

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 α -LORA: EFFECTIVE FINE-TUNING VIA BASE MODEL RESCALING

Anonymous authors

Paper under double-blind review

ABSTRACT

Fine-tuning has proven to be highly effective in adapting pre-trained models to perform better on new desired tasks with minimal data samples. Among the most widely used approaches are reparameterization methods, which update a target module by augmenting its frozen weight matrix with an additional trainable weight matrix. The most prominent example is Low Rank Adaption (LoRA) (Hu et al., 2022), which gained significant attention in recent years. In this paper, we introduce a new class of reparametrization methods for transfer learning, designed to enhance the generalization ability of fine-tuned models. We establish the effectiveness of our approach in a high-dimensional binary classification setting using tools from Random Matrix Theory, and further validate our theoretical findings through more realistic experiments, such as fine-tuning large language models.

1 INTRODUCTION

Large foundational models have driven major advances in artificial intelligence across domains such as computer vision and natural language processing. Examples include transformer-based models (Vaswani et al., 2017) operating in natural language domain (Team et al., 2023; Grattafiori et al., 2024) or vision domain (Cordonnier et al., 2020; Dosovitskiy et al., 2020). Such models are specifically known for their relatively large size and massive training corpus, which makes them more powerful and adapted for many use cases. However, even with their extensive pre-training, these large models may not excel at some specific tasks without further adjustment.

Fine-tuning addresses this need by updating a pre-trained model with task-specific data. Unlike training from scratch, it leverages general pre-trained representations while reducing data and compute requirements. The most common class of fine-tuning methods is Supervised Fine-Tuning (SFT), which relies on labeled data in that adaptation process, and one of its most popular lightweight techniques is Low-Rank Adaptation (LoRA) (Hu et al., 2022), which updates the desired module by adding a low-rank perturbation to the original (frozen) weight matrix.

In this paper, we study fine-tuning through the lens of Random Matrix Theory (RMT), where we introduce a theoretical framework to understand and improve transfer learning. Leveraging the theoretical findings, our key practical idea in the context of LoRA is to scale the frozen weights row-wise with a vector α before adaptation, thereby adding a new degree of freedom to the fine-tuning process. We show that this modification leads to an optimal scaling factor α^* , which is typically different from the standard choice ($\alpha = 1$). We analyze this framework in a high-dimensional binary classification setting under a Gaussian Mixture Model, proving the existence of such an optimal α^* while providing its closed-form expression in terms of scalar data-dependent quantities. We then validate our theoretical insights on real tasks, including transfer learning benchmarks and large language model fine-tuning.

Summary of contributions. Our main contributions are summarized as follows:

1. In the context of adaptation fine-tuning (e.g., LoRA), we propose the scaling of the base model weight matrices by a non-trivial row-wise vector α .
2. We theoretically prove the existence of an optimal parameter $\alpha^* \neq 1$ in high-dimensional binary classification and derive its closed form.
3. We design an algorithm to estimate optimal α in complex scenarios such as LLM fine-tuning.

054 2 RELATED WORK

056 **Transfer learning foundations.** Transfer Learning (TL) studies how knowledge acquired in a
 057 source task or domain can be reused to improve learning in a related target task. Early surveys (Pan
 058 & Yang, 2009; Weiss et al., 2016) outlined key settings such as domain adaptation and multitask
 059 learning. Most theoretical works established generalization bounds linking transfer success to source
 060 error and distributional divergence Ben-David et al. (2010), and showed how shared representations
 061 reduce sample complexity (Maurer et al., 2016; Tripuraneni et al., 2020). More recent studies refined
 062 these results under classification and regression settings (Hanneke & Kpotufe, 2024; Zhang et al.,
 063 2021; Klivans et al., 2024; Kpotufe & Martinet, 2021; Cai & Wei, 2021; Reeve et al., 2021).

064 **Fine-tuning pre-trained models.** With the advent of large-scale pre-training, fine-tuning has be-
 065 come the dominant strategy for transfer learning. The most popular fine-tuning techniques are Super-
 066 vised Fine-tuning (SFT) and fine-tuning with Reinforcement Learning (RL). RL-based approaches
 067 such as RLHF (Ouyang et al., 2022), DPO (Rafailov et al., 2023), GRPO (Ramesh et al., 2024; Guo
 068 et al., 2025) and their variants are especially popular for reasoning and mathematics tasks, where
 069 they often outperform SFT (Shenfeld et al., 2025). In this paper, however, we focus on SFT tech-
 070 niques. SFT extends the training of a pre-trained model using labeled data. Because these models are
 071 typically very large, it is common to fine-tune only a small fraction of their parameters while leaving
 072 most unchanged. This strategy, known as Parameter-Efficient Fine-Tuning (PEFT) (Xu et al., 2023),
 073 aims to achieve strong performance with minimal parameter updates. PEFT methods are usually
 074 grouped into three categories: additive, selective, and reparametrized (Ji et al., 2025). Our work
 075 centers on the last category.

076 **Reparametrized Fine-tuning.** Reparameterization-based fine-tuning adapts a model by express-
 077 ing its parameters in an alternative form, commonly through a low-rank decomposition, to reduce
 078 training costs, while the full weight matrices are reconstructed for inference. The most common
 079 technique in this class is Low Rank Adaptation (LoRA) (Hu et al., 2022), which introduces small,
 080 trainable matrices operating alongside the pre-trained weights to inject task-specific updates without
 081 burdening the inference process. Many extensions were proposed to enhance the efficiency of LoRA
 082 by either acting on the initialization of the low rank modules (Hayou et al., 2024a), their learning
 083 rates (Hayou et al., 2024b), normalizing the updates (Liu et al., 2024), setting adaptive ranks (Kim
 084 et al., 2024; Lu et al., 2024), finding optimal placements for LoRA modules (Hayou et al., 2025),
 085 and more (Zhang et al., 2023b; Dettmers et al., 2023; Kopiczko et al., 2023; Zhang et al., 2023a;
 086 Tian et al., 2024; Jiang et al., 2024).

088 3 PROBLEM SETTING AND BACKGROUND

090 To prove the effectiveness of our new family of fine-tuning algorithms, we will theoretically analyze
 091 a binary classification setting under a Gaussian Mixture Model (GMM) using tools from Random
 092 Matrix Theory (RMT). Through this analysis, we will prove the existence of an optimal scaling
 093 parameter α^* and derive its exact theoretical formulation for these settings.

095 3.1 THEORETICAL SETTING

097 The goal is to fine-tune a linear classifier, initially pretrained on a dataset called **source**, in order to
 098 perform a **target** task given a relatively small target data corpus.

100 **Pre-training phase.** We consider that we are given pairs of pre-training (source) data samples
 101 $\{(\tilde{x}_i, \tilde{y}_i)\}_{i=1}^N$ that are distributed, for $\tilde{x}_i \in \mathcal{C}_a$ with $a \in \{1, 2\}$, as follows:

$$102 \quad \tilde{x}_i \in \mathcal{C}_a \quad \Leftrightarrow \quad \begin{cases} \tilde{x}_i = \mu_a + \tilde{z}_i, & \tilde{z}_i \sim \mathcal{N}(\mathbf{0}, \mathbf{I}_p), \\ 103 \quad \tilde{y}_i = (-1)^a. \end{cases} \quad (1)$$

104 For convenience and without loss of generality, we further assume that $\mu_a = (-1)^a \mu$ for some
 105 vector $\mu \in \mathbb{R}^p$. This setting can be recovered by subtracting $\frac{\mu_1 + \mu_2}{2}$ from each data point, as such
 106 $\mu = \frac{\mu_2 - \mu_1}{2}$ and therefore the SNR $\|\mu\|$ controls the difficulty of the classification problem, in
 107 the sense that large values of $\|\mu\|$ yield a simple classification problem whereas when $\|\mu\| \rightarrow 0$,

108 the classification becomes impossible. Denoting $\tilde{\mathbf{X}} = [\tilde{\mathbf{x}}_1, \dots, \tilde{\mathbf{x}}_N] \in \mathbb{R}^{p \times N}$ the data matrix and
 109 $\tilde{\mathbf{y}} = [\tilde{y}_1, \dots, \tilde{y}_N]^\top \in \mathbb{R}^N$ the corresponding labels vector, we have in matrix form
 110

$$\tilde{\mathbf{X}} = \boldsymbol{\mu} \tilde{\mathbf{y}}^\top + \tilde{\mathbf{Z}}, \quad (2)$$

111 where $\tilde{\mathbf{Z}}$ is a random matrix with $\mathcal{N}(0, 1)$ i.i.d. entries.
 112

113 We then consider training a classifier, called $\tilde{\mathbf{w}}$, on this source dataset by solving:

$$\min_{\mathbf{w}} \frac{1}{N} \sum_{i=1}^N \ell(\mathbf{w}^\top \mathbf{x}_i, y_i) + \tilde{\gamma} \|\mathbf{w}\|_2^2 \quad (3)$$

114 for some loss function ℓ and a positive regularization parameter $\tilde{\gamma}$. Taking a generic or a non-intuitive
 115 loss, such as the binary cross entropy, leads to **intractable** solution $\tilde{\mathbf{w}}$. However, Mai & Liao (2024)
 116 show that in the case of a Gaussian mixture data model or more generally a data distribution with
 117 finite fourth-order moment, it is possible to optimize such a classifier using the squared (L^2) loss
 118 function, which also gives a closed-form solution to this problem. Thus, taking $\ell(x, y) = (x - y)^2$
 119 leads to the following optimization problem:
 120

$$\tilde{\mathbf{w}} = \arg \min_{\mathbf{v}} \frac{1}{N} \left\| \tilde{\mathbf{X}}^\top \mathbf{v} - \tilde{\mathbf{y}} \right\|_2^2 + \tilde{\gamma} \|\mathbf{v}\|_2^2, \quad (4)$$

121 Which gives us the following solution:
 122

$$\tilde{\mathbf{w}} = \frac{1}{N} \mathbf{R} \tilde{\mathbf{X}} \tilde{\mathbf{y}}, \quad \mathbf{R} = \left(\frac{1}{N} \tilde{\mathbf{X}} \tilde{\mathbf{X}}^\top + \tilde{\gamma} \mathbf{I}_p \right)^{-1} \quad (5)$$

123 **Fine-tuning phase.** During the fine-tuning phase, we suppose that we are given pairs of target
 124 data $\{(\mathbf{x}_i, y_i)\}_{i=1}^n$ with $y_i \in \{-1, 1\}$ that are distributed such that $\mathbf{X} = [\mathbf{x}_1, \dots, \mathbf{x}_n] \in \mathbb{R}^{p \times n}$ is
 125 given by:
 126

$$\mathbf{X} = \boldsymbol{\mu}_\beta \mathbf{y}^\top + \mathbf{Z}, \quad \boldsymbol{\mu}_\beta = \beta \boldsymbol{\mu} + \boldsymbol{\mu}^\perp, \quad (6)$$

127 where \mathbf{Z} is a random matrix with $\mathcal{N}(0, 1)$ i.i.d. entries, $\boldsymbol{\mu}^\perp$ is an orthogonal vector to $\boldsymbol{\mu}$ and the factor
 128 $\beta \in \mathbb{R}$ quantifies the **alignment** between the source and target data, as we have that: $\langle \boldsymbol{\mu}_\beta, \boldsymbol{\mu} \rangle =$
 129 $\beta \|\boldsymbol{\mu}\|^2$. Leveraging the pre-trained weights $\tilde{\mathbf{w}} \in \mathbb{R}^p$, we consider the training of adapter weights \mathbf{a}
 130 as:
 131

$$\mathbf{a} = \arg \min_{\mathbf{v}} \frac{1}{n} \left\| \mathbf{X}^\top (\alpha \tilde{\mathbf{w}} + \mathbf{v}) - \mathbf{y} \right\|_2^2 + \gamma \|\mathbf{v}\|_2^2, \quad (7)$$

132 for a scalar $\alpha \in \mathbb{R}$. In fact, classical reparametrization approaches can be modeled by the same
 133 setting using $\alpha = 1$. Solving the previous minimization problem, \mathbf{a} expresses as:
 134

$$\mathbf{a} = \frac{1}{n} \left(\frac{1}{n} \mathbf{X} \mathbf{X}^\top + \gamma \mathbf{I}_p \right)^{-1} (\mathbf{X} \mathbf{y} - \alpha \mathbf{X} \mathbf{X}^\top \tilde{\mathbf{w}}). \quad (8)$$

135 We define the resolvent matrices \mathbf{Q} and \mathbf{R} by:
 136

$$\mathbf{Q} = \left(\frac{1}{n} \mathbf{X} \mathbf{X}^\top + \gamma \mathbf{I}_p \right)^{-1}, \quad \mathbf{R} = \left(\frac{1}{N} \tilde{\mathbf{X}} \tilde{\mathbf{X}}^\top + \tilde{\gamma} \mathbf{I}_p \right)^{-1}, \quad (9)$$

137 Then our obtained fine-tuned classifier \mathbf{w}_α writes:
 138

$$\mathbf{w}_\alpha = \alpha \tilde{\mathbf{w}} + \mathbf{a} = \frac{1}{n} \mathbf{Q}(\gamma) \mathbf{X} \mathbf{y} + \alpha \gamma \mathbf{Q} \tilde{\mathbf{w}}$$

139 We denote by $\mathbf{w} \equiv \mathbf{w}_0$ the classifier obtained through learning directly on target data (without
 140 fine-tuning), which is given by:
 141

$$\mathbf{w} = \frac{1}{n} \mathbf{Q}(\gamma) \mathbf{X} \mathbf{y} \quad (\text{No-FT})$$

142 Then we finally get the expression of our α -Fine-tuned classifier as follows:
 143

$$\mathbf{w}_\alpha = \mathbf{w} + \alpha \gamma \mathbf{Q} \tilde{\mathbf{w}} \quad (\alpha\text{-FTC})$$

162 **Remark 3.1** (About the interpretability of our fine-tuned classifier). *Remark that the parameter α introduced in the expression of the fine-tuned classifier \mathbf{w}_α characterizes the contribution of each training dataset (source and target) to the test performance on the target task. In fact, since the prediction of the class label does not change by multiplying \mathbf{w}_α by a positive constant, then by taking a positive α and for $\rho = \frac{\alpha}{1+\alpha} \in (0, 1)$, the fine-tuned classifier is equivalent to this convex weighted classifier:*

$$\mathbf{w}_\rho = \rho \tilde{\mathbf{w}} + (1 - \rho) \mathbf{a}$$

163 and therefore, this new parameter ρ can be interpreted as the percentage of the contribution of the
164 source task to the test performance on the target task.

165 **Remark 3.2** (About the regularization parameter γ). *We remark from the expression of \mathbf{w}_α in equation
166 α -FTC that the weight decay γ is essential to have the dependence of \mathbf{w}_α on α . In fact, taking
167 $\gamma \rightarrow 0$ leads to a fine-tuned classifier of the form:*

$$\mathbf{w}_\alpha = (\mathbf{X}\mathbf{X}^\top)^+ \mathbf{X}\mathbf{y}$$

168 where $(\mathbf{X}\mathbf{X}^\top)^+$ is the Moore-Penrose inverse of the symmetric semi-definite matrix $\mathbf{X}\mathbf{X}^\top$. Therefore,
169 the obtained classifier does **not** depend on α here, nor on the pre-trained model $\tilde{\mathbf{w}}$. Additionally,
170 having such a regularization technique is essential in transfer learning since the target dataset
171 is generally much smaller than the pre-training one, and therefore the fine-tuning process can easily
172 lead to overfitting in the absence of a regularization technique.

173 3.2 RMT BACKGROUND

174 To analyze the performance of the fine-tuned classifier \mathbf{w}_α , we can leverage tools from Random
175 Matrix Theory. In mathematical terms, the understanding of the asymptotic performance of the
176 classifier \mathbf{w}_α boils down to the characterization of the statistical behavior of the *resolvent matrices*
177 $\mathbf{Q}(z)$ and $\mathbf{R}(z)$ introduced in equation 9. In the following, we will recall some important notions
178 and results from random matrix theory, which will be at the heart of our analysis. We start by
179 defining the main object, which is the resolvent matrix.

180 **Definition 3.3** (Resolvent). *For a symmetric matrix $\mathbf{M} \in \mathbb{R}^{p \times p}$, the resolvent $\mathbf{Q}_M(z)$ of \mathbf{M} is
181 defined for $z \in \mathbb{C} \setminus \mathcal{S}(\mathbf{M})$ as:*

$$\mathbf{Q}_M(z) = (\mathbf{M} - z\mathbf{I}_p)^{-1},$$

182 where $\mathcal{S}(\mathbf{M})$ is the set of eigenvalues or spectrum of \mathbf{M} .

183 In fact, the study of the asymptotic performance of \mathbf{w}_α involves the estimation of linear forms of the
184 resolvents \mathbf{Q} and \mathbf{R} in equation 9, such as $\frac{1}{n} \text{Tr } \mathbf{Q}$ and $\mathbf{a}^\top \mathbf{Q} \mathbf{b}$ with $\mathbf{a}, \mathbf{b} \in \mathbb{R}^p$ of bounded Euclidean
185 norms. Therefore, the notion of a *deterministic equivalent* (Hachem et al., 2007) is crucial as it
186 allows the design of a **deterministic** matrix, having (in probability or almost surely) asymptotically
187 the same *scalar observations* as the random ones in the sense of *linear forms*. A rigorous definition
188 is provided below.

189 **Definition 3.4** (Deterministic equivalent (Hachem et al., 2007)). *We say that $\bar{\mathbf{Q}} \in \mathbb{R}^{p \times p}$ is a de-
190 terministic equivalent for the random resolvent matrix $\mathbf{Q} \in \mathbb{R}^{p \times p}$ if, for any bounded linear form
191 $u : \mathbb{R}^{p \times p} \rightarrow \mathbb{R}$, we have that, as $p \rightarrow \infty$:*

$$u(\mathbf{Q}) \xrightarrow{a.s.} u(\bar{\mathbf{Q}}),$$

192 where the convergence is in the almost sure sense.

193 In particular, a deterministic equivalent for the resolvents $\mathbf{Q}(z)$ and $\mathbf{R}(z)$ defined in equation 9 is
194 given by the following Lemma (the proof is presented in Appendix A.2).

195 **Lemma 3.5** (Deterministic equivalent of \mathbf{Q} and \mathbf{R}). *Under the high-dimensional regime, when
196 $p, n, N \rightarrow \infty$ with $\frac{p}{n} \rightarrow \eta \in (0, \infty)$ and $\frac{p}{N} \rightarrow \tilde{\eta} \in (0, \infty)$ and assuming $\|\mu\| = \mathcal{O}(1)$, a
197 deterministic equivalent for $\mathbf{Q} \equiv \mathbf{Q}(\gamma)$ and for $\mathbf{R} \equiv \mathbf{R}(\gamma)$, previously defined in equation 9,
198 denoted $\bar{\mathbf{Q}}$ and $\bar{\mathbf{R}}$ respectively, are given by:*

$$\bar{\mathbf{Q}}(\gamma) = \left(\frac{\mu_\beta \mu_\beta^\top + \mathbf{I}_p}{1 + \delta_Q} + \gamma \mathbf{I}_p \right)^{-1}, \quad \bar{\mathbf{R}}(\gamma) = \left(\frac{\mu \mu^\top + \mathbf{I}_p}{1 + \delta_R} + \gamma \mathbf{I}_p \right)^{-1}.$$

199 *Where:*

$$\delta_Q = \frac{1}{n} \text{Tr } \bar{\mathbf{Q}} = \frac{\eta - \gamma - 1 + \sqrt{(\eta - \gamma - 1)^2 + 4\eta\gamma}}{2\gamma}, \quad \delta_R = \frac{\tilde{\eta} - \tilde{\gamma} - 1 + \sqrt{(\tilde{\eta} - \tilde{\gamma} - 1)^2 + 4\tilde{\eta}\tilde{\gamma}}}{2\tilde{\gamma}}.$$

216 **4 MAIN RESULTS**
 217

218 After having defined the setting and needed background, we will now present our main technical
 219 results, which describe the asymptotic behavior of the fine-tuned classifier defined in equation α -
 220 FTC. Specifically, we provide our results under the following growth rate assumptions (classical
 221 assumptions in Random Matrix Theory).

222 **Assumption 4.1** (Growth Rates). *Suppose that as $p, n, N \rightarrow \infty$:*

$$224 \quad 1) \frac{p}{n} \rightarrow \eta \in [0, \infty), \quad 2) \frac{p}{N} \rightarrow \tilde{\eta} \in [0, \infty), \quad 3) \|\mu\| = \mathcal{O}(1), \quad 4) \|\mu_\beta\| = \mathcal{O}(1).$$

225 The first and second assumptions simply state that our analysis considers both the low ($\eta, \tilde{\eta} \ll 1$)
 226 and high ($\eta, \tilde{\eta} \gg 1$) dimensional regimes. The third and last assumptions are also fundamental
 227 and state that the norm of the source μ and target μ_β data means do not scale with the dimension
 228 p , which makes the classification problem neither easy ($\|\mu\| \rightarrow \infty$) nor impossible ($\|\mu\| \rightarrow 0$)
 229 in high dimensions. Having stated the main assumptions, we are now in a position to present our
 230 main technical findings about the theoretical test performance of the fine-tuned classifier α -FTC.
 231 But beforehand, let us define some scalar quantities that will be useful in our derivations:

$$232 \quad \lambda_Q = \|\mu_\beta\|^2 + 1 + \gamma(1 + \delta_Q), \quad \lambda_R = \|\mu\|^2 + 1 + \tilde{\gamma}(1 + \delta_R), \quad h = 1 - \frac{\eta}{(1 + \gamma(1 + \delta_Q))^2},$$

$$234 \quad \tilde{h} = 1 - \frac{\tilde{\eta}}{(1 + \tilde{\gamma}(1 + \delta_R))^2}$$

236 Our main theorem below describes the behavior of the decision function of our fine-tuned classifier.
 237

238 **Theorem 4.2** (Gaussianity of the fine-tuned Ridge model). *Let w_α be the fine-tuned clas-
 239 sifier as defined in equation α -FTC and suppose that Assumption 4.1 holds. The decision
 240 function $w_\alpha^\top x$, on some test sample $x \in \mathcal{C}_a$ independent of \mathbf{X} , satisfies:*

$$242 \quad w_\alpha^\top x \xrightarrow{\mathcal{D}} \mathcal{N}((-1)^a m_\alpha, \nu_\alpha - m_\alpha^2),$$

244 *where:*

$$245 \quad m_\alpha = \frac{1}{\lambda_Q} \left(\|\mu_\beta\|^2 + \frac{\alpha\beta\gamma(1 + \delta_Q)}{\lambda_R} \|\mu\|^2 \right),$$

$$247 \quad \nu_\alpha = T_1 + \alpha T_2 + \alpha^2 T_3.$$

249 *With:*

$$250 \quad T_1 = \frac{\|\mu_\beta\|^2}{h\lambda_Q} \left(\frac{\|\mu_\beta\|^2 + 1}{\lambda_Q} - 2(1 - h) \right) + \frac{1 - h}{h},$$

$$253 \quad T_2 = \frac{2\gamma\beta(1 + \delta_Q)\|\mu\|^2}{\lambda_R\lambda_Q} \left(1 - \frac{\gamma(1 + \delta_Q)}{h\lambda_Q} \right),$$

$$255 \quad T_3 = \frac{\gamma^2(1 + \delta_Q)^2}{h} \times$$

$$258 \quad \left[\frac{\|\mu\|^2}{\lambda_R^2} \left(\frac{\beta^2\|\mu\|^2}{\lambda_Q^2} + \frac{1 - h}{\eta} \left(1 + \frac{\beta^2\|\mu\|^2\|\mu_\beta\|^2}{\lambda_Q^2} - \frac{2\beta^2\|\mu\|^2}{\lambda_Q} + (1 - \tilde{h}) \left(1 - \frac{2\|\mu\|^2}{\lambda_R} \right) \right) \right) \right]$$

261 In simple terms, Theorem 4.2 states that the decision function of the classifier in equation α -FTC is
 262 asymptotically equivalent to the thresholding of two multivariate Gaussian random variables with
 263 respective means m_α and $-m_\alpha$ and standard deviation $\nu_\alpha - m_\alpha^2$, where the statistics m_α and ν_α
 264 are expressed in terms of the scalar quantities defined above (see Figure 6 in the Appendix). Having
 265 characterized the distribution of the decision function of w_α , we can now estimate its generalization
 266 performance, such as its test accuracy.

267 **Proposition 4.3** (Asymptotic test accuracy of w_α). *The asymptotic test accuracy of w_α defined in
 268 equation α -FTC, under Assumption 4.1, and as the number of test samples $n_{test} \rightarrow \infty$, is given by:*

$$269 \quad \mathcal{A}_{test} \xrightarrow{a.s.} 1 - \varphi \left((\nu_\alpha - m_\alpha^2)^{-\frac{1}{2}} m_\alpha \right), \quad \text{where: } \varphi(x) = \frac{1}{\sqrt{2\pi}} \int_x^{+\infty} e^{-\frac{t^2}{2}} dt.$$

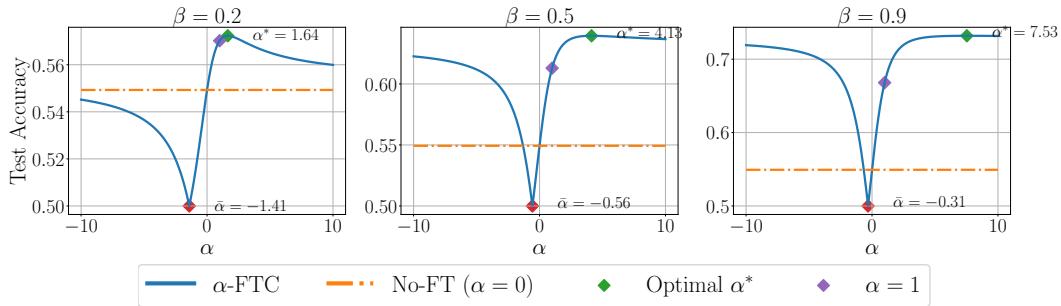


Figure 1: Theoretical Test Accuracy variation with α for $N = 5000$, $n = 40$, $p = 1000$, and the theoretical model is modified to take β in $(0, 1)$: $\mu_\beta = \beta\mu + \sqrt{1 - \beta^2}\mu^\perp$, where $\|\mu\| = \|\mu^\perp\| = 0.8$. Finally the regularization parameters are: $\tilde{\gamma} = 2$ and $\gamma = 10^{-1}$.

Therefore, thanks to Proposition 4.3, we now have the exact formulas of the theoretical test accuracy of our classifier w_α , which can be used to characterize the expression of the optimal/worst parameters of the model (for instance, the α) to use for the fine-tuning process. In particular, we will derive the theoretical expressions of the extremum of α that lead to either the best or the worst test accuracy on the target task (proof in Appendix B).

Theorem 4.4 (Optimal α). *Maximizing the term $((\nu_\alpha - m_\alpha^2)^{-\frac{1}{2}}m_\alpha)$ in terms of α leads to maximizing the test accuracy \mathcal{A}_{test} , and gives a unique maximizer α^* given by:*

$$\alpha^* = \frac{\lambda_R T_2 \|\mu_\beta\|^2 - 2\beta\gamma T_1 (1 + \delta_Q) \|\mu\|^2}{\beta\gamma T_2 (1 + \delta_Q) \|\mu\|^2 - 2\lambda_R T_3 \|\mu_\beta\|^2}$$

Plus, solving $(\nu_\alpha - m_\alpha^2)^{-\frac{1}{2}}m_\alpha = 0$ leads to the unique minimizer $\bar{\alpha}$ of \mathcal{A}_{test} , which is given by:

$$\bar{\alpha} = -\frac{\lambda_R \|\mu_\beta\|^2}{\beta\gamma (1 + \delta_Q) \|\mu\|^2}$$

Figure 1 shows the evolution of the theoretical test accuracy with the parameter α for different source datasets (i.e. different alignments β). In particular, we observe the existence of an optimal parameter α^* that is generally different from 1 (standard approach), and as can be previously anticipated, its impact on the test accuracy is more visible in the case of a higher alignment factor β , which means in this case that we put higher emphasis on the base model to generalize better in the new task (see Remark 3.1).

Focusing on the optimal α^* , Figure 2 clearly depicts the non-trivial contribution of the dimension p to the choice of α . It is clear that α^* is non-decreasing with the alignment β between the source and target task, but its effect gets amplified with the dimension p of the problem. Notably, the influence of α is more pronounced in low-resource settings ($p \gg n$) compared to cases where sufficient fine-tuning data is available. This further underscores the crucial role of α in effectively leveraging the pre-trained model and source data. Additionally, as $\beta \rightarrow 0$, we also remark that $\alpha^* \rightarrow 0$, which means that fine-tuning has no added value when the source and target tasks are **unrelated** and orthogonal.

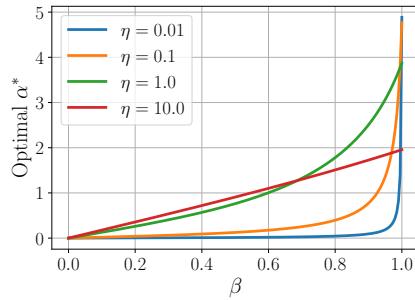


Figure 2: Variations of the optimal parameter α^* with respect to the alignment between the source μ and target μ_β dataset means. These latter were chosen of norm 1, $N = 2000$, $n = 200$ and $\gamma = \tilde{\gamma} = 1$.

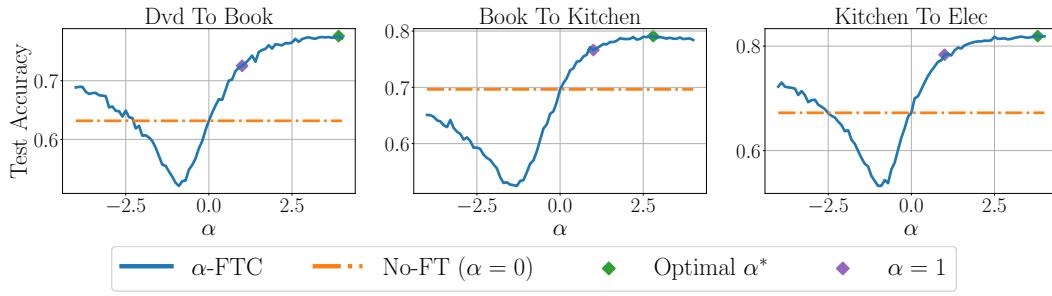


Figure 3: Test accuracy variation with α for different transfer learning schemes from the Amazon Review dataset (Blitzer et al., 2007). The considered parameters here are: $N = 2000$, $n = 40$, $p = 400$, $\gamma = 10^{-1}$ and $\tilde{\gamma} = 2$.

5 EXPERIMENTS

In this section, we present some experiments on real datasets to validate our approach. We start by fine-tuning linear models on the Amazon Review dataset (Blitzer et al., 2007) to verify our theoretical findings. After that, we formalize our new class of reparametrization methods and verify its efficiency by experiments on fine-tuning LLMs on the GLUE tasks (Wang et al., 2018).

5.1 WITHIN OUR THEORETICAL MODEL: LINEAR BINARY CLASSIFICATION

Here we present our experiments on the Amazon Review dataset (Blitzer et al., 2007) to validate our theory. This dataset includes several binary classification tasks corresponding to positive versus negative reviews of books, dvd, electronics, and kitchen. We apply the standard scaler from `scikit-learn` (Pedregosa et al., 2011) and estimate $\|\mu\|$, $\|\mu^\perp\|$ and β with the normalized data. Figure 3 depicts the variation in test accuracy of three transfer tasks with respect to the parameter α and gives a comparison between the three main schemes: $\alpha = 0$ (i.e., learning directly on the target data without using previous source knowledge), $\alpha = 1$ (classical approach) and with the optimal α^* obtained using the theoretical formula in Theorem 4.4. Depending on the tasks, we see a clear improvement in the test accuracy for α^* compared to the other schemes, which further highlights the impact of this scaling parameter. Table 1 summarizes the results obtained for all the possible transfer tasks between the sub-datasets.

Table 1: Test accuracy (in %) comparison over Amazon review datasets (Blitzer et al., 2007) for $N = 2000$, $n = 40$, $p = 400$, and optimal regularization parameters $\gamma = \tilde{\gamma} = 1$. As theoretically anticipated, our new fine-tuning approach yields better classification accuracy than training directly on the target dataset ($\alpha = 0$) or using $\alpha = 1$. The results were computed for 3 random seeds.

Source Dataset	Target Dataset	$\alpha = 0$	$\alpha = 1$	Optimal α^*
Books	Dvd ($\beta = 0.8$)	64.12 ± 0.03	75.67 ± 0.24	77.35 ± 0.14 ($\alpha^* = 2.47$)
	Electronics ($\beta = 0.71$)	68.61 ± 0.74	76.65 ± 0.02	77.12 ± 0.17 ($\alpha^* = 1.68$)
	Kitchen ($\beta = 0.79$)	69.24 ± 0.95	78.19 ± 0.05	78.96 ± 0.26 ($\alpha^* = 1.9$)
Dvd	Books ($\beta = 0.78$)	63.43 ± 0.67	75.22 ± 0.24	77.59 ± 0.07 ($\alpha^* = 2.47$)
	Electronics ($\beta = 0.71$)	68.61 ± 0.74	76.72 ± 0.17	76.88 ± 0.42 ($\alpha^* = 1.69$)
	Kitchen ($\beta = 0.78$)	69.24 ± 0.95	78.11 ± 0.23	78.72 ± 0.54 ($\alpha^* = 1.88$)
Electronics	Books ($\beta = 0.51$)	63.43 ± 0.67	72.2 ± 0.1	73.29 ± 0.13 ($\alpha^* = 1.67$)
	Dvd ($\beta = 0.52$)	64.12 ± 0.03	72.41 ± 0.16	73.48 ± 0.17 ($\alpha^* = 1.69$)
	Kitchen ($\beta = 0.9$)	69.24 ± 0.95	81.58 ± 0.15	83.02 ± 0.1 ($\alpha^* = 2.29$)
Kitchen	Books ($\beta = 0.52$)	63.43 ± 0.67	72.86 ± 0.1	74.27 ± 0.14 ($\alpha^* = 1.84$)
	Dvd ($\beta = 0.53$)	64.12 ± 0.03	73.15 ± 0.08	74.15 ± 0.09 ($\alpha^* = 1.82$)
	Electronics ($\beta = 0.83$)	68.61 ± 0.74	80.14 ± 0.02	81.89 ± 0.18 ($\alpha^* = 2.31$)



Figure 4: Test accuracy evolution of `roberta-base` finetuned on MNLI and RTE for a single fixed seed (seed 5 for MNLI and seed 123 for RTE).

We note that our approach yields optimal results for all transfer tasks, which clearly validates our theoretical results and underscores the efficiency of our method in terms of its generalization capabilities. This can also be observed in Figure 3, which shows that the optimal test accuracy is obtained for a parameter α that is not necessarily equal, nor even close, to 1.

5.2 BEYOND OUR THEORETICAL MODEL: SUPERVISED FINE-TUNING FOR LLMs

To go beyond linear models, we now fine-tune `roberta-base` language model (Liu et al., 2019) on downstream classification taken from GLUE benchmarks (Wang et al., 2018). To adapt our theoretical insights from the linear model to complex, multi-layered architectures like LLMs, we generalize the scalar scaling parameter α to a vector α . This extension provides finer-grained control, allowing the model to rescale the contribution of the frozen base weights on a per-output-neuron basis. This added flexibility is crucial for capturing the intricate functional specialization within different dimensions of a neural network’s hidden states. Consequently, the update rule for a weight matrix \mathbf{W}^* is modified from a simple scalar product to a row-wise scaling operation, as detailed below:

$$\mathbf{W}_{\text{new}} = \alpha \odot \mathbf{W}^* + \mathbf{W} \quad (10)$$

where \odot is the element-wise product between vectors, $\mathbf{W}^* \in \mathbb{R}^{d_{\text{out}} \times d_{\text{in}}}$ is the original layer weights (frozen during training), $\alpha \in \mathbb{R}^{d_{\text{out}}}$ (each element in the output dimension is then multiplied by a scalar), and $\mathbf{W} \in \mathbb{R}^{d_{\text{out}} \times d_{\text{in}}}$ is the trainable weight matrix. Additionally, \mathbf{W} can be approximated with a low-rank matrix: $\mathbf{W} = \mathbf{AB}$, where: $\mathbf{A} \in \mathbb{R}^{d_{\text{out}} \times r}$ and $\mathbf{B} \in \mathbb{R}^{r \times d_{\text{in}}}$, a method that we call **α-LoRA**. We then report in Table 2 the test performance obtained using standard LoRA and our α-LoRA method evaluated on six GLUE tasks: MNLI, QNLI, MRPC, RTE, SST-2, and QQP.

Table 2: Test accuracy comparison over GLUE classification tasks (Wang et al., 2018) using `roberta-base` model. As theoretically anticipated, our new fine-tuning approach yields better test classification accuracy than the standard LoRA method ($\alpha = 1$). The details about these experiments are presented in Appendix E.

Method	MNLI	QNLI	MRPC	RTE	SST-2	QQP
LoRA	85.77 ± 0.16	91.95 ± 0.03	88.40 ± 0.31	74.01 ± 1.64	94.00 ± 0.11	88.80 ± 0.02
α-LoRA	86.12 ± 0.06	92.20 ± 0.13	89.46 ± 0.53	77.62 ± 0.59	94.38 ± 0.01	88.86 ± 0.03

We note that from Table 2 and Figure 4, our method leads to higher generalization performance compared to standard LoRA across all GLUE benchmarks, which further validates our theoretical findings of the previous section.

Finding the parameters α . We designed a practical heuristic algorithm to automatically update α during training. In fact, we consider each vector α as a trainable parameter and update these vectors once each T step (which can be tuned) with either Adam or AdamW by sampling a new batch, different from the one used to train the reparametrization weights \mathbf{W} , and then taking a gradient step over this new batch. The design choices of our algorithm can be justified by the following:

- Because the vectors α applied to each module lie in the whole Euclidean space \mathbb{R}^d , it is not possible to find such a parameter through a simple grid search, as this will give a very costly and impractical algorithm.
- Additionally, finding theoretical formulas for each vector α is very hard, if not impossible. Therefore, it is crucial to have an algorithm that updates the vectors α automatically.
- Finally, because we want to optimize the **generalization** performance of our fine-tuning method, training α in the same way as the reparametrization weights \mathbf{W} can easily lead to overfitting of the model, which justifies sampling of new batches to update α and the update rate T . Our specific choices are detailed for reproducibility in Appendix E.

Figure 5 shows that our algorithm leads to optimal scaling vectors α^* in their neighborhood, which proves the effectiveness of our algorithm and the fine-tuning method in general. The pseudo-code 1 of our algorithm is detailed in the Appendix E.

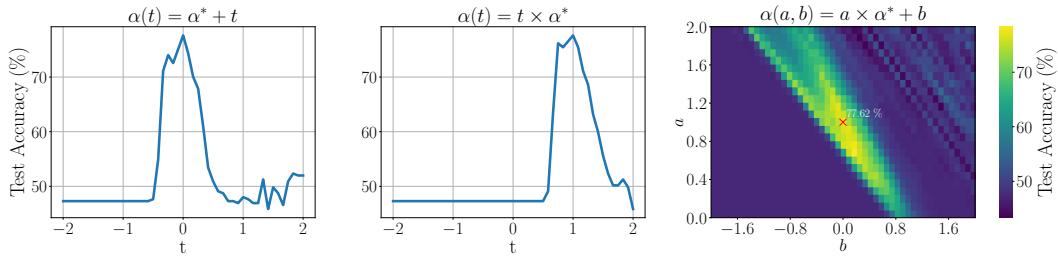


Figure 5: Test accuracy of `roberta-base` finetuned on RTE for different values of α in the neighborhood of the obtained α^* . The values of the parameters α^* in this experiment range between 0.85 and 1.14.

Overhead induced by the additional parameters α . We note that the number of additional trainable parameters α induced by our algorithm 1 is negligible compared to the standard approach (fixed $\alpha = 1$), for example in the case of our experiments with `roberta-base` model, the increase in the number of trainable parameters is only of 0.02%. Additionally, investigating the resulting values of these learned α vectors as reported in Figures 7, 8 and 9 in the Appendix, we notice that we get similar values for query and value matrices, thus we can use a shared parameter for both weight matrices (or for the whole attention module more generally), reducing the overhead even further.

6 CONCLUSION AND LIMITATIONS

In this work, we introduced a new class of reparametrization-based fine-tuning methods that leverage an additional scaling parameter to improve the generalization of transfer learning. Using tools from Random Matrix Theory, we proved the existence and impact of an optimal scaling factor in high-dimensional binary classification. We show that this factor is typically different from the standard choice. Our theoretical analysis was further supported by experiments on real-world tasks, where our proposed approach consistently outperformed standard LoRA on multiple benchmarks.

Although promising, our framework also has limitations. Theoretical guarantees are derived under specific assumptions on data distributions and model structure, which may not fully capture the complexity of modern deep architectures. We believe future work could extend these insights to broader model families, design more efficient algorithms for parameter selection, and further explore the trade-off between generalization and efficiency in transfer learning. Furthermore, an exciting avenue for investigation is the integration of our α -scaling technique with other advanced adapter methods. Since our approach is complementary to improvements in the adapter's architecture, such as DoRA or other LoRA variants, combining them could lead to synergistic gains in fine-tuning performance.

486 REFERENCES
487

- 488 Shai Ben-David, John Blitzer, Koby Crammer, Fernando Pereira, et al. A theory of learning from
489 different domains. In *Machine Learning*, volume 79, pp. 151–175. Springer, 2010.
- 490 John Blitzer, Mark Dredze, and Fernando Pereira. Biographies, bollywood, boom-boxes and
491 blenders: Domain adaptation for sentiment classification. In *Proceedings of the 45th annual
492 meeting of the association of computational linguistics*, pp. 440–447, 2007.
- 493 T Tony Cai and Hongji Wei. Transfer learning for nonparametric classification. *The Annals of
494 Statistics*, 49(1):100–128, 2021.
- 495 Jean-Baptiste Cordonnier, Andreas Loukas, and Martin Jaggi. On the relationship between self-
496 attention and convolutional layers. In *ICLR - International Conference on Learning Representa-
497 tions*, 2020.
- 498 Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. Qlora: Efficient finetuning
499 of quantized llms. *Advances in neural information processing systems*, 36:10088–10115, 2023.
- 500 Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
501 Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
502 image is worth 16x16 words: Transformers for image recognition at scale. *arXiv preprint
503 arXiv:2010.11929*, 2020.
- 504 Aymane El Firdoussi and Mohamed El Amine Seddik. High-dimensional learning with noisy labels.
505 *arXiv preprint arXiv:2405.14088*, 2024.
- 506 Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
507 Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd
508 of models. *arXiv preprint arXiv:2407.21783*, 2024.
- 509 Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
510 Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
511 via reinforcement learning. *arXiv preprint arXiv:2501.12948*, 2025.
- 512 Walid Hachem, Philippe Loubaton, and Jamal Najim. Deterministic equivalents for certain func-
513 tionals of large random matrices. 2007.
- 514 Steve Hanneke and Samory Kpotufe. A more unified theory of transfer learning. *arXiv preprint
515 arXiv:2408.16189*, 2024.
- 516 Soufiane Hayou, Nikhil Ghosh, and Bin Yu. The impact of initialization on lora finetuning dynamics.
517 *Advances in Neural Information Processing Systems*, 37:117015–117040, 2024a.
- 518 Soufiane Hayou, Nikhil Ghosh, and Bin Yu. Lora+: Efficient low rank adaptation of large models.
519 *arXiv preprint arXiv:2402.12354*, 2024b.
- 520 Soufiane Hayou, Nikhil Ghosh, and Bin Yu. Plop: Precise lora placement for efficient finetuning of
521 large models. *arXiv preprint arXiv:2506.20629*, 2025.
- 522 Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
523 Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. *ICLR*, 1(2):3, 2022.
- 524 Wenlong Ji, Weizhe Yuan, Emily Getzen, Kyunghyun Cho, Michael I Jordan, Song Mei, Jason E
525 Weston, Weijie J Su, Jing Xu, and Linjun Zhang. An overview of large language models for
526 statisticians. *arXiv preprint arXiv:2502.17814*, 2025.
- 527 Ting Jiang, Shaohan Huang, Shengyue Luo, Zihan Zhang, Haizhen Huang, Furu Wei, Weiwei Deng,
528 Feng Sun, Qi Zhang, Deqing Wang, and otxhers. Mora: High-rank updating for parameter-
529 efficient fine-tuning. *arXiv preprint arXiv:2405.12130*, 2024.
- 530 Minsoo Kim, Sihwa Lee, Wonyong Sung, and Jungwook Choi. Ra-lora: Rank-adaptive parameter-
531 efficient fine-tuning for accurate 2-bit quantized large language models. In *Findings of the Asso-
532 ciation for Computational Linguistics ACL 2024*, pp. 15773–15786, 2024.

- 540 Adam Klivans, Konstantinos Stavropoulos, and Arsen Vasilyan. Testable learning with distribution
 541 shift. In *The Thirty Seventh Annual Conference on Learning Theory*, pp. 2887–2943. PMLR,
 542 2024.
- 543 Dawid J Kopiczko, Tijmen Blankevoort, and Yuki M Asano. Vera: Vector-based random matrix
 544 adaptation. *arXiv preprint arXiv:2310.11454*, 2023.
- 545 Samory Kpotufe and Guillaume Martinet. Marginal singularity and the benefits of labels in
 546 covariate-shift. *The Annals of Statistics*, 49(6):3299–3323, 2021.
- 547 Shih-Yang Liu, Chien-Yi Wang, Hongxu Yin, Pavlo Molchanov, Yu-Chiang Frank Wang, Kwang-
 548 Ting Cheng, and Min-Hung Chen. Dora: Weight-decomposed low-rank adaptation. In *Forty-first*
 549 *International Conference on Machine Learning*, 2024.
- 550 Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
 551 Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized BERT pretraining
 552 approach. *CoRR*, abs/1907.11692, 2019. URL <http://arxiv.org/abs/1907.11692>.
- 553 Haodong Lu, Chongyang Zhao, Jason Xue, Lina Yao, Kristen Moore, and Dong Gong. Adaptive
 554 rank, reduced forgetting: Knowledge retention in continual learning vision-language models with
 555 dynamic rank-selective lora. *arXiv preprint arXiv:2412.01004*, 2024.
- 556 Xiaoyi Mai and Zhenyu Liao. The breakdown of gaussian universality in classification of high-
 557 dimensional mixtures. *arXiv preprint arXiv:2410.05609*, 2024.
- 558 Andreas Maurer, Massimiliano Pontil, and Bernardino Romera-Paredes. The benefit of multitask
 559 representation learning. *Journal of Machine Learning Research*, 17(81):1–32, 2016.
- 560 Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
 561 Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to fol-
 562 low instructions with human feedback. *Advances in neural information processing systems*, 35:
 563 27730–27744, 2022.
- 564 Sinno Jialin Pan and Qiang Yang. A survey on transfer learning. *IEEE Transactions on knowledge
 565 and data engineering*, 22(10):1345–1359, 2009.
- 566 Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion, Olivier
 567 Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, et al. Scikit-learn:
 568 Machine learning in python. *the Journal of machine Learning research*, 12:2825–2830, 2011.
- 569 Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
 570 Finn. Direct preference optimization: Your language model is secretly a reward model. *Advances
 571 in neural information processing systems*, 36:53728–53741, 2023.
- 572 Shyam Sundhar Ramesh, Yifan Hu, Iason Chaimalas, Viraj Mehta, Pier Giuseppe Sessa, Haitham
 573 Bou Ammar, and Ilija Bogunovic. Group robust preference optimization in reward-free rlhf.
 574 *Advances in Neural Information Processing Systems*, 37:37100–37137, 2024.
- 575 Henry WJ Reeve, Timothy I Cannings, and Richard J Samworth. Adaptive transfer learning. *The
 576 Annals of Statistics*, 49(6):3618–3649, 2021.
- 577 Idan Shenfeld, Jyothish Pari, and Pulkit Agrawal. RI’s razor: Why online reinforcement learning
 578 forgets less. *arXiv preprint arXiv:2509.04259*, 2025.
- 579 Gemini Team, Rohan Anil, Sebastian Borgeaud, Jean-Baptiste Alayrac, Jiahui Yu, Radu Soricut,
 580 Johan Schalkwyk, Andrew M Dai, Anja Hauth, Katie Millican, et al. Gemini: a family of highly
 581 capable multimodal models. *arXiv preprint arXiv:2312.11805*, 2023.
- 582 Chunlin Tian, Zhan Shi, Zhijiang Guo, Li Li, and Cheng-Zhong Xu. Hydralora: An asymmetric
 583 lora architecture for efficient fine-tuning. *Advances in Neural Information Processing Systems*,
 584 37:9565–9584, 2024.
- 585 Nilesh Tripuraneni, Michael Jordan, and Chi Jin. On the theory of transfer learning: The importance
 586 of task diversity. *Advances in neural information processing systems*, 33:7852–7862, 2020.

- 594 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
595 Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. *Advances in neural informa-*
596 *tion processing systems*, 30, 2017.
- 597
- 598 Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R Bowman.
599 Glue: A multi-task benchmark and analysis platform for natural language understanding. *arXiv*
600 *preprint arXiv:1804.07461*, 2018.
- 601 Karl Weiss, Taghi M Khoshgoftaar, and DingDing Wang. A survey of transfer learning. *Journal of*
602 *Big data*, 3(1):9, 2016.
- 603
- 604 Lingling Xu, Haoran Xie, Si-Zhao Joe Qin, Xiaohui Tao, and Fu Lee Wang. Parameter-efficient
605 fine-tuning methods for pretrained language models: A critical review and assessment. *arXiv*
606 *preprint arXiv:2312.12148*, 2023.
- 607
- 608 Guojun Zhang, Han Zhao, Yaoliang Yu, and Pascal Poupart. Quantifying and improving trans-
609 ferability in domain generalization. *Advances in Neural Information Processing Systems*, 34:
10957–10970, 2021.
- 610
- 611 Longteng Zhang, Lin Zhang, Shaohuai Shi, Xiaowen Chu, and Bo Li. Lora-fa: Memory-efficient
612 low-rank adaptation for large language models fine-tuning. *arXiv preprint arXiv:2308.03303*,
613 2023a.
- 614
- 615 Qingru Zhang, Minshuo Chen, Alexander Bukharin, Nikos Karampatziakis, Pengcheng He,
616 Yu Cheng, Weizhu Chen, and Tuo Zhao. Adalora: Adaptive budget allocation for parameter-
617 efficient fine-tuning. *arXiv preprint arXiv:2303.10512*, 2023b.
- 618
- 619
- 620
- 621
- 622
- 623
- 624
- 625
- 626
- 627
- 628
- 629
- 630
- 631
- 632
- 633
- 634
- 635
- 636
- 637
- 638
- 639
- 640
- 641
- 642
- 643
- 644
- 645
- 646
- 647

648 APPENDIX
649

650 This appendix is organized as follows: Section A lists some useful lemmas that will be at the core
651 of our analysis. In Section B, we provide a proof of Theorem 4.2 using Random Matrix Theory.
652 Section C extends the theory to the case of an arbitrary source classifier (not necessarily Ridge)
653 which will be useful also for another extension of the theory to multi-source fine-tuning D. Finally,
654 E lists the details about our experiments on LLM fine-tuning.

655
656 **Contents**
657

658 A Useful results	13
659 A.1 General lemmas	13
660 A.2 Deterministic equivalents	14
661 B RMT Analysis of the fine-tuned classifier	19
662 B.1 Test Expectation	19
663 B.2 Test Variance	20
664 B.3 Finding optimal α^*	24
666 C RMT Analysis of the fine-tuned classifier: the case of random source vector	25
667 C.1 Test Expectation	25
668 C.2 Test variance	25
669 C.3 Finding optimal α^*	28
670 D Extension to multi-source classifiers	28
671 D.1 Test Expectation	29
672 D.2 Test variance	29
673 D.3 Finding optimal α	32
675 E LLMs Experimental details	32
676 E.1 Hyperparameters	33
677 E.2 Values of α	33

678 Throughout the whole Appendix, we will try to analyze the performance of the fine-tuned classifier
679 defined in equation α -FTC:

680
$$\mathbf{w}_\alpha = \mathbf{w} + \alpha \tilde{\mathbf{w}} - \frac{\alpha}{n} \mathbf{Q}(\gamma) \mathbf{X} \mathbf{X}^\top \tilde{\mathbf{w}}$$

683 **Notations.** Here are two notations that we will use along the whole analysis:

685
$$\lambda_Q = \|\boldsymbol{\mu}_\beta\|^2 + 1 + \gamma(1 + \delta_Q), \quad \lambda_R = \|\boldsymbol{\mu}\|^2 + 1 + \tilde{\gamma}(1 + \delta_R) \quad (11)$$

687 **A USEFUL RESULTS**

689 **A.1 GENERAL LEMMAS**

691 Here we will list useful lemmas used in our analysis.

692 **Lemma A.1** (Resolvent identity). *For invertible matrices \mathbf{A} and \mathbf{B} , we have:*

693
$$\mathbf{A}^{-1} - \mathbf{B}^{-1} = \mathbf{A}^{-1}(\mathbf{B} - \mathbf{A})\mathbf{B}^{-1}.$$

695 **Lemma A.2** (Sherman-Morrisson). *For $\mathbf{A} \in \mathbb{R}^{p \times p}$ invertible and $\mathbf{u}, \mathbf{v} \in \mathbb{R}^p$, $\mathbf{A} + \mathbf{u}\mathbf{v}^\top$ is invertible
696 if and only if: $1 + \mathbf{v}^\top \mathbf{A}^{-1} \mathbf{u} \neq 0$, and:*

697
$$(\mathbf{A} + \mathbf{u}\mathbf{v}^\top)^{-1} = \mathbf{A}^{-1} - \frac{\mathbf{A}^{-1}\mathbf{u}\mathbf{v}^\top \mathbf{A}^{-1}}{1 + \mathbf{v}^\top \mathbf{A}^{-1} \mathbf{u}}.$$

700 *Besides,*

701
$$(\mathbf{A} + \mathbf{u}\mathbf{v}^\top)^{-1} \mathbf{u} = \frac{\mathbf{A}^{-1} \mathbf{u}}{1 + \mathbf{v}^\top \mathbf{A}^{-1} \mathbf{u}}.$$

702 A.2 DETERMINISTIC EQUIVALENTS
703704 Recall the expression of the resolvents defined in equation equation 9:
705

706
$$\mathbf{Q} = \left(\frac{1}{n} \mathbf{X} \mathbf{X}^\top + \gamma \mathbf{I}_p \right)^{-1}, \mathbf{R} = \left(\frac{1}{N} \tilde{\mathbf{X}} \tilde{\mathbf{X}}^\top + \tilde{\gamma} \mathbf{I}_p \right)^{-1}$$

707

708 We define the matrices \mathbf{Q}_{-i} and \mathbf{R}_{-i} as the resolvents obtained by removing the contribution of the
709 i^{th} sample, i.e:
710

711
$$\mathbf{Q}_{-i} = \left(\frac{1}{n} \sum_{k \neq i} \mathbf{x}_k \mathbf{x}_k^\top + \gamma \mathbf{I}_p \right)^{-1}, \quad \mathbf{R}_{-i} = \left(\frac{1}{N} \sum_{k \neq i} \tilde{\mathbf{x}}_k \tilde{\mathbf{x}}_k^\top + \tilde{\gamma} \mathbf{I}_p \right)^{-1}$$

712
713

714 then we have that:
715

716
$$\mathbf{Q} = \left(\mathbf{Q}_{-i}^{-1} + \frac{1}{n} \mathbf{x}_i \mathbf{x}_i^\top \right)^{-1}, \quad \mathbf{R} = \left(\mathbf{R}_{-i}^{-1} + \frac{1}{N} \tilde{\mathbf{x}}_i \tilde{\mathbf{x}}_i^\top \right)^{-1}$$

717

718 Thus by Sherman-Morrisson's lemma:
719

720
$$\mathbf{Q} = \mathbf{Q}_{-i} - \frac{1}{n} \frac{\mathbf{Q}_{-i} \mathbf{x}_i \mathbf{x}_i^\top \mathbf{Q}_{-i}}{1 + \delta_Q}, \quad \mathbf{R} = \mathbf{R}_{-i} - \frac{\frac{1}{N} \mathbf{R}_{-i} \tilde{\mathbf{x}}_i \tilde{\mathbf{x}}_i^\top \mathbf{R}_{-i}}{1 + \delta_R}$$

721

722 where:
723

724
$$\delta_Q = \frac{1}{n} \text{Tr} \bar{\mathbf{Q}} = \frac{\eta - \gamma - 1 + \sqrt{(\eta - \gamma - 1)^2 + 4\eta\gamma}}{2\gamma}, \quad \delta_R = \frac{1}{N} \text{Tr} \bar{\mathbf{R}} = \frac{\tilde{\eta} - \tilde{\gamma} - 1 + \sqrt{(\tilde{\eta} - \tilde{\gamma} - 1)^2 + 4\tilde{\eta}\tilde{\gamma}}}{2\tilde{\gamma}}$$

725

726 Thus, we get that:
727

728
$$\mathbf{Q} \mathbf{x}_i = \frac{\mathbf{Q}_{-i} \mathbf{x}_i}{1 + \delta_Q}, \quad \mathbf{R} \tilde{\mathbf{x}}_i = \frac{\mathbf{R}_{-i} \tilde{\mathbf{x}}_i}{1 + \delta_R} \quad (12)$$

729 Using the above identities, we can easily prove the deterministic equivalents of \mathbf{Q} and \mathbf{R} stated in
730 Lemma 3.5, which we will do in the following.
731732 **Lemma A.3** (Deterministic equivalent of \mathbf{Q} and \mathbf{R}). *Under the high-dimensional regime and the
733 assumptions 4.1, a deterministic equivalent for $\mathbf{Q} \equiv \mathbf{Q}(\gamma)$ and for $\mathbf{R} \equiv \mathbf{R}(\gamma)$, denoted $\bar{\mathbf{Q}}$ and $\bar{\mathbf{R}}$
734 respectively, as defined in equation 9 are given by:*

735
$$\bar{\mathbf{Q}}(\gamma) = \left(\frac{\boldsymbol{\mu}_\beta \boldsymbol{\mu}_\beta^\top + \mathbf{I}_p}{1 + \delta_Q} + \gamma \mathbf{I}_p \right)^{-1}, \quad \bar{\mathbf{R}}(\gamma) = \left(\frac{\boldsymbol{\mu} \boldsymbol{\mu}^\top + \mathbf{I}_p}{1 + \delta_R} + \gamma \mathbf{I}_p \right)^{-1}.$$

736

737 Where:
738

739
$$\delta_Q = \frac{1}{n} \text{Tr} \bar{\mathbf{Q}} = \frac{\eta - \gamma - 1 + \sqrt{(\eta - \gamma - 1)^2 + 4\eta\gamma}}{2\gamma}, \quad \delta_R = \frac{1}{N} \text{Tr} \bar{\mathbf{R}} = \frac{\tilde{\eta} - \tilde{\gamma} - 1 + \sqrt{(\tilde{\eta} - \tilde{\gamma} - 1)^2 + 4\tilde{\eta}\tilde{\gamma}}}{2\tilde{\gamma}}.$$

740

741 *Proof.* We will prove the deterministic equivalent of \mathbf{Q} , and the proof of $\bar{\mathbf{R}}$ can be derived similarly.
742 In general, we want to find a deterministic equivalent $\bar{\mathbf{Q}}$ of the same form of \mathbf{Q} , i.e we consider
743 $\bar{\mathbf{Q}}(\gamma) = (\mathbf{S} + \gamma \mathbf{I}_p)^{-1}$ and we want to find a deterministic matrix $\mathbf{S} \in \mathbb{R}^{p \times p}$ such that for any linear
744 form u :
745

746
$$u(\mathbf{Q}) \xrightarrow{\text{a.s.}} u(\bar{\mathbf{Q}}),$$

747 Or more simply:
748

749
$$u(\mathbb{E}[\mathbf{Q}] - \bar{\mathbf{Q}}) \rightarrow 0.$$

750 We have that:
751

752
$$\begin{aligned} \mathbb{E}[\mathbf{Q}] - \bar{\mathbf{Q}} &= \mathbb{E}[\mathbf{Q} - \bar{\mathbf{Q}}] \\ 753 &= \mathbb{E}[\mathbf{Q} \left(\mathbf{S} - \frac{1}{n} \mathbf{X} \mathbf{X}^\top \right) \bar{\mathbf{Q}}] \\ 754 &= \mathbb{E} \left[\left(\mathbf{Q} \mathbf{S} - \frac{1}{n} \sum_{i=1}^n \mathbf{Q} \mathbf{x}_i \mathbf{x}_i^\top \right) \bar{\mathbf{Q}} \right] \end{aligned}$$

755

756 And since: $\mathbf{Q}\mathbf{x}_i = \frac{\mathbf{Q}_{-i}\mathbf{x}_i}{1+\delta_Q}$ and that we want $\mathbb{E}[\mathbf{Q}] = \bar{\mathbf{Q}}$ in linear forms, we get that:
757

$$\begin{aligned}
758 \mathbb{E} \left[\left(\mathbf{Q}\mathbf{S} - \frac{1}{n} \sum_{i=1}^n \mathbf{Q}\mathbf{x}_i\mathbf{x}_i^\top \right) \bar{\mathbf{Q}} \right] &= \bar{\mathbf{Q}}\mathbf{S}\bar{\mathbf{Q}} - \frac{1}{n} \sum_{i=1}^n \frac{1}{1+\delta_Q} \mathbb{E}[\mathbf{Q}_{-i}\mathbf{x}_i\mathbf{x}_i^\top] \bar{\mathbf{Q}} \\
759 &= \bar{\mathbf{Q}}\mathbf{S}\bar{\mathbf{Q}} - \frac{1}{n} \sum_{i=1}^n \frac{1}{1+\delta_Q} \bar{\mathbf{Q}}(\boldsymbol{\mu}_\beta\boldsymbol{\mu}_\beta^\top + \mathbf{I}_p) \bar{\mathbf{Q}} \quad (\text{By independence of } \mathbf{x}_i \text{ and } \mathbf{Q}_{-i}) \\
760 &= \bar{\mathbf{Q}} \left(\mathbf{S} - \frac{\boldsymbol{\mu}_\beta\boldsymbol{\mu}_\beta^\top + \mathbf{I}_p}{1+\delta_Q} \right) \bar{\mathbf{Q}} \\
761 &= \bar{\mathbf{Q}} \left(\mathbf{S} - \frac{\boldsymbol{\mu}_\beta\boldsymbol{\mu}_\beta^\top + \mathbf{I}_p}{1+\delta_Q} \right) \bar{\mathbf{Q}}
\end{aligned}$$

762 Finally, it suffices to take: $\mathbf{S} = \frac{\boldsymbol{\mu}_\beta\boldsymbol{\mu}_\beta^\top + \mathbf{I}_p}{1+\delta_Q}$ to get the desired result. \square
763

764 **Lemma A.4** (Trace identities). *Let $\bar{\mathbf{Q}}, \bar{\mathbf{R}} \in \mathbb{R}^{p \times p}$ be the deterministic matrices defined in lemma
765 3.5. Then:*

$$766 \frac{1}{n} \frac{\text{Tr}((\Sigma_\beta \bar{\mathbf{Q}})^2)}{(1+\delta_Q)^2} = \frac{\eta}{(1+\gamma(1+\delta_Q))^2}, \quad \frac{1}{N} \frac{\text{Tr}((\Sigma \bar{\mathbf{R}})^2)}{(1+\delta_R)^2} = \frac{\tilde{\eta}}{(1+\tilde{\gamma}(1+\delta_R))^2}.$$

767 And:

$$768 \frac{1}{N} \text{Tr}(\bar{\mathbf{R}}^2 \bar{\mathbf{Q}}^2) = \tilde{\eta} \left(\frac{(1+\delta_R)(1+\delta_Q)}{(1+\tilde{\gamma}(1+\delta_R))(1+\gamma(1+\delta_Q))} \right)^2$$

769 **Lemma A.5** (Relevant Identities). *Let $\bar{\mathbf{Q}}, \bar{\mathbf{R}} \in \mathbb{R}^{p \times p}$ be the deterministic matrices defined in lemma
770 3.5. Then we have the following identities:*

$$771 \boldsymbol{\mu}_\beta^\top \bar{\mathbf{Q}} \boldsymbol{\mu}_\beta = \frac{(1+\delta_Q)\|\boldsymbol{\mu}_\beta\|^2}{\|\boldsymbol{\mu}_\beta\|^2 + 1 + \gamma(1+\delta_Q)}, \quad \boldsymbol{\mu}_\beta^\top \bar{\mathbf{Q}}^2 \boldsymbol{\mu}_\beta = \left(\frac{(1+\delta_Q)\|\boldsymbol{\mu}_\beta\|}{\|\boldsymbol{\mu}_\beta\|^2 + 1 + \gamma(1+\delta_Q)} \right)^2,$$

$$772 \boldsymbol{\mu}^\top \bar{\mathbf{R}} \boldsymbol{\mu} = \frac{(1+\delta_R)\|\boldsymbol{\mu}\|^2}{\|\boldsymbol{\mu}\|^2 + 1 + \tilde{\gamma}(1+\delta_R)}, \quad \boldsymbol{\mu}^\top \bar{\mathbf{R}}^2 \boldsymbol{\mu} = \left(\frac{(1+\delta_R)\|\boldsymbol{\mu}\|}{\|\boldsymbol{\mu}\|^2 + 1 + \tilde{\gamma}(1+\delta_R)} \right)^2,$$

$$773 \boldsymbol{\mu}^\top \bar{\mathbf{R}} \bar{\mathbf{Q}} \boldsymbol{\mu}_\beta = \frac{(1+\delta_R)(1+\delta_Q)\beta\|\boldsymbol{\mu}\|^2}{(\|\boldsymbol{\mu}\|^2 + 1 + \tilde{\gamma}(1+\delta_R))(\|\boldsymbol{\mu}_\beta\|^2 + 1 + \gamma(1+\delta_Q))},$$

$$774 \boldsymbol{\mu}^\top \bar{\mathbf{R}} \bar{\mathbf{Q}}^2 \boldsymbol{\mu}_\beta = \frac{(1+\delta_R)}{(\|\boldsymbol{\mu}\|^2 + 1 + \tilde{\gamma}(1+\delta_R))} \left(\frac{(1+\delta_Q)}{(\|\boldsymbol{\mu}_\beta\|^2 + 1 + \gamma(1+\delta_Q))} \right)^2 \beta\|\boldsymbol{\mu}\|^2,$$

775 And finally:

$$776 \boldsymbol{\mu}^\top \bar{\mathbf{R}} \bar{\mathbf{Q}}^2 \bar{\mathbf{R}} \boldsymbol{\mu} \\
777 = \left(\frac{(1+\delta_R)(1+\delta_Q)\|\boldsymbol{\mu}\|}{(1+\gamma(1+\delta_Q))(\|\boldsymbol{\mu}\|^2 + 1 + \tilde{\gamma}(1+\delta_R))} \right)^2 \left(1 + \frac{\beta^3\|\boldsymbol{\mu}\|^4}{(\|\boldsymbol{\mu}_\beta\|^2 + 1 + \gamma(1+\delta_Q))^2} - \frac{2\beta^2\|\boldsymbol{\mu}\|^2}{\|\boldsymbol{\mu}_\beta\|^2 + 1 + \gamma(1+\delta_Q)} \right).$$

778 *Proof.* The proof of all these identities relies on the following results:

$$\begin{aligned}
779 \bar{\mathbf{R}} &= \left(\frac{\boldsymbol{\mu}\boldsymbol{\mu}^\top}{1+\delta_R} + \left(\tilde{\gamma} + \frac{1}{1+\delta_R} \right) \mathbf{I}_p \right)^{-1} \\
780 &= (1+\delta_R) (\boldsymbol{\mu}\boldsymbol{\mu}^\top + (1+\tilde{\gamma}(1+\delta_R)\mathbf{I}_p))^{-1} \\
781 &= \frac{1+\delta_R}{1+\tilde{\gamma}(1+\delta_R)} \left(\frac{\boldsymbol{\mu}\boldsymbol{\mu}^\top}{1+\tilde{\gamma}(1+\delta_R)} + \mathbf{I}_p \right)^{-1} \\
782 &= \frac{1+\delta_R}{1+\tilde{\gamma}(1+\delta_R)} \left(\mathbf{I}_p - \frac{\boldsymbol{\mu}\boldsymbol{\mu}^\top}{\|\boldsymbol{\mu}\|^2 + 1 + \tilde{\gamma}(1+\delta_R)} \right) \quad (\text{lemma A.2})
\end{aligned}$$

810 where the last equality is obtained using Sherman-Morrisson's identity (lemma A.2). Hence,
811

$$812 \quad (\bar{\mathbf{R}})^2 = \frac{(1 + \delta_R)^2}{(1 + \tilde{\gamma}(1 + \delta_R))^2} \left(\mathbf{I}_p + \frac{(\boldsymbol{\mu} \boldsymbol{\mu}^\top)^2}{(\|\boldsymbol{\mu}\|^2 + 1 + \tilde{\gamma}(1 + \delta_R))^2} - \frac{2\boldsymbol{\mu} \boldsymbol{\mu}^\top}{\|\boldsymbol{\mu}\|^2 + 1 + \tilde{\gamma}(1 + \delta_R)} \right).$$

813 And the same for $\bar{\mathbf{Q}}$:
814

$$816 \quad \bar{\mathbf{Q}} = \frac{1 + \delta_Q}{1 + \gamma(1 + \delta_Q)} \left(\mathbf{I}_p - \frac{\boldsymbol{\mu}_\beta \boldsymbol{\mu}_\beta^\top}{\|\boldsymbol{\mu}_\beta\|^2 + 1 + \gamma(1 + \delta_Q)} \right),$$

$$819 \quad (\bar{\mathbf{Q}})^2 = \frac{(1 + \delta_Q)^2}{(1 + \gamma(1 + \delta_Q))^2} \left(\mathbf{I}_p + \frac{(\boldsymbol{\mu}_\beta \boldsymbol{\mu}_\beta^\top)^2}{(\|\boldsymbol{\mu}_\beta\|^2 + 1 + \gamma(1 + \delta_Q))^2} - \frac{2\boldsymbol{\mu}_\beta \boldsymbol{\mu}_\beta^\top}{\|\boldsymbol{\mu}_\beta\|^2 + 1 + \gamma(1 + \delta_Q)} \right).$$

820 And using the second identity in Sherman-Morrisson's lemma A.2:
821

$$824 \quad \bar{\mathbf{R}}\boldsymbol{\mu} = \frac{(1 + \delta_R)}{\|\boldsymbol{\mu}\|^2 + 1 + \tilde{\gamma}(1 + \delta_R)} \boldsymbol{\mu}, \quad \bar{\mathbf{Q}}\boldsymbol{\mu}_\beta = \frac{(1 + \delta_Q)}{\|\boldsymbol{\mu}_\beta\|^2 + 1 + \gamma(1 + \delta_Q)} \boldsymbol{\mu}_\beta$$

827 \square

828 **Lemma A.6** (Expectation some classifiers). *Let $\tilde{\mathbf{w}}$ and \mathbf{w} be the classifiers defined earlier equation α -FTC. We have that:*

$$831 \quad \mathbb{E}[\tilde{\mathbf{w}}] = \frac{1}{1 + \delta_R} \bar{\mathbf{R}}\boldsymbol{\mu}, \quad \mathbb{E}[\mathbf{w}] = \frac{1}{1 + \delta_Q} \bar{\mathbf{Q}}\boldsymbol{\mu}_\beta.$$

834 *Proof.*

$$835 \quad \mathbb{E}[\tilde{\mathbf{w}}] = \frac{1}{N} \sum_{i=1}^N \mathbb{E}[\tilde{y}_i \mathbf{R} \tilde{\mathbf{x}}_i]$$

$$836 \quad = \frac{1}{N} \sum_{i=1}^N \frac{1}{1 + \delta_R} \mathbb{E}[\tilde{y}_i \mathbf{R}_{-i} \tilde{\mathbf{x}}_i]$$

$$837 \quad = \frac{1}{1 + \delta_R} \bar{\mathbf{R}}\boldsymbol{\mu}$$

838 The proof of $\mathbb{E}[\mathbf{w}]$ is similar to this latter. \square

845 **Lemma A.7** (Deterministic equivalent). *For any positive semi-definite matrix \mathbf{A} , we have:*

$$847 \quad \mathbf{Q}\mathbf{A}\mathbf{Q} \leftrightarrow \bar{\mathbf{Q}}\mathbf{A}\bar{\mathbf{Q}} + \frac{1}{n} \frac{\text{Tr}(\Sigma_\beta \bar{\mathbf{Q}}\mathbf{A}\bar{\mathbf{Q}})}{(1 + \delta_Q)^2} \mathbb{E}[\mathbf{Q}\Sigma_\beta\mathbf{Q}],$$

849 and:

$$850 \quad \mathbf{R}\mathbf{A}\mathbf{R} \leftrightarrow \bar{\mathbf{R}}\mathbf{A}\bar{\mathbf{R}} + \frac{1}{N} \frac{\text{Tr}(\Sigma \bar{\mathbf{R}}\mathbf{A}\bar{\mathbf{R}})}{(1 + \delta_R)^2} \mathbb{E}[\mathbf{R}\Sigma\mathbf{R}].$$

852 In particular for every $\mathbf{a}, \mathbf{b} \in \mathbb{R}^p$:

$$854 \quad \mathbf{a}^\top \mathbb{E}[\mathbf{Q}\Sigma_\beta\mathbf{Q}]\mathbf{b} = \frac{1}{h} \mathbf{a}^\top \bar{\mathbf{Q}}\Sigma_\beta\bar{\mathbf{Q}}\mathbf{b}, \quad \mathbf{a}^\top \mathbb{E}[\mathbf{R}\Sigma\mathbf{R}]\mathbf{b} = \frac{1}{h} \mathbf{a}^\top \bar{\mathbf{R}}\Sigma\bar{\mathbf{R}}\mathbf{b}.$$

856 *Proof.* The proof is derived similarly as in the appendix of Firdoussi & Seddik (2024). Again, the
857 proof is similar for both \mathbf{Q} and \mathbf{R} .

858 Let $\bar{\mathbf{Q}}$ be a deterministic equivalent of \mathbf{Q} . The following equations and identities are valid in terms
859 of linear forms. We have that:

$$861 \quad \mathbb{E}[\mathbf{Q}\mathbf{A}\mathbf{Q}] = \mathbb{E}[\bar{\mathbf{Q}}\mathbf{A}\mathbf{Q}] + \mathbb{E}[(\mathbf{Q} - \bar{\mathbf{Q}})\mathbf{A}\mathbf{Q}]$$

$$862 \quad = \bar{\mathbf{Q}}(\mathbb{E}[\mathbf{A}\mathbf{Q}] + \mathbf{A} \mathbb{E}[\mathbf{Q} - \bar{\mathbf{Q}}]) + \mathbb{E}[(\mathbf{Q} - \bar{\mathbf{Q}})\mathbf{A}\mathbf{Q}]$$

$$863 \quad = \bar{\mathbf{Q}}\mathbf{A}\mathbf{Q} + \mathbb{E}[(\mathbf{Q} - \bar{\mathbf{Q}})\mathbf{A}\mathbf{Q}]$$

864 Using lemma A.1, we have that:
865

$$\begin{aligned}
866 \quad \mathbf{Q} - \bar{\mathbf{Q}} &= \mathbf{Q}(\bar{\mathbf{Q}}^{-1} - \mathbf{Q}^{-1})\bar{\mathbf{Q}} \\
867 &= \mathbf{Q} \left(\frac{\Sigma_\beta}{1 + \delta_Q} - \frac{1}{n} \mathbf{X} \mathbf{X}^\top \right) \bar{\mathbf{Q}} \\
868 &= \mathbf{Q} \left(\mathbf{S} - \frac{1}{n} \mathbf{X} \mathbf{X}^\top \right) \bar{\mathbf{Q}} \\
869 \\
870 \\
871
\end{aligned}$$

872 Thus:

$$\begin{aligned}
873 \quad \mathbb{E}[\mathbf{Q} \mathbf{A} \mathbf{Q}] &= \bar{\mathbf{Q}} \mathbf{A} \bar{\mathbf{Q}} + \mathbb{E}[\mathbf{Q}(\mathbf{S} - \frac{1}{n} \mathbf{X} \mathbf{X}^\top) \bar{\mathbf{Q}} \mathbf{A} \mathbf{Q}] \\
874 &= \bar{\mathbf{Q}} \mathbf{A} \bar{\mathbf{Q}} + \mathbb{E}[\mathbf{Q} \mathbf{S} \bar{\mathbf{Q}} \mathbf{A} \mathbf{Q}] - \frac{1}{n} \sum_{i=1}^n \mathbb{E}[\mathbf{Q} \mathbf{x}_i \mathbf{x}_i^\top \bar{\mathbf{Q}} \mathbf{A} \mathbf{Q}] \\
875 \\
876 \\
877
\end{aligned}$$

878 We have that:

$$\begin{aligned}
879 \quad \mathbb{E}[\mathbf{Q} \mathbf{x}_i \mathbf{x}_i^\top \bar{\mathbf{Q}} \mathbf{A} \mathbf{Q}] &= \frac{1}{1 + \delta_Q} \mathbb{E}[\mathbf{Q}_{-i} \mathbf{x}_i \mathbf{x}_i^\top \bar{\mathbf{Q}} \mathbf{A} \mathbf{Q}] \\
880 &= \frac{1}{1 + \delta_Q} \left(\mathbb{E}[\mathbf{Q}_{-i} \mathbf{x}_i \mathbf{x}_i^\top \bar{\mathbf{Q}} \mathbf{Q}_{-i}] - \mathbb{E}[\mathbf{Q}_{-i} \mathbf{x}_i \mathbf{x}_i^\top \bar{\mathbf{Q}} \mathbf{A} \frac{\mathbf{Q}_{-i} \mathbf{x}_i \mathbf{x}_i^\top \mathbf{Q}_{-i}}{n(1 + \delta_Q)}] \right) \\
881 &= \frac{1}{1 + \delta_Q} \left(\mathbb{E}[\mathbf{Q}_{-i} \Sigma_\beta \bar{\mathbf{Q}} \mathbf{A} \mathbf{Q}_{-i}] - \mathbb{E}[\mathbf{Q}_{-i} \mathbf{x}_i \mathbf{x}_i^\top \bar{\mathbf{Q}} \mathbf{A} \frac{\mathbf{Q}_{-i} \mathbf{x}_i \mathbf{x}_i^\top \mathbf{Q}_{-i}}{n(1 + \delta_Q)}] \right) \\
882 &= \frac{1}{1 + \delta_Q} \left(\mathbb{E}[\mathbf{Q} \Sigma_\beta \bar{\mathbf{Q}} \mathbf{A} \mathbf{Q}] - \mathbb{E}[\mathbf{Q}_{-i} \mathbf{x}_i \mathbf{x}_i^\top \bar{\mathbf{Q}} \mathbf{A} \frac{\mathbf{Q}_{-i} \mathbf{x}_i \mathbf{x}_i^\top \mathbf{Q}_{-i}}{n(1 + \delta_Q)}] \right) \\
883 \\
884 \\
885 \\
886 \\
887 \\
888
\end{aligned}$$

889 Therefore, by replacing the obtained expression of $\mathbb{E}[\mathbf{Q} \mathbf{x}_i \mathbf{x}_i^\top \bar{\mathbf{Q}} \mathbf{A} \mathbf{Q}]$ in the equation of $\mathbb{E}[\mathbf{Q} \mathbf{A} \mathbf{Q}]$,
890 we get that:

$$\begin{aligned}
891 \quad \mathbb{E}[\mathbf{Q} \mathbf{A} \mathbf{Q}] &= \bar{\mathbf{Q}} \mathbf{A} \bar{\mathbf{Q}} + \frac{1}{n^2(1 + \delta_Q)^2} \sum_{i=1}^n \mathbb{E}[\mathbf{Q}_{-i} \mathbf{x}_i \mathbf{x}_i^\top \bar{\mathbf{Q}} \mathbf{A} \mathbf{Q}_{-i} \mathbf{x}_i \mathbf{x}_i^\top \mathbf{Q}_{-i}] \\
892 &= \bar{\mathbf{Q}} \mathbf{A} \bar{\mathbf{Q}} + \frac{1}{n^2(1 + \delta_Q)^2} \sum_{i=1}^n \text{Tr}(\Sigma_\beta \bar{\mathbf{Q}} \mathbf{A} \bar{\mathbf{Q}}) \mathbb{E}[\mathbf{Q}_{-i} \mathbf{x}_i \mathbf{x}_i^\top \mathbf{Q}_{-i}] \\
893 &= \bar{\mathbf{Q}} \mathbf{A} \bar{\mathbf{Q}} + \frac{1}{n^2(1 + \delta_Q)^2} \sum_{i=1}^n \text{Tr}(\Sigma_\beta \bar{\mathbf{Q}} \mathbf{A} \bar{\mathbf{Q}}) \mathbb{E}[\mathbf{Q}_{-i} \Sigma_\beta \mathbf{Q}_{-i}] \\
894 &= \bar{\mathbf{Q}} \mathbf{A} \bar{\mathbf{Q}} + \frac{1}{n} \frac{\text{Tr}(\Sigma_\beta \bar{\mathbf{Q}} \mathbf{A} \bar{\mathbf{Q}})}{(1 + \delta_Q)^2} \mathbb{E}[\mathbf{Q} \Sigma_\beta \mathbf{Q}] \\
895 \\
896 \\
897 \\
898 \\
899 \\
900 \\
901 \\
902
\end{aligned}$$

902 Which finally concludes the proof. \square

904 Now we will provide the result of a useful quantity that we will be using for computing the variance.

905 **Lemma A.8** (Expectation of $\tilde{\mathbf{w}}^\top \mathbf{A} \tilde{\mathbf{w}}$). *Let $\mathbf{A} \in \mathbb{R}^{p \times p}$ be a random matrix independent of $\tilde{\mathbf{w}}$. We have that:*

$$906 \quad \mathbb{E}[\tilde{\mathbf{w}}^\top \mathbf{A} \tilde{\mathbf{w}}] = \frac{1}{(1 + \delta_R)^2} \left(\mu^\top \mathbb{E}[\mathbf{R} \mathbf{A} \mathbf{R}] \mu - \frac{2}{N(1 + \delta_R)} \text{Tr}(\Sigma \mathbb{E}[\mathbf{R} \mathbf{A} \mathbf{R}]) \mu^\top \bar{\mathbf{R}} \mu + \frac{1}{N} \text{Tr}(\Sigma \mathbb{E}[\mathbf{R} \mathbf{A} \mathbf{R}]) \right)$$

911 *Proof.* We have that:

$$\begin{aligned}
912 \quad \mathbb{E}[\tilde{\mathbf{w}}^\top \mathbf{A} \tilde{\mathbf{w}}] &= \frac{1}{N^2} \sum_{i,j=1}^N \mathbb{E}[\tilde{y}_i \tilde{y}_j \tilde{\mathbf{x}}_i^\top \mathbf{R} \mathbf{A} \mathbf{R} \tilde{\mathbf{x}}_j] \\
913 &= \frac{1}{N^2} \sum_{i \neq j} \mathbb{E}[\tilde{y}_i \tilde{y}_j \tilde{\mathbf{x}}_i^\top \mathbf{R} \mathbf{A} \mathbf{R} \tilde{\mathbf{x}}_j] + \frac{1}{N^2} \sum_{i=1}^N \mathbb{E}[\tilde{\mathbf{x}}_i^\top \mathbf{R} \mathbf{A} \mathbf{R} \tilde{\mathbf{x}}_i] \\
914 \\
915 \\
916 \\
917
\end{aligned}$$

918 We have for $i \neq j$:

$$\begin{aligned}
 919 \mathbb{E}[\tilde{y}_i \tilde{y}_j \tilde{\mathbf{x}}_i^\top \mathbf{R} \mathbf{A} \mathbf{R} \tilde{\mathbf{x}}_j] &= \frac{1}{(1 + \delta_R)^2} \mathbb{E}[\tilde{y}_i \tilde{y}_j \tilde{\mathbf{x}}_i \mathbf{R}_{-i} \mathbf{A} \mathbf{R}_{-i} \tilde{\mathbf{x}}_j] \\
 920 &= \frac{1}{(1 + \delta_R)^2} \mathbb{E} \left[\tilde{y}_i \tilde{y}_j \tilde{\mathbf{x}}_i^\top \left(\mathbf{R}_{-ij} - \frac{\frac{1}{N} \mathbf{R}_{-ij} \tilde{\mathbf{x}}_j \tilde{\mathbf{x}}_i^\top \mathbf{R}_{-ij}}{1 + \delta_R} \right) \mathbf{A} \left(\mathbf{R}_{-ij} - \frac{\frac{1}{N} \mathbf{R}_{-ij} \tilde{\mathbf{x}}_i \tilde{\mathbf{x}}_i^\top \mathbf{R}_{-ij}}{1 + \delta_R} \right) \tilde{\mathbf{x}}_j \right] \\
 921 &= A_{11} - A_{12} - A_{13} + A_{14}
 \end{aligned}$$

922 So let us compute each term independently:

$$\begin{aligned}
 923 A_{11} &= \frac{1}{(1 + \delta_R)^2} \mathbb{E}[\tilde{y}_i \tilde{y}_j \tilde{\mathbf{x}}_i^\top \mathbf{R}_{-ij} \mathbf{A} \mathbf{R}_{-ij} \tilde{\mathbf{x}}_j] \\
 924 &= \frac{1}{(1 + \delta_R)^2} \boldsymbol{\mu}^\top \mathbb{E}[\mathbf{R} \mathbf{A} \mathbf{R}] \boldsymbol{\mu}
 \end{aligned}$$

925 And :

$$\begin{aligned}
 926 A_{12} &= \frac{1}{N(1 + \delta_R)^3} \mathbb{E}[\tilde{y}_i \tilde{y}_j \tilde{\mathbf{x}}_i^\top \mathbf{R}_{-ij} \mathbf{A} \mathbf{R}_{-ij} \tilde{\mathbf{x}}_i \tilde{\mathbf{x}}_i^\top \mathbf{R}_{-ij} \tilde{\mathbf{x}}_j] \\
 927 &= \frac{1}{N(1 + \delta_R)^3} \text{Tr}(\Sigma \mathbb{E}[\mathbf{R} \mathbf{A} \mathbf{R}]) \mathbb{E}[\tilde{y}_i \tilde{y}_j \tilde{\mathbf{x}}_i^\top \mathbf{R}_{-ij} \tilde{\mathbf{x}}_j] \\
 928 &= \frac{1}{N(1 + \delta_R)^3} \text{Tr}(\Sigma \mathbb{E}[\mathbf{R} \mathbf{A} \mathbf{R}]) \boldsymbol{\mu}^\top \bar{\mathbf{R}} \boldsymbol{\mu}
 \end{aligned}$$

929 And also we can easily observe that:

$$A_{13} = A_{12}, \quad A_{14} = \mathcal{O}(N^{-1}).$$

930 Thus:

$$\mathbb{E}[\tilde{y}_i \tilde{y}_j \tilde{\mathbf{x}}_i^\top \mathbf{R} \mathbf{A} \mathbf{R} \tilde{\mathbf{x}}_j] = \frac{1}{(1 + \delta_R)^2} \left(\boldsymbol{\mu}^\top \mathbb{E}[\mathbf{R} \mathbf{A} \mathbf{R}] \boldsymbol{\mu} - \frac{2}{N(1 + \delta_R)} \text{Tr}(\Sigma \mathbb{E}[\mathbf{R} \mathbf{A} \mathbf{R}]) \boldsymbol{\mu}^\top \bar{\mathbf{R}} \boldsymbol{\mu} \right)$$

931 And for the second term in the equation of $\mathbb{E}[\tilde{\mathbf{w}}^\top \mathbf{A} \tilde{\mathbf{w}}]$, we have:

$$\begin{aligned}
 932 \mathbb{E}[\tilde{\mathbf{x}}_i^\top \mathbf{R} \mathbf{A} \mathbf{R} \tilde{\mathbf{x}}_i] &= \frac{1}{(1 + \delta_R)^2} \mathbb{E}[\tilde{\mathbf{x}}_i^\top \mathbf{R}_{-i} \mathbf{A} \mathbf{R}_{-i} \tilde{\mathbf{x}}_i] \\
 933 &= \frac{1}{(1 + \delta_R)^2} \mathbb{E}[\text{Tr}(\tilde{\mathbf{x}}_i \tilde{\mathbf{x}}_i^\top \mathbf{R}_{-i} \mathbf{A} \mathbf{R}_{-i})] \\
 934 &= \frac{1}{(1 + \delta_R)^2} \text{Tr}(\mathbb{E}[\tilde{\mathbf{x}}_i \tilde{\mathbf{x}}_i^\top] \mathbb{E}[\mathbf{R}_{-i} \mathbf{A} \mathbf{R}_{-i}]) \\
 935 &= \frac{1}{(1 + \delta_R)^2} \text{Tr}(\Sigma \mathbb{E}[\mathbf{R} \mathbf{A} \mathbf{R}])
 \end{aligned}$$

936 Hence, finally:

$$\mathbb{E}[\tilde{\mathbf{w}}^\top \mathbf{A} \tilde{\mathbf{w}}] = \frac{1}{(1 + \delta_R)^2} \left(\boldsymbol{\mu}^\top \mathbb{E}[\mathbf{R} \mathbf{A} \mathbf{R}] \boldsymbol{\mu} - \frac{2}{N(1 + \delta_R)} \text{Tr}(\Sigma \mathbb{E}[\mathbf{R} \mathbf{A} \mathbf{R}]) \boldsymbol{\mu}^\top \bar{\mathbf{R}} \boldsymbol{\mu} + \frac{1}{N} \text{Tr}(\Sigma \mathbb{E}[\mathbf{R} \mathbf{A} \mathbf{R}]) \right)$$

937 \square

938 **Lemma A.9** (Commutativity). *Let $\bar{\mathbf{R}}$ and $\bar{\mathbf{Q}}$ be the resolvent matrices defined in lemma 3.5. We have that:*

$$\bar{\mathbf{Q}} \Sigma_\beta = \Sigma_\beta \bar{\mathbf{Q}}, \quad \bar{\mathbf{R}} \Sigma = \Sigma \bar{\mathbf{R}}.$$

939 *Proof.* We will just prove it for $\bar{\mathbf{Q}}$ and Σ_β because the other proof of the second identity is similar.
940 We know that:

$$\Sigma_\beta = (1 + \delta_Q)(\bar{\mathbf{Q}}^{-1} - \gamma \mathbf{I}_p)$$

941 Thus:

$$\bar{\mathbf{Q}} \Sigma_\beta = (1 + \delta_Q) \bar{\mathbf{Q}} (\bar{\mathbf{Q}}^{-1} - \gamma \mathbf{I}_p) = (1 + \delta_Q)(\mathbf{I}_p - \gamma \bar{\mathbf{Q}})$$

$$\Sigma_\beta \bar{\mathbf{Q}} = (1 + \delta_Q)(\bar{\mathbf{Q}}^{-1} - \gamma \mathbf{I}_p) \bar{\mathbf{Q}} = (1 + \delta_Q)(\mathbf{I}_p - \gamma \bar{\mathbf{Q}})$$

942 which concludes the proof. \square

972 B RMT ANALYSIS OF THE FINE-TUNED CLASSIFIER
973974 Let $\mathbf{x} \sim \mathcal{N}((-1)^a \boldsymbol{\mu}_\beta, \mathbf{I}_p)$ independent of the fine-tuning dataset \mathbf{X} . We recall that:
975

976
$$\mathbf{w}_\alpha = \mathbf{w} + \alpha \tilde{\mathbf{w}} - \frac{\alpha}{n} \mathbf{Q}(\gamma) \mathbf{X} \mathbf{X}^\top \tilde{\mathbf{w}},$$

977

978 where:
979

980
$$\mathbf{w} = \frac{1}{n} \mathbf{Q}(\gamma) \mathbf{X} \mathbf{y}, \quad \tilde{\mathbf{w}} = \frac{1}{N} \mathbf{R}(\tilde{\gamma}) \tilde{\mathbf{X}} \tilde{\mathbf{y}}$$

981

982 B.1 TEST EXPECTATION
983984 We have that:
985

986
$$\mathbb{E}[\mathbf{w}_\alpha^\top \mathbf{x}] = \mathbb{E}[\mathbf{w}^\top \mathbf{x}] + \alpha \mathbb{E}[\tilde{\mathbf{w}}^\top \mathbf{x}] - \frac{\alpha}{n} \mathbb{E}[\tilde{\mathbf{w}}^\top \mathbf{X} \mathbf{X}^\top \mathbf{Q} \mathbf{x}] \quad (13)$$

987

988 Let us compute each term of this previous sum.
989990 First, using lemma A.6, we have that, since \mathbf{x} is independent of \mathbf{X} and of $\tilde{\mathbf{X}}$:
991

992
$$\mathbb{E}[\mathbf{w}^\top \mathbf{x}] = \mathbb{E}[\mathbf{w}]^\top \mathbb{E}[\mathbf{x}] = \frac{(-1)^a}{1 + \delta_Q} \boldsymbol{\mu}_\beta^\top \bar{\mathbf{Q}} \boldsymbol{\mu}_\beta$$

993
$$\mathbb{E}[\tilde{\mathbf{w}}^\top \mathbf{x}] = \mathbb{E}[\tilde{\mathbf{w}}]^\top \mathbb{E}[\mathbf{x}] = \frac{(-1)^a}{1 + \delta_R} \boldsymbol{\mu}^\top \bar{\mathbf{R}} \boldsymbol{\mu}_\beta$$

994

And we have that:
995

996
$$\mathbb{E}[\tilde{\mathbf{w}}^\top \mathbf{X} \mathbf{X}^\top \mathbf{Q} \mathbf{x}] = \mathbb{E}[\tilde{\mathbf{w}}]^\top \mathbb{E}[\mathbf{X} \mathbf{X}^\top \mathbf{Q}] \mathbb{E}[\mathbf{x}]$$

997

And:
998

999
$$\mathbb{E}[\mathbf{X} \mathbf{X}^\top \mathbf{Q}] = \sum_{i=1}^n \mathbb{E}[\mathbf{x}_i \mathbf{x}_i^\top \mathbf{Q}]$$

1000
$$= \sum_{i=1}^n \frac{1}{1 + \delta_Q} \mathbb{E}[\mathbf{x}_i \mathbf{x}_i^\top \mathbf{Q}_i]$$

1001
$$= \sum_{i=1}^n \frac{1}{1 + \delta_Q} \mathbb{E}[\mathbf{x}_i \mathbf{x}_i^\top] \bar{\mathbf{Q}}$$

1002
$$= \frac{n}{1 + \delta_Q} \Sigma_\beta \bar{\mathbf{Q}}$$

1003

1004 Thus:
1005

1006
$$\frac{1}{n} \mathbb{E}[\tilde{\mathbf{w}}^\top \mathbf{X} \mathbf{X}^\top \mathbf{Q} \mathbf{x}] = \frac{(-1)^a}{(1 + \delta_R)} \frac{1}{(1 + \delta_Q)} \boldsymbol{\mu}^\top \bar{\mathbf{R}} \Sigma_\beta \bar{\mathbf{Q}} \boldsymbol{\mu}_\beta$$

1007
$$= \frac{(-1)^a}{1 + \delta_R} \boldsymbol{\mu}^\top \bar{\mathbf{R}} (\mathbf{I}_p - \gamma \bar{\mathbf{Q}}) \boldsymbol{\mu}_\beta$$

1008

1009 Finally:
1010

1011
$$\mathbb{E}[\mathbf{w}_\alpha^\top \mathbf{x}] = (-1)^a \left(\frac{1}{1 + \delta_Q} \boldsymbol{\mu}_\beta^\top \bar{\mathbf{Q}} \boldsymbol{\mu}_\beta + \frac{\alpha}{1 + \delta_R} \boldsymbol{\mu}^\top \bar{\mathbf{R}} \boldsymbol{\mu}_\beta - \frac{\alpha}{1 + \delta_R} \boldsymbol{\mu}^\top \bar{\mathbf{R}} (\mathbf{I}_p - \gamma \bar{\mathbf{Q}}) \boldsymbol{\mu}_\beta \right)$$

1012
$$= (-1)^a \left(\frac{1}{1 + \delta_Q} \boldsymbol{\mu}_\beta^\top \bar{\mathbf{Q}} \boldsymbol{\mu}_\beta + \frac{\alpha \gamma}{1 + \delta_R} \boldsymbol{\mu}^\top \bar{\mathbf{R}} \bar{\mathbf{Q}} \boldsymbol{\mu}_\beta \right)$$

1013

1014 And using the identities in lemma A.5:
1015

1016
$$\mathbb{E}[\mathbf{w}_\alpha^\top \mathbf{x}] = \frac{(-1)^a}{(\|\boldsymbol{\mu}_\beta\|^2 + 1 + \gamma(1 + \delta_Q))} \left(\|\boldsymbol{\mu}_\beta\|^2 + \frac{\alpha \gamma (1 + \delta_Q)}{(\|\boldsymbol{\mu}\|^2 + 1 + \tilde{\gamma}(1 + \delta_R))} \beta \|\boldsymbol{\mu}\|^2 \right) \quad (14)$$

1017

1018
$$= \frac{(-1)^a}{\lambda_Q} \left(\|\boldsymbol{\mu}_\beta\|^2 + \frac{\alpha \beta \gamma (1 + \delta_Q)}{\lambda_R} \|\boldsymbol{\mu}\|^2 \right) \quad (15)$$

1019

1026 B.2 TEST VARIANCE
10271028 To compute the variance of $\mathbf{w}_\alpha^\top \mathbf{x}$, it suffices to compute the second moment: $\mathbb{E}[(\mathbf{w}_\alpha^\top \mathbf{x})^2]$.
1029

1030
$$\mathbb{E}[(\mathbf{w}_\alpha^\top \mathbf{x})^2] = \mathbb{E}[(\mathbf{w}^\top \mathbf{x} + \alpha \tilde{\mathbf{w}}^\top \mathbf{x})^2] + \frac{\alpha^2}{n^2} (\tilde{\mathbf{w}}^\top \mathbf{X} \mathbf{X}^\top \mathbf{Q} \mathbf{x})^2 - \frac{2\alpha}{n} \tilde{\mathbf{w}}^\top \mathbf{X} \mathbf{X}^\top \mathbf{Q} \mathbf{x} (\mathbf{w}^\top \mathbf{x} + \alpha \tilde{\mathbf{w}}^\top \mathbf{x}) \quad (16)$$

1031

1032 **First term:** We have that, as proved in Firdoussi & Seddik (2024):
1033

1034
$$\begin{aligned} \mathbb{E}[(\mathbf{w}^\top \mathbf{x})^2] &= \frac{1}{h(1 + \delta_Q)} \left(\frac{1}{1 + \delta_Q} \boldsymbol{\mu}_\beta^\top \bar{\mathbf{Q}} \Sigma_\beta \bar{\mathbf{Q}} \boldsymbol{\mu}_\beta - 2(1 - h) \boldsymbol{\mu}_\beta^\top \bar{\mathbf{Q}} \boldsymbol{\mu}_\beta \right) + \frac{1 - h}{h} \\ 1035 &= \frac{1}{h(1 + \delta_Q)} \left(\frac{1}{1 + \delta_Q} ((\boldsymbol{\mu}_\beta^\top \bar{\mathbf{Q}} \boldsymbol{\mu}_\beta)^2 + \boldsymbol{\mu}_\beta^\top \bar{\mathbf{Q}}^2 \boldsymbol{\mu}_\beta) - 2(1 - h) \boldsymbol{\mu}_\beta^\top \bar{\mathbf{Q}} \boldsymbol{\mu}_\beta \right) + \frac{1 - h}{h} \\ 1036 &= \frac{\|\boldsymbol{\mu}_\beta\|^2}{h(\|\boldsymbol{\mu}_\beta\|^2 + 1 + \gamma(1 + \delta_Q))} \left(\frac{\|\boldsymbol{\mu}_\beta\|^2 + 1}{\|\boldsymbol{\mu}_\beta\|^2 + 1 + \gamma(1 + \delta_Q)} - 2(1 - h) \right) + \frac{1 - h}{h} \end{aligned}$$

1037

1038 And:
1039

1040
$$\begin{aligned} \mathbb{E}[(\tilde{\mathbf{w}}^\top \mathbf{x})^2] &= \mathbb{E}[\tilde{\mathbf{w}}^\top \mathbf{x} \tilde{\mathbf{w}}^\top \mathbf{x}] \\ 1041 &= \mathbb{E}[\tilde{\mathbf{w}}^\top \mathbf{x} \mathbf{x}^\top \tilde{\mathbf{w}}] \\ 1042 &= \mathbb{E}[\tilde{\mathbf{w}}^\top \Sigma_\beta \tilde{\mathbf{w}}] \end{aligned}$$

1043

1044 Therefore by lemma A.8:
1045

1046
$$\mathbb{E}[(\tilde{\mathbf{w}}^\top \mathbf{x})^2] = \frac{1}{(1 + \delta_R)^2} \left(\boldsymbol{\mu}^\top \mathbb{E}[\mathbf{R} \Sigma_\beta \mathbf{R}] \boldsymbol{\mu} - \frac{2}{(1 + \delta_R)} \frac{1}{N} \text{Tr}(\Sigma \mathbb{E}[\mathbf{R} \Sigma_\beta \mathbf{R}]) \boldsymbol{\mu}^\top \bar{\mathbf{R}} \boldsymbol{\mu} + \frac{1}{N} \text{Tr}(\Sigma \mathbb{E}[\mathbf{R} \Sigma_\beta \mathbf{R}]) \right) \quad (17)$$

1047

1048 And, we have that:
1049

1050
$$\begin{aligned} \mathbb{E}[\mathbf{w}^\top \mathbf{x} \tilde{\mathbf{w}}^\top \mathbf{x}] &= \mathbb{E}[\mathbf{w}^\top \mathbf{x} \mathbf{x}^\top \tilde{\mathbf{w}}] \\ 1051 &= \mathbb{E}[\mathbf{w}]^\top \Sigma_\beta \mathbb{E}[\tilde{\mathbf{w}}] \\ 1052 &= \frac{1}{(1 + \delta_Q)(1 + \delta_R)} \boldsymbol{\mu}_\beta^\top \bar{\mathbf{Q}} \Sigma_\beta \bar{\mathbf{R}} \boldsymbol{\mu} \\ 1053 &= \frac{1}{(1 + \delta_R)} \boldsymbol{\mu}_\beta^\top (\mathbf{I}_p - \gamma \bar{\mathbf{Q}}) \bar{\mathbf{R}} \boldsymbol{\mu} \\ 1054 &= \frac{1}{(1 + \delta_R)} \boldsymbol{\mu}_\beta^\top \bar{\mathbf{R}} \boldsymbol{\mu} - \frac{\gamma}{(1 + \delta_R)} \boldsymbol{\mu}_\beta^\top \bar{\mathbf{Q}} \bar{\mathbf{R}} \boldsymbol{\mu} \end{aligned}$$

1055

1056 And since $\mathbb{E}[\mathbf{w}^\top \mathbf{x} \tilde{\mathbf{w}}^\top \mathbf{x}] = \mathbb{E}[\tilde{\mathbf{w}}^\top \mathbf{x} \mathbf{w}^\top \mathbf{x}]$, then:
1057

1058
$$\mathbb{E}[\mathbf{w}^\top \mathbf{x} \tilde{\mathbf{w}}^\top \mathbf{x}] = \frac{1}{(1 + \delta_R)} \boldsymbol{\mu}_\beta^\top \bar{\mathbf{R}} \boldsymbol{\mu} - \frac{\gamma}{(1 + \delta_R)} \boldsymbol{\mu}_\beta^\top \bar{\mathbf{Q}} \bar{\mathbf{R}} \boldsymbol{\mu}$$

1059

1060 and thus:
1061

1062
$$\boldsymbol{\mu}_\beta^\top \bar{\mathbf{R}} \bar{\mathbf{Q}} \boldsymbol{\mu} = \boldsymbol{\mu}_\beta^\top \bar{\mathbf{Q}} \bar{\mathbf{R}} \boldsymbol{\mu} \quad (18)$$

1063

1064 **Second term:** Now let us compute the expectation of the second term in equation 28:
1065

1066
$$\begin{aligned} \frac{1}{n^2} \mathbb{E}[(\tilde{\mathbf{w}}^\top \mathbf{X} \mathbf{X}^\top \mathbf{Q} \mathbf{x})^2] &= \frac{1}{n^2} \mathbb{E}[\tilde{\mathbf{w}}^\top \mathbf{X} \mathbf{X}^\top \mathbf{Q} \mathbf{x} \tilde{\mathbf{w}}^\top \mathbf{X} \mathbf{X}^\top \mathbf{Q} \mathbf{x}] \\ 1067 &= \frac{1}{n^2} \mathbb{E}[\tilde{\mathbf{w}}^\top \mathbf{X} \mathbf{X}^\top \mathbf{Q} \mathbf{x} \mathbf{x}^\top \mathbf{X} \mathbf{X}^\top \mathbf{Q} \tilde{\mathbf{w}}] \\ 1068 &= \frac{1}{n^2} \mathbb{E}[\tilde{\mathbf{w}}^\top \mathbf{X} \mathbf{X}^\top \mathbf{Q} \Sigma_\beta \mathbf{X} \mathbf{X}^\top \mathbf{Q} \tilde{\mathbf{w}}] \\ 1069 &= \mathbb{E}[\tilde{\mathbf{w}}^\top (\mathbf{I}_p - \gamma \bar{\mathbf{Q}}) \Sigma_\beta (\mathbf{I}_p - \gamma \bar{\mathbf{Q}}) \tilde{\mathbf{w}}] \end{aligned}$$

1070

1071 Therefore, by lemma A.8:
1072

1073
$$\begin{aligned} \frac{1}{n^2} \mathbb{E}[(\tilde{\mathbf{w}}^\top \mathbf{X} \mathbf{X}^\top \mathbf{Q} \mathbf{x})^2] &= \frac{1}{(1 + \delta_R)^2} \boldsymbol{\mu}^\top \mathbb{E}[\mathbf{R} (\mathbf{I}_p - \gamma \bar{\mathbf{Q}}) \Sigma_\beta (\mathbf{I}_p - \gamma \bar{\mathbf{Q}}) \mathbf{R}] \boldsymbol{\mu} \\ 1074 &+ \frac{\text{Tr}(\Sigma \mathbb{E}[\mathbf{R} (\mathbf{I}_p - \gamma \bar{\mathbf{Q}}) \Sigma_\beta (\mathbf{I}_p - \gamma \bar{\mathbf{Q}}) \mathbf{R}])}{N(1 + \delta_R)^2} \left(1 - \frac{2}{(1 + \delta_R)} \boldsymbol{\mu}^\top \bar{\mathbf{R}} \boldsymbol{\mu} \right) \end{aligned}$$

1075

1080 **Third term:** Now we want to compute $\frac{2\alpha}{n} \mathbb{E}[\tilde{\mathbf{w}}^\top \mathbf{X} \mathbf{X}^\top \mathbf{Q} \mathbf{x} (\mathbf{w}^\top \mathbf{x} + \alpha \tilde{\mathbf{w}}^\top \mathbf{x})]$. So we have that:

$$\begin{aligned}
 1081 \quad \mathbb{E}[\tilde{\mathbf{w}}^\top \mathbf{X} \mathbf{X}^\top \mathbf{Q} \mathbf{x} \mathbf{w}^\top \mathbf{x}] &= \mathbb{E}[\tilde{\mathbf{w}}]^\top \mathbb{E}[\mathbf{X} \mathbf{X}^\top \mathbf{Q} \mathbf{x} \mathbf{x}^\top \mathbf{w}] \\
 1082 &= \mathbb{E}[\tilde{\mathbf{w}}]^\top \mathbb{E}[\mathbf{X} \mathbf{X}^\top \mathbf{Q} \Sigma_\beta \mathbf{w}] \\
 1083 &= \mathbb{E}[\tilde{\mathbf{w}}]^\top \mathbb{E}\left[\frac{1}{n} \mathbf{X} \mathbf{X}^\top \mathbf{Q} \Sigma_\beta \mathbf{Q} \mathbf{X} \mathbf{y}\right] \\
 1084 &= \mathbb{E}[\tilde{\mathbf{w}}]^\top \mathbb{E}[(\mathbf{Q}^{-1} - \gamma \mathbf{I}_p) \mathbf{Q} \Sigma_\beta \mathbf{Q} \mathbf{X} \mathbf{y}] \\
 1085 &= \mathbb{E}[\tilde{\mathbf{w}}]^\top \mathbb{E}[(\mathbf{I}_p - \gamma \mathbf{Q}) \Sigma_\beta \mathbf{Q} \mathbf{X} \mathbf{y}] \\
 1086 &= \mathbb{E}[\tilde{\mathbf{w}}]^\top (\mathbb{E}[\Sigma_\beta \mathbf{Q} \mathbf{X} \mathbf{y}] - \gamma \mathbb{E}[\mathbf{Q} \Sigma_\beta \mathbf{Q} \mathbf{X} \mathbf{y}])
 \end{aligned}$$

1087 And we have that:

$$\begin{aligned}
 1088 \quad \mathbb{E}[\Sigma_\beta \mathbf{Q} \mathbf{X} \mathbf{y}] &= \sum_{i=1}^n \mathbb{E}[y_i \Sigma_\beta \mathbf{Q} \mathbf{x}_i] \\
 1089 &= \frac{n}{(1 + \delta_Q)} \mathbb{E}[y_i \Sigma_\beta \mathbf{Q}_{-i} \mathbf{x}_i] \\
 1090 &= \frac{n}{(1 + \delta_Q)} \Sigma_\beta \bar{\mathbf{Q}} \boldsymbol{\mu}_\beta \\
 1091 &= n(\mathbf{I}_p - \gamma \bar{\mathbf{Q}}) \boldsymbol{\mu}_\beta
 \end{aligned}$$

1092 And:

$$\begin{aligned}
 1093 \quad \mathbb{E}[\mathbf{Q} \Sigma_\beta \mathbf{Q} \mathbf{X} \mathbf{y}] &= \sum_{i=1}^n \mathbb{E}[y_i \mathbf{Q} \Sigma_\beta \mathbf{Q} \mathbf{x}_i] \\
 1094 &= \frac{n}{(1 + \delta_Q)} \mathbb{E}[y_i \mathbf{Q} \Sigma_\beta \mathbf{Q}_{-i} \mathbf{x}_i] \\
 1095 &= \frac{n}{(1 + \delta_Q)} \mathbb{E}\left[y_i \left(\mathbf{Q}_{-i} - \frac{\frac{1}{n} \mathbf{Q}_{-i} \mathbf{x}_i \mathbf{x}_i^\top \mathbf{Q}_{-i}}{1 + \delta_Q}\right) \Sigma_\beta \mathbf{Q}_{-i} \mathbf{x}_i\right] \\
 1096 &= \frac{n}{(1 + \delta_Q)} \left(\mathbb{E}[y_i \mathbf{Q}_{-i} \Sigma_\beta \mathbf{Q}_{-i} \mathbf{x}_i] - \frac{1}{n(1 + \delta_Q)} \mathbb{E}[y_i \mathbf{Q}_{-i} \mathbf{x}_i \mathbf{x}_i^\top \mathbf{Q}_{-i} \Sigma_\beta \mathbf{Q}_{-i} \mathbf{x}_i]\right) \\
 1097 &= \frac{n}{(1 + \delta_Q)} \left(\mathbb{E}[\mathbf{Q} \Sigma_\beta \mathbf{Q}] \boldsymbol{\mu}_\beta - \frac{1}{n(1 + \delta_Q)} \text{Tr}(\Sigma_\beta \mathbb{E}[\mathbf{Q} \Sigma_\beta \mathbf{Q}]) \bar{\mathbf{Q}} \boldsymbol{\mu}_\beta\right) \\
 1098 &= \frac{n}{h(1 + \delta_Q)} \bar{\mathbf{Q}} \Sigma_\beta \bar{\mathbf{Q}} \boldsymbol{\mu}_\beta - \frac{n(1 - h)}{h} \bar{\mathbf{Q}} \boldsymbol{\mu}_\beta \\
 1099 &= n\left(\frac{1}{h}(\mathbf{I}_p - \gamma \bar{\mathbf{Q}}) \bar{\mathbf{Q}} \boldsymbol{\mu}_\beta - \frac{1 - h}{h} \bar{\mathbf{Q}} \boldsymbol{\mu}_\beta\right) \\
 1100 &= n(\bar{\mathbf{Q}} \boldsymbol{\mu}_\beta - \frac{\gamma}{h} \bar{\mathbf{Q}}^2 \boldsymbol{\mu}_\beta)
 \end{aligned}$$

1101 Thus:

$$\frac{1}{n} \mathbb{E}[\tilde{\mathbf{w}}^\top \mathbf{X} \mathbf{X}^\top \mathbf{Q} \mathbf{x} \mathbf{w}^\top \mathbf{x}] = \frac{1}{(1 + \delta_R)} \boldsymbol{\mu}^\top \bar{\mathbf{R}} \left(\mathbf{I}_p - 2\gamma \bar{\mathbf{Q}} + \frac{\gamma^2}{h} \bar{\mathbf{Q}}^2\right) \boldsymbol{\mu}_\beta \quad (19)$$

1102 Let us now compute the remaining term:

$$\begin{aligned}
 1103 \quad \frac{1}{n} \mathbb{E}[\tilde{\mathbf{w}}^\top \mathbf{X} \mathbf{X}^\top \mathbf{Q} \mathbf{x} \tilde{\mathbf{w}}^\top \mathbf{x}] &= \frac{1}{n} \mathbb{E}[\tilde{\mathbf{w}}^\top \mathbf{X} \mathbf{X}^\top \mathbf{Q} \mathbf{x} \mathbf{x}^\top \tilde{\mathbf{w}}] \\
 1104 &= \frac{1}{n} \mathbb{E}[\tilde{\mathbf{w}}^\top \mathbf{X} \mathbf{X}^\top \mathbf{Q} \Sigma_\beta \tilde{\mathbf{w}}] \\
 1105 &= \mathbb{E}[\tilde{\mathbf{w}}^\top (\mathbf{I}_p - \gamma \mathbf{Q}) \Sigma_\beta \tilde{\mathbf{w}}]
 \end{aligned}$$

1106 And again by lemma A.8:

$$\frac{1}{n} \mathbb{E}[\tilde{\mathbf{w}}^\top \mathbf{X} \mathbf{X}^\top \mathbf{Q} \mathbf{x} \tilde{\mathbf{w}}^\top \mathbf{x}] = \frac{1}{(1 + \delta_R)^2} \boldsymbol{\mu}^\top \mathbb{E}[\mathbf{R}(\mathbf{I}_p - \gamma \mathbf{Q}) \Sigma_\beta \mathbf{R}] \boldsymbol{\mu} + \frac{\text{Tr}(\Sigma \mathbb{E}[\mathbf{R}(\mathbf{I}_p - \gamma \mathbf{Q}) \Sigma_\beta \mathbf{R}])}{N(1 + \delta_R)^2} \left(1 - \frac{2}{(1 + \delta_R)} \boldsymbol{\mu}^\top \bar{\mathbf{R}} \boldsymbol{\mu}\right)$$

1107 Now let us group all the results as follows.

1134 **Terms without α :** There is only one term which is:

$$\begin{aligned}
 1136 \quad T_1 &= \mathbb{E}[(\mathbf{w}^\top \mathbf{x})^2] = \frac{1}{h(1 + \delta_Q)} ((2h - 1)\boldsymbol{\mu}_\beta^\top \bar{\mathbf{Q}} \boldsymbol{\mu}_\beta - \gamma \boldsymbol{\mu}_\beta^\top \bar{\mathbf{Q}}^2 \boldsymbol{\mu}_\beta) + \frac{1 - h}{h} \\
 1137 \\
 1138 \quad &= \frac{\|\boldsymbol{\mu}_\beta\|^2}{h(\|\boldsymbol{\mu}_\beta\|^2 + 1 + \gamma(1 + \delta_Q))} \left(\frac{\|\boldsymbol{\mu}_\beta\|^2 + 1}{\|\boldsymbol{\mu}_\beta\|^2 + 1 + \gamma(1 + \delta_Q)} - 2(1 - h) \right) + \frac{1 - h}{h}
 \end{aligned}$$

1141 **Terms in α :** There are two: $2\mathbb{E}[\mathbf{w}^\top \mathbf{x} \tilde{\mathbf{w}}^\top \mathbf{x}]$ and $\frac{2}{n} \mathbb{E}[\tilde{\mathbf{w}}^\top \mathbf{X} \mathbf{X}^\top \mathbf{Q} \mathbf{x} \mathbf{w}^\top \mathbf{x}]$:

$$\begin{aligned}
 1143 \quad T_2 &= 2\mathbb{E}[\mathbf{w}^\top \mathbf{x} \tilde{\mathbf{w}}^\top \mathbf{x}] - \frac{2}{n} \mathbb{E}[\tilde{\mathbf{w}}^\top \mathbf{X} \mathbf{X}^\top \mathbf{Q} \mathbf{x} \mathbf{w}^\top \mathbf{x}] \\
 1144 \\
 1145 \quad &= \frac{2}{(1 + \delta_R)} \left(\boldsymbol{\mu}_\beta^\top \bar{\mathbf{R}} \boldsymbol{\mu} - \gamma \boldsymbol{\mu}_\beta^\top \bar{\mathbf{R}} \bar{\mathbf{Q}} \boldsymbol{\mu} - \boldsymbol{\mu}^\top \bar{\mathbf{R}} (\mathbf{I}_p - 2\gamma \bar{\mathbf{Q}} + \frac{\gamma^2}{h} \bar{\mathbf{Q}}^2) \boldsymbol{\mu}_\beta \right) \\
 1146 \\
 1147 \quad &= \frac{2\gamma}{(1 + \delta_R)} \boldsymbol{\mu}^\top \bar{\mathbf{R}} \bar{\mathbf{Q}} \left(\mathbf{I}_p - \frac{\gamma}{h} \bar{\mathbf{Q}} \right) \boldsymbol{\mu}_\beta
 \end{aligned}$$

1150 And using lemma A.5:

$$T_2 = \frac{2\gamma(1 + \delta_Q)\beta\|\boldsymbol{\mu}\|^2}{(\|\boldsymbol{\mu}\|^2 + 1 + \tilde{\gamma}(1 + \delta_R))(\|\boldsymbol{\mu}_\beta\|^2 + 1 + \gamma(1 + \delta_Q))} \left(1 - \frac{\gamma(1 + \delta_Q)}{h(\|\boldsymbol{\mu}_\beta\|^2 + 1 + \gamma(1 + \delta_Q))} \right)$$

1154 **Terms in α^2 :** we have three terms: $\mathbb{E}[(\tilde{\mathbf{w}}^\top \mathbf{x})^2]$, $\frac{1}{n^2} \mathbb{E}[(\tilde{\mathbf{w}}^\top \mathbf{X} \mathbf{X}^\top \mathbf{Q} \mathbf{x})^2]$ and
1155 $\frac{-2}{n} \mathbb{E}[\tilde{\mathbf{w}}^\top \mathbf{X} \mathbf{X}^\top \mathbf{Q} \mathbf{x} \tilde{\mathbf{w}}^\top \mathbf{x}]$:

$$\begin{aligned}
 1158 \quad T_3 &= \mathbb{E}[(\tilde{\mathbf{w}}^\top \mathbf{x})^2] + \frac{1}{n^2} \mathbb{E}[(\tilde{\mathbf{w}}^\top \mathbf{X} \mathbf{X}^\top \mathbf{Q} \mathbf{x})^2] - \frac{2}{n} \mathbb{E}[\tilde{\mathbf{w}}^\top \mathbf{X} \mathbf{X}^\top \mathbf{Q} \mathbf{x} \tilde{\mathbf{w}}^\top \mathbf{x}] \\
 1159 \\
 1160 \quad &= \frac{\gamma}{(1 + \delta_R)^2} \boldsymbol{\mu}^\top (\mathbb{E}[\mathbf{R} \bar{\mathbf{Q}} \Sigma_\beta \mathbf{R}] - \mathbb{E}[\mathbf{R} \Sigma_\beta \bar{\mathbf{Q}} \mathbf{R}] + \gamma \mathbb{E}[\mathbf{R} \mathbf{Q} \Sigma_\beta \mathbf{Q} \mathbf{R}]) \boldsymbol{\mu} \\
 1161 \\
 1162 \quad &+ \frac{\gamma}{N(1 + \delta_R)^2} \left(1 - \frac{2}{(1 + \delta_R)} \boldsymbol{\mu}^\top \bar{\mathbf{R}} \boldsymbol{\mu} \right) \text{Tr}(\Sigma(\mathbb{E}[\mathbf{R} \bar{\mathbf{Q}} \Sigma_\beta \mathbf{R}] - \mathbb{E}[\mathbf{R} \Sigma_\beta \bar{\mathbf{Q}} \mathbf{R}] + \gamma \mathbb{E}[\mathbf{R} \mathbf{Q} \Sigma_\beta \mathbf{Q} \mathbf{R}])) \\
 1163 \\
 1164 \quad &= \frac{\gamma^2}{(1 + \delta_R)^2} \left[\boldsymbol{\mu}^\top \mathbb{E}[\mathbf{R} \mathbf{Q} \Sigma_\beta \mathbf{Q} \mathbf{R}] \boldsymbol{\mu} + \left(1 - \frac{2}{(1 + \delta_R)} \boldsymbol{\mu}^\top \bar{\mathbf{R}} \boldsymbol{\mu} \right) \frac{1}{N} \text{Tr}(\Sigma \mathbb{E}[\mathbf{R} \mathbf{Q} \Sigma_\beta \mathbf{Q} \mathbf{R}]) \right]
 \end{aligned}$$

1166 where the last equality is gotten using lemma A.9.

1167 We also have that:

$$\begin{aligned}
 1169 \quad \frac{1}{N} \text{Tr}(\Sigma \mathbb{E}[\mathbf{R} \mathbf{Q} \Sigma_\beta \mathbf{Q} \mathbf{R}]) &= \frac{1}{N} \text{Tr}(\mathbb{E}[\Sigma \mathbf{R} \mathbf{Q} \Sigma_\beta \mathbf{Q} \mathbf{R}]) \\
 1170 \\
 1171 \quad &= \frac{1}{N} \mathbb{E}[\text{Tr}(\Sigma \mathbf{R} \mathbf{Q} \Sigma_\beta \mathbf{Q} \mathbf{R})] \\
 1172 \\
 1173 \quad &= \frac{1}{N} \mathbb{E}[\text{Tr}(\mathbf{R} \Sigma \mathbf{R} \mathbf{Q} \Sigma_\beta \mathbf{Q})] \\
 1174 \\
 1175 \quad &= \frac{1}{N} \text{Tr}(\mathbb{E}[\mathbf{R} \Sigma \mathbf{R} \mathbf{Q} \Sigma_\beta \mathbf{Q}]) \\
 1176 \\
 1177 \quad &= \frac{1}{N} \text{Tr}(\mathbb{E}[\mathbf{R} \Sigma \mathbf{R}] \mathbb{E}[\mathbf{Q} \Sigma_\beta \mathbf{Q}]) \\
 1178 \\
 1179 \quad &= \frac{1}{h\tilde{h}} \frac{1}{N} \text{Tr}(\bar{\mathbf{R}} \Sigma \bar{\mathbf{R}} \bar{\mathbf{Q}} \Sigma_\beta \bar{\mathbf{Q}})
 \end{aligned}$$

1181 And:

$$\begin{aligned}
 1183 \quad \boldsymbol{\mu}^\top \mathbb{E}[\mathbf{R} \mathbf{Q} \Sigma_\beta \mathbf{Q} \mathbf{R}] \boldsymbol{\mu} &= \text{Tr}(\mathbb{E}[\boldsymbol{\mu}^\top \mathbf{R} \mathbf{Q} \Sigma_\beta \mathbf{Q} \mathbf{R} \boldsymbol{\mu}]) \\
 1184 \\
 1185 \quad &= \mathbb{E}[\text{Tr}(\mathbf{R} \boldsymbol{\mu} \boldsymbol{\mu}^\top \mathbf{R} \mathbf{Q} \Sigma_\beta \mathbf{Q})] \\
 1186 \\
 1187 \quad &= \text{Tr}(\mathbb{E}[\mathbf{R} \boldsymbol{\mu} \boldsymbol{\mu}^\top \mathbf{R}] \mathbb{E}[\mathbf{Q} \Sigma_\beta \mathbf{Q}]) \\
 1188 \quad &= \frac{1}{h} \text{Tr}(\mathbb{E}[\mathbf{R} \boldsymbol{\mu} \boldsymbol{\mu}^\top \mathbf{R}] \bar{\mathbf{Q}} \Sigma_\beta \bar{\mathbf{Q}})
 \end{aligned}$$

1188 Thus:

$$1189 T_3 = \frac{\gamma^2}{h(1+\delta_R)^2} \left[\text{Tr}(\mathbb{E}[\mathbf{R}\boldsymbol{\mu}\boldsymbol{\mu}^\top \mathbf{R}]\bar{\mathbf{Q}}\Sigma_\beta\bar{\mathbf{Q}}) + \left(1 - \frac{2}{(1+\delta_R)}\boldsymbol{\mu}^\top \bar{\mathbf{R}}\boldsymbol{\mu}\right) \frac{1}{\tilde{h}} \frac{1}{N} \text{Tr}(\bar{\mathbf{R}}\Sigma\bar{\mathbf{R}}\bar{\mathbf{Q}}\Sigma_\beta\bar{\mathbf{Q}}) \right]$$

1192 Now remains to compute $\mathbb{E}[\mathbf{R}\boldsymbol{\mu}\boldsymbol{\mu}^\top \mathbf{R}]$. For that, we use lemma A.7:

$$1193 \mathbb{E}[\mathbf{R}\boldsymbol{\mu}\boldsymbol{\mu}^\top \mathbf{R}] = \bar{\mathbf{R}}\boldsymbol{\mu}\boldsymbol{\mu}^\top \bar{\mathbf{R}} + \frac{1}{N} \frac{\text{Tr}(\Sigma\bar{\mathbf{R}}\boldsymbol{\mu}\boldsymbol{\mu}^\top \bar{\mathbf{R}})}{(1+\delta_R)^2} \mathbb{E}[\mathbf{R}\Sigma\mathbf{R}] \\ 1194 = \bar{\mathbf{R}}\boldsymbol{\mu}\boldsymbol{\mu}^\top \bar{\mathbf{R}} + \frac{1}{N} \frac{\boldsymbol{\mu}^\top \bar{\mathbf{R}}\Sigma\bar{\mathbf{R}}\boldsymbol{\mu}}{(1+\delta_R)^2} \frac{1}{\tilde{h}} \bar{\mathbf{R}}\Sigma\bar{\mathbf{R}}$$

1198 And since we are in the regime of $N \rightarrow \infty$, then:

$$1199 \frac{1}{N} \boldsymbol{\mu}^\top \bar{\mathbf{R}}\Sigma\bar{\mathbf{R}}\boldsymbol{\mu} = \mathcal{O}(N^{-1})$$

1201 Thus:

$$1202 \mathbb{E}[\mathbf{R}\boldsymbol{\mu}\boldsymbol{\mu}^\top \mathbf{R}] = \bar{\mathbf{R}}\boldsymbol{\mu}\boldsymbol{\mu}^\top \bar{\mathbf{R}} \quad (20)$$

1203 Hence, T_3 becomes:

$$1204 T_3 = \frac{\gamma^2}{h(1+\delta_R)^2} \left[\boldsymbol{\mu}^\top \bar{\mathbf{R}}\bar{\mathbf{Q}}\Sigma_\beta\bar{\mathbf{Q}}\bar{\mathbf{R}}\boldsymbol{\mu} + \left(1 - \frac{2}{(1+\delta_R)}\boldsymbol{\mu}^\top \bar{\mathbf{R}}\boldsymbol{\mu}\right) \frac{1}{\tilde{h}} \frac{1}{N} \text{Tr}(\bar{\mathbf{R}}\Sigma\bar{\mathbf{R}}\bar{\mathbf{Q}}\Sigma_\beta\bar{\mathbf{Q}}) \right]$$

1206 And we also have that:

$$1207 \boldsymbol{\mu}^\top \bar{\mathbf{R}}\bar{\mathbf{Q}}\Sigma_\beta\bar{\mathbf{Q}}\bar{\mathbf{R}}\boldsymbol{\mu} = \boldsymbol{\mu}^\top \bar{\mathbf{R}}\bar{\mathbf{Q}}\boldsymbol{\mu}_\beta\boldsymbol{\mu}_\beta^\top \bar{\mathbf{Q}}\bar{\mathbf{R}}\boldsymbol{\mu} + \boldsymbol{\mu}^\top \bar{\mathbf{R}}\bar{\mathbf{Q}}^2\bar{\mathbf{R}}\boldsymbol{\mu} \\ 1208 = (\boldsymbol{\mu}^\top \bar{\mathbf{R}}\bar{\mathbf{Q}}\boldsymbol{\mu}_\beta)^2 + \boldsymbol{\mu}^\top \bar{\mathbf{R}}\bar{\mathbf{Q}}^2\bar{\mathbf{R}}\boldsymbol{\mu}$$

1210 And:

$$1211 \frac{1}{N} \text{Tr}(\bar{\mathbf{R}}\Sigma\bar{\mathbf{R}}\bar{\mathbf{Q}}\Sigma_\beta\bar{\mathbf{Q}}) = \frac{1}{N} \text{Tr}(\bar{\mathbf{R}}^2\bar{\mathbf{Q}}^2)$$

1213 Therefore:

$$1214 T_3 = \frac{\gamma^2}{h(1+\delta_R)^2} \left[(\boldsymbol{\mu}^\top \bar{\mathbf{R}}\bar{\mathbf{Q}}\boldsymbol{\mu}_\beta)^2 + \boldsymbol{\mu}^\top \bar{\mathbf{R}}\bar{\mathbf{Q}}^2\bar{\mathbf{R}}\boldsymbol{\mu} + \left(1 - \frac{2}{(1+\delta_R)}\boldsymbol{\mu}^\top \bar{\mathbf{R}}\boldsymbol{\mu}\right) \frac{1}{\tilde{h}} \frac{1}{N} \text{Tr}(\bar{\mathbf{R}}^2\bar{\mathbf{Q}}^2) \right] \quad (21)$$

1218 Then using lemmas A.4 and A.5:

$$1219 T_3 = \frac{\gamma^2}{h(1+\delta_R)^2} \left[(\boldsymbol{\mu}^\top \bar{\mathbf{R}}\bar{\mathbf{Q}}\boldsymbol{\mu}_\beta)^2 + \boldsymbol{\mu}^\top \bar{\mathbf{R}}\bar{\mathbf{Q}}^2\bar{\mathbf{R}}\boldsymbol{\mu} \right] + \frac{\gamma^2}{h(1+\delta_R)^2} \left(1 - \frac{2}{(1+\delta_R)}\boldsymbol{\mu}^\top \bar{\mathbf{R}}\boldsymbol{\mu}\right) \frac{1}{\tilde{h}} \frac{1}{N} \text{Tr}(\bar{\mathbf{R}}^2\bar{\mathbf{Q}}^2) \\ 1220 = \frac{\gamma^2(1+\delta_Q)^2}{h} \left[\frac{\|\boldsymbol{\mu}\|^2}{\lambda_Q^2} \left(\frac{\beta^2\|\boldsymbol{\mu}\|^2}{\lambda_Q^2} + \frac{1}{(1+\gamma(1+\delta_Q))^2} \left(1 + \frac{\beta^2\|\boldsymbol{\mu}\|^2\|\boldsymbol{\mu}_\beta\|^2}{\lambda_Q^2} - \frac{2\beta^2\|\boldsymbol{\mu}\|^2}{\lambda_Q} \right) \right) + \right. \\ 1221 \left. \frac{\tilde{\eta}}{(1+\gamma(1+\delta_Q))^2(1+\tilde{\gamma}(1+\delta_R))^2} \left(1 - \frac{2\|\boldsymbol{\mu}\|^2}{\lambda_R}\right) \right] \\ 1222 = \frac{\gamma^2(1+\delta_Q)^2}{h} \left[\frac{\|\boldsymbol{\mu}\|^2}{\lambda_Q^2} \left(\frac{\beta^2\|\boldsymbol{\mu}\|^2}{\lambda_Q^2} + \frac{1-h}{\eta} \left(1 + \frac{\beta^2\|\boldsymbol{\mu}\|^2\|\boldsymbol{\mu}_\beta\|^2}{\lambda_Q^2} - \frac{2\beta^2\|\boldsymbol{\mu}\|^2}{\lambda_Q} + (1-\tilde{h}) \left(1 - \frac{2\|\boldsymbol{\mu}\|^2}{\lambda_R}\right) \right) \right) \right]$$

1229 Finally:

$$1230 T_1 = \frac{\|\boldsymbol{\mu}_\beta\|^2}{h\lambda_Q} \left(\frac{\|\boldsymbol{\mu}_\beta\|^2 + 1}{\lambda_Q} - 2(1-h) \right) + \frac{1-h}{h} \quad (22)$$

$$1233 T_2 = \frac{2\gamma\beta(1+\delta_Q)\|\boldsymbol{\mu}\|^2}{\lambda_R\lambda_Q} \left(1 - \frac{\gamma(1+\delta_Q)}{h\lambda_Q}\right) \quad (23)$$

$$1235 T_3 = \frac{\gamma^2(1+\delta_Q)^2}{h} \left[\frac{\|\boldsymbol{\mu}\|^2}{\lambda_Q^2} \left(\frac{\beta^2\|\boldsymbol{\mu}\|^2}{\lambda_Q^2} + \frac{1-h}{\eta} \left(1 + \frac{\beta^2\|\boldsymbol{\mu}\|^2\|\boldsymbol{\mu}_\beta\|^2}{\lambda_Q^2} - \frac{2\beta^2\|\boldsymbol{\mu}\|^2}{\lambda_Q} + (1-\tilde{h}) \left(1 - \frac{2\|\boldsymbol{\mu}\|^2}{\lambda_R}\right) \right) \right) \right] \quad (24)$$

1239 And the expression of the second order expectation reads:

$$1240 \mathbb{E}[(\mathbf{w}_\alpha^\top \mathbf{x})^2] = T_1 + \alpha T_2 + \alpha^2 T_3 \quad (25)$$

1241 And finally, Theorem 4.2 follows:

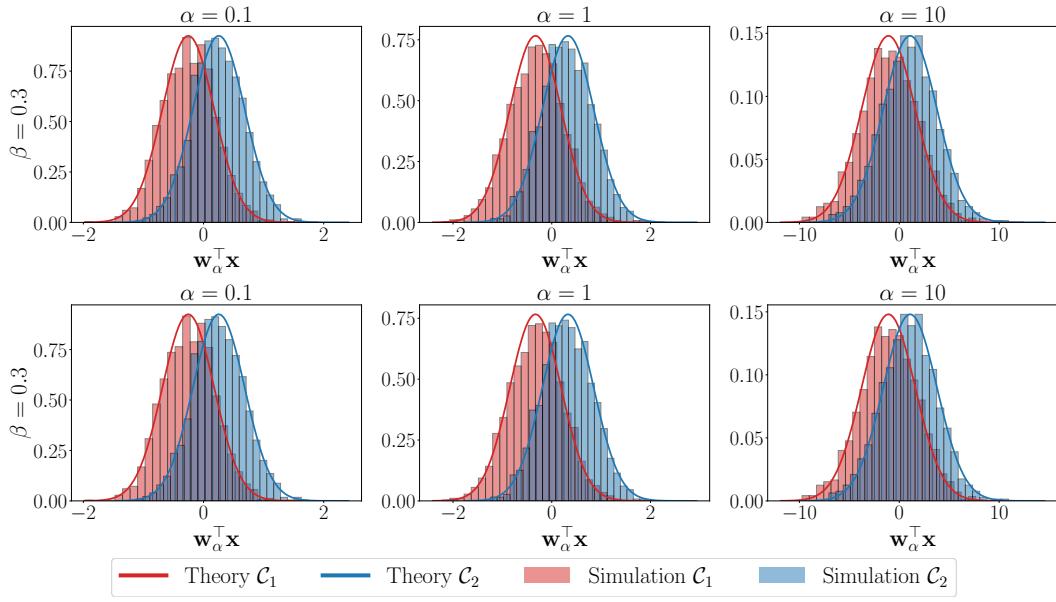


Figure 6: Distribution of the decision function $\mathbf{w}_\alpha^\top \mathbf{x}$ for different values of α (per column) and β (per row). Here we have $N = 5000$, $n = 200$, $p = 400$, $\|\boldsymbol{\mu}\| = 1.5$, $\|\boldsymbol{\mu}^\perp\| = 1$, $\gamma = \tilde{\gamma} = 1$. The theoretical Gaussian distributions are predicted as per Theorem 4.2.

Theorem B.1 (Gaussianity of the fine-tuned Ridge model). *Let \mathbf{w}_α be the fine-tuned classifier as defined in equation α -FTC and suppose that Assumption 4.1 holds. The decision function $\mathbf{w}_\alpha^\top \mathbf{x}$, on some test sample $\mathbf{x} \in \mathcal{C}_a$ independent of \mathbf{X} , satisfies:*

$$\mathbf{w}_\alpha^\top \mathbf{x} \xrightarrow{\mathcal{D}} \mathcal{N}((-1)^a m_\alpha, \nu_\alpha - m_\alpha^2),$$

where:

$$\begin{aligned} m_\alpha &= \frac{1}{\lambda_Q} \left(\|\boldsymbol{\mu}_\beta\|^2 + \frac{\alpha \beta \gamma (1 + \delta_Q)}{\lambda_R} \|\boldsymbol{\mu}\|^2 \right), \\ \nu_\alpha &= T_1 + \alpha T_2 + \alpha^2 T_3. \end{aligned}$$

With:

$$\begin{aligned} T_1 &= \frac{\|\boldsymbol{\mu}_\beta\|^2}{h \lambda_Q} \left(\frac{\|\boldsymbol{\mu}_\beta\|^2 + 1}{\lambda_Q} - 2(1 - h) \right) + \frac{1 - h}{h}, \\ T_2 &= \frac{2\gamma\beta(1 + \delta_Q)\|\boldsymbol{\mu}\|^2}{\lambda_R \lambda_Q} \left(1 - \frac{\gamma(1 + \delta_Q)}{h \lambda_Q} \right), \\ T_3 &= \frac{\gamma^2(1 + \delta_Q)^2}{h} \times \\ &\left[\frac{\|\boldsymbol{\mu}\|^2}{\lambda_R^2} \left(\frac{\beta^2 \|\boldsymbol{\mu}\|^2}{\lambda_Q^2} + \frac{1 - h}{\eta} \left(1 + \frac{\beta^2 \|\boldsymbol{\mu}\|^2 \|\boldsymbol{\mu}_\beta\|^2}{\lambda_Q^2} - \frac{2\beta^2 \|\boldsymbol{\mu}\|^2}{\lambda_Q} \right) \right) + \frac{(1 - h)(1 - \tilde{h})}{\eta} \left(1 - \frac{2\|\boldsymbol{\mu}\|^2}{\lambda_R} \right) \right]. \end{aligned}$$

B.3 FINDING OPTIMAL α^*

Since the test accuracy is given by $\mathcal{A}_{\text{test}} = 1 - \varphi((\nu_\alpha - m_\alpha^2)^{-\frac{1}{2}} m_\alpha)$ as in Proposition 4.3, and that $\phi(x)$ is a non-increasing function, then finding the optimal α^* that maximizes the test accuracy boils down to maximizing the term inside ϕ . Thus, by computing the derivative with respect to α of $(\nu_\alpha - m_\alpha^2)^{-\frac{1}{2}} m_\alpha$ and finding the zero of the gradient gives us the final form of the best scaling parameter α^* :

$$\alpha^* = \frac{\lambda_R T_2 \|\boldsymbol{\mu}_\beta\|^2 - 2\beta\gamma T_1 (1 + \delta_Q) \|\boldsymbol{\mu}\|^2}{\beta\gamma T_2 (1 + \delta_Q) \|\boldsymbol{\mu}\|^2 - 2\lambda_R T_3 \|\boldsymbol{\mu}_\beta\|^2}$$

1296 And since the worst test accuracy is 50% (random classification), which is obtained for $m_\alpha = 0$,
 1297 then solving the previous equation gives the worst scaling $\bar{\alpha}$ to use:
 1298

$$\bar{\alpha} = -\frac{\lambda_R \|\boldsymbol{\mu}_\beta\|^2}{\beta \gamma (1 + \delta_Q) \|\boldsymbol{\mu}\|^2}$$

1301 **C RMT ANALYSIS OF THE FINE-TUNED CLASSIFIER: THE CASE OF RANDOM
 1302 SOURCE VECTOR**

1304 Let $\mathbf{x} \sim \mathcal{N}((-1)^a \boldsymbol{\mu}_\beta, \mathbf{I}_p)$ be an independent test sample. Let $\tilde{\mathbf{w}}$ be the source classifier (obtained
 1305 through some optimization algorithm). We recall that:
 1306

$$\mathbf{w}_\alpha = \mathbf{w} + \alpha \tilde{\mathbf{w}} - \frac{\alpha}{n} \mathbf{Q}(\gamma) \mathbf{X} \mathbf{X}^\top \tilde{\mathbf{w}}, \quad \mathbf{w} = \frac{1}{n} \mathbf{Q}(\gamma) \mathbf{X} \mathbf{y}$$

1309 **C.1 TEST EXPECTATION**

1311 We have that:

$$\mathbb{E}[\mathbf{w}_\alpha^\top \mathbf{x}] = \mathbb{E}[\mathbf{w}^\top \mathbf{x}] + \alpha \mathbb{E}[\tilde{\mathbf{w}}^\top \mathbf{x}] - \frac{\alpha}{n} \mathbb{E}[\tilde{\mathbf{w}}^\top \mathbf{X} \mathbf{X}^\top \mathbf{Q} \mathbf{x}] \quad (26)$$

1314 Let us compute each term of this previous sum.

1315 First, using lemma A.6, we have that, since \mathbf{x} is independent of \mathbf{X} :

$$\mathbb{E}[\mathbf{w}^\top \mathbf{x}] = \mathbb{E}[\mathbf{w}]^\top \mathbb{E}[\mathbf{x}] = \frac{(-1)^a}{1 + \delta_Q} \boldsymbol{\mu}_\beta^\top \bar{\mathbf{Q}} \boldsymbol{\mu}_\beta$$

1319 And we have that:

$$\mathbb{E}[\tilde{\mathbf{w}}^\top \mathbf{x}] = (-1)^a \tilde{\mathbf{w}}^\top \boldsymbol{\mu}_\beta$$

1321 And:

$$\begin{aligned} \frac{\alpha}{n} \mathbb{E}[\tilde{\mathbf{w}}^\top \mathbf{X} \mathbf{X}^\top \mathbf{Q} \mathbf{x}] &= \frac{\alpha}{n} \sum_{i=1}^n \mathbb{E}[\tilde{\mathbf{w}}^\top \mathbf{x}_i \mathbf{x}_i^\top \mathbf{Q} \mathbf{x}] \\ &= \frac{\alpha}{n(1 + \delta_Q)} \sum_{i=1}^n \mathbb{E}[\tilde{\mathbf{w}}^\top \mathbf{x}_i \mathbf{x}_i^\top \mathbf{Q}_{-i} \mathbf{x}] \\ &= \frac{\alpha}{n(1 + \delta_Q)} \sum_{i=1}^n \mathbb{E}[\tilde{\mathbf{w}}^\top \boldsymbol{\Sigma}_\beta \mathbf{Q}_{-i} \mathbf{x}] \\ &= \frac{(-1)^a \alpha}{1 + \delta_Q} \tilde{\mathbf{w}}^\top \boldsymbol{\Sigma}_\beta \bar{\mathbf{Q}} \boldsymbol{\mu}_\beta \end{aligned}$$

1332 Thus:

$$\begin{aligned} \mathbb{E}[\mathbf{w}_\alpha^\top \mathbf{x}] &= (-1)^a \left(\frac{1}{1 + \delta_Q} \boldsymbol{\mu}_\beta^\top \bar{\mathbf{Q}} \boldsymbol{\mu}_\beta + \alpha \tilde{\mathbf{w}}^\top \boldsymbol{\mu}_\beta - \frac{\alpha}{1 + \delta_Q} \tilde{\mathbf{w}}^\top \boldsymbol{\Sigma}_\beta \bar{\mathbf{Q}} \boldsymbol{\mu}_\beta \right) \\ &= (-1)^a \left(\frac{1}{1 + \delta_Q} \boldsymbol{\mu}_\beta^\top \bar{\mathbf{Q}} \boldsymbol{\mu}_\beta + \alpha \tilde{\mathbf{w}}^\top \boldsymbol{\mu}_\beta - \alpha \tilde{\mathbf{w}}^\top (\bar{\mathbf{Q}}^{-1} - \gamma \mathbf{I}_p) \bar{\mathbf{Q}} \boldsymbol{\mu}_\beta \right) \\ &= (-1)^a \left(\frac{1}{1 + \delta_Q} \boldsymbol{\mu}_\beta^\top \bar{\mathbf{Q}} \boldsymbol{\mu}_\beta + \alpha \gamma \tilde{\mathbf{w}}^\top \bar{\mathbf{Q}} \boldsymbol{\mu}_\beta \right) \end{aligned}$$

1341 Using the formulas in lemma A.5:

$$\mathbb{E}[\mathbf{w}_\alpha^\top \mathbf{x}] = \frac{(-1)^a}{\|\boldsymbol{\mu}_\beta\|^2 + 1 + \gamma(1 + \delta_Q)} (\|\boldsymbol{\mu}_\beta\|^2 + \alpha \gamma (1 + \delta_Q) \tilde{\mathbf{w}}^\top \boldsymbol{\mu}_\beta) \quad (27)$$

1345 **C.2 TEST VARIANCE**

1346 To compute the variance of $\mathbf{w}_\alpha^\top \mathbf{x}$, it suffices to compute the second moment: $\mathbb{E}[(\mathbf{w}_\alpha^\top \mathbf{x})^2]$.

$$\mathbb{E}[(\mathbf{w}_\alpha^\top \mathbf{x})^2] = \mathbb{E}[(\mathbf{w}^\top \mathbf{x} + \alpha \tilde{\mathbf{w}}^\top \mathbf{x})^2 + \frac{\alpha^2}{n^2} (\tilde{\mathbf{w}}^\top \mathbf{X} \mathbf{X}^\top \mathbf{Q} \mathbf{x})^2 - \frac{2\alpha}{n} \tilde{\mathbf{w}}^\top \mathbf{X} \mathbf{X}^\top \mathbf{Q} \mathbf{x} (\mathbf{w}^\top \mathbf{x} + \alpha \tilde{\mathbf{w}}^\top \mathbf{x})] \quad (28)$$

1350

First term: We start by computing

$$\mathbb{E}[(\mathbf{w}^\top \mathbf{x} + \alpha \tilde{\mathbf{w}}^\top \mathbf{x})^2] = \mathbb{E}[(\mathbf{w}^\top \mathbf{x})^2] + \alpha^2 \mathbb{E}[(\tilde{\mathbf{w}}^\top \mathbf{x})^2] + 2\alpha \mathbb{E}[\mathbf{w}^\top \mathbf{x} \tilde{\mathbf{w}}^\top \mathbf{x}]$$

1352

We have that, as proved in Firdoussi & Seddik (2024):

1354

$$\begin{aligned} \mathbb{E}[(\mathbf{w}^\top \mathbf{x})^2] &= \frac{1}{h(1 + \delta_Q)} \left(\frac{1}{1 + \delta_Q} \boldsymbol{\mu}_\beta^\top \bar{\mathbf{Q}} \Sigma_\beta \bar{\mathbf{Q}} \boldsymbol{\mu}_\beta - 2(1 - h) \boldsymbol{\mu}_\beta^\top \bar{\mathbf{Q}} \boldsymbol{\mu}_\beta \right) + \frac{1 - h}{h} \\ &= \frac{1}{h(1 + \delta_Q)} \left(\frac{1}{1 + \delta_Q} ((\boldsymbol{\mu}_\beta^\top \bar{\mathbf{Q}} \boldsymbol{\mu}_\beta)^2 + \boldsymbol{\mu}_\beta^\top \bar{\mathbf{Q}}^2 \boldsymbol{\mu}_\beta) - 2(1 - h) \boldsymbol{\mu}_\beta^\top \bar{\mathbf{Q}} \boldsymbol{\mu}_\beta \right) + \frac{1 - h}{h} \\ &= \frac{\|\boldsymbol{\mu}_\beta\|^2}{h(\|\boldsymbol{\mu}_\beta\|^2 + 1 + \gamma(1 + \delta_Q))} \left(\frac{\|\boldsymbol{\mu}_\beta\|^2 + 1}{\|\boldsymbol{\mu}_\beta\|^2 + 1 + \gamma(1 + \delta_Q)} - 2(1 - h) \right) + \frac{1 - h}{h} \end{aligned}$$

1362

And we have that:

$$\mathbb{E}[(\tilde{\mathbf{w}}^\top \mathbf{x})^2] = \tilde{\mathbf{w}}^\top \Sigma_\beta \tilde{\mathbf{w}}$$

1364

And:

$$\mathbb{E}[\mathbf{w}^\top \mathbf{x} \tilde{\mathbf{w}}^\top \mathbf{x}] = \mathbb{E}[\mathbf{w}]^\top \Sigma_\beta \tilde{\mathbf{w}} = \frac{1}{1 + \delta_Q} \boldsymbol{\mu}_\beta^\top \bar{\mathbf{Q}} \Sigma_\beta \tilde{\mathbf{w}}$$

1367

Thus we have the first sum.

1368

1369

Second term: Now let us compute the expectation of the second term:

$$\begin{aligned} \frac{1}{n^2} \mathbb{E}[(\tilde{\mathbf{w}}^\top \mathbf{X} \mathbf{X}^\top \mathbf{Q} \mathbf{x})^2] &= \frac{1}{n^2} \mathbb{E}[\tilde{\mathbf{w}}^\top \mathbf{X} \mathbf{X}^\top \mathbf{Q} \mathbf{x} \mathbf{x}^\top \mathbf{X} \mathbf{X}^\top \mathbf{Q} \tilde{\mathbf{w}}] \\ &= \tilde{\mathbf{w}}^\top \mathbb{E}\left[\frac{1}{n} \mathbf{X} \mathbf{X}^\top \mathbf{Q} \Sigma_\beta \frac{1}{n} \mathbf{X} \mathbf{X}^\top \mathbf{Q}\right] \tilde{\mathbf{w}} \\ &= \tilde{\mathbf{w}}^\top \mathbb{E}[(\mathbf{Q}^{-1} - \gamma \mathbf{I}_p) \mathbf{Q} \Sigma_\beta (\mathbf{Q}^{-1} - \gamma \mathbf{I}_p) \mathbf{Q}] \tilde{\mathbf{w}} \\ &= \tilde{\mathbf{w}}^\top \mathbb{E}[(\mathbf{I}_p - \gamma \mathbf{Q}) \Sigma_\beta (\mathbf{I}_p - \gamma \mathbf{Q})] \tilde{\mathbf{w}} \\ &= \tilde{\mathbf{w}}^\top \mathbb{E}[\Sigma_\beta - \gamma \Sigma_\beta \mathbf{Q} - \gamma \mathbf{Q} \Sigma_\beta + \gamma^2 \mathbf{Q} \Sigma_\beta \mathbf{Q}] \tilde{\mathbf{w}} \\ &= \tilde{\mathbf{w}}^\top (\Sigma_\beta - \gamma \Sigma_\beta \bar{\mathbf{Q}} - \gamma \bar{\mathbf{Q}} \Sigma_\beta + \gamma^2) \tilde{\mathbf{w}} \\ &= \tilde{\mathbf{w}}^\top \Sigma_\beta \mathbf{w} - 2\gamma \tilde{\mathbf{w}}^\top \Sigma_\beta \bar{\mathbf{Q}} \tilde{\mathbf{w}} + \gamma^2 \tilde{\mathbf{w}}^\top \mathbb{E}[\mathbf{Q} \Sigma_\beta \mathbf{Q}] \tilde{\mathbf{w}} \end{aligned}$$

1381

Third term: Now we will compute the last term: $\frac{2\alpha}{n} \mathbb{E}[\tilde{\mathbf{w}}^\top \mathbf{X} \mathbf{X}^\top \mathbf{Q} \mathbf{x} (\mathbf{w}^\top \mathbf{x} + \alpha \tilde{\mathbf{w}}^\top \mathbf{x})]$.

1382

We have that:

$$\begin{aligned} \frac{1}{n} \mathbb{E}[\tilde{\mathbf{w}}^\top \mathbf{X} \mathbf{X}^\top \mathbf{Q} \mathbf{x} \mathbf{x}^\top \mathbf{w}] &= \tilde{\mathbf{w}}^\top \mathbb{E}[(\mathbf{Q}^{-1} - \gamma \mathbf{I}_p) \mathbf{Q} \Sigma_\beta \mathbf{w}] \\ &= \tilde{\mathbf{w}}^\top \mathbb{E}[(\mathbf{I}_p - \gamma \mathbf{Q}) \Sigma_\beta \mathbf{w}] \\ &= \tilde{\mathbf{w}}^\top \Sigma_\beta \mathbb{E}[\mathbf{w}] - \gamma \tilde{\mathbf{w}}^\top \mathbb{E}[\mathbf{Q} \Sigma_\beta \mathbf{w}] \\ &= \tilde{\mathbf{w}}^\top \frac{\Sigma_\beta}{1 + \delta_Q} \bar{\mathbf{Q}} \boldsymbol{\mu}_\beta - \gamma \tilde{\mathbf{w}}^\top \mathbb{E}[\mathbf{Q} \Sigma_\beta \mathbf{w}] \\ &= \tilde{\mathbf{w}}^\top \frac{\Sigma_\beta}{1 + \delta_Q} \bar{\mathbf{Q}} \boldsymbol{\mu}_\beta - \gamma \frac{1}{n} \sum_{i=1}^n \tilde{\mathbf{w}}^\top \mathbb{E}[\mathbf{Q} \Sigma_\beta \mathbf{Q} y_i \mathbf{x}_i] \\ &= \tilde{\mathbf{w}}^\top \frac{\Sigma_\beta}{1 + \delta_Q} \bar{\mathbf{Q}} \boldsymbol{\mu}_\beta - \gamma \tilde{\mathbf{w}}^\top \mathbb{E}[\mathbf{Q} \Sigma_\beta \mathbf{Q} y_i \mathbf{x}_i] \\ &= \tilde{\mathbf{w}}^\top \frac{\Sigma_\beta}{1 + \delta_Q} \bar{\mathbf{Q}} \boldsymbol{\mu}_\beta - \frac{\gamma}{1 + \delta_Q} \tilde{\mathbf{w}}^\top \mathbb{E}[\mathbf{Q} \Sigma_\beta \mathbf{Q}_{-i} y_i \mathbf{x}_i] \\ &= \tilde{\mathbf{w}}^\top \frac{\Sigma_\beta}{1 + \delta_Q} \bar{\mathbf{Q}} \boldsymbol{\mu}_\beta - \frac{\gamma}{1 + \delta_Q} \tilde{\mathbf{w}}^\top \mathbb{E}\left[\left(\mathbf{Q}_{-i} - \frac{\frac{1}{n} \mathbf{Q}_{-i} \mathbf{x}_i \mathbf{x}_i^\top \mathbf{Q}_{-i}}{1 + \delta_Q}\right) \Sigma_\beta \mathbf{Q}_{-i} y_i \mathbf{x}_i\right] \\ &= \tilde{\mathbf{w}}^\top \frac{\Sigma_\beta}{1 + \delta_Q} \bar{\mathbf{Q}} \boldsymbol{\mu}_\beta - \frac{\gamma}{1 + \delta_Q} \tilde{\mathbf{w}}^\top \mathbb{E}[\mathbf{Q}_{-i} \Sigma_\beta \mathbf{Q}_{-i} y_i \mathbf{x}_i] + \frac{\gamma}{n(1 + \delta_Q)^2} \tilde{\mathbf{w}}^\top \mathbb{E}[\mathbf{Q}_{-i} \mathbf{x}_i \mathbf{x}_i^\top \mathbf{Q}_{-i} \Sigma_\beta \mathbf{Q}_{-i} y_i \mathbf{x}_i] \\ &= \tilde{\mathbf{w}}^\top \frac{\Sigma_\beta}{1 + \delta_Q} \bar{\mathbf{Q}} \boldsymbol{\mu}_\beta - \frac{\gamma}{1 + \delta_Q} \tilde{\mathbf{w}}^\top \mathbb{E}[\mathbf{Q} \Sigma_\beta \mathbf{Q}] \boldsymbol{\mu}_\beta + \frac{\gamma}{n(1 + \delta_Q)^2} \text{Tr}(\Sigma_\beta \mathbb{E}[\mathbf{Q} \Sigma_\beta \mathbf{Q}]) \tilde{\mathbf{w}}^\top \bar{\mathbf{Q}} \boldsymbol{\mu}_\beta \end{aligned}$$

1404 And:

1405

$$\begin{aligned}
1406 \quad & \frac{1}{n} \mathbb{E}[\tilde{\mathbf{w}}^\top \mathbf{X} \mathbf{X}^\top \mathbf{Q} \mathbf{x} \mathbf{x}^\top \tilde{\mathbf{w}}] = \tilde{\mathbf{w}}^\top \mathbb{E}[(\mathbf{Q}^{-1} - \gamma \mathbf{I}_p) \mathbf{Q} \Sigma_\beta] \tilde{\mathbf{w}} \\
1407 \quad & = \tilde{\mathbf{w}}^\top \mathbb{E}[(\mathbf{I}_p - \gamma \mathbf{Q}) \Sigma_\beta] \tilde{\mathbf{w}} \\
1408 \quad & = \tilde{\mathbf{w}}^\top \Sigma_\beta \tilde{\mathbf{w}} - \gamma \tilde{\mathbf{w}}^\top \bar{\mathbf{Q}} \Sigma_\beta \tilde{\mathbf{w}} \\
1409 \\
1410
\end{aligned}$$

1411 **Grouping all the terms:** Thus, we now that we have the expression of all the term, we will group
1412 them in the following way:

1413

1414
$$\mathbb{E}[(\mathbf{w}_\alpha^\top \mathbf{x})^2] = T_1 + \alpha T_2 + \alpha^2 T_3$$

1415

1416 **Terms without α :**

1417

$$1418 \quad T_1 = \frac{\|\boldsymbol{\mu}_\beta\|^2}{h(\|\boldsymbol{\mu}_\beta\|^2 + 1 + \gamma(1 + \delta_Q))} \left(\frac{\|\boldsymbol{\mu}_\beta\|^2 + 1}{\|\boldsymbol{\mu}_\beta\|^2 + 1 + \gamma(1 + \delta_Q)} - 2(1 - h) \right) + \frac{1 - h}{h} \quad (29)$$

1419

1420 **Terms in α :** There are two : $2 \mathbb{E}[\mathbf{w}^\top \mathbf{x} \tilde{\mathbf{w}}^\top \mathbf{x}]$ and $\frac{2}{n} \mathbb{E}[\tilde{\mathbf{w}}^\top \mathbf{X} \mathbf{X}^\top \mathbf{Q} \mathbf{x} \mathbf{w}^\top \mathbf{x}]$:

1421

$$\begin{aligned}
1422 \quad T_2 &= 2 \mathbb{E}[\mathbf{w}^\top \mathbf{x} \tilde{\mathbf{w}}^\top \mathbf{x}] - \frac{2}{n} \mathbb{E}[\tilde{\mathbf{w}}^\top \mathbf{X} \mathbf{X}^\top \mathbf{Q} \mathbf{x} \mathbf{w}^\top \mathbf{x}] \\
1423 \quad &= \frac{2\gamma}{h(1 + \delta_Q)} (\tilde{\mathbf{w}}^\top \bar{\mathbf{Q}} \Sigma_\beta \bar{\mathbf{Q}} \boldsymbol{\mu}_\beta - (1 - h)(1 + \delta_Q) \tilde{\mathbf{w}}^\top \bar{\mathbf{Q}} \boldsymbol{\mu}_\beta) \\
1424 \quad &= \frac{2\gamma}{h(1 + \delta_Q)} (\tilde{\mathbf{w}}^\top \bar{\mathbf{Q}} \boldsymbol{\mu}_\beta \boldsymbol{\mu}_\beta^\top \bar{\mathbf{Q}} \boldsymbol{\mu}_\beta + \tilde{\mathbf{w}}^\top \bar{\mathbf{Q}}^2 \boldsymbol{\mu}_\beta - (1 - h)(1 + \delta_Q) \tilde{\mathbf{w}}^\top \bar{\mathbf{Q}} \boldsymbol{\mu}_\beta) \\
1425 \\
1426 \\
1427 \\
1428
\end{aligned}$$

1429 And we have that:

1430

1431
$$\tilde{\mathbf{w}}^\top \bar{\mathbf{Q}} \boldsymbol{\mu}_\beta \boldsymbol{\mu}_\beta^\top \bar{\mathbf{Q}} \boldsymbol{\mu}_\beta = \frac{(1 + \delta_Q)^2 \|\boldsymbol{\mu}_\beta\|^2 \tilde{\mathbf{w}}^\top \boldsymbol{\mu}_\beta}{(\|\boldsymbol{\mu}_\beta\|^2 + 1 + \gamma(1 + \delta_Q))^2}, \quad \tilde{\mathbf{w}}^\top \bar{\mathbf{Q}}^2 \boldsymbol{\mu}_\beta = \frac{(1 + \delta_Q)^2 \tilde{\mathbf{w}}^\top \boldsymbol{\mu}_\beta}{(\|\boldsymbol{\mu}_\beta\|^2 + 1 + \gamma(1 + \delta_Q))^2}.$$

1432

1433 Thus:

1434

1435
$$T_2 = \frac{2\gamma(1 + \delta_Q) \tilde{\mathbf{w}}^\top \boldsymbol{\mu}_\beta}{h(\|\boldsymbol{\mu}_\beta\|^2 + 1 + \gamma(1 + \delta_Q))} \left(\frac{\|\boldsymbol{\mu}_\beta\|^2 + 1}{\|\boldsymbol{\mu}_\beta\|^2 + 1 + \gamma(1 + \delta_Q)} - (1 - h) \right)$$

1436

1437 **Terms in α^2 :** we have three terms: $\mathbb{E}[(\tilde{\mathbf{w}}^\top \mathbf{x})^2]$, $\frac{1}{n^2} \mathbb{E}[(\tilde{\mathbf{w}}^\top \mathbf{X} \mathbf{X}^\top \mathbf{Q} \mathbf{x} \tilde{\mathbf{w}}^\top \mathbf{x})]$:

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

1443
$$T_3 = \mathbb{E}[(\tilde{\mathbf{w}}^\top \mathbf{x})^2] + \frac{1}{n^2} \mathbb{E}[(\tilde{\mathbf{w}}^\top \mathbf{X} \mathbf{X}^\top \mathbf{Q} \mathbf{x})^2] - \frac{2}{n} \mathbb{E}[\tilde{\mathbf{w}}^\top \mathbf{X} \mathbf{X}^\top \mathbf{Q} \mathbf{x} \tilde{\mathbf{w}}^\top \mathbf{x}]$$
1444
$$= \tilde{\mathbf{w}}^\top \Sigma_\beta \tilde{\mathbf{w}} + \tilde{\mathbf{w}}^\top \Sigma_\beta \tilde{\mathbf{w}} - 2\gamma \tilde{\mathbf{w}}^\top \Sigma_\beta \bar{\mathbf{Q}} \tilde{\mathbf{w}} + \gamma^2 \tilde{\mathbf{w}}^\top \mathbb{E}[\mathbf{Q} \Sigma_\beta \mathbf{Q}] \tilde{\mathbf{w}} - 2\tilde{\mathbf{w}}^\top \Sigma_\beta \tilde{\mathbf{w}} + 2\gamma \tilde{\mathbf{w}}^\top \bar{\mathbf{Q}} \Sigma_\beta \tilde{\mathbf{w}}$$
1445
$$= \gamma^2 \tilde{\mathbf{w}}^\top \mathbb{E}[\mathbf{Q} \Sigma_\beta \mathbf{Q}] \tilde{\mathbf{w}}$$
1446
$$= \frac{\gamma^2}{h} \tilde{\mathbf{w}}^\top \bar{\mathbf{Q}} \Sigma_\beta \bar{\mathbf{Q}} \tilde{\mathbf{w}}$$
1447
$$= \frac{\gamma^2}{h} ((\tilde{\mathbf{w}}^\top \bar{\mathbf{Q}} \boldsymbol{\mu}_\beta)^2 + \tilde{\mathbf{w}}^\top \bar{\mathbf{Q}}^2 \tilde{\mathbf{w}})$$
1448
$$= \frac{\gamma^2(1 + \delta_Q)^2}{h} \left(\frac{(\tilde{\mathbf{w}}^\top \boldsymbol{\mu}_\beta)^2}{(\|\boldsymbol{\mu}_\beta\|^2 + 1 + \gamma(1 + \delta_Q))^2} + \frac{1 - h}{\eta} \left(\|\tilde{\mathbf{w}}\|^2 + \frac{\|\boldsymbol{\mu}_\beta\|^2 (\tilde{\mathbf{w}}^\top \boldsymbol{\mu}_\beta)^2}{(\|\boldsymbol{\mu}_\beta\|^2 + 1 + \gamma(1 + \delta_Q))^2} - \frac{2(\tilde{\mathbf{w}}^\top \boldsymbol{\mu}_\beta)^2}{\|\boldsymbol{\mu}_\beta\|^2 + 1 + \gamma(1 + \delta_Q)} \right) \right)$$
1449
$$= \frac{\gamma^2(1 + \delta_Q)^2}{h} \left(\frac{(\tilde{\mathbf{w}}^\top \boldsymbol{\mu}_\beta)^2}{\lambda_Q^2} + \frac{1 - h}{\eta} \|\tilde{\mathbf{w}}\|^2 + \frac{(1 - h)(\tilde{\mathbf{w}}^\top \boldsymbol{\mu}_\beta)^2}{\eta \lambda_Q} \left(\frac{\|\boldsymbol{\mu}_\beta\|^2}{\lambda_Q} - 2 \right) \right)$$

1450

1451

1452

1453

1454

1455

1456

1457

1458 Which finally gives the following theorem:

1458
 1459 **Theorem C.1** (Gaussianity of the fine-tuned model for an arbitrary $\tilde{\mathbf{w}}$). *Let \mathbf{w}_α be the fine-tuned
 1460 classifier as defined in equation α -FTC and suppose that Assumption 4.1 holds. The decision func-
 1461 tion $\mathbf{w}_\alpha^\top \mathbf{x}$, on some test sample $\mathbf{x} \in \mathcal{C}_a$ independent of \mathbf{X} , satisfies:*

$$1462 \mathbf{w}_\alpha^\top \mathbf{x} \xrightarrow{\mathcal{D}} \mathcal{N}((-1)^a m_\alpha, \nu_\alpha - m_\alpha^2),$$

1463 where:

$$1464 m_\alpha = \frac{\|\boldsymbol{\mu}_\beta\|^2 + \alpha\gamma(1 + \delta_Q)\langle\tilde{\mathbf{w}}, \boldsymbol{\mu}_\beta\rangle}{\|\boldsymbol{\mu}_\beta\|^2 + 1 + \gamma(1 + \delta_Q)},$$

$$1466 \nu_\alpha = T_1 + \alpha T_2 + \alpha^2 T_3.$$

1467 with:

$$1468 T_1 = \frac{\|\boldsymbol{\mu}_\beta\|^2}{h\lambda_Q} \left(\frac{\|\boldsymbol{\mu}_\beta\|^2 + 1}{\lambda_Q} - 2(1 - h) \right) + \frac{1 - h}{h},$$

$$1471 T_2 = \frac{2\gamma(1 + \delta_Q)\langle\tilde{\mathbf{w}}, \boldsymbol{\mu}_\beta\rangle}{h\lambda_Q} \left(\frac{\|\boldsymbol{\mu}_\beta\|^2 + 1}{\lambda} - (1 - h) \right),$$

$$1473 T_3 = \frac{\gamma^2(1 + \delta_Q)^2}{h} \left(\frac{\langle\tilde{\mathbf{w}}, \boldsymbol{\mu}_\beta\rangle^2}{\lambda_Q^2} + \frac{1 - h}{\eta} \|\tilde{\mathbf{w}}\|^2 + \frac{(1 - h)\langle\tilde{\mathbf{w}}, \boldsymbol{\mu}_\beta\rangle^2}{\eta\lambda_Q} \left(\frac{\|\boldsymbol{\mu}_\beta\|^2}{\lambda_Q} - 2 \right) \right).$$

1476 C.3 FINDING OPTIMAL α^*

1478 Since the test accuracy is given by $\mathcal{A}_{\text{test}} = 1 - \varphi((\nu_\alpha - m_\alpha^2)^{-\frac{1}{2}} m_\alpha)$ as in Proposition 4.3, and
 1479 that $\phi(x)$ is a non-increasing function, then finding the optimal α^* that maximizes the test accuracy
 1480 boils down to maximizing the term inside ϕ . Thus, by computing the derivative with respect to α
 1481 of $(\nu_\alpha - m_\alpha^2)^{-\frac{1}{2}} m_\alpha$ and finding the zero of the gradient gives us the final form of the best scaling
 1482 parameter α^* :

$$1484 \alpha^* = \frac{\eta(1 + \gamma(1 + \delta_Q))\langle\tilde{\mathbf{w}}, \boldsymbol{\mu}_\beta\rangle}{\gamma(1 + \delta_Q)(\lambda\|\boldsymbol{\mu}_\beta\|^2\|\tilde{\mathbf{w}}\|^2 - (\lambda - \eta)\langle\tilde{\mathbf{w}}, \boldsymbol{\mu}_\beta\rangle^2)}$$

1486 And since the worst test accuracy is 50% (random classification), which is obtained for $m_\alpha = 0$,
 1487 then solving the previous equation gives the worst scaling $\bar{\alpha}$ to use:

$$1488 \bar{\alpha} = \frac{-\|\boldsymbol{\mu}_\beta\|^2}{\gamma(1 + \delta_Q)\langle\tilde{\mathbf{w}}, \boldsymbol{\mu}_\beta\rangle}$$

1491 D EXTENSION TO MULTI-SOURCE CLASSIFIERS

1493 Given T source classifiers $\{\mathbf{w}_t\}_{t=1}^T$ and a single target task, the goal is to fine-tune a mixture of
 1494 these classifiers on the target task. Specifically, we want to find the optimal fine-tuned classifier \mathbf{w}_Ω
 1495 that is written as:

$$1496 \mathbf{w}_\Omega = \sum_{t=1}^T \alpha_t \mathbf{w}_t + \mathbf{a}$$

1498 where $\alpha_t \in \mathbb{R}$ and \mathbf{a} is an adapter trained on the target dataset as follows:

$$1500 \mathbf{a} = \arg \min_{\mathbf{v}} \frac{1}{n} \|\mathbf{X}^\top (\sum_{t=1}^T \alpha_t \mathbf{w}_t + \mathbf{v}) - \mathbf{y}\|^2 + \gamma \|\mathbf{v}\|^2$$

1502 Then, \mathbf{a} expresses as:

$$1504 \mathbf{a} = \frac{1}{n} \left(\frac{1}{n} \mathbf{X} \mathbf{X}^\top + \gamma \mathbf{I}_p \right)^{-1} \left(\mathbf{X} \mathbf{y} - \mathbf{X} \mathbf{X}^\top \sum_{t=1}^T \alpha_t \mathbf{w}_t \right)$$

1506 Thus, our new fine-tuned classifier writes as:

$$1508 \mathbf{w}_\Omega = \sum_{t=1}^T \alpha_t \mathbf{w}_t + \mathbf{a} = \frac{1}{n} \mathbf{Q} \mathbf{X} \mathbf{y} + \gamma \sum_{t=1}^T \alpha_t \mathbf{Q} \mathbf{w}_t$$

1510 To compute the theoretical test accuracy of this classifier, we will take a test sample $\mathbf{x} \sim$
 1511 $\mathcal{N}((-1)^a \boldsymbol{\mu}_\beta, \mathbf{I}_p)$, independent from the training data $(\mathbf{x}_i)_{i=1}^n$, and we compute the statistics of the
 1512 decision function $\mathbf{w}_\Omega^\top \mathbf{x}$.

1512 D.1 TEST EXPECTATION
15131514 We have that:
1515

$$\begin{aligned}\mathbb{E}[\mathbf{w}_\Omega^\top \mathbf{x}] &= \mathbb{E}[\mathbf{w}^\top \mathbf{x}] + \gamma \sum_{t=1}^T \alpha_t \mathbb{E}[\mathbf{w}_t^\top \mathbf{Q} \mathbf{x}] \\ &= \mathbb{E}[\mathbf{w}^\top \mathbf{x}] + (-1)^a \gamma \sum_{t=1}^T \alpha_t \mathbf{w}_t^\top \bar{\mathbf{Q}} \boldsymbol{\mu}_\beta\end{aligned}$$

1518 From the previous section, we have that:
1519

$$\mathbb{E}[\mathbf{w}^\top \mathbf{x}] = \frac{(-1)^a}{1 + \delta_Q} \boldsymbol{\mu}_\beta^\top \bar{\mathbf{Q}} \boldsymbol{\mu}_\beta = \frac{(-1)^a \|\boldsymbol{\mu}_\beta\|^2}{\|\boldsymbol{\mu}_\beta\|^2 + 1 + \gamma(1 + \delta_Q)}$$

1520 And from lemma A.5, we have that:
1521

$$\mathbf{w}_t^\top \bar{\mathbf{Q}} \boldsymbol{\mu}_\beta = \frac{(1 + \delta_Q) \langle \mathbf{w}_t, \boldsymbol{\mu}_\beta \rangle}{\|\boldsymbol{\mu}_\beta\|^2 + 1 + \gamma(1 + \delta_Q)}$$

1522 Finally, we get that:
1523

$$\mathbb{E}[\mathbf{w}_\Omega^\top \mathbf{x}] = \frac{(-1)^a}{\|\boldsymbol{\mu}_\beta\|^2 + 1 + \gamma(1 + \delta_Q)} \left(\|\boldsymbol{\mu}_\beta\|^2 + \gamma(1 + \delta_Q) \sum_{t=1}^T \alpha_t \langle \mathbf{w}_t, \boldsymbol{\mu}_\beta \rangle \right)$$

1524 In a vectorized form, denote by $\boldsymbol{\alpha} = (\alpha_1, \dots, \alpha_T)^\top$ the vector of coefficients and by $\mathbf{W} =$
1525 $(\mathbf{w}_1, \dots, \mathbf{w}_T) \in \mathbb{R}^{p \times T}$, then we have that:
1526

$$\mathbb{E}[\mathbf{w}_\Omega^\top \mathbf{x}] = \frac{(-1)^a \|\boldsymbol{\mu}_\beta\|^2 + \gamma(1 + \delta_Q) \boldsymbol{\alpha}^\top \mathbf{W}^\top \boldsymbol{\mu}_\beta}{\|\boldsymbol{\mu}_\beta\|^2 + 1 + \gamma(1 + \delta_Q)}$$

1527 D.2 TEST VARIANCE
15281529 Now we will compute the expectation of the second order moment of $\mathbf{w}_\Omega^\top \mathbf{x}$:
1530

$$\mathbb{E}[(\mathbf{w}_\Omega^\top \mathbf{x})^2] = \mathbb{E} \left[(\mathbf{w}^\top \mathbf{x})^2 + \gamma^2 \left(\sum_{t=1}^T \alpha_t \mathbf{w}_t^\top \mathbf{Q} \mathbf{x} \right)^2 + 2\gamma \sum_{t=1}^T \alpha_t \mathbf{w}_t^\top \mathbf{Q} \mathbf{x} \mathbf{w}^\top \mathbf{x} \right]$$

1531 Let us compute each term of this sum and then aggregate the results at the end.
15321533 **First term.** We have that:
1534

$$\mathbb{E}[(\mathbf{w}^\top \mathbf{x})^2] = \frac{\|\boldsymbol{\mu}_\beta\|^2}{h \lambda_Q} \left(\frac{\|\boldsymbol{\mu}_\beta\|^2 + 1}{\lambda_Q} - 2(1 - h) \right) + \frac{1 - h}{h}$$

1535 **Second term.** Now let us compute the second term of the sum:
1536

$$\begin{aligned}\mathbb{E} \left[\sum_{t=1}^T \alpha_t \mathbf{w}_t^\top \mathbf{Q} \mathbf{x} \mathbf{w}^\top \mathbf{x} \right] &= \sum_{t=1}^T \alpha_t \mathbb{E}[\mathbf{w}_t^\top \mathbf{Q} \mathbf{x} \mathbf{x}^\top \mathbf{w}] \\ &= \sum_{t=1}^T \alpha_t \mathbb{E}[\mathbf{w}_t^\top \mathbf{Q} \boldsymbol{\Sigma}_\beta \mathbf{w}] \\ &= \sum_{t=1}^T \alpha_t \mathbf{w}_t^\top \mathbb{E}[\mathbf{Q} \boldsymbol{\Sigma}_\beta \frac{1}{n} \sum_{i=1}^n y_i \mathbf{Q} \mathbf{x}_i] \\ &= \sum_{t=1}^T \alpha_t \mathbf{w}_t^\top \mathbb{E}[\mathbf{Q} \boldsymbol{\Sigma}_\beta \mathbf{Q} y_i \mathbf{x}_i] \quad (\mathbf{x}_i \text{ i.i.d.}) \\ &= \frac{1}{1 + \delta_Q} \sum_{t=1}^T \alpha_t \mathbf{w}_t^\top \mathbb{E}[\mathbf{Q} \boldsymbol{\Sigma}_\beta \mathbf{Q} y_i \mathbf{x}_i]\end{aligned}$$

1566 And since we have that:
 1567

1568
 1569
$$\mathbf{Q} = \mathbf{Q}_{-i} - \frac{\mathbf{Q}_{-i} \mathbf{x}_i \mathbf{x}_i^\top \mathbf{Q}_{-i}}{n(1 + \delta_Q)}$$

 1570

1571

1572

1573 Then:

1574

1575
 1576
$$\mathbb{E} \left[\sum_{t=1}^T \alpha_t \mathbf{w}_t^\top \mathbf{Q} \mathbf{x} \mathbf{w}^\top \mathbf{x} \right] = \frac{1}{1 + \delta_Q} \sum_{t=1}^T \alpha_t \mathbf{w}_t^\top \mathbb{E} \left[\left(\mathbf{Q}_{-i} - \frac{\mathbf{Q}_{-i} \mathbf{x}_i \mathbf{x}_i^\top \mathbf{Q}_{-i}}{n(1 + \delta_Q)} \right) \Sigma_\beta \mathbf{Q}_{-i} \mathbf{y}_i \mathbf{x}_i \right]$$

 1577
 1578
 1579
$$= \frac{1}{1 + \delta_Q} \sum_{t=1}^T \alpha_t \mathbf{w}_t^\top \mathbb{E}[\mathbf{Q}_{-i} \Sigma_\beta \mathbf{Q}_{-i} \mathbf{y}_i \mathbf{x}_i] - \frac{1}{n(1 + \delta_Q)^2} \sum_{t=1}^T \alpha_t \mathbf{w}_t^\top \mathbb{E}[\mathbf{Q}_{-i} \mathbf{x}_i \mathbf{x}_i^\top \mathbf{Q}_{-i} \Sigma_\beta \mathbf{Q}_{-i} \mathbf{y}_i \mathbf{x}_i]$$

 1580

1581

1582 We have that:

1583

1584
 1585
$$\sum_{t=1}^T \alpha_t \mathbf{w}_t^\top \mathbb{E}[\mathbf{Q}_{-i} \Sigma_\beta \mathbf{Q}_{-i} \mathbf{y}_i \mathbf{x}_i] = \sum_{t=1}^T \alpha_t \mathbf{w}_t^\top \mathbb{E}[\mathbf{Q} \Sigma_\beta \mathbf{Q}] \boldsymbol{\mu}_\beta$$

 1586
 1587
 1588
$$= \frac{1}{h} \sum_{t=1}^T \alpha_t \mathbf{w}_t^\top \bar{\mathbf{Q}} \Sigma_\beta \bar{\mathbf{Q}} \boldsymbol{\mu}_\beta$$

 1589
 1590
 1591
$$= \frac{1}{h} \sum_{t=1}^T \alpha_t \frac{(1 + \delta_Q)^2}{\lambda_Q^2} \langle \mathbf{w}_t, \boldsymbol{\mu}_\beta \rangle (\|\boldsymbol{\mu}_\beta\|^2 + 1)$$

 1592

1593

1594

1595 And we have that:

1596

1597
 1598
$$\frac{1}{n(1 + \delta_Q)^2} \sum_{t=1}^T \alpha_t \mathbf{w}_t^\top \mathbb{E}[\mathbf{Q}_{-i} \mathbf{x}_i \mathbf{x}_i^\top \mathbf{Q}_{-i} \Sigma_\beta \mathbf{Q}_{-i} \mathbf{y}_i \mathbf{x}_i] = \frac{1}{n(1 + \delta_Q)^2} \sum_{t=1}^T \alpha_t \mathbf{w}_t^\top \mathbb{E}[\mathbf{Q}_{-i} \mathbf{y}_i \mathbf{x}_i \text{Tr}(\mathbf{x}_i \mathbf{x}_i^\top \mathbf{Q}_{-i} \Sigma_\beta \mathbf{Q}_{-i})]$$

 1599
 1600
 1601
$$= \frac{1}{n(1 + \delta_Q)^2} \sum_{t=1}^T \alpha_t \mathbf{w}_t^\top \mathbb{E}[\mathbf{Q}_{-i} \mathbf{y}_i \mathbf{x}_i \text{Tr}(\Sigma_\beta \mathbb{E}[\mathbf{Q} \Sigma_\beta \mathbf{Q}])]$$

 1602
 1603
 1604
$$= \frac{1}{n(1 + \delta_Q)^2} \sum_{t=1}^T \alpha_t \mathbf{w}_t^\top \mathbb{E}[\mathbf{Q}_{-i} \mathbf{y}_i \mathbf{x}_i] \frac{1}{h} \text{Tr}((\Sigma_\beta \bar{\mathbf{Q}})^2)$$

 1605
 1606
$$= \frac{1 - h}{h} \sum_{t=1}^T \alpha_t \mathbf{w}_t^\top \bar{\mathbf{Q}} \boldsymbol{\mu}_\beta$$

 1607
 1608
 1609
$$= \frac{1 - h}{h} \sum_{t=1}^T \alpha_t \frac{(1 + \delta_Q) \langle \mathbf{w}_t, \boldsymbol{\mu}_\beta \rangle}{\lambda_Q}$$

 1610

1611

1612

1613 Thus the second term is given by:

1614

1615
 1616
$$\mathbb{E} \left[\sum_{t=1}^T \alpha_t \mathbf{w}_t^\top \mathbf{Q} \mathbf{x} \mathbf{w}^\top \mathbf{x} \right] = \frac{(1 + \delta_Q)}{h \lambda_Q} \sum_{t=1}^T \alpha_t \left(\frac{\|\boldsymbol{\mu}_\beta\|^2 + 1}{\lambda_Q} - (1 - h) \right) \langle \mathbf{w}_t, \boldsymbol{\mu}_\beta \rangle$$

 1617
 1618
 1619
$$= \frac{(1 + \delta_Q)}{h \lambda_Q} \left(\frac{\|\boldsymbol{\mu}_\beta\|^2 + 1}{\lambda_Q} - (1 - h) \right) \boldsymbol{\alpha}^\top \mathbf{W}^\top \boldsymbol{\mu}_\beta$$

1620

1621 **Third term.** We have that:

$$\begin{aligned}
1622 \quad & \gamma^2 \mathbb{E} \left[\left(\sum_{t=1}^T \alpha_t \mathbf{w}_t^\top \mathbf{Q} \mathbf{x} \right)^2 \right] = \gamma^2 \mathbb{E} \left[\sum_{t=1}^T \alpha_t \mathbf{w}_t^\top \mathbf{Q} \mathbf{x} \sum_{k=1}^T \alpha_k \mathbf{w}_k^\top \mathbf{Q} \mathbf{x} \right] \\
1623 \quad & = \gamma^2 \sum_{t,k=1}^T \mathbb{E} [\alpha_t \alpha_k \mathbf{w}_t^\top \mathbf{Q} \mathbf{x} \mathbf{x}^\top \mathbf{Q} \mathbf{w}_k] \\
1624 \quad & = \gamma^2 \sum_{t,k=1}^T \mathbb{E} [\mathbf{w}_t^\top \mathbf{Q} \Sigma_\beta \mathbf{Q} \mathbf{w}_k] \\
1625 \quad & = \gamma^2 \sum_{t,k=1}^T \mathbf{w}_t^\top \mathbb{E} [\mathbf{Q} \Sigma_\beta \mathbf{Q}] \mathbf{w}_k \\
1626 \quad & = \frac{\gamma^2}{h} \sum_{t,k=1}^T \alpha_t \alpha_k \mathbf{w}_t^\top \bar{\mathbf{Q}} \Sigma_\beta \bar{\mathbf{Q}} \mathbf{w}_k
\end{aligned}$$

1637

1638 And we have that:

1639

$$\begin{aligned}
1640 \quad & \bar{\mathbf{Q}} \Sigma_\beta \bar{\mathbf{Q}} = \bar{\mathbf{Q}} (\boldsymbol{\mu}_\beta \boldsymbol{\mu}_\beta^\top + \mathbf{I}_p) \bar{\mathbf{Q}} \\
1641 \quad & = \bar{\mathbf{Q}} \boldsymbol{\mu}_\beta \boldsymbol{\mu}_\beta^\top \bar{\mathbf{Q}} + \bar{\mathbf{Q}}^2 \\
1642 \quad & = \frac{(1 + \delta_Q)^2}{\lambda_Q^2} \boldsymbol{\mu}_\beta \boldsymbol{\mu}_\beta^\top + \frac{(1 + \delta_Q)^2}{(1 + \gamma(1 + \delta_Q))^2} \left(\mathbf{I}_p + \frac{(\boldsymbol{\mu}_\beta \boldsymbol{\mu}_\beta^\top)^2}{\lambda_Q^2} - \frac{2\boldsymbol{\mu}_\beta \boldsymbol{\mu}_\beta^\top}{\lambda_Q} \right)
\end{aligned}$$

1646

1647 Thus the last term is given by:

1648

$$\begin{aligned}
1649 \quad & \gamma^2 \mathbb{E} \left[\left(\sum_{t=1}^T \alpha_t \mathbf{w}_t^\top \mathbf{Q} \mathbf{x} \right)^2 \right] = \frac{\gamma^2 (1 + \delta_Q)^2}{h} \times \\
1650 \quad & \sum_{t,k=1}^T \alpha_t \alpha_k \left[\frac{\langle \mathbf{w}_t, \boldsymbol{\mu}_\beta \rangle \langle \mathbf{w}_k, \boldsymbol{\mu}_\beta \rangle}{\lambda_Q^2} + \frac{1}{(1 + \gamma(1 + \delta_Q))^2} \left(\langle \mathbf{w}_t, \mathbf{w}_k \rangle + \frac{\|\boldsymbol{\mu}_\beta\|^2 \langle \mathbf{w}_t, \boldsymbol{\mu}_\beta \rangle \langle \mathbf{w}_k, \boldsymbol{\mu}_\beta \rangle}{\lambda_Q^2} - \frac{2\langle \mathbf{w}_t, \boldsymbol{\mu}_\beta \rangle \langle \mathbf{w}_k, \boldsymbol{\mu}_\beta \rangle}{\lambda_Q} \right) \right]
\end{aligned}$$

1655

1656 In a vectorized form, we have that:

1657

$$\begin{aligned}
1658 \quad & \gamma^2 \mathbb{E} \left[\left(\sum_{t=1}^T \alpha_t \mathbf{w}_t^\top \mathbf{Q} \mathbf{x} \right)^2 \right] = \frac{\gamma^2 (1 + \delta_Q)^2}{h} \times \\
1659 \quad & \left[\frac{(\boldsymbol{\alpha}^\top \mathbf{W}^\top \boldsymbol{\mu}_\beta)^2}{\lambda_Q^2} + \frac{1}{(1 + \gamma(1 + \delta_Q))^2} \left(\boldsymbol{\alpha}^\top \mathbf{W}^\top \mathbf{W} \boldsymbol{\alpha} + \frac{\|\boldsymbol{\mu}_\beta\|^2 (\boldsymbol{\alpha}^\top \mathbf{W}^\top \boldsymbol{\mu}_\beta)^2}{\lambda_Q^2} - \frac{2(\boldsymbol{\alpha}^\top \mathbf{W}^\top \boldsymbol{\mu}_\beta)^2}{\lambda_Q} \right) \right] \\
1660 \quad & = \frac{\gamma^2 (1 + \delta_Q)^2}{h} \boldsymbol{\alpha}^\top \mathbf{M} \boldsymbol{\alpha}
\end{aligned}$$

1665

1666 where:

1667

$$\mathbf{M} = \frac{(1 - h)}{\eta} \mathbf{W}^\top \mathbf{W} + \left(\frac{1}{\lambda_Q^2} + \frac{(1 - h)}{\eta \lambda_Q} \left(\frac{\|\boldsymbol{\mu}_\beta\|^2}{\lambda_Q} - 2 \right) \right) \mathbf{W}^\top \boldsymbol{\mu}_\beta \boldsymbol{\mu}_\beta^\top \mathbf{W}^\top$$

1670

1671

1672

1673 Finally gives us the expression of the second order moment of $\mathbf{w}_\Omega^\top \mathbf{x}$ as follows:

$$\mathbb{E}[(\mathbf{w}_\Omega^\top \mathbf{x})^2] = T_1 + T_2 + T_3$$

1674 where:

1675

$$T_1 = \frac{\|\boldsymbol{\mu}_\beta\|^2}{h\lambda_Q} \left(\frac{\|\boldsymbol{\mu}_\beta\|^2 + 1}{\lambda_Q} - 2(1-h) \right) + \frac{1-h}{h}$$

1676

$$T_2 = \frac{2\gamma(1+\delta_Q)}{h\lambda_Q} \sum_{t=1}^T \alpha_t \left(\frac{\|\boldsymbol{\mu}_\beta\|^2 + 1}{\lambda_Q} - (1-h) \right) \langle \mathbf{w}_t, \boldsymbol{\mu}_\beta \rangle$$

1677

$$T_3 = \frac{\gamma^2(1+\delta_Q)^2}{h} \times$$

1678

$$\sum_{t,k=1}^T \alpha_t \alpha_k \left[\frac{\langle \mathbf{w}_t, \boldsymbol{\mu}_\beta \rangle \langle \mathbf{w}_k, \boldsymbol{\mu}_\beta \rangle}{\lambda_Q^2} + \frac{1}{(1+\gamma(1+\delta_Q))^2} \left(\langle \mathbf{w}_t, \mathbf{w}_k \rangle + \frac{\|\boldsymbol{\mu}_\beta\|^2 \langle \mathbf{w}_t, \boldsymbol{\mu}_\beta \rangle \langle \mathbf{w}_k, \boldsymbol{\mu}_\beta \rangle}{\lambda_Q^2} - \frac{2\langle \mathbf{w}_t, \boldsymbol{\mu}_\beta \rangle \langle \mathbf{w}_k, \boldsymbol{\mu}_\beta \rangle}{\lambda_Q} \right) \right]$$

1681

1682 Which also writes in a vectorized form:

1683

$$T_1 = \frac{\|\boldsymbol{\mu}_\beta\|^2}{h\lambda_Q} \left(\frac{\|\boldsymbol{\mu}_\beta\|^2 + 1}{\lambda_Q} - 2(1-h) \right) + \frac{1-h}{h}$$

1684

$$T_2 = \frac{2\gamma(1+\delta_Q)}{h\lambda_Q} \left(\frac{\|\boldsymbol{\mu}_\beta\|^2 + 1}{\lambda_Q} - (1-h) \right) \boldsymbol{\alpha}^\top \mathbf{W}^\top \boldsymbol{\mu}_\beta$$

1685

$$T_3 = \frac{\gamma^2(1+\delta_Q)^2}{h} \boldsymbol{\alpha}^\top \mathbf{M} \boldsymbol{\alpha}$$

1686

D.3 FINDING OPTIMAL α

1697 The theoretical test accuracy writes as follows:

1698

$$\mathcal{A}_{\text{test}}(\boldsymbol{\alpha}) = \varphi \left(\frac{a_1 + \boldsymbol{\alpha}^\top \mathbf{v}_1}{\sqrt{a_2 + \boldsymbol{\alpha}^\top \mathbf{v}_2 + \boldsymbol{\alpha}^\top \tilde{\mathbf{M}} \boldsymbol{\alpha}}} \right)$$

1700

1701 where:

1702

$$a_1 = \frac{\|\boldsymbol{\mu}_\beta\|^2}{\lambda_Q}, \quad \mathbf{v}_1 = \frac{\gamma(1+\delta_Q)}{\lambda_Q} \mathbf{W}^\top \boldsymbol{\mu}_\beta, \quad a_2 = T_1 - a_1^2 = \frac{\|\boldsymbol{\mu}_\beta\|^2}{\lambda_Q} \left(\frac{\|\boldsymbol{\mu}_\beta\|^2 + 1}{h\lambda_Q} - \frac{\|\boldsymbol{\mu}_\beta\|^2}{\lambda_Q} - \frac{2(1-h)}{h} \right) + \frac{1-h}{h}$$

1703

$$\mathbf{v}_2 = \frac{(1+\delta_Q)}{\lambda_Q} \left(\frac{\|\boldsymbol{\mu}_\beta\|^2 + 1}{h\lambda_Q} - \frac{2\gamma\|\boldsymbol{\mu}_\beta\|^2}{\lambda_Q} - \frac{1-h}{h} \right) \mathbf{W}^\top \boldsymbol{\mu}_\beta,$$

1704

$$\tilde{\mathbf{M}} = \frac{\gamma^2(1+\delta_Q)^2(1-h)}{h} \left(\frac{1}{\eta} \mathbf{W}^\top \mathbf{W} + \left(\frac{1}{\lambda_Q^2} + \frac{1}{\eta\lambda_Q} \left(\frac{\|\boldsymbol{\mu}_\beta\|^2}{\lambda_Q} - 2 \right) \right) \mathbf{W}^\top \boldsymbol{\mu}_\beta \boldsymbol{\mu}_\beta^\top \mathbf{W}^\top \right)$$

1705

1706 And therefore, since φ is non-decreasing, maximizing this test accuracy boils down to maximizing the term inside it, i.e we want to find $\boldsymbol{\alpha}^*$ that satisfies:

1707

$$\boldsymbol{\alpha}^* \in \arg \max_{\boldsymbol{\alpha}} \frac{a_1 + \boldsymbol{\alpha}^\top \mathbf{v}_1}{\sqrt{a_2 + \boldsymbol{\alpha}^\top \mathbf{v}_2 + \boldsymbol{\alpha}^\top \tilde{\mathbf{M}} \boldsymbol{\alpha}}} = \arg \max_{\boldsymbol{\alpha}} g(\boldsymbol{\alpha})$$

1708

1709 We compute the gradient of g with respect to $\boldsymbol{\alpha}$ to find the extremum values of these mixing parameters:

1710

$$\nabla_{\boldsymbol{\alpha}} g(\boldsymbol{\alpha}) = \frac{\sqrt{a_2 + \boldsymbol{\alpha}^\top \mathbf{v}_2 + \boldsymbol{\alpha}^\top \tilde{\mathbf{M}} \boldsymbol{\alpha}} \mathbf{v}_1 - (a_1 + \boldsymbol{\alpha}^\top \mathbf{v}_1) \frac{\mathbf{v}_2 + 2\tilde{\mathbf{M}}\boldsymbol{\alpha}}{\sqrt{a_2 + \boldsymbol{\alpha}^\top \mathbf{v}_2 + \boldsymbol{\alpha}^\top \tilde{\mathbf{M}} \boldsymbol{\alpha}}}}{a_2 + \boldsymbol{\alpha}^\top \mathbf{v}_2 + \boldsymbol{\alpha}^\top \tilde{\mathbf{M}} \boldsymbol{\alpha}}$$

1711 Thus the roots $\boldsymbol{\alpha}$ of $\nabla g(\boldsymbol{\alpha})$ satisfy the following equation:

1712

1713

$$(a_2 + \boldsymbol{\alpha}^\top \mathbf{v}_2 + \boldsymbol{\alpha}^\top \tilde{\mathbf{M}} \boldsymbol{\alpha}) \mathbf{v}_1 - (a_1 + \boldsymbol{\alpha}^\top \mathbf{v}_1) (\mathbf{v}_2 + 2\tilde{\mathbf{M}}\boldsymbol{\alpha}) = 0$$

1714

E LLMs EXPERIMENTAL DETAILS

1725 The pseudo-code algorithm for training with α -LoRA is given as follows in 1.

1726

1728 Algorithm 1 α -LORA FINE-TUNING

1729
1730 Require: Base model weights $\{\mathbf{W}_i^*\}_{i=1}^N$, fine-tuning dataset $\mathcal{D} = \{B_j\}_{j=1}^b$ divided into batches,
 1731 update period T , optimizers `optim` (for LoRA modules) and `optim_alpha` (for $\alpha =$
 1732 $\{\alpha_i\}_{i=1}^N$), number of epochs n .
 1733 1: **for** $k = 1 \dots n$ **do**
 1734 2: **for** batch B_j in \mathcal{D} **do**
 1735 3: Update LoRA modules $\{(A_i, B_i)\}_{i=1}^N$ with a gradient step on B using `optim`.
 1736 4: **if** $j \bmod T = 0$ **then**
 1737 5: Sample a fresh batch B_α from \mathcal{D}
 1738 6: Update α with a gradient step on B_α using `optim_alpha`.
 1739 7: **end if**
 1740 8: **end for**
 9: **end for**

E.1 HYPERPARAMETERS

1741
 1742 In this section, we summarize all the details about our experiments on Fine-tuning `roberta-base`
 1743 model on GLUE tasks. Let us define some notations first then give their corresponding values in each
 1744 experiment: `lora_r` denotes the rank of LoRA modules, `lora_alpha` denotes the LoRA scaling
 1745 parameter, `lr_adapter` means the learning rate used to train LoRA modules, `batch_size`
 1746 and `batch_alpha` is the training batch size for LoRA modules and the vectors α respectively,
 1747 `lr_alpha` is the learning rate used to update α , `optim_alpha` is the optimizer used to train the
 1748 vectors α , `val_split` is the percentage of the training set used to train α .
 1749

1750
 1751 **Common to all experiments.** We optimize the LoRA modules using AdamW for all the benchmarks
 1752 and with a linear scheduler for the learning rate. We initialize the vectors α to the vector
 1753 1. The target modules are: the final classifier layer `classifier` (full training) and the attention
 1754 modules `query` and `value` (Low Rank Adaptation).
 1755

Parameter	Value
<code>optimizer</code>	AdamW
LoRA Arguments	
<code>lora_r</code>	8
<code>lora_alpha</code>	8
<code>lr_adapter</code>	10^{-4}
Trainer Arguments	
<code>n_epochs</code>	10
<code>batch_size</code>	64
<code>optim_alpha</code>	AdamW
<code>batch_alpha</code>	64
<code>lr_alpha</code>	10^{-2}
<code>T</code>	1
<code>val_split</code>	1
<code>seeds</code>	1, 5, 123

Table 3: Implementation Details for the fine-tuning experiment on MNLI.

E.2 VALUES OF α

1776 We report in the following plots some metrics (mean, standard deviation, percentiles) describing the
 1777 obtained values of the vectors α for each module after the training phase.
 1778

1782
 1783
 1784
 1785
 1786
 1787
 1788
 1789
 1790
 1791
 1792
 1793
 1794
 1795
 1796
 1797

Parameter	Value
optimizer	AdamW
LoRA Arguments	
lora_r	8
lora_alpha	8
lr_adapter	10^{-4} for LoRA and 2.10^{-4} for α -LoRA
Trainer Arguments	
n_epochs	10
batch_size	64
optim_alpha	Adam
batch_alpha	64
lr_alpha	5.10^{-3}
T	20
val_split	0.2
seeds	1, 3, 123

1798
 1799
 1800

Table 4: Implementation Details for the fine-tuning experiment on QNLI.

1801
 1802
 1803
 1804
 1805
 1806
 1807
 1808
 1809
 1810
 1811
 1812
 1813
 1814
 1815

Parameter	Value
optimizer	AdamW
LoRA Arguments	
lora_r	8
lora_alpha	8
lr_adapter	10^{-4} for LoRA and 2.10^{-4} for α -LoRA
Trainer Arguments	
n_epochs	40
batch_size	64
optim_alpha	Adam
batch_alpha	64
lr_alpha	5.10^{-3}
T	20
val_split	0.2
seeds	3, 5, 123

1816
 1817
 1818

Table 5: Implementation Details for the fine-tuning experiment on MRPC.

1819
 1820
 1821
 1822
 1823
 1824
 1825
 1826
 1827
 1828
 1829
 1830
 1831
 1832
 1833

Parameter	Value
optimizer	AdamW
LoRA Arguments	
lora_r	8
lora_alpha	8
lr_adapter	10^{-4}
Trainer Arguments	
n_epochs	40
batch_size	64
optim_alpha	AdamW
batch_alpha	64
lr_alpha	5.10^{-3}
T	20
val_split	0.8 (and 0.2 for seed 123)
seeds	3, 5, 123

1834
 1835

Table 6: Implementation Details for the fine-tuning experiment on RTE.

1836

1837

1838

1839

1840

1841

1842

1843

1844

1845

1846

1847

1848

1849

1850

1851

1852

1853

1854

1855

1856

1857

1858

1859

1860

1861

1862

1863

1864

1865

1866

1867

1868

1869

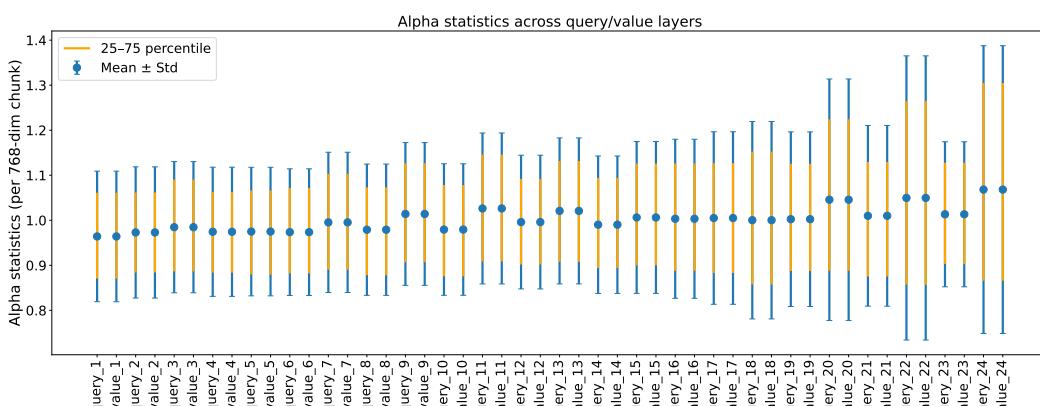
1870

Parameter	Value
optimizer	AdamW
LoRA Arguments	
lora_r	8
lora_alpha	8
lr_adapter	10^{-4} for LoRA and 2.10^{-4} for α -LoRA
Trainer Arguments	
n_epochs	10
batch_size	128
optim_alpha	AdamW
batch_alpha	128
lr_alpha	5.10^{-3}
T	10 (and 20 for seed 5)
val_split	0.5 (and 0.9 for seed 5)
seeds	1, 3, 5

Table 7: Implementation Details for the fine-tuning experiment on SST2.

Parameter	Value
optimizer	AdamW
LoRA Arguments	
lora_r	8
lora_alpha	8
lr_adapter	5.10^{-4}
Trainer Arguments	
n_epochs	5
batch_size	256
optim_alpha	Adam, AdamW (seed 123)
batch_alpha	64
lr_alpha	5.10^{-3}
T	1 (seed 3), 10 (seed 5) and 20 (seed 123)
val_split	0.8
seeds	3, 5, 123

Table 8: Implementation Details for the fine-tuning experiment on QQP.

Figure 7: Statistics of the vectors α for the MNLI benchmark

1888

1889

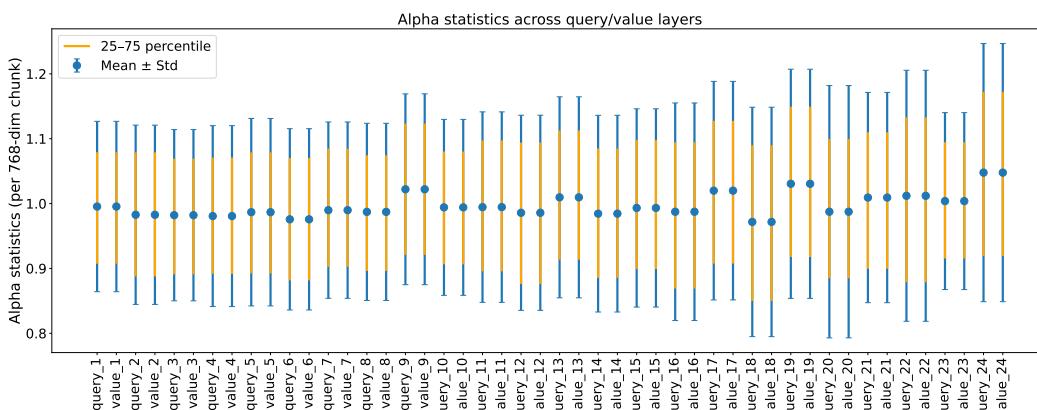


Figure 8: Statistics of the vectors α for the QNLI benchmark

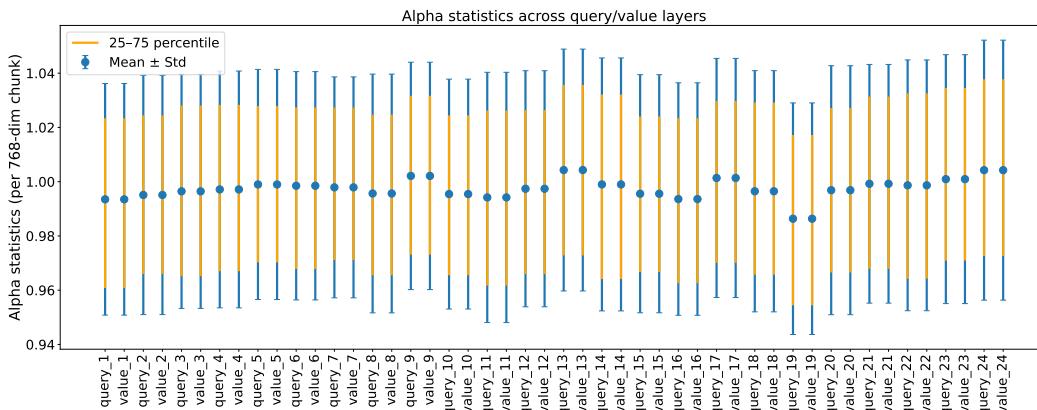


Figure 9: Statistics of the vectors α for the RTE benchmark