X 384 image resolution to speed up

training. We use Adam optimizer with a learning rate of 1 x 1074,
and train all models for 400 epochs with batch size 8. We update

the learning rate every 100 epoch with y = 0.5 as the multiplying

factor.

Cityscapes. Cityscapes [12] contains 2975 and 500 street-view
images for training and testing respectively. We used the projected

7-class semantic annotations from [33], and disparity maps to serve

as depth annotations. Following the setting in [28, 33], we use

128 X 256 image resolution to speed up training. The optimizer and

learning rate scheduler are set as the same as NYUD-v2.

Model Setting. Following [28], we use SegNet [1] for NYUD-v2 and

Cityscapes, ResNet-18 [20] for PASCAL-Context as the backbone of
our single task learning (STL) baselines, and the multi-task baseline

(MTL) is built from it, which consists of a shared backbone encoder

and several task-specific decoding heads. For the learning of HiTTs,
we follow [4, 27, 76], and perform a discrete quantization of the label

space of continuous regression tasks such as Depth. and Normal.
This discrete quantization does not contribute to multi-task learning

performance as analyzed in [4], so we ensure a fair comparison

with other works.

Data Preparation. We follow the setting of [74] to process PASCAL-
Context, and the setting of [28, 33, 41] to process NYUDv2 and

Cityscapes, and form two partially annotated settings [28]: (i) one-
label: for each input image, it is only associated with one task
annotation; (ii) random-labels: each image has at least one and at
most N — 1 tasks with corresponding task annotations, in the set
of N tasks. Additionally, we provide two extra settings full-labels

and few-shot in the supplementary material to further validate

the effectiveness of our method.

Training Pipeline. We first train the multi-task model with HiTTs

on all labeled task data. Then the weights of the network and tokens

are fixed, and used to produce hierarchical supervision on both
feature and prediction spaces. We produce the pseudo label in an
offline manner according to [65], which is labeling on clean image

without data augmentation, and training on augmented images and
pseudo labels to enforce consistent predictions. In [65], this method
is only applied to classification tasks while we extend the utilization
to general dense prediction tasks. After the pseudo labels are saved,
we use them along with the ground-truth labels to jointly train
the multi-task model from scratch. Additionally, we also use the

pseudo feature supervision produced by this pretrained multi-task
model for feature regularization during the optimization process.
Both hierarchies of the discovered supervision signals ensure that
all task predictions will obtain pixel-wise supervision for multi-task
optimization to gain better generalization ability on unlabeled data.
Evaluation Metrics. We use multiple metrics for each task to
evaluate the performance. The metrics include: mloU (mean inter-
section over union), AbS / AbR (absolute error / absolute-relative
error), maxF (maximal F-measure), mErr (mean of angle error), odsF
(optimal dataset scale F-measure). Additionally, to better evaluate
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Figure 5: Comparisons with SoTA works on NYUDv2. Ours
shows both clear semantic boundaries and accurate geometry
estimations, indicating the effectiveness of cross-task feature-
token interactions.

the proposed method, we also use Ay ry from [56] to evaluate the
overall improvement of the multi-task performances of all the tasks.

4.2 State-of-the-art Comparison

Comparison on Pascal-Context. For the comparison on Pascal-
Context, we consider both one-label and random-labels settings. As
shown in Table 1, our method achieves clear improvement over
other methods on the majority of tasks under both settings. The
greatest enhanced task is Semseg, which has +3.46 and +2.64 mloU
on the two settings compared with [74] (F). Overall, our method is
+2.44% and +1.46% higher in terms of A7 compared with [74] (F).
Moreover, our HiTTs are super compact compared with previous
methods which either require heavy mapping networks [28, 41]
or extra MTDNet for diffusion decoding [74], while ours achieve
significantly better performance with ~ 45% parameter amount and
~ 70% GFlops compared with the best performing [74].

Comparison on NYUD-v2. We compare our method with [28, 33]
on NYUD-v2 under both the one-label and random-labels settings,
and the quantitative results are shown in Table 2. XTC [28] is
the first work designed for partially annotated multi-task dense
prediction. MTAN [28] is an attention-based MTL network designed
for the fully supervised setting, and we train it with our setup. The
quantitative results show that our method surpasses them by a
large margin on all the metrics of the three tasks. More specifically,
ours achieves +6.45% Ay 7y and +7.41% Ay compared with [28]
under the two partial-label settings, respectively. The qualitative
comparison with the state-of-the-art method XTC [28] as shown
in Fig. 5 can also confirm the superior performance of our method.
Comparison on Cityscapes. We also compare our results with [28,
33] on Cityscapes, under the one-label setting with both Semseg.
and Depth. tasks. As shown in Table 3, our method achieves SOTA
performance on both tasks, and significantly better performance
on Depth (15.09% higher than [28]), resulting in an average gain of
+8.76% in terms of Apsrr. Additionally, it’s worth mentioning that
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Table 1: Quantitative comparison on PASCAL-Context under the one-label and random-labels setting. (P) and (F) represent the
Prediction Diffusion and Feature Diffusion modes for DiffusionMTL [74], and MTDNet is the Multi-Task Denoising Diffusion
Networkt [74]. The Mapping Network is the extra encoder used for task mappings in [28, 41]. “*” denotes the re-implemented
results from [74]. Our method performance outperforms previous methods while using significantly fewer model parameters.

Mappin, Semse Parsin; Salienc Normal Boundar MTL Perf
# labels Method MTDNet tpvfoﬂf #Params  FLOPS | 7% f’ i Tg o Ty e | . Y it

STL X X 219M 817G 50.34 59.05 77.43 16.59 64.40 -
MTL baseline X X 157M 608G 49.71 56.00 74.50 16.85 62.80 -2.85
SS [28] X X - - 45.00 54.00 61.70 16.90 62.40 -

_T.c; XTC [28] X v - - 49.50 55.80 61.70 17.00 65.10 -

7 XTC* [28] X v 173M 608G 55.08 56.72 77.06 16.93 63.70 037

& JTR* [41] X v 173M 608G 50.29 54.78 78.35 17.97 63.66 312
DiffusionMTL (P) [74] v X 133M 628G 59.43 56.79 77.57 16.20 64.00 3.23
DiffusionMTL (F) [74] v X 133M 676G 57.78 58.98 77.82 16.11 64.50 3.65
Ours X X 62M 493G 61.24 57.52 78.35 15.75 67.70 6.09
STL X X 219M 817G 51.51 57.90 80.30 15.24 67.80 -
MTL baseline X X 157M 608G 62.23 55.88 78.67 15.47 66.70 2.44

2 SS [28] X X - - 59.00 55.80 64.00 15.90 66.90 -

Kl XTC [28] X v - - 59.00 55.60 64.00 15.90 67.80 -

§ XTC* [28] X v 173M 608G 62.44 55.81 78.56 15.45 66.80 2.52

g JTR* [41] X v 173M 608G 57.21 53.18 79.98 16.48 66.20 -1.60

& DiffusionMTL (P) [74] v X 133M 628G 63.68 55.84 79.87 15.38 66.80 3.44
DiffusionMTL (F) [74] v X 133M 676G 62.55 56.84 80.44 14.85 67.10 427
Ours X X 62M 493G 65.19 56.35 81.70 14.80 67.90 5.73

Score Map Produced by Global Task Tokens

Semseg.

Depth.

S -1

Score Map Produced by Fine-grained Task Tokens

Figure 6: Comparisons of task score maps produced by global task tokens and fine-grained task tokens on Cityscapes.

Table 2: Comparison on NYUD-v2 under one-label and

random-labels settings.

Table 3: Comparison on Cityscapes under one-label setting.
“*” denotes the re-implemented results to align the settings.

. Semseg. Depth. Normal. ApmTL . Semseg. Depth. ApmrL
Setting Model mIoU’% AIfSJ, mErr| @1 Setting Model mIoU:gr AII:SL @)t
STL 29.28 0.7182 30.1971 - STL 69.69 0.0142 -

E MTL baseline 30.92 0.5982 31.8509 5.61 MTL baseline 69.94 0.0159 -5.81

iﬁ MTAN [33] 30.92 0.6196 30.0278 6.63 One-Label MTAN [33] 71.12 0.0146 -0.38

g XTC [28] 33.46 0.5728 31.1492 10.46 XTC [28] 73.23 0.0159 -3.45

e} JTR [41] 31.96 0.5919 30.8000 8.25 JTR [41] 72.33 0.0163 -5.50

Ours 35.81 0.5540 28.5131 16.91 DiffusionMTL (F)* [74] 73.19 0.0138 3.92

ij STL 34.49 0.6272 27.9681 _ Ours 73.65 0.0135 5.31
=) MTL baseline 35.49 0.5503 29.9541 2.69
= MTAN [33] 35.96 0.6120 28.6933 1.36
é XTC [28] 38.11 05387 29.6549 6.19
El JTR [41] 37.08 0.5541 29.4400 4.63
~ Ours 41.78 0.5177 27.3488 13.60

our work is the only one that achieves balanced performance gain

on both tasks compared with STL.

4.3 Model Analysis

Components of Hierarchical Task Tokens. As shown in Ta-
ble 4, under the one-label setting on NYUD-v2, we give an ablation
study of HiTTs’ key components. Generally, we analyze the role of
global task tokens 0; and fine-grained tokens ¢;, and core designs
for token learning process, including the orthogonal embeddings
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Table 4: Investigate the effectiveness of different components
on NYUD-v2 testing set under one-label setting,. L; represents
the navie pseudo label loss in prediction space without uti-
lizing HiTTs.

Semseg. Depth. Normal.  AyTL

Meth

ethod mloUT  ABSL  mErl ()T
STL 29.28 0.7182 30.1971 -
MTL baseline 30.92 0.5982 31.8509 5.61
HiTTs w/o. OE 27.38 0.6049 30.5904 2.66

HiTTs w/o. Inter-Task Attention 31.26 0.5966 30.2911 7.79
HiTTs w/o. Intra-Task Attention 31.44 0.5910 30.1432 8.42

HiTTs w/o. 0; 30.03 0.5823 30.0005 7.38
HiTTs w/o. ¢ 30.53 0.5842 30.0891 7.76
HiTTs 32.48 0.5844 30.0847 9.98
STL w. .E; 30.78 0.6693 30.2420 3.93
MTL w. J:; 33.59 0.5882 29.8174 11.36
HiTTs w. Lf 33.24 0.5708 29.2227 12.88
HiTTs w. £, 35.22 0.5613 28.8852 15.49

HiTTs w. £ + .Ef (full method) 35.81 0.5540  28.5131 16.91

Training Phase (Random-Labels):
AbS of Depth.

08 — /0. P —— w/o.P
— w.P — w.P

mloU of Semseg.

mErr of Normal.

Testing Phase (Random-Labels):
ADbS of Depth.

— w/o.P — w/o.P
080 —w.P —_—w.P

mloU of Semseg. mErr of Normal.

015 w/o. P
— w. P 0.55

0 100 200 300 400 0 100 200 300 400 0 100 200 300 400

Epoch Epoch Epoch

Figure 7: Comparison of the training and testing performance
on each task with and without hierarchical Pseudo Super-
vision (P). The model trained with pseudo supervision con-
verges faster on both train and test splits, and gains better
performance.

(OE) (3.2), inter- and intra-task attention (3.1). The quantitative re-
sults clearly show that both hierarchies of tokens contribute to the
multi-task performance and HiTTs boost the model performance by
overall +4.37% Aprr on all tasks compared with baseline. For the
learning process of HiTTs, the inter- and intra-task attention both
contribute to the learning process, and the orthogonal embeddings
(OE) are essential for generating representative fine-grained task
tokens, and without OE, the performance will significantly drop
(=7.32% AprL)-

Effect of Hierarchical Feature Supervision and Label Discov-
ery. To validate that our token-based label discovery is superior to
the naive pseudo-labeling process, we compare £, imposed on dif-
ferent models, including STL, MTL baselines, and ours. The HiTTs

Zhang et al.

Table 5: Investigate the performance on labeled and unla-
beled data on NYUD-v2 training set under the one-label set-
ting. GT and pseudo represents the ground-truth and the
pseudo supervision, respectively. Our method clearly shows
effective learning on unlabeled training data.

Method Supervision Semseg. Depth. Normal.
GT Pseudo mloU?T AbS| mErr|
ML baseline v X 89.00 0.2041 25.9280
X X 3431 0.5823 31.7697
HITTs v X 86.04 03016 21.7911
X X 34.69 05699 29.8920
v X 86.63 03173 20.9220

HiTTsw. Ly + L¢ . : :
PT=f X v 37.25 0.5563  28.5169

perform i) effective cross-task feature-token interactions; ii) con-
sistent label discovery in both feature and prediction space, which
yields better pseudo label quality, and significantly surpasses simply
applying £, to STL or MTL baselines without HiT Ts. We also ana-
lyze the contributions from two types of pseudo supervision losses
(£p and Ly) on different hierarchies. As shown in Table 4, both
methods boost multi-task performance: +7.27% Ay, for L and
+9.88% Ayt for L, compared with MTL baseline. The combina-
tion of both methods achieves better performance (+11.30% ApsrrL)
than applying them separately, which validates the importance of
consistently discovering supervision signals in both hierarchies.
Visualization Results. We visualize: i) The visualization of score
maps produced by 0; and ¢; in Fig. 6. The visualizations reveal that
score maps from global tokens provide a coarse, noisy overview
and are biased towards common categories (e.g., focusing only on
"road" in Cityscapes). In contrast, maps from fine-grained tokens are
detailed, less noisy, and can identify smaller, less frequent objects
(e.g., "vehicles" and "pedestrians"). This confirms our hierarchical
structure is essential for learning representations at different levels
of granularity. ii) The learning curves of metrics on every task in
Fig. 7, both training and testing performance are boosted consis-
tently on all tasks with the discovered pseudo supervision (P) on
both hierarchies.

Learning Effect on Unlabeled Data. We also study the perfor-
mance of our method on the labeled and unlabeled data separately
on NYUD-v2 training set under one-label setting. As shown in Ta-
ble 5, for data without labels, the model with HiTTs generalizes
better on them, especially on Depth. and Normal, and adding hier-
archical supervision will more significantly boost the performance
on unlabeled data.

5 Conclusion

In this work, we propose to learn Hierarchical Task Tokens (HiT Ts)
for both pseudo feature supervision and label discovery under
Multi-Task Partially Supervised Learning. The global task tokens
are exploited for feature-token cross-task interactions and provide
feature-level supervision, while the fine-grained tokens inherit
knowledge from global tokens and excavate pixel pseudo labels. Ex-
tensive experimental results on partially annotated multi-task dense
prediction benchmarks validate the effectiveness of our method.
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Supplementary

In this supplementary document, we present: (i) more details
about the structure of hierarchical task tokens and training pipeline,
(ii) a more comprehensive explanation of experimental implemen-
tations, (iii) more quantitative and qualitative experimental results.

A Model Details
A.1 Training Pipeline

We will discuss utilizing the discovered supervision signals by Hier-
archical Task Tokens (HiTTs) for the training process in this section.
We first train the multi-task model with HiTTs on all labeled task
data. Then the weights of the network are fixed, and used to pro-
duce hierarchical supervision on both feature and prediction spaces.
We produce the pseudo label in an offline manner according to [65],
which is labeling on clean image without data augmentation, and
training on augmented images and pseudo labels to enforce consis-
tent predictions. In [65], this method is only applied to classification
tasks while we extend the utilization to general dense prediction
tasks. After the pseudo labels are produced, we use them along
with the ground-truth labels to jointly train the multi-task model
from scratch. Additionally, we also use the pseudo feature super-
vision produced by this pre-trained multi-task model for feature
regularization during the optimization process. Both hierarchies of
the discovered supervision signals ensure that all task predictions
will obtain pixel-wise supervision for multi-task optimization to
gain better generalization ability on unlabeled data.

A.2 Global Task Token Learning

In this section we are going to introduce the inter- and intra-task
attention in detail. Given an RGB input X € R3>*HXW 3 mylti-
task dense prediction framework firstly produces a task-generic
representation Fs € RE*"W through a shared encoder. Con-
sidering we have T tasks, and we target decoding task features
{F1, Fy, -+, Fr} from Fs as well as learning representative global
task tokens {04, 6, - - - , O} for each task.

As shown in Fig. 8: i) Inter-Task Learning, which aims to learn
explicit global cross-task token affinities A, and conduct cross-
task interaction accordingly for the global token learning process.
ii) Intra-task Learning, which learns task-specific information by
globally conducting self-attention between task feature and token
pairs.

Firstly, we flatten the shared feature Fs into feature tokens with
shape RCX (hw) and use each global task token to query the shared
feature to obtain each task feature F; accordingly. Then, to conduct
inter-task attention, all global task tokens are used to produce cross-
task affinities that explicitly guide the learning process. The cross-
task affinity map A € RT*7 is calculated as:

A = Softmax(Q x K"), (5)
where Q and K are individual linear projection of concatenated
global tokens © = [01;02;--- ;07]", in which [-] indicates the

concatenation. After affinity matrix A is calculated, it is used to
conduct affine combinations of task features and global task tokens
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respectively:

0'=A%x0, F =AXTF, (6)
and similarly, ¥ = [Fy; Fs;--- ;Fr]T, and ©’, ¥ represents all
updated task tokens and features after the affine combinations. For
each task feature Fj, if it is not directly supervised by labels, the
feature will be less representative and contain more noise. Thus,
conducting affine combinations among all tasks ensures that the
task-shared representations from labeled tasks are able to fertilize
the unlabeled task features.

Afterward, the updated tokens and features with cross-task infor-
mation are involved in the intra-task attention, where we first con-
catenate every corresponding task token and feature, and perform
self-attention on the spatial dimension among each token-feature
pair [0}:F}] € RE*(hw+1) The global task tokens will further
learn more specific and discriminative task representations during
this process, and representative task tokens will in turn enhance
the feature quality as well. Followingly, we discover pseudo feature
supervision with the aid of well-learned global task tokens 6.

Additionally, for multi-scale backbone features, directly fusing
them ignores the various granularity of task representations main-
tained at different scales. Thus, for multi-scale image backbone, we
further propose Multi-scale Global Task Token Learning in order
to learn comprehensive multi-scale task relations. The proposed
method involves inter-task attention separately at each scale, and
then the multi-scale features and tokens are fused before intra-task
attention. In this way, the global task tokens gain richer cross-task
relations at different scales and are able to maintain stronger repre-
sentations. We will illustrate this part in detail in Sec. A.4.

A.3 Discrete Quantization and Task Losses

In Sec. 3 of the body part, we have discussed how to learn HiTTs.
For continuous regression tasks, such as Depth and Normal, we first
need to perform a discrete quantization of the label space to provide
discriminative supervision for tokens. The goal for quantization is
to assign meaningful category bins to each fine-grained token for
classification. As analyzed in [4], this quantization only changes
the way of predicting regression task, but does not contribute to the
learning performance. For depth estimation, we follow the setting
in [4, 27], and divide the range of depth values into several logarith-
mic bins. Our predicted task logits score G is used to calculate the
soft-weighted sum with each bin and produce final task predictions
accordingly. For surface normal estimation, we follow [4, 76] and
use K-means to learn several unit normal vectors, which serve as
clustering centers, and they are also used to generate predictions
with G}. This process can be expressed as:

Y; =Sum (c; " X Softmax(G?})), (7)
where ¢; € RS represents the center of each bin. In our experi-
ments, the numbers of depth bins and normal cluster centers on
NYUD-v2 are 30 and 20, respectively. For Cityscapes, we consider
100 depth bins as the Cityscapes dataset is captured from outdoor
scenarios and have more significant changes in depth. For PASCAL-
Context, we select 40 different unit verctors uniformly from the
space to serve as normal cluster centers.

To supervise the task predictions, we can directly impose regres-
sion losses on Y; for Depth. and Normal:
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Figure 8: Illustration of detail designs of: (i) Inter-Task Attention: predicting cross-task token affinities A from the global task
tokens. (ii) Intra-Task Attention: conducting self-attention between task features and tokens.

L (Vi Yi), ®)

where Lireg(-) can be L loss or Angle loss for Depth. or Normal.
respectively. Furthermore, in order to gain more discriminative task
category information for each token, we also impose classification
loss on G7. We first extract the corresponding one-hot label from

Y; by c;, denoting as Yl."h, and the loss can be written as:

Lcls (G,-, Y;”') = —Y?" . log (Softmax(G})), ©)

and the overall mixture loss for each task can be written as:

Li() = A L8 (Yi, Y,-) + 1S (G;, Y;”’) , (10)

where A; = 0.1 if task i is a regression task itself, otherwise A; = 0.

A.4 Multi-scale Global Task Token Learning

For the implementations on NYUD-v2 and Cityscapes, we use the
SegNet [1] to serve as the shared backbone, which produces single-
scale shared features for per-task decoding. However, on PASCAL-
Context, we use ResNet-18 [20] as the shared backbone, which can
produce multi-scale shared features for decoding. Directly fusing
them ignores the various task information maintained in different
scales. Thus, we propose to learn the global task tokens on different
scales in order to learn more comprehensive task relations.

As shown in Fig. 9, compared with the single-scale global task
token learning process, the multi-scale process involves inter-task
learning separately on each scale, and then the multi-scale features
and tokens are fused before intra-task learning. The multi-scale

backbone features {Fs (j)} ,J =0,1,2,3 are first flattened on each
scale, and each global task token 0; is projected by a linear layer to

produce multi-scale tokens:
0;) =ws=mU) xe;, j=0,1,23 11)
where Wis_’m(j ) Then, for every feature F;) and token 6;/) on

scale j and task i, we query Fs () to obtain task features {Fi () } ,i=

1,2,---,T;j =0,1,2,3. After that, on each scale, we concatenate
features and tokens from every task for Inter-task Learning similar
to Sec. 3.1:

T

(12)

(13)

FU) = [F1<f>;pz<f>;-~- ;FTm]
o) = [gl(j);gz(j);.., ;QT(J')]T.

Subsequently, FU) and ©) are used for inter-task learning
on each scale. We denote the features and tokens after intra-task
learning as 7)) and © ). We fused them to share cross-task
information on each scale:

F;:Convilx1 ([Fl{(o);Fl{(l);Fl{(z);Fl{(S)]), (14)

o = 23] (W{n—)s(j) x 0;(1’)) ) (15)

i

Jj=0

Finally, on each task i, the updated task features F; and global

task tokens ] are used for Intra-task Learning. The process is the
same as Sec. 3.1.

In this way, we achieve learning global task tokens on multi-scale

task features, which gains richer cross-task relations on different

scales and maintains stronger representations in the global task

tokens.

A.5 Broader Applicability and Future Directions

The hierarchical design of our HiTTs is highly generalizable and not
limited to the currently studied tasks. Its principles can be readily
extended to other fundamental computer vision tasks, such as object
detection [3, 5, 45, 59, 83] and instance segmentation [8, 11, 19, 46],
which fundamentally rely on rich, multi-scale pixel representa-
tions. The experiment on the PASCAL-Context dataset partially
demonstrates this potential, where HiT Ts effectively learns from
both coarse-grained semantic labels and fine-grained human part
annotations simultaneously, showcasing its robust joint-learning
capabilities across different granularities.
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Figure 9: Illustrations of Single-scale Global Task Token Learning (a) and Multi-scale Global Task Token Learning (b). For the
multi-scale features produced by the shared backbone, we use linear layers to produce corresponding task tokens for each scale.
Then, in each scale, we query task features and conduct inter-task attention to gain multi-task multi-scale representations. The
multi-scale features and tokens are fused before intra-task attention to transfer cross-scale information.

Furthermore, the core concepts of HiTTs extend beyond the
visual domain. Its ability to build cross-task relations upon multi-
level representations makes it a promising approach for tasks like
hierarchical text classification [50, 51, 60, 61, 82] or 3D scene-level
parsing [24, 42, 58]. Moreover, the unified token-feature interaction
mechanism, based on the Transformer architecture, is inherently
compatible with diverse data types, paving the way for future ex-
ploration in multi-modal learning environments [2, 30, 31, 63, 64].
This adaptability underscores the broad potential of our hierarchi-
cal token-based approach for complex multi-task and multi-modal
problems.

B Implementation Details

B.1 Dataset

PASCAL-Context. PASCAL-Context [17] contains 4998 and 5105
images for training and testing respectively, which also have pixel-
level annotations for semantic segmentation, human-parts segmen-
tation and semantic edge detection. Additionally, we also consider
surface normal estimation and saliency detection distilled by [38].
We use Adam optimizer with learning rate 2 x 107>, and weight

decay 1 x 107%, and train for 100 epochs with batch size 6. We
update the learning rate with polynomial strategy and y = 0.9 for

the power factor.

NYUD-v2. NYUD-v2 [48] contains 795 and 654 RGB-D indoor
scene images for training and testing respectively. We use the 13-
class semantic annotations which is defined in [13], the truth depth
annotations recorded by Microsoft Kinect depth camera, and surface
normal annotations which are produced in [16]. Following the
setting in [28, 33], we use 288 X 384 image resolution to speed up
training. We use Adam optimizer with a learning rate of 1 x 1074,
and train for 400 epochs with batch size 8. We update the learning
rate every 100 epoch with y = 0.5 as the multiplying factor.
Cityscapes. Cityscapes [12] contains 2975 and 500 street-view
images for training and testing respectively. We used the projected
7-class semantic annotations from [33], and disparity maps to serve
as depth annotations. Following the setting in [28, 33], we use
128 X 256 image resolution to speed up training. The optimizer and
learning rate scheduler are set as the same as NYUD-v2.

B.2 Data Preprocessing

We follow the setting of [28, 33, 56, 74] to process training data.
For NYUD-v2 and Cityscapes, we use random scaling, cropping
and horizon flipping for data augmentation following [28, 33]. For
PASCAL-Context, we follow [74] and use random scaling, cropping,
horizon flipping and photometric distortion for data augmentation.
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Apart from the two partial settings (one-label and random-labels)
we mentioned in Sec.4.1, we also consider two extra settings: (iii)
full-labels: each image has labels on every task; (iv) few-shot: one
task has only very few labels while other tasks are fully supervised.
Both of the extra settings will furthermore show the effectiveness
of our method.

B.3 Model Setting

We use SegNet [1] as the image backbone for our experiments
on NYUD-v2 and Cityscapes; and we use ResNet-18 as the image
backbone, Atrous Spatial Pyramid Pooling (ASPP) [9] as the task-
specific decoding heads. For the threshold 7; which selects binary
mask M}i’, we use {Semseg: 0.9, Depth: 0.45, Normal: 0.6 } for NYUD-
v2 one-label setting, {Semseg: 0.9, Depth: 0.7, Normal: 0.7} for NYUD-
v2 random-labels setting. {Semseg: 0.9, Depth: 0.5} for Cityscapes
one-label setting, and {Semseg: 0.9, Parsing: 0.85, Normal: 0.7, Sal:
0.7, Edge: 0.9} for PASCAL-Context one-label and random-labels
settings.

B.4 Evaluation Metrics

We have briefly introduced our evaluation metrics for multiple
dense prediction tasks in Sec.4.1. We provide a more detailed de-
scription as follows: (i) mIoU: mean intersection over union; (ii)
pAcc: per-pixel accuracys; (iii) AbS or AbR: absolute error or absolute-
relative error; (iv) rmse: root mean square error (for Normal. we
calculate the mean square error of the predicted angles with the
ground-truths); (v) mErr: mean of angle error; (vi) odsF: optimal
dataset F-measure [39]; (vii) threshold: for surface normal estima-
tion, we calculate the proportion of pixels with angle error smaller
than three thresholds € {11.25°,22.50°,30°}.

Additionally, to better evaluate the proposed method, we also
consider using Ay 7y proposed by [56] to evaluate the overall im-
provement of the multi-task performances of all the tasks, which is
defined as:

Awre = ) (=)' (M = M) /My (16)
N

where [; = 1 if a lower evaluation value indicates a better perfor-
mance measurement of M; for task t, and I; = 0 if a higher value is
better. Footnote s and m represent the performance of the single-
task learning and the multi-task learning respectively. We will show
experimental results with all of these metrics to further show the
effectiveness of our method.

B.5 More Quantitative Results

B.5.1 State-of-the-art Comparison.

Comparison on NYUD-v2. We compare our method with [28, 33]
on NYUD-v2 under both the one-label and random-labels settings,
and the quantitative results are shown in Table 6. XTC [28] is
the first work designed for partially annotated multi-task dense
prediction. MTAN [28] is an attention-based MTL network designed
for the fully supervised setting, and we train it with our setup. The
quantitative results show that our method surpasses them by a
large margin on all the metrics of the three tasks. More specifically,
ours achieves +9.63% Aprr and +8.62% Ay compared with [28]
under the two partial-label settings, respectively.

Zhang et al.

Our HiTTs can also be applied on full-labels setting, which uti-
lizes cross-task relations and task-token interactions to fertilize the
multi-task learning process. We compare with some of the recent
works, including multi-task interaction works like MTAN [33], X-
Task [75] and CCR [69]; and multi-task loss weighting strategies
like Uncertainty [25], GradNorm [10], MGDA [14] and DWA [33].
As shown in Table 7, our method still clearly surpasses all of the
SOTA works (13.29% Ayt overall), indicating the effective cross-
task interaction brought by HiTTs. Additionally, with the aid of
feature-level supervision loss L, which is supported by global task
tokens, our method can achieve 14.64% Ay, overall on the three
tasks.

Comparison on Cityscapes. We also compare our results with [28,
33] on Cityscapes, under the one-label setting with both Semseg.
and Depth. tasks. As shown in Table 8, our method achieves SOTA
performance on both tasks, and significantly better performance
on Depth, resulting in an average gain of +6.98% in terms of Ayry.
Additionally, it’s worth mentioning that our work is the only one
that achieves balanced performance gain on both tasks compared
with STL.

B.5.2  Model Analysis.

Effect of Hierarchical Task Tokens. As shown in Table 9, under
the one-label setting on NYUD-v2, we give a more-detailed ablation
study on the key components of hierarchical task tokens (HiTTs),
including both hierarchies of the task tokens, and the inter-task
(Inter) and intra-task (Intra) learning of global task tokens, and
orthogonal embeddings (OE) of fine-grained task tokens, and two
types of pseudo supervision losses (£, for pseudo label loss and
L for feature supervision loss) on different hierarchy. The quan-
titative results clearly show that every component contributes to
the multi-task performance on all the metrics and on all the tasks
over the MTL baseline. HiT Ts boost the model performance by con-
ducting cross-task interaction and encouraging high-confidence
predictions, and leads to an overall +9.64% Aprr on all tasks com-
pared with baseline. However, for the learning process of HiTTs, the
orthogonal embeddings (OE) are essential for generating represen-
tative fine-grained task tokens, and without OE, the performance
will significantly drop (—4.38% AprL), especially on Semseg. which
requires more discriminative category information. The inter-task
and intra-task learning processes are also important since with-
out either of them, the learning of cross-task relations and task
representations will be affected, resulting in —2.00% Aprp and
—1.28% Aprr performance after removing them respectively from
the learning process of HiT Ts.

Effect of Hierarchical Feature Supervision and Label Dis-
covery. We analyze the contributions from both feature-level and
prediction-level supervision with all of the metrics, as shown in
Table 9, both methods boost multi-task performance, and £, con-
tributes more since fine-grained task tokens contain more specific
and discriminative task information and are directly involved in
the formation process of task predictions. The combination of both
methods achieves better performance than applying them sepa-
rately, which validates the importance of consistently discovering
supervision signals in both hierarchies. Comparing £, imposed
on different models, including STL, MTL baselines, and our HiTTs,
our token-based pseudo-label discovery is much better. Since MTL
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Table 6: Comparison on NYUD-v2 under one-label and random-labels settings. Our method shows clear performance gain over

three tasks, which is consistent with the visualization results.

Setting Model Semseg. Depth. Normal. AmTL
mloU?T pAcct AbS| rmsel, mErr| rmsel, mT n21 n3t (%)

— STL 29.28 55.41 0.7182 1.0151 30.1971 37.7115 23.1532 46.4046 58.5216 -
-q‘(; MTL baseline 30.92 58.23 0.5982 0.8544 31.8509 38.6313 19.7083 41.2614 53.6381 0.11
’j-) MTAN [33] 30.92 57.14 0.6196 0.8477 30.0278 36.7808 21.4199 44.7805 57.5720 3.26
S XTC [28] 33.46 60.95 0.5728 0.8056 31.1492 37.8211 19.8410 42.2268 54.9997 3.60
Ours 35.81 63.22 0.5540 0.7939 28.5131 36.1738 26.4985 50.2357 61.8343 13.23

2 STL 34.49 60.52 0.6272 0.8824 27.9681 34.9293 24.6011 49.7888 62.4425 -
E MTL baseline 35.49 61.81 0.5503 0.7874 29.9541 36.7726 21.6933 45.0412 57.7516 -1.47
g MTAN [33] 35.96 61.64 0.6120 0.8272 28.6933 35.3528 23.0253 47.2287 60.1113 -0.48
E XTC [28] 38.11 64.37 0.5387 0.7755 29.6549 36.3992 21.7058 45.4801 58.4236 0.66
= Ours 41.78 66.50 0.5177 0.7472 27.3488 34.6820 27.1619 51.8924 63.7670 9.28

Table 7: Comparison on NYUD-v2 under full-labels settings.
Our method achieves significantly better performance com-
pared with SoTA multi-task learning works on all of the three
tasks.

Semseg. Depth. Normal. ApmrL
Model mloUt ABS|, mErr) @)
STL 37.45 0.6079 25.94 -
MTL baseline 36.95 0.5510 29.51 -1.91
MTAN [33] 39.39 0.5696 28.89 0.03
X-Task [75] 38.91 0.5342 29.94 0.20
Uncertainty [25] 36.46 0.5376 27.58 0.87
GradNorm [10] 37.19 0.5775 28.51 -1.87
MGDA [14] 38.65 0.5572 28.89 0.06
DWA [33] 36.46 0.5429 29.45 -1.83
XTC [28] 41.00 0.5148 28.58 4.87
XTC+Uncertainty [25] 41.09 0.5090 26.78 7.58
CCR [69] 43.09 0.4894 27.87 9.04
Ours (HiTTs) 44.32 0.4813 25.76 13.29
Ours (HiTTs+.Cf) 45.47 0.4763 25.72 14.64

Table 8: Comparison on Cityscapes under one-label setting.

Setting  Model Semseg, Depth. AmrL
mloUT  pAccl AbS| rmsel (%)T

_,  SIL 69.69 9191 00142  0.0271 -
2 MTLbaseline  69.94 9162 00159 00292  -4.92
= MTAN [33] 7112 9235 00146 00278  -0.72
&  XTC[28] 7323 9273 00159 00293  -3.53
Ours 73.65 92.81 00135 0.0265  3.45

shares a backbone that learns stronger representations on all tasks,
MTL produces pseudo labels with better quality and surpasses STL a
lot in performance (+3.86% A psrL). Our HiTTs perform i) consistent
label discovery in both feature and prediction space; ii) effective
cross-task feature-token interactions, which furthermore enhance
the quality of pseudo labels, and bring extra +4.68% At overall.

We also study the performance of our method on the labeled
and unlabeled data separately on NYUD-v2 training set under the
one-label setting. As shown in Table 10, for data without labels,

the model with HiTTs generalizes better on them, especially on
Depth. and Normal, and adding hierarchical supervision will more

significantly boost the performance of unlabeled data.

Effect of Cross-Task Interactions. To further show the effect
of cross-task learning brought by HiTTs, we develop new few-
shot settings, under which one task has only a few labels while
other tasks are fully labeled. We apply this setting respectively on
the three tasks of NYUD-v2, namely few-shot-semseg, few-shot-
depth and few-shot-normal. For each few-shot task, we have 10
shots for the model to learn. As shown in Table 11, we only show
the performance of the few-shot tasks in the table, and due to the
lack of label supervision, the STL performs poorly on each few-shot
task: 5.80 mloU on Semseg, 0.9633 AbS on Depth, and 47.5281 mErr
on Normal. Benefiting from the sharing backbone, MTL baseline
performs much better, since the backbone can be fully supervised
on the other two tasks, and gain stronger representations from other
tasks. With the aid of HiTTs, the multi-task model can achieve an
extra performance gain, since the cross-task interactions brought
by intra-task learning can fertilize the unlabeled tasks in the decod-
ing stage, which introduces more task-relevant information and
discriminative representations to task features without label super-
vision. The gain brought by HiTTs is +7.76% on Semseg, +14.86%
on Depth, and +0.49% on Normal respectively. Additionally, if we
add the pseudo supervision signals to aid the learning process, the
performance will be further improved: +19.82% on Semseg, +19.63%
on Depth, and +3.85% on Normal compared with MTL baseline.

Analysis of Multi-Scale Global Task Token Learning. As we il-
lustrated in Sec. A.4, we adopt multi-scale global task learning with
ResNet-18 backbone on PASCAL-Context. To validate the effective-
ness of learning global task tokens on multi-scale features, we com-
pare the performance of Global Task Token Learning with single-
scale and multi-scale backbone features respectively in Table 12. As
shown in the table, HiT Ts with single-scale (SS) Global Token Learn-
ing surpass the MTL baseline on both one-label and random-labels
settings, with overall +0.60% A1 and +0.97% Ap7r on all tasks
respectively, and the multi-scale (MS) Global Token Learning fur-
ther enhances the performance to +2.84% Aprr and +3.33% AprL
on all tasks, which indicates the effectiveness of applying global
token learning on multi-scale features.

Analysis of Threshold Hyperparameter 7;. We discuss the effect
of the confidence threshold hyperparameter, z;. This threshold is
chosen to ensure that high-confidence pixel predictions are masked
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Table 9: Investigate the effectiveness of different components on NYUD-v2 testing set under one-label setting.

. Depth. 1. A
Method Semseg ept Normal ML
mloU?T pAcct AbS] rmsel mErr| rmsel. mt n2T n3T (%)T
STL 29.28 55.41 0.7182 1.0151 30.1971 37.7115 23.1532 46.4046 58.5216 N
MTL baseline 30.92 58.23 0.5982 0.8544 31.8509 38.6313 19.7083 41.2614 53.6381 0.11
+HiTTs w/o. OE 27.38 55.08 0.6049 0.8626 30.5904 38.1046 23.5233 45.7012 57.1902 2.13
+HiTTs w/o. Inter 31.26 57.99 0.5966 0.8592 30.2911 37.7714 22.7802 46.2590 58.0880 4.51
+HiTTs w/o. Intra 31.44 58.50 0.5910 0.8533 30.1432 37.6719 23.3251 46.4354 58.1508 5.23
+HiTTs w/o. 6; 30.03 58.21 0.5823 0.8389 30.0005 37.3750 23.4160 46.1824 58.2909 5.08
+HiTTs w/o. ¢ 30.53 57.18 0.5842 0.8565 30.0891 37.4465 23.2297 45.9603 58.0509 4.60
+HiTTs 32.48 59.61 0.5844 0.8382 30.0847 37.5827 23.9975 46.4790 58.2146 6.51
STL w. .Ep 30.78 58.94 0.6693 0.9362 30.2420 37.8601 23.5830 46.4743 58.3739 3.03
MTL w. .Cp 33.59 61.79 0.5882 0.8554 29.8174 36.9781 23.2875 45.8803 58.1061 6.89
+HiTTs w. ,[f 33.24 60.74 0.5708 0.8200 29.2227 36.9305 25.7968 48.8173 60.2608 9.75
+HiTTs w. ‘EP 35.22 62.93 0.5613 0.8014 28.8852 36.4316 25.3873 49.1251 60.9806 11.57
+HiTTs w. LP + .Ef 35.81 63.22 0.5540 0.7939 28.5131 36.1738 26.4985 50.2357 61.8343 13.23

Table 10: Investigate the performance on labeled and unlabeled data of NYUD-v2 training set under one-label setting.

Method Supervision Semseg. Depth. Normal.
GT Pseudo mloU?T pAccT AbS| rmsel mErr| rmsel. mt n2T 3T
. v X 89.00 96.04 0.2041 0.3434 25.9280 32.0824 25.8276 52.0758 65.4135
MTL baseline
X X 34.31 61.56 0.5823 0.8375 31.7697 38.5071 19.5042 41.2401 53.8490
HiTTs \/ X 86.04 95.00 0.3016 0.4625 21.7911 28.9368 38.8125 63.6280 73.8326
X X 34.69 61.48 0.5699 0.8319 29.8920 37.3331 23.9788 46.4809 58.4659
. v X 86.63 94.89 0.3173 0.4770 20.9220 28.1260 41.2846 66.0712 75.6904
HiTTs w. Lp + Lf
: X v 37.25 63.72 0.5563 0.8074 28.5169 36.1536 26.4528 50.0344 61.5778
Table 11: Investigate the cross-task learning effect on NYUD-v2 under the few-shot setting.
Method Few-Shot-Semseg Few-Shot-Depth Few-Shot-Normal
mloU?T pAcct ADbS| rmsel. mErr| rmsel mT n2T n3T
STL 5.80 26.06 0.9533 1.2907 47.5281 53.6422 5.4343 17.8888 27.9915
MTL baseline 16.75 41.01 0.9165 1.2968 40.0456 46.3370 12.0348 26.8520 37.2863
HiTTs 18.05 44.69 0.7803 1.1272 39.8508 47.1113 14.1108 29.4719 39.5924
HiTTs w. Lp + .l:f 20.07 45.62 0.7366 1.0206 38.5029 46.9907 17.1082 34.7171 45.1765

Table 12: Comparison of HiTTs with Single-scale (SS) and
Multi-scale (MS) Global Task Token Learning on PASCAL-
Context under the one-label and random-labels setting.

. Semseg. Parsing. Norm.  Sal Edge. AmrL
t Model
Setting ode mloUT  mloUT mErr] mloUT odsFT (%)T
STL 47.7 56.2 16.0 61.9 64.0 -
éE MTL baseline 48.4 55.1 16.0 61.6 66.5 0.59
o3 HiTTs (SS) 51.0 54.7 16.2 61.7 66.1 1.19
HiTTs (MS) 52.3 56.2 15.8 62.0 67.9 3.43
'E STL 60.9 55.3 14.7 64.8 66.8 -
g2 MTL baseline 58.4 55.3 16.0 63.9 67.8 -2.57
54 HiTTs (SS) 59.1 53.4 15.0 64.1 67.8 -1.60
= HITTs (MS) 60.3 55.3 147 646 702 076

out to serve as pseudo-labels. To analyze the sensitivity of our
method to this hyperparameter, we conduct an ablation study on
the NYUD-v2 dataset under the one-label setting. As shown in
Table 13, we vary 7; across a wide range from 0.3 to 0.95. The results
demonstrate that the performance on all tasks remains remarkably

stable with only minor fluctuations. Furthermore, the overall multi-
task learning gain (Ap7r) is consistently and significantly positive
across all tested values. This demonstrates that our method is not
sensitive to the choice of 7;, showcasing its robustness.

Comparison under DiffusionMTL [74] settings on NYUD-v2.
Since DiffusionMTL [74] adopts different experimental settings
from our main experiments, we re-implement our method under
the specific setup of DiffusionMTL, using a ResNet-18 backbone
to ensure a fair comparison. The quantitative results on NYUD-v2
under both the one-label and random-labels settings are shown
in Table 15. As the results indicate, our method significantly out-
performs DiffusionMTL across all metrics in the one-label setting.
More specifically, compared to the best-performing DiffusionMTL
variant, our method achieves a +6.26% higher A, in the one-label
setting and a +2.09% higher A, in the random-labels setting. This
demonstrates the effectiveness and superior performance of our
approach when compared directly with other methods.

Implementations with Different Backbones. To demonstrate
that our method can be flexibly implemented on different image
backbones, we perform additional experiments implementing our
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Table 15: Comparison on NYUD-v2 under the settings of
DiffusionMTL [74]. (P) and (F) represent the Prediction Dif-
fusion and Feature Diffusion modes for DiffusionMTL [74].
“*” denotes the re-implemented results to align the settings.
Our method performance outperforms previous methods.

Semseg. Depth. Normal. Am

Setting - Model mloUT  absErr ] mErr | (%) 7

STL 45.28 0.4802 25.93 -
MTL baseline 43.92 0.5138 26.44 -3.99
E SS [28] 27.52 0.6499 33.58 -
,S XTC [28] 30.36 0.6088 32.08 -
g XTC* [28] 43.97 0.5140 26.30 -3.79
© DiffusionMTL (P) [74] 44.97 0.5137 26.17 -2.86
DiffusionMTL (F) [74] 44.47 0.5059 25.84 -2.27
Ours* 47.30 0.4539 25.40 3.99
STL 48.25 0.4792 24.65 -
% MTL baseline 45.93 0.4839 25.53 -3.12
=) SS [28] 29.50 0.6224 33.31 -
I XTC [28] 34.26 0.5787 31.06 -
_§ XTC* [28] 46.03 0.4811 25.97 -3.44
= DiffusionMTL (P) [74] 47.44 0.4803 25.26 -1.45
~ DiffusionMTL (F) [74] 46.82 0.4743 24.75  -0.77
Ours* 47.73 0.4510 24.86 1.32

Table 16: Ablation study of our method with different back-
bones on NYUD-v2. The results show that our method is
flexible and achieves significant gains when paired with a
more powerful ViT backbone.

. Semseg. Depth. Normal.
Backl
Setting ackbone mloU 7 absErr | mErr |
One-Label ResNet-18 47.30 0.4539 25.40
ViT-base 58.38 0.3740 23.65
ResNet-18 47.73 0.4510 24.86
Random-Labels 71 oce 61.88 0.3979 23.03

mseg.

Preliminary

Final
Confidence Mask Confidence Mask

Preliminary

Final
Confidence Mask Confidence Mask

Figure 10: Comparison of the task confidence map before and
after refined by the fine-grained task tokens, which greatly
encourage high-confidence predictions on all tasks (red color
represents high-confidence areas). For noisy data like the
second photo taken in a dark environment, this enhancement
are more significant.
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Table 13: Ablation study on the hyperparameter ;.

- Semseg. Depth. Normal. ApmTL
! mloUT mErr] mErr| (%)
0.95 46.67 0.4585 25.48 3.11
0.90 47.10 0.4573 2543 3.57
0.70 46.89 0.4621 25.36 3.17
0.50 47.00 0.4690 25.35 2.79
0.30 47.11 0.4706 25.33 2.78

Table 14: Comparisons with incorporating general semi-
supervised dense prediction method [43] on NYUD-v2 one-
label setting.

Semseg. Depth. Normal.

Method

etno mloU?T mErr] mErr]
Ours 47.30 0.4539 25.40

Ours+[43] 47.72 0.4502 25.33

HiTTs with a Vision Transformer (ViT [15]) backbone. The results
on NYUD-v2 are presented in Table 16. The quantitative results
clearly show that when equipped with the more powerful ViT-
base backbone, our method achieves a substantial performance
improvement across all tasks under both the one-label and random-
labels settings. For instance, in the random-labels setting, using
ViT-base boosts the Semantic Segmentation mloU from 47.73 to
61.88. This not only confirms the flexibility of our approach but
also highlights its potential to achieve even greater performance
when paired with more advanced backbone architectures.

Analysis of Incorporating Dense FixMatch [43] on NYUD-v2.
Our method can also incorporate general semi-supervised dense
prediction strategies, e.g. Dense FixMatch [43]. The quantitative
results on the NYUD-v2 one-label setting are shown in Table 14.
The results indicate that Dense FixMatch provides consistent per-
formance improvements. This demonstrates the efficacy of Dense
FixMatch as a versatile component for enhancing various dense
prediction tasks in a semi-supervised context.

B.6 More Qualitative Results

We provide more qualitative results mainly from four parts: more
visualization of the fine-grained token distributions, more com-
parisons of task score maps produced by HiTTs, more qualitative
prediction comparisons, and the quality of generated pseudo labels.

Role of Fine-grained Task Tokens. To illustrate the role of our
fine-grained task tokens, we visualize task confidence maps before
and after the refinement process in Fig. 10. The fine-grained to-
kens significantly enhance prediction confidence across all tasks, as
indicated by the expansion of high-confidence areas (represented
in red). This enhancement is particularly evident in challenging
scenarios, such as the noisy image captured in a dark environment
(second row), where the refined map shows a marked improvement
in clarity and confidence.

Visualization of token distributions. We also provide visualiza-
tion analysis to show the distributions of fine-grained task tokens
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on Cityscapes. In Fig. 11, with the aid of OE, the self-correlation
map of tokens will be more diagonal, and the distributions after

PCA have better clusters in 3-dimensional feature space.

Comparisons of Task Score Maps. We visualize score maps
produced by global task tokens and fine-grained task tokens respec-
tively on each task. As shown in Fig. 12, we conduct visualization
on both NYUD-v2 and Cityscapes datasets. The score maps indi-
cate the response of task features to task tokens, and the response
patterns of feature maps on different tasks are very different, e.g.
Semseg. features highlight areas with distinguish semantics, Depth.
features focus on areas with a certain depth range and Normal.
features focus on surfaces with the same orientation.

Comparing the score maps produced by tokens from different
hierarchies, we find that score maps produced by global task to-
kens are relatively rough and noisy, while those generated by fine-
grained task tokens have finer granularity and less noise, which
shows the hierarchy of the HiT Ts learning process. Also, we ob-
served that the high-light areas of global task tokens are monoto-
nous, while fine-grained task tokens can highlight more details. This
phenomenon is clearly observed in Cityscapes, since the ground

Zhang et al.

truths of this dataset follow the long-tail distribution, thus the global
task-tokens tend to learn the category with more pixel samples, and
consequently always highlight the road area as shown in Fig. 12.
However, the fine-grained tokens can give attention to more details,
including the vehicles and pedestrians with fewer pixel samples.
Thus, it is necessary to design a hierarchical structure for tokens to
learn representations with different granularity.

Qualitative prediction comparisons with SOTA works. We
additionally provide comparisons with SOTA works on NYUD-
v2 and Cityscapes. As shown in Fig. 13, we compare with MTL
baseline, XTC [28] on NYUD-v2 three tasks, and with MTL baseline,
MTAN [33], XTC [28] on Cityscapes two tasks. Our method shows
clearly better performance in semantic understanding and accurate
geometry estimations (including depth and normal estimation),
indicating the effectiveness of our method.

Visualization of Pseudo Labels. In Fig. 14, we show pseudo
task label maps generated by fine-grained task tokens. The pseudo
label on different tasks has good quality without ground-truth
supervision, which proves the effective cross-task learning and
strong generalization ability brought by HiTTs.
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Figure 11: Visualization of self-affinities heatmap (left) and PCA for distributions (right) of fine-grained task tokens of the two

tasks on NYUDv2 and Cityscapes validation sets. With orthogonal embeddings, the affinities between different tokens are low
and the clustering of token distributions on each category is better.
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Score Map Produced by Global Task Tokens Score Map Produced by Fine-grained Task Tokens
Semseg. Depth. Normal. Semseg. Depth. Normal.

¥

- .

' wi

Score Map Produced by Global Task Tokens Score Map Produced by Fine-grained Task Tokens
Depth.

£8 4

Figure 12: Comparisons of task score maps produced by global task tokens and fine-grained task tokens. The upper part is the

visualization of samples on NYUD-v2 while the lower part is on Cityscapes.
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Figure 13: Comparisons with SOTA works on NYUD-v2 (upper part) and Cityscapes (lower part).
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Image Pseudo Label Ground Truth Pseudo Label Ground Truth

Figure 14: Quantitative analysis of the quality of pseudo labels generated by gloabl task tokens.
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