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ABSTRACT

Fine-tuning has proven to be highly effective in adapting pre-trained models to
perform better on new desired tasks with minimal data samples. Among the
most widely used approaches are reparameterization methods, which update a tar-
get module by augmenting its frozen weight matrix with an additional trainable
weight matrix. The most prominent example is Low Rank Adaption (LoRA) (Hu
et al., 2022), which gained significant attention in recent years. In this paper, we
introduce a new class of reparametrization methods for transfer learning, designed
to enhance the generalization ability of fine-tuned models. We establish the effec-
tiveness of our approach in a high-dimensional binary classification setting using
tools from Random Matrix Theory, and further validate our theoretical findings
through more realistic experiments, such as fine-tuning large language models.

1 INTRODUCTION

Large foundational models have driven major advances in artificial intelligence across domains such
as computer vision and natural language processing. Examples include transformer-based mod-
els (Vaswani et al., 2017) operating in natural language domain (Team et al., 2023; Grattafiori et al.,
2024) or vision domain (Cordonnier et al., 2020; Dosovitskiy et al., 2020). Such models are specif-
ically known for their relatively large size and massive training corpus, which makes them more
powerful and adapted for many use cases. However, even with their extensive pre-training, these
large models may not excel at some specific tasks without further adjustment.
Fine-tuning addresses this need by updating a pre-trained model with task-specific data. Un-
like training from scratch, it leverages general pre-trained representations while reducing data
and compute requirements. The most common class of fine-tuning methods is Supervised Fine-
Tuning (SFT), which relies on labeled data in that adaptation process, and one of its most popular
lightweight techniques is Low-Rank Adaptation (LoRA) (Hu et al., 2022), which updates the desired
module by adding a low-rank perturbation to the original (frozen) weight matrix.
In this paper, we study fine-tuning through the lens of Random Matrix Theory (RMT), where we
introduce a theoretical framework to understand and improve transfer learning. Leveraging the theo-
retical findings, our key practical idea in the context of LoRA is to scale the frozen weights row-wise
with a vector α before adaptation, thereby adding a new degree of freedom to the fine-tuning process.
We show that this modification leads to an optimal scaling factor α∗, which is typically different
from the standard choice (α = 1). We analyze this framework in a high-dimensional binary classi-
fication setting under a Gaussian Mixture Model, proving the existence of such an optimal α∗ while
providing its closed-form expression in terms of scalar data-dependent quantities. We then validate
our theoretical insights on real tasks, including transfer learning benchmarks and large language
model fine-tuning.

Summary of contributions. Our main contributions are summarized as follows:

1. In the context of adaptation fine-tuning (e.g., LoRA), we propose the scaling of the base
model weight matrices by a non-trivial row-wise vector α.

2. We theoretically prove the existence of an optimal parameter α∗ ̸= 1 in high-dimensional
binary classification and derive its closed form.

3. We design an algorithm to estimate optimal α in complex scenarios such as LLM fine-
tuning.
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2 RELATED WORK

Transfer learning foundations. Transfer Learning (TL) studies how knowledge acquired in a
source task or domain can be reused to improve learning in a related target task. Early surveys (Pan
& Yang, 2009; Weiss et al., 2016) outlined key settings such as domain adaptation and multitask
learning. Most theoretical works established generalization bounds linking transfer success to source
error and distributional divergence Ben-David et al. (2010), and showed how shared representations
reduce sample complexity (Maurer et al., 2016; Tripuraneni et al., 2020). More recent studies refined
these results under classification and regression settings (Hanneke & Kpotufe, 2024; Zhang et al.,
2021; Klivans et al., 2024; Kpotufe & Martinet, 2021; Cai & Wei, 2021; Reeve et al., 2021).

Fine-tuning pre-trained models. With the advent of large-scale pre-training, fine-tuning has be-
come the dominant strategy for transfer learning. The most popular fine-tuning techniques are Super-
vised Fine-tuning (SFT) and fine-tuning with Reinforcement Learning (RL). RL-based approaches
such as RLHF (Ouyang et al., 2022), DPO (Rafailov et al., 2023), GRPO (Ramesh et al., 2024; Guo
et al., 2025) and their variants are especially popular for reasoning and mathematics tasks, where
they often outperform SFT (Shenfeld et al., 2025). In this paper, however, we focus on SFT tech-
niques. SFT extends the training of a pre-trained model using labeled data. Because these models are
typically very large, it is common to fine-tune only a small fraction of their parameters while leaving
most unchanged. This strategy, known as Parameter-Efficient Fine-Tuning (PEFT) (Xu et al., 2023),
aims to achieve strong performance with minimal parameter updates. PEFT methods are usually
grouped into three categories: additive, selective, and reparametrized (Ji et al., 2025). Our work
centers on the last category.

Reparametrized Fine-tuning. Reparameterization-based fine-tuning adapts a model by express-
ing its parameters in an alternative form, commonly through a low-rank decomposition, to reduce
training costs, while the full weight matrices are reconstructed for inference. The most common
technique in this class is Low Rank Adaptation (LoRA) (Hu et al., 2022), which introduces small,
trainable matrices operating alongside the pre-trained weights to inject task-specific updates without
burdening the inference process. Many extensions were proposed to enhance the efficiency of LoRA
by either acting on the initialization of the low rank modules (Hayou et al., 2024a), their learning
rates (Hayou et al., 2024b), normalizing the updates (Liu et al., 2024), setting adaptive ranks (Kim
et al., 2024; Lu et al., 2024), finding optimal placements for LoRA modules (Hayou et al., 2025),
and more (Zhang et al., 2023b; Dettmers et al., 2023; Kopiczko et al., 2023; Zhang et al., 2023a;
Tian et al., 2024; Jiang et al., 2024).

3 PROBLEM SETTING AND BACKGROUND

To prove the effectiveness of our new family of fine-tuning algorithms, we will theoretically analyze
a binary classification setting under a Gaussian Mixture Model (GMM) using tools from Random
Matrix Theory (RMT). Through this analysis, we will prove the existence of an optimal scaling
parameter α⋆ and derive its exact theoretical formulation for these settings.

3.1 THEORETICAL SETTING

The goal is to fine-tune a linear classifier, initially pretrained on a dataset called source, in order to
perform a target task given a relatively small target data corpus.

Pre-training phase. We consider that we are given pairs of pre-training (source) data samples
{(x̃i, ỹi)}Ni=1 that are distributed, for x̃i ∈ Ca with a ∈ {1, 2}, as follows:

x̃i ∈ Ca ⇔
{
x̃i = µa + z̃i, z̃i ∼ N (0, Ip),

ỹi = (−1)a.
(1)

For convenience and without loss of generality, we further assume that µa = (−1)aµ for some
vector µ ∈ Rp. This setting can be recovered by subtracting µ1+µ2

2 from each data point, as such
µ = µ2−µ1

2 and therefore the SNR ∥µ∥ controls the difficulty of the classification problem, in
the sense that large values of ∥µ∥ yield a simple classification problem whereas when ∥µ∥ → 0,

2
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the classification becomes impossible. Denoting X̃ = [x̃1, . . . , x̃N ] ∈ Rp×N the data matrix and
ỹ = [ỹ1, . . . , ỹN ]

⊤ ∈ RN the corresponding labels vector, we have in matrix form

X̃ = µỹ⊤ + Z̃, (2)

where Z̃ is a random matrix with N (0, 1) i.i.d. entries.
We then consider training a classifier, called w̃, on this source dataset by solving:

min
w

1

N

N∑
i=1

ℓ(w⊤xi, yi) + γ̃∥w∥22 (3)

for some loss function ℓ and a positive regularization parameter γ̃. Taking a generic or a non-intuitive
loss, such as the binary cross entropy, leads to intractable solution w̃. However, Mai & Liao (2024)
show that in the case of a Gaussian mixture data model or more generally a data distribution with
finite fourth-order moment, it is possible to optimize such a classifier using the squared (L2) loss
function, which also gives a closed-form solution to this problem. Thus, taking ℓ(x, y) = (x − y)2

leads to the following optimization problem:

w̃ = argminv
1

N

∥∥∥X̃⊤v − ỹ
∥∥∥2
2
+ γ̃∥v∥22, (4)

Which gives us the following solution:

w̃ =
1

N
RX̃ỹ, R =

(
1

N
X̃X̃⊤ + γ̃Ip

)−1

(5)

Fine-tuning phase. During the fine-tuning phase, we suppose that we are given pairs of target
data {(xi, yi)}ni=1 with yi ∈ {−1, 1} that are distributed such that X = [x1, . . . ,xn] ∈ Rp×n is
given by:

X = µβy
⊤ + Z, µβ = βµ+ µ⊥, (6)

where Z is a random matrix with N (0, 1) i.i.d. entries, µ⊥ is an orthogonal vector to µ and the factor
β ∈ R quantifies the alignment between the source and target data, as we have that: ⟨µβ ,µ⟩ =
β∥µ∥2. Leveraging the pre-trained weights w̃ ∈ Rp, we consider the training of adapter weights a
as:

a = argminv
1

n

∥∥X⊤ (αw̃ + v)− y
∥∥2
2
+ γ∥v∥22, (7)

for a scalar α ∈ R. In fact, classical reparametrization approaches can be modeled by the same
setting using α = 1. Solving the previous minimization problem, a expresses as:

a =
1

n

(
1

n
XX⊤ + γIp

)−1 (
Xy − αXX⊤w̃

)
. (8)

We define the resolvent matrices Q and R by:

Q =

(
1

n
XX⊤ + γIp

)−1

, R =

(
1

N
X̃X̃⊤ + γ̃Ip

)−1

, (9)

Then our obtained fine-tuned classifier wα writes:

wα = αw̃ + a =
1

n
Q(γ)Xy + αγQw̃

We denote by w ≡ w0 the classifier obtained through learning directly on target data (without
fine-tuning), which is given by:

w =
1

n
Q(γ)Xy (No-FT)

Then we finally get the expression of our α-Fine-tuned classifier as follows:

wα = w + αγQw̃ (α-FTC)

3
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Remark 3.1 (About the interpretability of our fine-tuned classifier). Remark that the parameter α
introduced in the expression of the fine-tuned classifier wα characterizes the contribution of each
training dataset (source and target) to the test performance on the target task. In fact, since the
prediction of the class label does not change by multiplying wα by a positive constant, then by
taking a positive α and for ρ = α

1+α ∈ (0, 1), the fine-tuned classifier is equivalent to this convex
weighted classifier:

wρ = ρw̃ + (1− ρ)a

and therefore, this new parameter ρ can be interpreted as the percentage of the contribution of the
source task to the test performance on the target task.
Remark 3.2 (About the regularization parameter γ). We remark from the expression of wα in equa-
tion α-FTC that the weight decay γ is essential to have the dependence of wα on α. In fact, taking
γ → 0 leads to a fine-tuned classifier of the form:

wα = (XX⊤)+Xy

where (XX⊤)+ is the Moore-Penrose inverse of the symmetric semi-definite matrix XX⊤. There-
fore, the obtained classifier does not depend on α here, nor on the pre-trained model w̃. Addition-
ally, having such a regularization technique is essential in transfer learning since the target dataset
is generally much smaller than the pre-training one, and therefore the fine-tuning process can easily
lead to overfitting in the absence of a regularization technique.

3.2 RMT BACKGROUND

To analyze the performance of the fine-tuned classifier wα, we can leverage tools from Random
Matrix Theory. In mathematical terms, the understanding of the asymptotic performance of the
classifier wα boils down to the characterization of the statistical behavior of the resolvent matrices
Q(z) and R(z) introduced in equation 9. In the following, we will recall some important notions
and results from random matrix theory, which will be at the heart of our analysis. We start by
defining the main object, which is the resolvent matrix.
Definition 3.3 (Resolvent). For a symmetric matrix M ∈ Rp×p, the resolvent QM (z) of M is
defined for z ∈ C\S(M) as:

QM (z) = (M− zIp)
−1,

where S(M) is the set of eigenvalues or spectrum of M.

In fact, the study of the asymptotic performance of wα involves the estimation of linear forms of the
resolvents Q and R in equation 9, such as 1

n TrQ and a⊤Qb with a, b ∈ Rp of bounded Euclidean
norms. Therefore, the notion of a deterministic equivalent (Hachem et al., 2007) is crucial as it
allows the design of a deterministic matrix, having (in probability or almost surely) asymptotically
the same scalar observations as the random ones in the sense of linear forms. A rigorous definition
is provided below.
Definition 3.4 (Deterministic equivalent (Hachem et al., 2007)). We say that Q̄ ∈ Rp×p is a de-
terministic equivalent for the random resolvent matrix Q ∈ Rp×p if, for any bounded linear form
u : Rp×p → R, we have that, as p → ∞:

u(Q)
a.s.−−→u(Q̄),

where the convergence is in the almost sure sense.

In particular, a deterministic equivalent for the resolvents Q(z) and R(z) defined in equation 9 is
given by the following Lemma (the proof is presented in Appendix A.2).
Lemma 3.5 (Deterministic equivalent of Q and R). Under the high-dimensional regime, when
p, n,N → ∞ with p

n → η ∈ (0,∞) and p
N → η̃ ∈ (0,∞) and assuming ∥µ∥ = O(1), a

deterministic equivalent for Q ≡ Q(γ) and for R ≡ R(γ), previously defined in equation 9,
denoted Q̄ and R̄ respectively, are given by:

Q̄(γ) =

(
µβµ

⊤
β + Ip

1 + δQ
+ γIp

)−1

, R̄(γ) =

(
µµ⊤ + Ip
1 + δR

+ γIp

)−1

.

Where:

δQ =
1

n
Tr Q̄ =

η − γ − 1 +
√
(η − γ − 1)2 + 4ηγ

2γ
, δR =

η̃ − γ̃ − 1 +
√

(η̃ − γ̃ − 1)2 + 4η̃γ̃

2γ̃
.
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4 MAIN RESULTS

After having defined the setting and needed background, we will now present our main technical
results, which describe the asymptotic behavior of the fine-tuned classifier defined in equation α-
FTC. Specifically, we provide our results under the following growth rate assumptions (classical
assumptions in Random Matrix Theory).
Assumption 4.1 (Growth Rates). Suppose that as p, n,N → ∞:

1) p
n → η ∈ [0,∞), 2) p

N → η̃ ∈ [0,∞), 3) ∥µ∥ = O(1), 4) ∥µβ∥ = O(1).

The first and second assumptions simply state that our analysis considers both the low (η, η̃ ≪ 1)
and high (η, η̃ ≫ 1) dimensional regimes. The third and last assumptions are also fundamental
and state that the norm of the source µ and target µβ data means do not scale with the dimension
p, which makes the classification problem neither easy (∥µ∥ → ∞) nor impossible (∥µ∥ → 0)
in high dimensions. Having stated the main assumptions, we are now in a position to present our
main technical findings about the theoretical test performance of the fine-tuned classifier α-FTC.
But beforehand, let us define some scalar quantities that will be useful in our derivations:

λQ = ∥µβ∥2 + 1 + γ(1 + δQ), λR = ∥µ∥2 + 1 + γ̃(1 + δR), h = 1− η

(1 + γ(1 + δQ))2
,

h̃ = 1− η̃

(1 + γ̃(1 + δR))2

Our main theorem below describes the behavior of the decision function of our fine-tuned classifier.

Theorem 4.2 (Gaussianity of the fine-tuned Ridge model). Let wα be the fine-tuned clas-
sifier as defined in equation α-FTC and suppose that Assumption 4.1 holds. The decision
function w⊤

αx, on some test sample x ∈ Ca independent of X, satisfies:

w⊤
αx

D−→ N
(
(−1)amα, να −m2

α

)
,

where:

mα =
1

λQ

(
∥µβ∥2 +

αβγ(1 + δQ)

λR
∥µ∥2

)
,

να = T1 + αT2 + α2T3.

With:

T1 =
∥µβ∥2
hλQ

(∥µβ∥2 + 1

λQ
− 2(1− h)

)
+

1− h

h
,

T2 =
2γβ(1 + δQ)∥µ∥2

λRλQ

(
1− γ(1 + δQ)

hλQ

)
,

T3 =
γ2(1 + δQ)

2

h
×[

∥µ∥2
λ2
R

(
β2∥µ∥2
λ2
Q

+
1− h

η

(
1 +

β2∥µ∥2∥µβ∥2
λ2
Q

− 2β2∥µ∥2
λQ

+ (1− h̃)

(
1− 2∥µ∥2

λR

)))]

In simple terms, Theorem 4.2 states that the decision function of the classifier in equation α-FTC is
asymptotically equivalent to the thresholding of two monovariate Gaussian random variables with
respective means mα and −mα and standard deviation να − m2

α, where the statistics mα and να
are expressed in terms of the scalar quantities defined above (see Figure 6 in the Appendix). Having
characterized the distribution of the decision function of wα, we can now estimate its generalization
performance, such as its test accuracy.
Proposition 4.3 (Asymptotic test accuracy of wα). The asymptotic test accuracy of wα defined in
equation α-FTC, under Assumption 4.1, and as the number of test samples ntest → ∞, is given by:

Atest
a.s.−−→ 1− φ

(
(να −m2

α)
− 1

2mα

)
, where: φ(x) =

1√
2π

∫ +∞

x

e−
t2

2 dt.

5
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Figure 1: Theoretical Test Accuracy variation with α for N = 5000, n = 40, p = 1000, and the
theoretical model is modified to take β in (0, 1): µβ = βµ+

√
1− β2µ⊥, where ∥µ∥ = ∥µ⊥∥ =

0.8. Finally the regularization parameters are: γ̃ = 2 and γ = 10−1.

Therefore, thanks to Proposition 4.3, we now have the exact formulas of the theoretical test accuracy
of our classifier wα, which can be used to characterize the expression of the optimal/worst parame-
ters of the model (for instance, the α) to use for the fine-tuning process. In particular, we will derive
the theoretical expressions of the extremum of α that lead to either the best or the worst test accuracy
on the target task (proof in Appendix B).

Theorem 4.4 (Optimal α). Maximizing the term
(
(να −m2

α)
− 1

2mα

)
in terms of α leads to

maximizing the test accuracy Atest, and gives a unique maximizer α⋆ given by:

α⋆ =
λRT2∥µβ∥2 − 2βγT1(1 + δQ)∥µ∥2
βγT2(1 + δQ)∥µ∥2 − 2λRT3∥µβ∥2

Plus, solving (να −m2
α)

− 1
2mα = 0 leads to the unique minimizer ᾱ of Atest, which is given

by:

ᾱ = − λR∥µβ∥2
βγ(1 + δQ)∥µ∥2
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Figure 2: Variations of the optimal parameter α⋆

with respect to the alignment between the source
µ and target µβ dataset means. These latter were
chosen of norm 1, N = 2000, n = 200 and γ =
γ̃ = 1.

Figure 1 shows the evolution of the theoretical
test accuracy with the parameter α for different
source datasets (i.e, different alignments β). In
particular, we observe the existence of an op-
timal parameter α⋆ that is generally different
from 1 (standard approach), and as can be pre-
viously anticipated, its impact on the test ac-
curacy is more visible in the case of a higher
alignment factor β, which means in this case
that we put higher emphasis on the base model
to generalize better in the new task (see Re-
mark 3.1).

Focusing on the optimal α⋆, Figure 2 clearly
depicts the non-trivial contribution of the di-
mension p to the choice of α. It is clear that
α⋆ is non-decreasing with the alignment β be-
tween the source and target task, but its effect
gets amplified with the dimension p of the problem. Notably, the influence of α is more pronounced
in low-resource settings (p ≫ n) compared to cases where sufficient fine-tuning data is available.
This further underscores the crucial role of α in effectively leveraging the pre-trained model and
source data. Additionally, as β → 0, we also remark that α⋆ → 0, which means that fine-tuning has
no added value when the source and target tasks are unrelated and orthogonal.
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Figure 3: Test accuracy variation with α for different transfer learning schemes from the Amazon
Review dataset (Blitzer et al., 2007). The considered parameters here are: N = 2000, n = 40,
p = 400, γ = 10−1 and γ̃ = 2.

5 EXPERIMENTS

In this section, we present some experiments on real datasets to validate our approach. We start
by fine-tuning linear models on the Amazon Review dataset (Blitzer et al., 2007) to verify our
theoretical findings. After that, we formalize our new class of reparametrization methods and verify
its efficiency by experiments on fine-tuning LLMs on the GLUE tasks (Wang et al., 2018).

5.1 WITHIN OUR THEORETICAL MODEL: LINEAR BINARY CLASSIFICATION

Here we present our experiments on the Amazon Review dataset (Blitzer et al., 2007) to validate
our theory. This dataset includes several binary classification tasks corresponding to positive versus
negative reviews of books, dvd, electronics, and kitchen. We apply the standard scaler
from scikit-learn (Pedregosa et al., 2011) and estimate ∥µ∥, ∥µ⊥∥ and β with the normal-
ized data. Figure 3 depicts the variation in test accuracy of three transfer tasks with respect to the
parameter α and gives a comparison between the three main schemes: α = 0 (i.e., learning directly
on the target data without using previous source knowledge), α = 1 (classical approach) and with
the optimal α⋆ obtained using the theoretical formula in Theorem 4.4. Depending on the tasks, we
see a clear improvement in the test accuracy for α⋆ compared to the other schemes, which further
highlights the impact of this scaling parameter. Table 1 summarizes the results obtained for all the
possible transfer tasks between the sub-datasets.

Table 1: Test accuracy (in %) comparison over Amazon review datasets (Blitzer et al., 2007) for
N = 2000, n = 40, p = 400, and optimal regularization parameters γ = γ̃ = 1. As theoretically
anticipated, our new fine-tuning approach yields better classification accuracy than training directly
on the target dataset (α = 0) or using α = 1. The results were computed for 3 random seeds.

Source Dataset Target Dataset α = 0 α = 1 Optimal α⋆

Books Dvd (β = 0.8) 64.12 ± 0.03 75.67 ± 0.24 77.35± 0.14 (α⋆ = 2.47)
Electronics (β = 0.71) 68.61 ± 0.74 76.65 ± 0.02 77.12± 0.17 (α⋆ = 1.68)
Kitchen (β = 0.79) 69.24 ± 0.95 78.19 ± 0.05 78.96± 0.26 (α⋆ = 1.9)

Dvd Books (β = 0.78) 63.43 ± 0.67 75.22 ± 0.24 77.59± 0.07 (α⋆ = 2.47)
Electronics (β = 0.71) 68.61 ± 0.74 76.72 ± 0.17 76.88 ±0.42 (α⋆ = 1.69)
Kitchen (β = 0.78) 69.24 ± 0.95 78.11 ± 0.23 78.72 ± 0.54 (α⋆ = 1.88)

Electronics Books (β = 0.51) 63.43 ± 0.67 72.2 ± 0.1 73.29± 0.13 (α⋆ = 1.67)
Dvd (β = 0.52) 64.12 ± 0.03 72.41 ± 0.16 73.48± 0.17 (α⋆ = 1.69)
Kitchen (β = 0.9) 69.24 ± 0.95 81.58 ± 0.15 83.02± 0.1 (α⋆ = 2.29)

Kitchen Books (β = 0.52) 63.43 ± 0.67 72.86 ± 0.1 74.27± 0.14 (α⋆ = 1.84)
Dvd (β = 0.53) 64.12 ± 0.03 73.15 ± 0.08 74.15± 0.09 (α⋆ = 1.82)
Electronics (β = 0.83) 68.61 ± 0.74 80.14 ± 0.02 81.89± 0.18 (α⋆ = 2.31)
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Figure 4: Test accuracy evolution of roberta-base finetuned on MNLI and RTE for a single
fixed seed (seed 5 for MNLI and seed 123 for RTE).

We note that our approach yields optimal results for all transfer tasks, which clearly validates our
theoretical results and underscores the efficiency of our method in terms of its generalization capa-
bilities. This can also be observed in Figure 3, which shows that the optimal test accuracy is obtained
for a parameter α that is not necessarily equal, nor even close, to 1.

5.2 BEYOND OUR THEORETICAL MODEL: SUPERVISED FINE-TUNING FOR LLMS

To go beyond linear models, we now fine-tune roberta-base language model (Liu et al., 2019))
on downstream classification taken from GLUE benchmarks (Wang et al., 2018). To adapt our
theoretical insights from the linear model to complex, multi-layered architectures like LLMs, we
generalize the scalar scaling parameter α to a vector α. This extension provides finer-grained con-
trol, allowing the model to rescale the contribution of the frozen base weights on a per-output-neuron
basis. This added flexibility is crucial for capturing the intricate functional specialization within dif-
ferent dimensions of a neural network’s hidden states. Consequently, the update rule for a weight
matrix W⋆ is modified from a simple scalar product to a row-wise scaling operation, as detailed
below:

Wnew = α⊙W⋆ +W (10)

where ⊙ is the element-wise product between vectors, W⋆ ∈ Rdout×din is the original layer weights
(frozen during training), α ∈ Rdout (each element in the output dimension is then multiplied by a
scalar), and W ∈ Rdout×din is the trainable weight matrix. Additionally, W can be approximated
with a low-rank matrix: W = AB, where: A ∈ Rdout×r and B ∈ Rr×din , a method that we call
α-LoRA. We then report in Table 2 the test performance obtained using standard LoRA and our
α-LoRA method evaluated on six GLUE tasks: MNLI, QNLI, MRPC, RTE, SST-2, and QQP.

Table 2: Test accuracy comparison over GLUE classification tasks (Wang et al., 2018) using
roberta-base model. As theoretically anticipated, our new fine-tuning approach yields bet-
ter test classification accuracy than the standard LoRA method (α = 1). The details about these
experiments are presented in Appendix E.

Method MNLI QNLI MRPC RTE SST-2 QQP
LoRA 85.77 ± 0.16 91.95 ± 0.03 88.40 ± 0.31 74.01 ± 1.64 94.00 ± 0.11 88.80 ± 0.02
α-LoRA 86.12 ± 0.06 92.20 ± 0.13 89.46 ± 0.53 77.62 ± 0.59 94.38 ± 0.01 88.86 ± 0.03

We note that from Table 2 and Figure 4, our method leads to higher generalization performance
compared to standard LoRA across all GLUE benchmarks, which further validates our theoretical
findings of the previous section.

Finding the parameters α. We designed a practical heuristic algorithm to automatically update α
during training. In fact, we consider each vector α as a trainable parameter and update these vectors
once each T step (which can be tuned) with either Adam or AdamW by sampling a new batch,
different from the one used to train the reparametrization weights W, and then taking a gradient
step over this new batch. The design choices of our algorithm can be justified by the following:

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

• Because the vectors α applied to each module lie in the whole Euclidean space Rd, it is
not possible to find such a parameter through a simple grid search, as this will give a very
costly and impractical algorithm.

• Additionally, finding theoretical formulas for each vector α is very hard, if not impossible.
Therefore, it is crucial to have an algorithm that updates the vectors α automatically.

• Finally, because we want to optimize the generalization performance of our fine-tuning
method, training α in the same way as the reparametrization weights W can easily lead
to overfitting of the model, which justifies sampling of new batches to update α and the
update rate T . Our specific choices are detailed for reproducibility in Appendix E.

Figure 5 shows that our algorithm leads to optimal scaling vectors α⋆ in their neighborhood, which
proves the effectiveness of our algorithm and the fine-tuning method in general. The pseudo-code 1
of our algorithm is detailed in the Appendix E.
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Figure 5: Test accuracy of roberta-base finetuned on RTE for different values of α in the
neighborhood of the obtained α⋆. The values of the parameters α⋆ in this experiment range between
0.85 and 1.14.

Overhead induced by the additional parameters α. We note that the number of additional train-
able parameters α induced by our algorithm 1 is negligible compared to the standard approach (fixed
α = 1), for example in the case of our experiments with roberta-base model, the increase in
the number of trainable parameters is only of 0.02%. Additionally, investigating the resulting values
of these learned α vectors as reported in Figures 7, 8 and 9 in the Appendix, we notice that we get
similar values for query and value matrices, thus we can use a shared parameter for both weight
matrices (or for the whole attention module more generally), reducing the overhead even further.

6 CONCLUSION AND LIMITATIONS

In this work, we introduced a new class of reparametrization-based fine-tuning methods that leverage
an additional scaling parameter to improve the generalization of transfer learning. Using tools from
Random Matrix Theory, we proved the existence and impact of an optimal scaling factor in high-
dimensional binary classification. We show that this factor is typically different from the standard
choice. Our theoretical analysis was further supported by experiments on real-world tasks, where
our proposed approach consistently outperformed standard LoRA on multiple benchmarks.

Although promising, our framework also has limitations. Theoretical guarantees are derived under
specific assumptions on data distributions and model structure, which may not fully capture the
complexity of modern deep architectures. We believe future work could extend these insights to
broader model families, design more efficient algorithms for parameter selection, and further explore
the trade-off between generalization and efficiency in transfer learning. Furthermore, an exciting
avenue for investigation is the integration of our α-scaling technique with other advanced adapter
methods. Since our approach is complementary to improvements in the adapter’s architecture, such
as DoRA or other LoRA variants, combining them could lead to synergistic gains in fine-tuning
performance.
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APPENDIX

This appendix is organized as follows: Section A lists some useful lemmas that will be at the core
of our analysis. In Section B, we provide a proof of Theorem 4.2 using Random Matrix Theory.
Section C extends the theory to the case of an arbitrary source classifier (not necessarily Ridge)
which will be useful also for another extension of the theory to multi-source fine-tuning D. Finally,
E lists the details about our experiments on LLM fine-tuning.
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Throughout the whole Appendix, we will try to analyze the performance of the fine-tuned classifier
defined in equation α-FTC:

wα = w + αw̃ − α

n
Q(γ)XX⊤w̃

Notations. Here are two notations that we will use along the whole analysis:

λQ = ∥µβ∥2 + 1 + γ(1 + δQ), λR = ∥µ∥2 + 1 + γ̃(1 + δR) (11)

A USEFUL RESULTS

A.1 GENERAL LEMMAS

Here we will list useful lemmas used in our analysis.
Lemma A.1 (Resolvent identity). For invertible matrices A and B, we have:

A−1 −B−1 = A−1(B−A)B−1.

Lemma A.2 (Sherman-Morisson). For A ∈ Rp×p invertible and u,v ∈ Rp, A+uv⊤ is invertible
if and only if: 1 + v⊤A−1u ̸= 0, and:

(A+ uv⊤)−1 = A−1 − A−1uv⊤A−1

1 + v⊤A−1u
.

Besides,

(A+ uv⊤)−1u =
A−1u

1 + v⊤A−1u
.

13
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A.2 DETERMINISTIC EQUIVALENTS

Recall the expression of the resolvents defined in equation equation 9:

Q =

(
1

n
XX⊤ + γIp

)−1

,R =

(
1

N
X̃X̃⊤ + γ̃Ip

)−1

We define the matrices Q−i and R−i as the resolvents obtained by removing the contribution of the
ith sample, i.e:

Q−i =

 1

n

∑
k ̸=i

xkx
⊤
k + γIp

−1

, R−i =

 1

N

∑
k ̸=i

x̃kx̃
⊤
k + γ̃Ip

−1

then we have that:

Q =

(
Q−1

−i +
1

n
xix

⊤
i

)−1

, R =

(
R−1

−i +
1

N
x̃ix̃

⊤
i

)−1

Thus by Sherman-Morisson’s lemma:

Q = Q−i −
1

n

Q−ixix
⊤
i Q−i

1 + δQ
, R = R−i −

1
NR−ix̃ix̃

⊤
i R−i

1 + δR

where:

δQ =
1

n
Tr Q̄ =

η − γ − 1 +
√
(η − γ − 1)2 + 4ηγ

2γ
, δR =

1

N
Tr R̄ =

η̃ − γ̃ − 1 +
√

(η̃ − γ̃ − 1)2 + 4η̃γ

2γ̃

Thus, we get that:

Qxi =
Q−ixi

1 + δQ
, Rx̃i =

R−ix̃i

1 + δR
(12)

Using the above identities, we can easily prove the deterministic equivalents of Q and R stated in
Lemma 3.5, which we will do in the following.
Lemma A.3 (Deterministic equivalent of Q and R). Under the high-dimensional regime and the
assumptions 4.1, a deterministic equivalent for Q ≡ Q(γ) and for R ≡ R(γ), denoted Q̄ and R̄
respectively, as defined in equation 9 are given by:

Q̄(γ) =

(
µβµ

⊤
β + Ip

1 + δQ
+ γIp

)−1

, R̄(γ) =

(
µµ⊤ + Ip
1 + δR

+ γIp

)−1

.

Where:

δQ =
1

n
Tr Q̄ =

η − γ − 1 +
√
(η − γ − 1)2 + 4ηγ

2γ
, δR =

1

N
Tr R̄ =

η̃ − γ̃ − 1 +
√

(η̃ − γ̃ − 1)2 + 4η̃γ

2γ̃
.

Proof. We will prove the deterministic equivalent of Q, and the proof of R̄ can be derived similarly.
In general, we want to find a deterministic equivalent Q̄ of the same form of Q, i.e we consider
Q̄(γ) = (S+ γIp)

−1 and we want to find a deterministic matrix S ∈ Rp×p such that for any linear
form u:

u(Q)
a.s.−−→u(Q̄),

Or more simply:
u(E[Q]− Q̄) → 0.

We have that:

E[Q]− Q̄ = E[Q− Q̄]

= E[Q
(
S− 1

n
XX⊤

)
Q̄]

= E

[(
QS− 1

n

n∑
i=1

Qxix
⊤
i

)
Q̄

]
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And since: Qxi =
Q−ixi

1+δQ
and that we want E[Q] = Q̄ in linear forms, we get that:

E

[(
QS− 1

n

n∑
i=1

Qxix
⊤
i

)
Q̄

]
= Q̄SQ̄− 1

n

n∑
i=1

1

1 + δQ
E[Q−ixix

⊤
i ]Q̄

= Q̄SQ̄− 1

n

n∑
i=1

1

1 + δQ
Q̄(µβµ

⊤
β + Ip)Q̄ (By independence of xi and Q−i)

= Q̄

(
S−

µβµ
⊤
β + Ip

1 + δQ

)
Q̄

Finally, it suffices to take: S =
µβµ

⊤
β +Ip

1+δQ
to get the desired result.

Lemma A.4 (Trace identities). Let Q̄, R̄ ∈ Rp×p be the deterministic matrices defined in lemma
3.5. Then:

1

n

Tr((ΣβQ̄)2)

(1 + δQ)2
=

η

(1 + γ(1 + δQ))2
,

1

N

Tr((ΣR̄)2)

(1 + δR)2
=

η̃

(1 + γ̃(1 + δR))2
.

And:
1

N
Tr(R̄2Q̄2) = η̃

(
(1 + δR)(1 + δQ)

(1 + γ̃(1 + δR))(1 + γ(1 + δQ))

)2

Lemma A.5 (Relevant Identities). Let Q̄, R̄ ∈ Rp×p be the deterministic matrices defined in lemma
3.5. Then we have the following identities:

µ⊤
β Q̄µβ =

(1 + δQ)∥µβ∥2
∥µβ∥2 + 1 + γ(1 + δQ)

, µ⊤
β Q̄

2µβ =

(
(1 + δQ)∥µβ∥

∥µβ∥2 + 1 + γ(1 + δQ)

)2

,

µ⊤R̄µ =
(1 + δR)∥µ∥2

∥µ∥2 + 1 + γ̃(1 + δR)
, µ⊤R̄2µ =

(
(1 + δR)∥µ∥

∥µ∥2 + 1 + γ̃(1 + δR)

)2

,

µ⊤R̄Q̄µβ =
(1 + δR)(1 + δQ)β∥µ∥2

(∥µ∥2 + 1 + γ̃(1 + δR))(∥µβ∥2 + 1 + γ(1 + δQ))
,

µ⊤R̄Q̄2µβ =
(1 + δR)

(∥µ∥2 + 1 + γ̃(1 + δR))

(
(1 + δQ)

(∥µβ∥2 + 1 + γ(1 + δQ))

)2

β∥µ∥2,

And finally:

µ⊤R̄Q̄2R̄µ

=

(
(1 + δR)(1 + δQ)∥µ∥

(1 + γ(1 + δQ))(∥µ∥2 + 1 + γ̃(1 + δR))

)2(
1 +

β3∥µ∥4
(∥µβ∥2 + 1 + γ(1 + δQ))2

− 2β2∥µ∥2
∥µβ∥2 + 1 + γ(1 + δQ)

)
.

Proof. The proof of all these identities relies on the following results:

R̄ =

(
µµ⊤

1 + δR
+

(
γ̃ +

1

1 + δR

)
Ip

)−1

= (1 + δR)
(
µµ⊤ + (1 + γ̃(1 + δR)Ip)

)−1

=
1 + δR

1 + γ̃(1 + δR)

(
µµ⊤

1 + γ̃(1 + δR)
+ Ip

)−1

=
1 + δR

1 + γ̃(1 + δR)

(
Ip −

µµ⊤

∥µ∥2 + 1 + γ̃(1 + δR)

)
(lemma A.2)
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where the last equality is obtained using Sherman-Morisson’s identity (lemma A.2). Hence,

(R̄)2 =
(1 + δR)

2

(1 + γ̃(1 + δR))2

(
Ip +

(µµ⊤)2

(∥µ∥2 + 1 + γ̃(1 + δR))2
− 2µµ⊤

∥µ∥2 + 1 + γ̃(1 + δR)

)
.

And the same for Q̄:

Q̄ =
1 + δQ

1 + γ(1 + δQ)

(
Ip −

µβµ
⊤
β

∥µβ∥2 + 1 + γ(1 + δQ)

)
,

(Q̄)2 =
(1 + δQ)

2

(1 + γ(1 + δQ))2

(
Ip +

(µβµ
⊤
β )

2

(∥µβ∥2 + 1 + γ(1 + δQ))2
−

2µβµ
⊤
β

∥µβ∥2 + 1 + γ(1 + δQ)

)
.

And using the second identity in Sherman-Morisson’s lemma A.2:

R̄µ =
(1 + δR)

∥µ∥2 + 1 + γ̃(1 + δR)
µ, Q̄µβ =

(1 + δQ)

∥µβ∥2 + 1 + γ(1 + δQ)
µβ

Lemma A.6 (Expectation some classifiers). Let w̃ and w be the classifiers defined earlier equa-
tion α-FTC. We have that:

E[w̃] =
1

1 + δR
R̄µ, E[w] =

1

1 + δQ
Q̄µβ .

Proof.

E[w̃] =
1

N

N∑
i=1

E[ỹiRx̃i]

=
1

N

N∑
i=1

1

1 + δR
E[ỹiR−ix̃i]

=
1

1 + δR
R̄µ

The proof of E[w] is similar to this latter.

Lemma A.7 (Deterministic equivalent). For any positive semi-definite matrix A, we have:

QAQ ↔ Q̄AQ̄+
1

n

Tr(ΣβQ̄AQ̄)

(1 + δQ)2
E[QΣβQ],

and:

RAR ↔ R̄AR̄+
1

N

Tr(ΣR̄AR̄)

(1 + δR)2
E[RΣR].

In particular for every a, b ∈ Rp:

a⊤ E[QΣβQ]b =
1

h
a⊤Q̄ΣβQ̄b, a⊤ E[RΣR]b =

1

h̃
a⊤R̄ΣR̄b.

Proof. The proof is derived similarly as in the appendix of Firdoussi & Seddik (2024). Again, the
proof is similar for both Q and R.
Let Q̄ be a deterministic equivalent of Q. The following equations and identities are valid in terms
of linear forms. We have that:

E[QAQ] = E[Q̄AQ] + E[(Q− Q̄)AQ]

= Q̄(E[AQ] +AE[Q− Q̄]) + E[(Q− Q̄)AQ]

= Q̄AQ̄+ E[(Q− Q̄)AQ]
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Using lemma A.1, we have that:

Q− Q̄ = Q(Q̄−1 −Q−1)Q̄

= Q

(
Σβ

1 + δQ
− 1

n
XX⊤

)
Q̄

= Q

(
S− 1

n
XX⊤

)
Q̄

Thus:

E[QAQ] = Q̄AQ̄+ E[Q(S− 1

n
XX⊤)Q̄AQ]

= Q̄AQ̄+ E[QSQ̄AQ]− 1

n

n∑
i=1

E[Qxix
⊤
i Q̄AQ]

We have that:

E[Qxix
⊤
i Q̄AQ] =

1

1 + δQ
E[Q−ixix

⊤
i Q̄AQ]

=
1

1 + δQ

(
E[Q−ixix

⊤
i Q̄Q−i]− E[Q−ixix

⊤
i Q̄A

Q−ixix
⊤
i Q−i

n(1 + δQ)
]

)
=

1

1 + δQ

(
E[Q−iΣβQ̄AQ−i]− E[Q−ixix

⊤
i Q̄A

Q−ixix
⊤
i Q−i

n(1 + δQ)
]

)
=

1

1 + δQ

(
E[QΣβQ̄AQ]− E[Q−ixix

⊤
i Q̄A

Q−ixix
⊤
i Q−i

n(1 + δQ)
]

)
Therefore, by replacing the obtained expression of E[Qxix

⊤
i Q̄AQ] in the equation of E[QAQ],

we get that:

E[QAQ] = Q̄AQ̄+
1

n2(1 + δQ)2

n∑
i=1

E[Q−ixix
⊤
i Q̄AQ−ixix

⊤
i Q−i]

= Q̄AQ̄+
1

n2(1 + δQ)2

n∑
i=1

Tr(ΣβQ̄AQ̄)E[Q−ixix
⊤
i Q−i]

= Q̄AQ̄+
1

n2(1 + δQ)2

n∑
i=1

Tr(ΣβQ̄AQ̄)E[Q−iΣβQ−i]

= Q̄AQ̄+
1

n

Tr(ΣβQ̄AQ̄)

(1 + δQ)2
E[QΣβQ]

Which finally concludes the proof.

Now we will provide the result of a useful quantity that we will be using for computing the variance.
Lemma A.8 (Expectation of w̃⊤Aw̃). Let A ∈ Rp×p be a random matrix independent of w̃. We
have that:

E[w̃⊤Aw̃] =
1

(1 + δR)2

(
µ⊤ E[RAR]µ− 2

N(1 + δR)
Tr(ΣE[RAR])µ⊤R̄µ+

1

N
Tr(ΣE[RAR])

)
Proof. We have that:

E[w̃⊤Aw̃] =
1

N2

N∑
i,j=1

E[ỹiỹjx̃⊤
i RARx̃j ]

=
1

N2

∑
i̸=j

E[ỹiỹjx̃⊤
i RARx̃j ] +

1

N2

N∑
i=1

E[x̃⊤
i RARx̃i]

17
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We have for i ̸= j:

E[ỹiỹjx̃⊤
i RARx̃j ] =

1

(1 + δR)2
E[ỹiỹjx̃iR−iAR−ix̃j ]

=
1

(1 + δR)2
E

[
ỹiỹjx̃

⊤
i

(
R−ij −

1
NR−ijx̃jx̃

⊤
j R−ij

1 + δR

)
A

(
R−ij −

1
NR−ijx̃ix̃

⊤
i R−ij

1 + δR

)
x̃j

]
= A11 −A12 −A13 +A14

So let us compute each term independently:

A11 =
1

(1 + δR)2
E[ỹiỹjx̃⊤

i R−ijAR−ijx̃j ]

=
1

(1 + δR)2
µ⊤ E[RAR]µ

And :

A12 =
1

N(1 + δR)3
E[ỹiỹjx̃⊤

i R−ijAR−ijx̃ix̃
⊤
i R−ijx̃j ]

=
1

N(1 + δR)3
Tr(ΣE[RAR])E[ỹiỹjx̃⊤

i R−ijx̃j ]

=
1

N(1 + δR)3
Tr(ΣE[RAR])µ⊤R̄µ

And also we can easily observe that:

A13 = A12, A14 = O(N−1).

Thus:

E[ỹiỹjx̃⊤
i RARx̃j ] =

1

(1 + δR)2

(
µ⊤ E[RAR]µ− 2

N(1 + δR)
Tr(ΣE[RAR])µ⊤R̄µ

)
And for the second term in the equation of E[w̃Aw̃], we have:

E[x̃⊤
i RARx̃i] =

1

(1 + δR)2
E[x̃⊤

i R−iAR−ix̃i]

=
1

(1 + δR)2
E[Tr(x̃ix̃

⊤
i R−iAR−i)]

=
1

(1 + δR)2
Tr(E[x̃ix̃

⊤
i ]E[R−iAR−i])

=
1

(1 + δR)2
Tr(ΣE[RAR])

Hence, finally:

E[w̃⊤Aw̃] =
1

(1 + δR)2

(
µ⊤ E[RAR]µ− 2

N(1 + δR)
Tr(ΣE[RAR])µ⊤R̄µ+

1

N
Tr(ΣE[RAR])

)

Lemma A.9 (Commutativity). Let R̄ and Q̄ be the resolvent matrices defined in lemma 3.5. We
have that:

Q̄Σβ = ΣβQ̄, R̄Σ = ΣR̄.

Proof. We will just prove it for Q̄ and Σβ because the other proof of the second identity is similar.
We know that:

Σβ = (1 + δQ)(Q̄
−1 − γIp)

Thus:

Q̄Σβ = (1 + δQ)Q̄(Q̄−1 − γIp) = (1 + δQ)(Ip − γQ̄)

ΣβQ̄ = (1 + δQ)(Q̄
−1 − γIp)Q̄ = (1 + δQ)(Ip − γQ̄)

which concludes the proof.
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B RMT ANALYSIS OF THE FINE-TUNED CLASSIFIER

Let x ∼ N ((−1)aµβ , Ip) independent of the fine-tuning dataset X. We recall that:

wα = w + αw̃ − α

n
Q(γ)XX⊤w̃,

where:

w =
1

n
Q(γ)Xy, w̃ =

1

N
R(γ̃)X̃ỹ

B.1 TEST EXPECTATION

We have that:

E[w⊤
αx] = E[w⊤x] + αE[w̃⊤x]− α

n
E[w̃⊤XX⊤Qx] (13)

Let us compute each term of this previous sum.
First, using lemma A.6, we have that, since x is independent of X and of X̃:

E[w⊤x] = E[w]⊤ E[x] =
(−1)a

1 + δQ
µ⊤

β Q̄µβ

E[w̃⊤x] = E[w̃]⊤ E[x] =
(−1)a

1 + δR
µ⊤R̄µβ

And we have that:

E[w̃⊤XX⊤Qx] = E[w̃]⊤ E[XX⊤Q]E[x]
And:

E[XX⊤Q] =

n∑
i=1

E[xix
⊤
i Q]

=

n∑
i=1

1

1 + δQ
E[xix

⊤
i Qi]

=

n∑
i=1

1

1 + δQ
E[xix

⊤
i ]Q̄

=
n

1 + δQ
ΣβQ̄

Thus:
1

n
E[w̃⊤XX⊤Qx] =

(−1)a

(1 + δR)

1

(1 + δQ)
µ⊤R̄ΣβQ̄µβ

=
(−1)a

1 + δR
µ⊤R̄(Ip − γQ̄)µβ

Finally:

E[w⊤
αx] = (−1)a

(
1

1 + δQ
µ⊤

β Q̄µβ +
α

1 + δR
µ⊤R̄µβ − α

1 + δR
µ⊤R̄(Ip − γQ̄)µβ

)
= (−1)a

(
1

1 + δQ
µ⊤

β Q̄µβ +
αγ

1 + δR
µ⊤R̄Q̄µβ

)
And using the identities in lemma A.5:

E[w⊤
αx] =

(−1)a

(∥µβ∥2 + 1 + γ(1 + δQ))

(
∥µβ∥2 +

αγ(1 + δQ)

(∥µ∥2 + 1 + γ̃(1 + δR))
β∥µ∥2

)
(14)

=
(−1)a

λQ

(
∥µβ∥2 +

αβγ(1 + δQ)

λR
∥µ∥2

)
(15)
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B.2 TEST VARIANCE

To compute the variance of w⊤
αx, it suffices to compute the second moment: E[(w⊤

αx)
2].

E[(w⊤
αx)

2] = E[(w⊤x+ αw̃⊤x)2 +
α2

n2
(w̃⊤XX⊤Qx)2 − 2α

n
w̃⊤XX⊤Qx(w⊤x+ αw̃⊤x)]

(16)

First term: We have that, as proved in Firdoussi & Seddik (2024):

E[(w⊤x)2] =
1

h(1 + δQ)

(
1

1 + δQ
µ⊤

β Q̄ΣβQ̄µβ − 2(1− h)µ⊤
β Q̄µβ

)
+

1− h

h

=
1

h(1 + δQ)

(
1

1 + δQ

(
(µ⊤

β Q̄µβ)
2 + µ⊤

β Q̄
2µβ

)
− 2(1− h)µ⊤

β Q̄µβ

)
+

1− h

h

=
∥µβ∥2

h(∥µβ∥2 + 1 + γ(1 + δQ))

( ∥µβ∥2 + 1

∥µβ∥2 + 1 + γ(1 + δQ)
− 2(1− h)

)
+

1− h

h

And:
E[(w̃⊤x)2] = E[w̃⊤xw̃⊤x]

= E[w̃⊤xx⊤w̃]

= E[w̃⊤Σβw̃]

Therefore by lemma A.8:

E[(w̃⊤x)2] =
1

(1 + δR)2

(
µ⊤ E[RΣβR]µ− 2

(1 + δR)

1

N
Tr(ΣE[RΣβR])µ⊤R̄µ+

1

N
Tr(ΣE[RΣβR])

)
(17)

And, we have that:
E[w⊤xw̃⊤x] = E[w⊤xx⊤w̃]

= E[w]⊤Σβ E[w̃]

=
1

(1 + δQ)(1 + δR)
µ⊤

β Q̄ΣβR̄µ

=
1

(1 + δR)
µ⊤

β (Ip − γQ̄)R̄µ

=
1

(1 + δR)
µ⊤

β R̄µ− γ

(1 + δR)
µ⊤

β Q̄R̄µ

And since E[w⊤xw̃⊤x] = E[w̃⊤xw⊤x], then:

E[w⊤xw̃⊤x] =
1

(1 + δR)
µ⊤

β R̄µ− γ

(1 + δR)
µ⊤

β R̄Q̄µ

and thus:
µ⊤

β R̄Q̄µ = µ⊤
β Q̄R̄µ (18)

Second term: Now let us compute the expectation of the second term in equation 28:
1

n2
E[(w̃⊤XX⊤Qx)2] =

1

n2
E[w̃⊤XX⊤Qxw̃⊤XX⊤Qx]

=
1

n2
E[w̃⊤XX⊤Qxx⊤XX⊤Qw̃]

=
1

n2
E[w̃⊤XX⊤QΣβXX⊤Qw̃]

= E[w̃⊤(Ip − γQ)Σβ(Ip − γQ)w̃]

Therefore, by lemma A.8:
1

n2
E[(w̃⊤XX⊤Qx)2] =

1

(1 + δR)2
µ⊤ E[R(Ip − γQ)Σβ(Ip − γQ)R]µ

+
Tr(ΣE[R(Ip − γQ)Σβ(Ip − γQ)R])

N(1 + δR)2

(
1− 2

(1 + δR)
µ⊤R̄µ

)
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Third term: Now we want to compute 2α
n E[w̃⊤XX⊤Qx(w⊤x+ αw̃⊤x)]. So we have that:

E[w̃⊤XX⊤Qxw⊤x] = E[w̃]⊤ E[XX⊤Qxx⊤w]

= E[w̃]⊤ E[XX⊤QΣβw]

= E[w̃]⊤ E[
1

n
XX⊤QΣβQXy]

= E[w̃]⊤ E[(Q−1 − γIp)QΣβQXy]

= E[w̃]⊤ E[(Ip − γQ)ΣβQXy]

= E[w̃]⊤ (E[ΣβQXy]− γ E[QΣβQXy])

And we have that:

E[ΣβQXy] =

n∑
i=1

E[yiΣβQxi]

=
n

(1 + δQ)
E[yiΣβQ−ixi]

=
n

(1 + δQ)
ΣβQ̄µβ

= n(Ip − γQ̄)µβ

And:

E[QΣβQXy] =

n∑
i=1

E[yiQΣβQxi]

=
n

(1 + δQ)
E[yiQΣβQ−ixi]

=
n

(1 + δQ)
E

[
yi

(
Q−i −

1
nQ−ixix

⊤
i Q−i

1 + δQ

)
ΣβQ−ixi

]

=
n

(1 + δQ)

(
E[yiQ−iΣβQ−ixi]−

1

n(1 + δQ)
E[yiQ−ixix

⊤
i Q−iΣβQ−ixi]

)
=

n

(1 + δQ)

(
E[QΣβQ]µβ − 1

n(1 + δQ)
Tr(Σβ E[QΣβQ])Q̄µβ

)
=

n

h(1 + δQ)
Q̄ΣβQ̄µβ − n(1− h)

h
Q̄µβ

= n

(
1

h
(Ip − γQ̄)Q̄µβ − 1− h

h
Q̄µβ

)
= n(Q̄µβ − γ

h
Q̄2µβ)

Thus:
1

n
E[w̃⊤XX⊤Qxw⊤x] =

1

(1 + δR)
µ⊤R̄

(
Ip − 2γQ̄+

γ2

h
Q̄2

)
µβ (19)

Let us now compute the remaining term:
1

n
E[w̃⊤XX⊤Qxw̃⊤x] =

1

n
E[w̃⊤XX⊤Qxx⊤w̃]

=
1

n
E[w̃⊤XX⊤QΣβw̃]

= E[w̃⊤(Ip − γQ)Σβw̃]

And again by lemma A.8:

1

n
E[w̃⊤XX⊤Qxw̃⊤x] =

1

(1 + δR)2
µ⊤ E[R(Ip − γQ)ΣβR]µ+

Tr(ΣE[R(Ip − γQ)ΣβR])

N(1 + δR)2

(
1− 2

(1 + δR)
µ⊤R̄µ

)
Now let us group all the results as follows.
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Terms without α: There is only one term which is:

T1 = E[(w⊤x)2] =
1

h(1 + δQ)

(
(2h− 1)µ⊤

β Q̄µβ − γµ⊤
β Q̄

2µβ

)
+

1− h

h

=
∥µβ∥2

h(∥µβ∥2 + 1 + γ(1 + δQ))

( ∥µβ∥2 + 1

∥µβ∥2 + 1 + γ(1 + δQ)
− 2(1− h)

)
+

1− h

h

Terms in α: There are two: 2E[w⊤xw̃⊤x] and 2
n E[w̃⊤XX⊤Qxw⊤x]:

T2 = 2E[w⊤xw̃⊤x]− 2

n
E[w̃⊤XX⊤Qxw⊤x]

=
2

(1 + δR)

(
µβR̄µ− γµ⊤

β R̄Q̄µ− µ⊤R̄(Ip − 2γQ̄+
γ2

h
Q̄2)µβ

)
=

2γ

(1 + δR)
µ⊤R̄Q̄

(
Ip −

γ

h
Q̄
)
µβ

And using lemma A.5:

T2 =
2γ(1 + δQ)β∥µ∥2

(∥µ∥2 + 1 + γ̃(1 + δR)) (∥µβ∥2 + 1 + γ(1 + δQ))

(
1− γ(1 + δQ)

h(∥µβ∥2 + 1 + γ(1 + δQ))

)
Terms in α2 : we have three terms: E[(w̃⊤x)2], 1

n2 E[(w̃⊤XX⊤Qx)2] and
−2
n E[w̃⊤XX⊤Qxw̃⊤x]:

T3 = E[(w̃⊤x)2] +
1

n2
E[(w̃⊤XX⊤Qx)2]− 2

n
E[w̃⊤XX⊤Qxw̃⊤x]

=
γ

(1 + δR)2
µ⊤ (E[RQ̄ΣβR]− E[RΣβQ̄R] + γ E[RQΣβQR]

)
µ

+
γ

N(1 + δR)2

(
1− 2

(1 + δR)
µ⊤R̄µ

)
Tr
(
Σ(E[RQ̄ΣβR]− E[RΣβQ̄R] + γ E[RQΣβQR])

)
=

γ2

(1 + δR)2

[
µ⊤ E[RQΣβQR]µ+

(
1− 2

(1 + δR)
µ⊤R̄µ

)
1

N
Tr(ΣE[RQΣβQR])

]
where the last equality is gotten using lemma A.9.
We also have that:

1

N
Tr(ΣE[RQΣβQR]) =

1

N
Tr(E[ΣRQΣβQR])

=
1

N
E[Tr(ΣRQΣβQR)]

=
1

N
E[Tr(RΣRQΣβQ)]

=
1

N
Tr(E[RΣRQΣβQ])

=
1

N
Tr(E[RΣR]E[QΣβQ])

=
1

hh̃

1

N
Tr(R̄ΣR̄Q̄ΣβQ̄)

And:

µ⊤ E[RQΣβQR]µ = Tr(E[µ⊤RQΣβQRµ])

= E[Tr(Rµµ⊤RQΣβQ)]

= Tr(E[Rµµ⊤R]E[QΣβQ])

=
1

h
Tr(E[Rµµ⊤R]Q̄ΣβQ̄)

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Thus:

T3 =
γ2

h(1 + δR)2

[
Tr(E[Rµµ⊤R]Q̄ΣβQ̄) +

(
1− 2

(1 + δR)
µ⊤R̄µ

)
1

h̃

1

N
Tr(R̄ΣR̄Q̄ΣβQ̄)

]
Now remains to compute E[Rµµ⊤R]. For that, we use lemma A.7:

E[Rµµ⊤R] = R̄µµ⊤R̄+
1

N

Tr(ΣR̄µµ⊤R̄)

(1 + δR)2
E[RΣR]

= R̄µµ⊤R̄+
1

N

µ⊤R̄ΣR̄µ

(1 + δR)2
1

h̃
R̄ΣR̄

And since we are in the regime of N → ∞, then:
1

N
µ⊤R̄ΣR̄µ = O(N−1)

Thus:
E[Rµµ⊤R] = R̄µµ⊤R̄ (20)

Hence, T3 becomes:

T3 =
γ2

h(1 + δR)2

[
µ⊤R̄Q̄ΣβQ̄R̄µ+

(
1− 2

(1 + δR)
µ⊤R̄µ

)
1

h̃

1

N
Tr(R̄ΣR̄Q̄ΣβQ̄)

]
And we also have that:

µ⊤R̄Q̄ΣβQ̄R̄µ = µ⊤R̄Q̄µβµ
⊤
β Q̄R̄µ+ µ⊤R̄Q̄2R̄µ

=
(
µ⊤R̄Q̄µβ

)2
+ µ⊤R̄Q̄2R̄µ

And:
1

N
Tr(R̄ΣR̄Q̄ΣβQ̄) =

1

N
Tr(R̄2Q̄2)

Therefore:

T3 =
γ2

h(1 + δR)2

[(
µ⊤R̄Q̄µβ

)2
+ µ⊤R̄Q̄2R̄µ+

(
1− 2

(1 + δR)
µ⊤R̄µ

)
1

h̃

1

N
Tr(R̄2Q̄2)

]
(21)

Then using lemmas A.4 and A.5:

T3 =
γ2

h(1 + δR)2

[(
µ⊤R̄Q̄µβ

)2
+ µ⊤R̄Q̄2R̄µ

]
+

γ2

h(1 + δR)2

(
1− 2

(1 + δR)
µ⊤R̄µ

)
1

h̃

1

N
Tr(R̄2Q̄2)

=
γ2(1 + δQ)

2

h
[
∥µ∥2
λ2
R

(
β2∥µ∥2
λ2
Q

+
1

(1 + γ(1 + δQ))2

(
1 +

β2∥µ∥2∥µβ∥2
λ2
Q

− 2β2∥µ∥2
λQ

))
+

η̃

(1 + γ(1 + δQ))2(1 + γ̃(1 + δR))2

(
1− 2∥µ∥2

λR

)
]

=
γ2(1 + δQ)

2

h

[
∥µ∥2
λ2
R

(
β2∥µ∥2
λ2
Q

+
1− h

η

(
1 +

β2∥µ∥2∥µβ∥2
λ2
Q

− 2β2∥µ∥2
λQ

+ (1− h̃)

(
1− 2∥µ∥2

λR

)))]
Finally:

T1 =
∥µβ∥2
hλQ

(∥µβ∥2 + 1

λQ
− 2(1− h)

)
+

1− h

h
(22)

T2 =
2γβ(1 + δQ)∥µ∥2

λRλQ

(
1− γ(1 + δQ)

hλQ

)
(23)

T3 =
γ2(1 + δQ)

2

h

[
∥µ∥2
λ2
R

(
β2∥µ∥2
λ2
Q

+
1− h

η

(
1 +

β2∥µ∥2∥µβ∥2
λ2
Q

− 2β2∥µ∥2
λQ

+ (1− h̃)

(
1− 2∥µ∥2

λR

)))]
(24)

And the expression of the second order expectation reads:

E[(w⊤
αx)

2] = T1 + αT2 + α2T3 (25)
And finally, Theorem 4.2 follows:
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Figure 6: Distribution of the decision function w⊤
αx for different values of α (per column) and β

(per row). Here we have N = 5000, n = 200, p = 400, ∥µ∥ = 1.5, ∥µ⊥∥ = 1, γ = γ̃ = 1. The
theoretical Gaussian distributions are predicted as per Theorem 4.2.

Theorem B.1 (Gaussianity of the fine-tuned Ridge model). Let wα be the fine-tuned classifier as
defined in equation α-FTC and suppose that Assumption 4.1 holds. The decision function w⊤

αx, on
some test sample x ∈ Ca independent of X, satisfies:

w⊤
αx

D−→ N
(
(−1)amα, να −m2

α

)
,

where:

mα =
1

λQ

(
∥µβ∥2 +

αβγ(1 + δQ)

λR
∥µ∥2

)
,

να = T1 + αT2 + α2T3.

With:

T1 =
∥µβ∥2
hλQ

(∥µβ∥2 + 1

λQ
− 2(1− h)

)
+

1− h

h
,

T2 =
2γβ(1 + δQ)∥µ∥2

λRλQ

(
1− γ(1 + δQ)

hλQ

)
,

T3 =
γ2(1 + δQ)

2

h
×[

∥µ∥2
λ2
R

(
β2∥µ∥2
λ2
Q

+
1− h

η

(
1 +

β2∥µ∥2∥µβ∥2
λ2
Q

− 2β2∥µ∥2
λQ

))
+

(1− h)(1− h̃)

η

(
1− 2∥µ∥2

λR

)]
.

B.3 FINDING OPTIMAL α∗

Since the test accuracy is given by Atest = 1 − φ
(
(να −m2

α)
− 1

2mα

)
as in Proposition 4.3, and

that ϕ(x) is a non-increasing function, then finding the optimal α∗ that maximizes the test accuracy
boils down to maximizing the term inside ϕ. Thus, by computing the derivative with respect to α

of (να −m2
α)

− 1
2mα and finding the zero of the gradient gives us the final form of the best scaling

parameter α∗:

α∗ =
λRT2∥µβ∥2 − 2βγT1(1 + δQ)∥µ∥2
βγT2(1 + δQ)∥µ∥2 − 2λRT3∥µβ∥2
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And since the worst test accuracy is 50% (random classification), which is obtained for mα = 0,
then solving the previous equation gives the worst scaling ᾱ to use:

ᾱ = − λR∥µβ∥2
βγ(1 + δQ)∥µ∥2

C RMT ANALYSIS OF THE FINE-TUNED CLASSIFIER: THE CASE OF RANDOM
SOURCE VECTOR

Let x ∼ N ((−1)aµβ , Ip) be an independent test sample. Let w̃ be the source classifier (obtained
through some optimization algorithm). We recall that:

wα = w + αw̃ − α

n
Q(γ)XX⊤w̃, w =

1

n
Q(γ)Xy

C.1 TEST EXPECTATION

We have that:

E[w⊤
αx] = E[w⊤x] + αE[w̃⊤x]− α

n
E[w̃⊤XX⊤Qx] (26)

Let us compute each term of this previous sum.
First, using lemma A.6, we have that, since x is independent of X:

E[w⊤x] = E[w]⊤ E[x] =
(−1)a

1 + δQ
µ⊤

β Q̄µβ

And we have that:
E[w̃⊤x] = (−1)aw̃⊤µβ

And:
α

n
E[w̃⊤XX⊤Qx] =

α

n

n∑
i=1

E[w̃⊤xix
⊤
i Qx]

=
α

n(1 + δQ)

n∑
i=1

E[w̃⊤xix
⊤
i Q−ix]

=
α

n(1 + δQ)

n∑
i=1

E[w̃⊤ΣβQ−ix]

=
(−1)aα

1 + δQ
w̃⊤ΣβQ̄µβ

Thus:

E[w⊤
αx] = (−1)a

(
1

1 + δQ
µ⊤

β Q̄µβ + αw̃⊤µβ − α

1 + δQ
w̃⊤ΣβQ̄µβ

)
= (−1)a

(
1

1 + δQ
µ⊤

β Q̄µβ + αw̃⊤µβ − αw̃⊤(Q̄−1 − γIp)Q̄µβ

)
= (−1)a

(
1

1 + δQ
µ⊤

β Q̄µβ + αγw̃⊤Q̄µβ

)
Using the forumlas in lemma A.5:

E[w⊤
αx] =

(−1)a

∥µβ∥2 + 1 + γ(1 + δQ)

(
∥µβ∥2 + αγ(1 + δQ)w̃

⊤µβ

)
(27)

C.2 TEST VARIANCE

To compute the variance of w⊤
αx, it suffices to compute the second moment: E[(w⊤

αx)
2].

E[(w⊤
αx)

2] = E[(w⊤x+ αw̃⊤x)2 +
α2

n2
(w̃⊤XX⊤Qx)2 − 2α

n
w̃⊤XX⊤Qx(w⊤x+ αw̃⊤x)]

(28)
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First term: We start by computing
E[(w⊤x+ αw̃⊤x)2] = E[(w⊤x)2] + α2 E[(w̃⊤x)2] + 2αE[w⊤xw̃⊤x]

We have that, as proved in Firdoussi & Seddik (2024):

E[(w⊤x)2] =
1

h(1 + δQ)

(
1

1 + δQ
µ⊤

β Q̄ΣβQ̄µβ − 2(1− h)µ⊤
β Q̄µβ

)
+

1− h

h

=
1

h(1 + δQ)

(
1

1 + δQ

(
(µ⊤

β Q̄µβ)
2 + µ⊤

β Q̄
2µβ

)
− 2(1− h)µ⊤

β Q̄µβ

)
+

1− h

h

=
∥µβ∥2

h(∥µβ∥2 + 1 + γ(1 + δQ))

( ∥µβ∥2 + 1

∥µβ∥2 + 1 + γ(1 + δQ)
− 2(1− h)

)
+

1− h

h

And we have that:
E[(w̃⊤x)2] = w̃⊤Σβw̃

And:
E[w⊤xw̃⊤x] = E[w]⊤Σβw̃ =

1

1 + δQ
µ⊤

β Q̄Σβw̃

Thus we have the first sum.

Second term: Now let us compute the expectation of the second term:
1

n2
E[(w̃⊤XX⊤Qx)2] =

1

n2
E[w̃⊤XX⊤Qxx⊤XX⊤Qw̃]

= w̃⊤ E[
1

n
XX⊤QΣβ

1

n
XX⊤Q]w̃

= w̃⊤ E[(Q−1 − γIp)QΣβ(Q
−1 − γIp)Q]w̃

= w̃⊤ E[(Ip − γQ)Σβ(Ip − γQ)]w̃

= w̃⊤ E
[
Σβ − γΣβQ− γQΣβ + γ2QΣβQ

]
w̃

= w̃⊤ (Σβ − γΣβQ̄− γQ̄Σβ + γ2
)
w̃

= w̃⊤Σβw − 2γw̃⊤ΣβQ̄w̃ + γ2w̃⊤ E[QΣβQ]w̃

Third term: Now we will compute the last term: 2α
n E[w̃⊤XX⊤Qx(w⊤x+ αw̃⊤x)].

We have that:
1

n
E[w̃⊤XX⊤Qxx⊤w] = w̃⊤ E[(Q−1 − γIp)QΣβw]

= w̃⊤ E[(Ip − γQ)Σβw]

= w̃⊤Σβ E[w]− γw̃⊤ E[QΣβw]

= w̃⊤ Σβ

1 + δQ
Q̄µβ − γw̃⊤ E[QΣβw]

= w̃⊤ Σβ

1 + δQ
Q̄µβ − γ

1

n

n∑
i=1

w̃⊤ E[QΣβQyixi]

= w̃⊤ Σβ

1 + δQ
Q̄µβ − γw̃⊤ E[QΣβQyixi]

= w̃⊤ Σβ

1 + δQ
Q̄µβ − γ

1 + δQ
w̃⊤ E[QΣβQ−iyixi]

= w̃⊤ Σβ

1 + δQ
Q̄µβ − γ

1 + δQ
w̃⊤ E

[(
Q−i −

1
nQ−ixix

⊤
i Q−i

1 + δQ

)
ΣβQ−iyixi

]

= w̃⊤ Σβ

1 + δQ
Q̄µβ − γ

1 + δQ
w̃⊤ E[Q−iΣβQ−iyixi] +

γ

n(1 + δQ)2
w̃⊤ E[Q−ixix

⊤
i Q−iΣβQ−iyixi]

= w̃⊤ Σβ

1 + δQ
Q̄µβ − γ

1 + δQ
w̃⊤ E[QΣβQ]µβ +

γ

n(1 + δQ)2
Tr(Σβ E[QΣβQ])w̃⊤Q̄µβ
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And:

1

n
E[w̃⊤XX⊤Qxx⊤w̃] = w̃⊤ E[(Q−1 − γIp)QΣβ ]w̃

= w̃⊤ E[(Ip − γQ)Σβ ]w̃

= w̃⊤Σβw̃ − γw̃⊤Q̄Σβw̃

Grouping all the terms: Thus, we now that we have the expression of all the term, we will group
them in the following way:

E[(w⊤
αx)

2] = T1 + αT2 + α2T3

Terms without α:

T1 =
∥µβ∥2

h(∥µβ∥2 + 1 + γ(1 + δQ))

( ∥µβ∥2 + 1

∥µβ∥2 + 1 + γ(1 + δQ)
− 2(1− h)

)
+

1− h

h
(29)

Terms in α: There are two : 2E[w⊤xw̃⊤x] and 2
n E[w̃⊤XX⊤Qxw⊤x]:

T2 = 2E[w⊤xw̃⊤x]− 2

n
E[w̃⊤XX⊤Qxw⊤x]

=
2γ

h(1 + δQ)

(
w̃⊤Q̄ΣβQ̄µβ − (1− h)(1 + δQ)w̃

⊤Q̄µβ

)
=

2γ

h(1 + δQ)

(
w̃⊤Q̄µβµ

⊤
β Q̄µβ + w̃⊤Q̄2µβ − (1− h)(1 + δQ)w̃

⊤Q̄µβ

)
And we have that:

w̃⊤Q̄µβµ
⊤
β Q̄µβ =

(1 + δQ)
2∥µβ∥2w̃⊤µβ

(∥µβ∥2 + 1 + γ(1 + δQ))2
, w̃⊤Q̄2µβ =

(1 + δQ)
2w̃⊤µβ

(∥µβ∥2 + 1 + γ(1 + δQ))2
.

Thus:

T2 =
2γ(1 + δQ)w̃

⊤µβ

h(∥µβ∥2 + 1 + γ(1 + δQ))

( ∥µβ∥2 + 1

∥µβ∥2 + 1 + γ(1 + δQ)
− (1− h)

)

Terms in α2: we have three terms: E[(w̃⊤x)2], 1
n2 E[(w̃⊤XX⊤Qx)2] and

−2
n E[w̃⊤XX⊤Qxw̃⊤x]:

T3 = E[(w̃⊤x)2] +
1

n2
E[(w̃⊤XX⊤Qx)2]− 2

n
E[w̃⊤XX⊤Qxw̃⊤x]

= w̃⊤Σβw̃ + w̃⊤Σβw̃ − 2γw̃⊤ΣβQ̄w̃ + γ2w̃⊤ E[QΣβQ]w̃ − 2w̃⊤Σβw̃ + 2γw̃⊤Q̄Σβw̃

= γ2w̃⊤ E[QΣβQ]w̃

=
γ2

h
w̃⊤Q̄ΣβQ̄w̃

=
γ2

h

(
(w̃⊤Q̄µβ)

2 + w̃⊤Q̄2w̃
)

=
γ2(1 + δQ)

2

h

(
(w̃⊤µβ)

2

(∥µβ∥2 + 1 + γ(1 + δQ))2
+

1− h

η

(
∥w̃∥2 + ∥µβ∥2(w̃⊤µβ)

2

(∥µβ∥2 + 1 + γ(1 + δQ))2
− 2(w̃⊤µβ)

2

∥µβ∥2 + 1 + γ(1 + δQ)

))
=

γ2(1 + δQ)
2

h

(
(w̃⊤µβ)

2

λ2
Q

+
1− h

η
∥w̃∥2 + (1− h)(w̃⊤µβ)

2

ηλQ

(∥µβ∥2
λQ

− 2

))

Which finally gives the following theorem:
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Theorem C.1 (Gaussianity of the fine-tuned model for an arbitrary w̃). Let wα be the fine-tuned
classifier as defined in equation α-FTC and suppose that Assumption 4.1 holds. The decision func-
tion w⊤

αx, on some test sample x ∈ Ca independent of X, satisfies:

w⊤
αx

D−→ N
(
(−1)amα, να −m2

α

)
,

where:

mα =
∥µβ∥2 + αγ(1 + δQ)⟨w̃,µβ⟩

∥µβ∥2 + 1 + γ(1 + δQ)
,

να = T1 + αT2 + α2T3.

with:

T1 =
∥µβ∥2
hλQ

(∥µβ∥2 + 1

λQ
− 2(1− h)

)
+

1− h

h
,

T2 =
2γ(1 + δQ)⟨w̃,µβ⟩

hλQ

(∥µβ∥2 + 1

λ
− (1− h)

)
,

T3 =
γ2(1 + δQ)

2

h

(
⟨w̃,µβ⟩2

λ2
Q

+
1− h

η
∥w̃∥2 + (1− h)⟨w̃,µβ⟩2

ηλQ

(∥µβ∥2
λQ

− 2

))
.

C.3 FINDING OPTIMAL α∗

Since the test accuracy is given by Atest = 1 − φ
(
(να −m2

α)
− 1

2mα

)
as in Proposition 4.3, and

that ϕ(x) is a non-increasing function, then finding the optimal α∗ that maximizes the test accuracy
boils down to maximizing the term inside ϕ. Thus, by computing the derivative with respect to α

of (να −m2
α)

− 1
2mα and finding the zero of the gradient gives us the final form of the best scaling

parameter α∗:

α∗ =
η(1 + γ(1 + δQ))⟨w̃,µβ⟩

γ(1 + δQ) (λ∥µβ∥2∥w̃∥2 − (λ− η)⟨w̃,µβ⟩2)
And since the worst test accuracy is 50% (random classification), which is obtained for mα = 0,
then solving the previous equation gives the worst scaling ᾱ to use:

ᾱ =
−∥µβ∥2

γ(1 + δQ)⟨w̃,µβ⟩

D EXTENSION TO MULTI-SOURCE CLASSIFIERS

Given T source classifiers {wt}Tt=1 and a single target task, the goal is to fine-tune a mixture of
these classifiers on the target task. Specifically, we want to find the optimal fine-tuned classifier wΩ

that is written as:

wΩ =

T∑
t=1

αtwt + a

where αt ∈ R and a is an adapter trained on the target dataset as follows:

a = argminv
1

n
∥X⊤(

T∑
t=1

αtwt + v)− y∥2 + γ∥v∥2

Then, a expresses as:

a =
1

n

(
1

n
XX⊤ + γIp

)−1
(
Xy −XX⊤

T∑
t=1

αtwt

)
Thus, our new fine-tuned classifier writes as:

wΩ =

T∑
t=1

αtwt + a =
1

n
QXy + γ

T∑
t=1

αtQwt

To compute the theoretical test accuracy of this classifier, we will take a test sample x ∼
N ((−1)aµβ , Ip), independent from the training data (xi)

n
i=1, and we compute the statistics of the

decision function w⊤
Ωx.
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D.1 TEST EXPECTATION

We have that:

E[w⊤
Ωx] = E[w⊤x] + γ

T∑
t=1

αt E[w⊤
t Qx]

= E[w⊤x] + (−1)aγ

T∑
t=1

αtw
⊤
t Q̄µβ

From the previous section, we have that:

E[w⊤x] =
(−1)a

1 + δQ
µ⊤

β Q̄µβ =
(−1)a∥µβ∥2

∥µβ∥2 + 1 + γ(1 + δQ)

And from lemma A.5, we have that:

w⊤
t Q̄µβ =

(1 + δQ)⟨wt,µβ⟩
∥µβ∥2 + 1 + γ(1 + δQ)

Finally, we get that:

E[w⊤
Ωx] =

(−1)a

∥µβ∥2 + 1 + γ(1 + δQ)

(
∥µβ∥2 + γ(1 + δQ)

T∑
t=1

αt⟨wt,µβ⟩
)

In a vectorized form, denote by α = (α1, . . . , αT )
⊤ the vector of coefficients and by W =

(w1, . . . ,wT ) ∈ Rp×T , then we have that:

E[w⊤
Ωx] = (−1)a

∥µβ∥2 + γ(1 + δQ)α
⊤W⊤µβ

∥µβ∥2 + 1 + γ(1 + δQ)

D.2 TEST VARIANCE

Now we will compute the expectation of the second order moment of w⊤
Ωx:

E[(w⊤
Ωx)

2] = E

(w⊤x)2 + γ2

(
T∑

t=1

αtw
⊤
t Qx

)2

+ 2γ

T∑
t=1

αtw
⊤
t Qxw⊤x


Let us compute each term of this sum and then aggregate the results at the end.

First term. We have that:

E[(w⊤x)2] =
∥µβ∥2
hλQ

(∥µβ∥2 + 1

λQ
− 2(1− h)

)
+

1− h

h

Second term. Now let us compute the second term of the sum:

E

[
T∑

t=1

αtw
⊤
t Qxw⊤x

]
=

T∑
t=1

αt E[w⊤
t Qxx⊤w]

=

T∑
t=1

αt E[w⊤
t QΣβw]

=

T∑
t=1

αtw
⊤
t E[QΣβ

1

n

n∑
i=1

yiQxi]

=

T∑
t=1

αtw
⊤
t E[QΣβQyixi] (xi i.i.d)

=
1

1 + δQ

T∑
t=1

αtw
⊤
t E[QΣβQ−iyixi]
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And since we have that:

Q = Q−i −
Q−ixix

⊤
i Q−i

n(1 + δQ)

Then:

E

[
T∑

t=1

αtw
⊤
t Qxw⊤x

]
=

1

1 + δQ

T∑
t=1

αtw
⊤
t E

[(
Q−i −

Q−ixix
⊤
i Q−i

n(1 + δQ)

)
ΣβQ−iyixi

]

=
1

1 + δQ

T∑
t=1

αtw
⊤
t E[Q−iΣβQ−iyixi]−

1

n(1 + δQ)2

T∑
t=1

αtw
⊤
t E[Q−ixix

⊤
i Q−iΣβQ−iyixi]

We have that:

T∑
t=1

αtw
⊤
t E[Q−iΣβQ−iyixi] =

T∑
t=1

αtw
⊤
t E[QΣβQ]µβ

=
1

h

T∑
t=1

αtw
⊤
t Q̄ΣβQ̄µβ

=
1

h

T∑
t=1

αt
(1 + δQ)

2

λ2
Q

⟨wt,µβ⟩
(
∥µβ∥2 + 1

)

And we have that:

1

n(1 + δQ)2

T∑
t=1

αtw
⊤
t E[Q−ixix

⊤
i Q−iΣβQ−iyixi] =

1

n(1 + δQ)2

T∑
t=1

αtw
⊤
t E[Q−iyixi Tr(xix

⊤
i Q−iΣβQ−i)]

=
1

n(1 + δQ)2

T∑
t=1

αtw
⊤
t E[Q−iyixi Tr(Σβ E[QΣβQ])]

=
1

n(1 + δQ)2

T∑
t=1

αtw
⊤
t E[Q−iyixi]

1

h
Tr((ΣβQ̄)2)

=
1− h

h

T∑
t=1

αtw
⊤
t Q̄µβ

=
1− h

h

T∑
t=1

αt
(1 + δQ)⟨wt,µβ⟩

λQ

Thus the second term is given by:

E

[
T∑

t=1

αtw
⊤
t Qxw⊤x

]
=

(1 + δQ)

hλQ

T∑
t=1

αt

(∥µβ∥2 + 1

λQ
− (1− h)

)
⟨wt,µβ⟩

=
(1 + δQ)

hλQ

(∥µβ∥2 + 1

λQ
− (1− h)

)
α⊤W⊤µβ
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Third term. We have that:

γ2 E

( T∑
t=1

αtw
⊤
t Qx

)2
 = γ2 E

[
T∑

t=1

αtw
⊤
t Qx

T∑
k=1

αkw
⊤
k Qx

]

= γ2
T∑

t,k=1

E[αtαkw
⊤
t Qxx⊤Qwk]

= γ2
T∑

t,k=1

E[w⊤
t QΣβQwk]

= γ2
T∑

t,k=1

w⊤
t E[QΣβQ]wk

=
γ2

h

T∑
t,k=1

αtαkw
⊤
t Q̄ΣβQ̄wk

And we have that:

Q̄ΣβQ̄ = Q̄
(
µβµ

⊤
β + Ip

)
Q̄

= Q̄µβµ
⊤
β Q̄+ Q̄2

=
(1 + δQ)

2

λ2
Q

µβµ
⊤
β +

(1 + δQ)
2

(1 + γ(1 + δQ))2

(
Ip +

(µβµ
⊤
β )

2

λ2
Q

−
2µβµ

⊤
β

λQ

)

Thus the last term is given by:

γ2 E

( T∑
t=1

αtw
⊤
t Qx

)2
 =

γ2(1 + δQ)
2

h
×

T∑
t,k=1

αtαk

[
⟨wt,µβ⟩⟨wk,µβ⟩

λ2
Q

+
1

(1 + γ(1 + δQ))2

(
⟨wt,wk⟩+

∥µβ∥2⟨wt,µβ⟩⟨wk,µβ⟩
λ2
Q

− 2⟨wt,µβ⟩⟨wk,µβ⟩
λQ

)]

In a vectorized form, we have that:

γ2 E

( T∑
t=1

αtw
⊤
t Qx

)2
 =

γ2(1 + δQ)
2

h
×

[
(α⊤W⊤µβ)

2

λ2
Q

+
1

(1 + γ(1 + δQ))2

(
α⊤W⊤Wα+

∥µβ∥2(α⊤W⊤µβ)
2

λ2
Q

− 2(α⊤W⊤µβ)
2

λQ

)]

=
γ2(1 + δQ)

2

h
α⊤Mα

where:

M =
(1− h)

η
W⊤W +

(
1

λ2
Q

+
(1− h)

ηλQ

(∥µβ∥2
λQ

− 2

))
W⊤µβµ

⊤
β W

⊤

Finally gives us the expression of the second order moment of w⊤
Ωx as follows:

E[(w⊤
Ωx)

2] = T1 + T2 + T3
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where:

T1 =
∥µβ∥2
hλQ

(∥µβ∥2 + 1

λQ
− 2(1− h)

)
+

1− h

h

T2 =
2γ(1 + δQ)

hλQ

T∑
t=1

αt

(∥µβ∥2 + 1

λQ
− (1− h)

)
⟨wt,µβ⟩

T3 =
γ2(1 + δQ)

2

h
×

T∑
t,k=1

αtαk

[
⟨wt,µβ⟩⟨wk,µβ⟩

λ2
Q

+
1

(1 + γ(1 + δQ))2

(
⟨wt,wk⟩+

∥µβ∥2⟨wt,µβ⟩⟨wk,µβ⟩
λ2
Q

− 2⟨wt,µβ⟩⟨wk,µβ⟩
λQ

)]

Which also writes in a vectorized form:

T1 =
∥µβ∥2
hλQ

(∥µβ∥2 + 1

λQ
− 2(1− h)

)
+

1− h

h

T2 =
2γ(1 + δQ)

hλQ

(∥µβ∥2 + 1

λQ
− (1− h)

)
α⊤W⊤µβ

T3 =
γ2(1 + δQ)

2

h
α⊤Mα

D.3 FINDING OPTIMAL α

The theoretical test accuracy writes as follows:

Atest(α) = φ

(
a1 +α⊤v1√

a2 +α⊤v2 +α⊤M̃α

)
where:

a1 =
∥µβ∥2
λQ

, v1 =
γ(1 + δQ)

λQ
W⊤µβ , a2 = T1 − a21 =

∥µβ∥2
λQ

(∥µβ∥2 + 1

hλQ
− ∥µβ∥2

λQ
− 2(1− h)

h

)
+

1− h

h

v2 =
(1 + δQ)

λQ

(∥µβ∥2 + 1

hλQ
− 2γ∥µβ∥2

λQ
− 1− h

h

)
W⊤µβ ,

M̃ =
γ2(1 + δQ)

2(1− h)

h

(
1

η
W⊤W +

(
1

λ2
Q

+
1

ηλQ

(∥µβ∥2
λQ

− 2

))
W⊤µβµ

⊤
β W

⊤

)
And therefore, since φ is non-decreasing, maximizing this test accuracy boils down to maximizing
the term inside it, i.e we want to find α∗ that satisfies:

α∗ ∈ argmaxα
a1 +α⊤v1√

a2 +α⊤v2 +α⊤M̃α
= argmaxα g(α)

We compute the gradient of g with respect to α to find the extremum values of these mixing param-
eters:

∇αg(α) =

√
a2 +α⊤v2 +αM̃α v1 − (a1 +α⊤v1)

v2+2M̃α√
a2+α⊤v2+α⊤M̃α

a2 +α⊤v2 +α⊤M̃α

Thus the roots α of ∇g(α) satisfy the following equation:

(a2 +α⊤v2 +α⊤M̃α)v1 − (a1 +α⊤v1)(v2 + 2M̃α) = 0

E LLMS EXPERIMENTAL DETAILS

The pseudo-code algorithm for training with α-LoRA is given as follows in 1.
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Algorithm 1 α-LORA FINE-TUNING

Require: Base model weights {W∗
i }Ni=1, fine-tuning dataset D = {Bj}bj=1 divided into batches,

update period T , optimizers optim (for LoRA modules) and optim alpha (for α =
{αi}Ni=1), number of epochs n.

1: for k = 1 . . . n do
2: for batch Bj in D do
3: Update LoRA modules {(Ai, Bi)}Ni=1 with a gradient step on B using optim.
4: if j mod T = 0 then
5: Sample a fresh batch Bα from D
6: Update α with a gradient step on Bα using optim alpha.
7: end if
8: end for
9: end for

E.1 HYPERPARAMETERS

In this section, we summarize all the details about our experiments on Fine-tuning roberta-base
model on GLUE tasks. Let us define some notations first then give their corresponding values in each
experiment: lora r denotes the rank of LoRA modules, lora alpha denotes the LoRA scal-
ing parameter, lr adapter means the learning rate used to train LoRA modules, batch size
and batch alpha is the training batch size for LoRA modules and the vectors α respectively,
lr alpha is the learning rate used to update α, optim alpha is the optimizer used to train the
vectors α, val split is the percentage of the training set used to train α.

Common to all experiments. We optimize the LoRA modules using AdamW for all the bench-
marks and with a linear scheduler for the learning rate. We initialize the vectors α to the vector
1. The target modules are: the final classifier layer classifier (full training) and the attention
modules query and value (Low Rank Adaptation).

Parameter Value
optimizer AdamW

LoRA Arguments
lora r 8
lora alpha 8
lr adapter 10−4

Trainer Arguments
n epochs 10
batch size 64
optim alpha AdamW
batch alpha 64
lr alpha 10−2

T 1
val split 1
seeds 1, 5, 123

Table 3: Implementation Details for the fine-tuning experiment on MNLI.

E.2 VALUES OF α

We report in the following plots some metrics (mean, standard deviation, percentiles) describing the
obtained values of the vectors α for each module after the training phase.
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Parameter Value
optimizer AdamW

LoRA Arguments
lora r 8
lora alpha 8
lr adapter 10−4 for LoRA and 2.10−4 for α-LoRA

Trainer Arguments
n epochs 10
batch size 64
optim alpha Adam
batch alpha 64
lr alpha 5.10−3

T 20
val split 0.2
seeds 1, 3, 123

Table 4: Implementation Details for the fine-tuning experiment on QNLI.

Parameter Value
optimizer AdamW

LoRA Arguments
lora r 8
lora alpha 8
lr adapter 10−4 for LoRA and 2.10−4 for α-LoRA

Trainer Arguments
n epochs 40
batch size 64
optim alpha Adam
batch alpha 64
lr alpha 5.10−3

T 20
val split 0.2
seeds 3, 5, 123

Table 5: Implementation Details for the fine-tuning experiment on MRPC.

Parameter Value
optimizer AdamW

LoRA Arguments
lora r 8
lora alpha 8
lr adapter 10−4

Trainer Arguments
n epochs 40
batch size 64
optim alpha AdamW
batch alpha 64
lr alpha 5.10−3

T 20
val split 0.8 (and 0.2 for seed 123)
seeds 3, 5, 123

Table 6: Implementation Details for the fine-tuning experiment on RTE.
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Parameter Value
optimizer AdamW

LoRA Arguments
lora r 8
lora alpha 8
lr adapter 10−4 for LoRA and 2.10−4 for α-LoRA

Trainer Arguments
n epochs 10
batch size 128
optim alpha AdamW
batch alpha 128
lr alpha 5.10−3

T 10 (and 20 for seed 5)
val split 0.5 (and 0.9 for seed 5)
seeds 1, 3, 5

Table 7: Implementation Details for the fine-tuning experiment on SST2.

Parameter Value
optimizer AdamW

LoRA Arguments
lora r 8
lora alpha 8
lr adapter 5.10−4

Trainer Arguments
n epochs 5
batch size 256
optim alpha Adam, AdamW (seed 123)
batch alpha 64
lr alpha 5.10−3

T 1 (seed 3), 10 (seed 5) and 20 (seed 123)
val split 0.8
seeds 3, 5, 123

Table 8: Implementation Details for the fine-tuning experiment on QQP.
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Figure 7: Statistics of the vectors α for the MNLI benchmark
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Figure 8: Statistics of the vectors α for the QNLI benchmark
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Figure 9: Statistics of the vectors α for the RTE benchmark
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