Under review as a conference paper at ICLR 2022

CO-VARIANCE: TACKLING NOISY LABELS WITH SAM-
PLE SELECTION BY EMPHASIZING HIGH-VARIANCE
EXAMPLES

Anonymous authors
Paper under double-blind review

ABSTRACT

The sample selection approach is popular in learning with noisy labels, which
tends to select potentially clean data out of noisy data for robust training. The state-
of-the-art methods train two deep networks simultaneously for sample selection,
which aims to employ their different learning abilities. To prevent two networks
from converging to a consensus, their divergence should be maintained during
training. Typically, the divergence is kept by first locating the disagreement data on
which the prediction labels of two networks are different, and then selecting clean
data out of such data. However, this procedure is sample-inefficient for network
weight updates, which means that a few clean examples can be utilized in training.
In this paper, to address the issues, we propose a simple yet effective method
called Co-variance. In particular, we select possibly clean data that simultaneously
have high-variance prediction probabilities between two networks. As selected
data have high variances, the divergence of two networks can be maintained by
training on such data. Additionally, the condition of high variances is milder than
the condition of disagreement in sample selection, which allows more data to be
considered for training, and makes our method more sample-efficient. Moreover,
we show that the proposed method enables to mine enough hard clean examples
to help generalization. A series of empirical results show that Co-variance is
superior to multiple baselines in the robustness of trained models, especially on
class-imbalanced and real-world noisy datasets.

1 INTRODUCTION

Learning with noisy labels can be dated back to more than three decades ago (Angluin & Laird,
1988), and still is one of the hottest problems in weakly supervised learning (Northcutt et al., 2021).
The reason is that, in our daily life, noisy labels are unavoidable such as crowdsourcing (Welinder &
Perona, 2010) and web queries (Liu et al., 2011). The combination of noisy labels and deep networks
is rather pessimistic, since deep networks have strong learning capacities, and can fully memorize
given noisy labels, leading to poor generalization (Yao et al., 2020a). Unfortunately, general-purpose
regularization such as dropout and weight decay cannot address this issue well (Zhang et al., 2017).

Fortunately, even though deep networks can fit anything given for training eventually, they learn
patterns first (Arpit et al., 2017): for learning with noisy labels, this suggests that deep networks can
gradually memorize the data, moving from clean data to mislabeled data. Besides, this phenomenon
does not change with the choice of training optimizations or network architectures (Zhang et al.,
2017). The sample selection approach therefore was proposed to handle noisy labels (Jiang et al.,
2018; Han et al., 2018; Wang et al., 2018), which is also our focus in this paper. The works on sample
selection try to select possibly clean data out of noisy ones, and then use them to update the deep
networks. Intuitively, if the training data can become less noisy, better generalization can be achieved.

The sample selection procedure can be executed in a self-feaching manner (Jiang et al., 2018). By
using a predefined curriculum, e.g., regarding training data with small losses to be clean, the deep
network can select such data by itself and then use them for network weights updates. Nevertheless,
the idea of self-teaching sample selection is argued to have the inferiority of accumulated errors
caused by the sample-selection bias (Han et al., 2018). To relieve this issue, some advanced algorithms
were proposed, which maintain two deep networks, working in a cooperative manner (Yao et al.,
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2020a). The key component making the cooperative sample selection works better than the self-
teaching one, is that two different networks have different learning abilities and can filter different
types of errors introduced by noisy labels. That is to say, when each network selects clean data to its
peer network for updates, the error flows coming from the biased selection, can be reduced by peer
networks mutually (Han et al., 2018).

To keep such different learning abilities of two networks for handling noisy labels, prior work
(Yu et al., 2019) utilizes a simple strategy called “Update by Disagreement”. In more detail, two
networks feed forward and predict all data first, and only keep prediction disagreement data, i.e.,
the data with different prediction labels from two networks. Then, each network selects its clean
data from such disagreement data to the peer network. At first glance, this method can use less noisy
data and meanwhile maintain the different learning abilities of two networks. However, its sample
selection procedure is sample-inefficient for network weight updates. It is because the condition of
disagreement is somewhat strong in sample selection, which makes that the sample size of prediction
disagreement data is often small, especially when the label noise rate is large (Wei et al., 2020). When
we tend to select clean data out of them, the sample size of available data for network weight updates
will be further reduced. The issue causes that a few clean examples can be utilized in training, which
impairs generalization severely.

In this paper, to handle the above problem, a robust learning paradigm called Co-variance is proposed.
Specifically, we inherit the property that deep networks learn patterns first for sample selection,
as did in (Han et al., 2018). Meanwhile, the training examples with high variances between two
networks are encouraged to be involved in training. The network divergence can be maintained by
training on such examples. In this work, for a training example, we measure the variance by using
the distance of prediction probabilities between two networks, which is continuously valued. As the
measurement of whether an example can be clean (e.g., the cross-entropy loss), is also continuous,
it is convenient to make a good trade-off that considers the examples which are likely to be clean
(with small cross-entropy losses) and simultaneously can maintain the two networks diverged (with
high variances). Additionally, the condition of high variances in sample selection is milder than the
condition of disagreement. In other words, the prediction disagreement data must have high-variance
prediction probabilities, but the data with high-variances can have different prediction probabilities
but the same prediction labels from two networks. The milder condition allows us to consider more
data for training. Therefore, compared with the mentioned procedure for sample selection (Yu et al.,
2019), our procedure is more sample-efficient for network weight updates. Furthermore, the examples
with high variances in training are probable to be hard examples (Gao et al., 2015), which play an
important role in shaping the decision boundary. Shared with a similar philosophy, the proposed
method emphasizes high-variance examples and therefore enables to mine hard clean examples that
are critical for generalization. Benefiting from maintaining two networks simultaneously, the variance
measurement in our work can be conducted on-the-fly, and without the need to carefully determine
that useful information on how many training iterations is introduced.

We conduct a series of experiments on both simulated noisy datasets including class-balanced
and imbalanced noisy datasets, and real-world noisy datasets. Extensive results demonstrate that
the robustness of deep models trained by the Co-variance method can well combat noisy labels.
Specifically, on class-balanced noisy datasets, our method is superior to many state-of-the-art methods.
On class-imbalanced noisy datasets, our method can outperform comparison methods by more than 5%
of test accuracy. Lastly, on real-world noisy datasets, Co-variance also achieves the best performance
and can be exploited to improve the cutting edge performance of state-of-the-art methods.

The rest of this paper is organized as follows. In Section 2, we set up the problem and review the
sample selection approach in learning with noisy labels. In Section 3, we present our method and
discuss how to select clean examples with an emphasis on high-variance examples. Experimental
results are provided in Section 4. Conclusions are given in Section 5.

2 PRELIMINARIES

2.1 NOTATIONS AND PROBLEM STATEMENT

In the sequel, scalars are in lowercase letters, vectors are in lowercase boldface letters, and matrices
are in uppercase boldface letters. We use || - ||,, as the £, norm of vectors or matrices and KL(+||-) as
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the Kullback-Leibler (KL) divergence (Mohri et al., 2018) between two probability distributions. For
a function g, we use Vg to denote its gradient. For a vector z, z’ denotes the j-th component of z.
We use e; to denote the one-hot encoding, with e; = (0,...,0,1,...,0) (the i-th coordinate being
1). Let [n] ={1,2,...,n}.

We consider a multi-classification problem with ¢ classes in total. Let X" and ) be the instance/feature
space and label space respectively, with X C R? and ) C R¢, where d is the dimensionality of
the feature space. Let D = {(x;,y;)}, be an i.i.d. training sample lying in the joint distribution
X x Y, where n denotes the sample size. In supervised learning, the aim is to learn a precise classifier
that can assign labels for given instances with the sample D. However, before being observed, true
labels of examples in D are independently flipped and what we can obtain is a i.i.d. noisy training
sample D = {(x;,¥;)}"_,, where ¥ denotes the one-hot noisy label. The aim is changed to learn a

robust classifier that can assign clean labels to test data by exploiting a noisy training sample D.

2.2 LEARNING WITH SAMPLE SELECTION

In this subsection, we formally introduce the sample selection approach applied in learning with
noisy labels. Specifically, with the assumption that clean labels are of the majority in a noisy class,
we can select possibly clean examples from noisy examples based on some criteria. For example,
the small-loss examples can be approximately seen as clean examples (Han et al., 2018; Yu et al.,
2019; Huang et al., 2019; Lyu & Tsang, 2020; Wei et al., 2020). Also, the examples that have large
classification margins (Pleiss et al., 2020), minimize the determinant value of the corresponding
sample covariance matrix (Lee et al., 2019), or minimize the average gradient dissimilarity to all the
other examples (Mirzasoleiman et al., 2020), can be seen as clean examples and then be used for
network parameter updates.

In this paper, we focus on the procedure of us-
ing the small-loss criterion for sample selection,
which is most commonly used in learning with
noisy labels and shared by the state-of-the-art 1: Input: initialized classifier f and the maximum
methods. We first present the procedure that number of iterations imax.

Algorithm 1 Sample selection with the small-loss
criterion in learning with noisy labels.

only uses a single network/classifier, i.e., the fort=1,... tyax do 3
self-teaching MentorNet (Jiang et al., 2018), 2: Draw a mini-batch D from D;

which is shown in Algorithm 1. The procedure 3: Select small-loss examples D ¢ from D;
is Straightforward. Let f be the classifier with 4: Update classifier parameters using 'Z_)f;

learnable parameters. At the i-th iteration, when epd

a mini-batch data D is formed (Step 2), we se-  5: Qutput: trained classifier f.
lect a subset of small-loss examples D (Step 3)
for classifier parameter updates (Step 4). To the end of the training, we can obtain a robust classifier
since we select less noisy examples for updates. It is intuitive for using a single network to select
clean examples for robust training. However, this paradigm inherited the inferiority of accumulated
errors caused by the sample-selection bias. More specifically, at the stage when the network begins
to fit training examples, the losses are not very informative. Therefore, we may select mislabeled
examples mistakenly for updates. This issue causes the network to memorize incorrect information
which greatly affects the selection of examples in subsequent iterations. Although Co-teaching (Han
et al., 2018) trains two networks simultaneously and makes them select clean examples for its peer
network, it still cannot address the issue of accumulated errors well, because two networks will
converge to a consensus with the increase of training epochs.

To address the issue of accumulated errors, some works follow the idea of “Update by Disagreement”.
The core components of this idea are to employ two networks and keep divergence among them. For
example, Decoupling (Malach & Shalev-Shwartz, 2017) conducts updates only on selected data with
prediction disagreement between two networks. Co-teaching+ (Yu et al., 2019) concerns that the
disagreement area of two networks is noisy and further selects small-loss examples within the area
for updates. However, in the manner of Co-teaching+, a few clean examples can be used to help
generalization, due to the strict disagreement measurement.

Recently, JoCor (Wei et al., 2020) starts with a new perspective named “Update by Agreement”, which
is motivated by Co-training (Blum & Mitchell, 1998) for multi-view learning and semi-supervised
learning. Still using two networks, JoCor uses a joint cross-entropy loss for sample selection but
exploits the KL divergence to constrain the outputs of two networks, which makes predictions of each
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Figure 1: Comparison of error flows among MentorNet (the self-teaching version), Co-teaching,
Decoupling, Co-teaching+, JoCor, and Co-variance (ours). Assume that error flows comes from the
biased selection of training examples, and the error flow from network A or B is denoted by red
arrows or blue arrows, respectively. The 1st panel: MentorNet maintains only one network A. The
2nd panel: Co-teaching maintains two networks (A & B). In each mini-batch data, each network
selects its small-loss data to teach its peer network for robust training. The 3rd panel: Decoupling
updates the two networks with prediction-disagreed (!=) examples from a mini-batch. The 4th panel:
In Co-teaching+, each network selects its small-loss instances within prediction disagreement (1=)
to teach its peer network. The Sth panel: JoCor trains two networks as a whole with a joint loss,
which makes predictions of each network closer to peer network’s. The 6th panel: Co-variance also
maintains two networks (A & B). In each mini-batch data, each network selects its small-loss data
that meanwhile have high variances among two networks, to teach its peer network.

network closer to ground true labels and peer network’s. JoCor can achieve promising performance
on balanced noisy datasets. Unfortunately, for more practical tasks, e.g., training on imbalanced noisy
datasets, the mechanism of JoCor will accelerate the degradation of deep learning capabilities of two
networks, which severely hinders the use of hard clean examples. Nevertheless, this type of examples
is always the key to generalization (Chang et al., 2017). The experimental results in Section 4.3 will
highlight the vulnerability of JoCor. A comparison between the related methods on sample selection
and our method Co-variance is illustrated in Figure 1. Additionally, other deep methods for learning
with noisy labels are summarized in Appendix B.

3 METHOD

Given a training example (x;,y;), we formulate the proposed method with two deep neural networks
denoted by f(x;;wq) and f(x;; ws), where w; and wo are weights of two deep neural networks.
While, p1(x;) = [p1(x:), pT(%i), - -, p{(x:)] and p2(xi) = [p3(x:), p3(x:), - ., p5(xi)] denote
their prediction probabilities for the instance x; respectively, which are the outputs of the softmax
layer in two networks. That is to say, denoted the softmax activation function (Goodfellow et al.,
2016) by S(-), we have p;(x;) = S(f(x;;w1)) and pa(x;) = S(f(xi; Wa)).

Classification loss. For multi-class classification, we exploit the cross-entropy loss {cg to minimize
the distance between predictions and given labels. For a training example (x;,¥;), the classification
loss on it with each network (e.g., the network with weights w1 ) is defined as

Lcrass = Leg (P1(xi),¥i) = — Z ¥ log pi (x;). (1)
j=1
As deep networks learn patterns first (Arpit et al., 2017), they would first memorize training data of
clean labels with the assumption that clean labels are of the majority in a noisy class. Small-loss
training examples can thus be regarded as clean examples with high probability. Based on this, we
can employ the loss (1) for sample selection as did in (Han et al., 2018; Yu et al., 2019).

Contrastive loss. Given a training example (x;,¥;), to measure the difference of the two networks’
predictions p1 (x;) and p2(x;), we adopt the Jensen-Shannon (JS) divergence, which is continuous
and bounded like the cross entropy loss. We formulate contrastive loss in the following:

LCONTRAST = Js(pl(Xi)sz(Xi))

X; X; X, < 2
= %KL (pl(xz)|p1(’);p2(l)> + %KL <p2(xz)|pl(l);p2(’)> ) 2)
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Intuitively, the contrastive loss (2) can quantify the output difference of two networks. For a training
example, a large contrastive loss means that the two networks have a high variance on it.

Sample selection criterion. As discussed, we tend to select possibly clean examples based on the
small-loss criterion and involve high-variance examples in training at the same time. Therefore, the
losses (1) and (2) should have a confrontation state. We define the joint loss for sample selection
during training as follows:

Lioint = Lcrass + @ * LCONTRAST, 3)

where o < 0 is a hyper-parameter to balance the above two terms. We select the examples with
smaller joint losses. More specifically, the example with a smaller classification loss can be seen
as clean as mentioned (Arpit et al., 2017; Zhang et al., 2017; Han et al., 2018; Jiang et al., 2018).
A larger contrastive loss
means that we select the pos-
sibly clean examples but with 1: Input: two networks with weights w; and wo, learning rate 7,
a high divergence between fixed 7, epoch T and Tiyax, iteration tyax;

Algorithm 2 Co-variance Algorithm.

two networks, which couldbe for7'=1,2,... Tipax do

hard clean examples for gen- 2: Shuffle training dataset D;

eralization. Then the selected fort=1,...,tnax do

examples are used for robust 3: Fetch mini-batch D from D;

training. To determine the 4: Obtain D; = arg Minpy 1 pr|> R(T) D) Lot (w1, D’);

value of «, if we have a small

5: Obta.nllj = i 1D D ﬁ D/ 5
trusted and unbiased dataset, ! 2 = A8 WMDY D/ |> R(T)|D| / ot (w2, DY)

we can choose a suitable o g gpgate w1 - W1 — U§£CLASS(W1,ZD52)';
with meta learning (Shu et al., : Update wy = wy — 1)V Lerass (W2, D1);

2019; 2020). However, it may | "d

be somewhat strong to have 8: Update R(T) = 1 — min {le_T, T};
such a small dataset in prac-
tice. Therefore, we choose «
with a noisy validation set as
did in (Patrini et al., 2017; Chen et al., 2019; Nguyen et al., 2020). In fact, the proposed sample
selection criterion is stable with the change of «. We present detailed analyses and discussions for
algorithm stability. More details are presented in Section 4.

end
9: Output: w; and ws.

Network weight updates. We maintain two networks simultaneously. The cross-update strategy is
used, in which the intuition comes from culture evolving hypothesis (Bengio, 2014). Specifically,
each network selects training examples for its peer network based on the loss (3). Then each network
employs the selected examples from the peer network for updates. Note that the joint loss consists of
two terms, which controls the memorization of clean examples and enforces the divergence of two
networks, respectively. To avoid the explicit enforcement hurting clean example memorization and
impairing generalization, we only use the classification loss for weight updates. The divergence of
the two networks can be maintained implicitly because of our sample selection criterion.

The overall procedure of the proposed method is shown in Algorithm 2, which works in a mini-batch
manner. After fetching a mini-batch training data (Step 3), each network selects its clean examples
with the joint loss (Step 4 and 5). Then the selected examples are used for weight updates of peer
network (Step 6 and 7). Following the setting of prior methods (Yu et al., 2019; Wei et al., 2020),
we update R(T") (Step 8), which controls how many data should be selected in each training epoch.
The value of R(T') should be larger at the beginning of training, and be smaller until 1 — 7, when the
number of epochs goes large, which aims to prevent deep networks from overfitting noisy labels.

4 EXPERIMENTS

In this section, we first introduce the comparison methods (Section 4.1). The experiments on
balanced noisy datasets (Section 4.2) and imbalanced noisy datasets (Section 4.3) are then presented
respectively. Finally, the experiments on the real-world noisy datasets are provided (Section 4.4).

4.1 COMPARISON METHODS

We compare the proposed method with the state-of-art methods on sample selection: (1). MentorNet
(Jiang et al., 2018). We use self-teaching MentorNet in this paper. (2). SIGUA (Han et al., 2020),
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MentorNet SIGUA Co-teaching Decoupling Co-teaching+ JoCor | Co-variance

small loss v v v X v v v
double classifiers X X v v v v v
cross update X X v X v X v
disagreement X X X v v X v
agreement X X X X X v X

Table 1: Comparison of state-of-the-art and related techniques with our Co-variance method. In the
first column, “small loss”: regarding small-loss samples as “clean” samples; “double networks”:
training two networks simultaneously; “cross update”: updating parameters in a cross manner
instead of a parallel manner; “disagreement”: restricting two networks to diverge during training;
“agreement”: restricting two networks to be converged during training.

which exploits stochastic integrated gradient under-weighted ascent to handle noisy labels. We use
self-teaching SIGUA in this paper. (3). Co-teaching (Han et al., 2018). (4). Decoupling (Malach
& Shalev-Shwartz, 2017). (5). Co-teaching+ (Yu et al., 2019). (6). JoCor (Wei et al., 2020). The
above methods are systematically compared in Table 1. Although we focus on the sample selection
approach for combating noisy labels, to make this work more convincing, we also compare our
method with other types of advanced methods. We employ the methods belonging to designing robust
loss functions and exploiting (implicit) regularization, i.e., APL (Ma et al., 2020) and CDR (Xia
et al., 2021). APL combines two mutually reinforcing robust loss functions. While, CDR employs
unstructured network pruning to enhance the robustness of deep networks.

4.2 EXPERIMENTS ON BALANCED NOISY DATASETS

Noise type Sym. Pair. Trid. Ins.
Setting 20% 40% 20% 40% 20% 40% 20% 40%
APL 98.7610.06 94.92+0.31 98.6610.10 68.4412.95 98.9310.04 76.4413.04 97.63£0.73 87.90£1.94
CDR 94.7740.17 92.161+0.73 93.254+0.90 71.02+3.89 94.0640.92 70.28+4.01 93.174+0.96 77.45+3.04
MentorNet 95.04£0.03 92.0810.42 93.1940.17 90.93+1.54 96.4240.09 93.28+1.37 94.651+0.73 90.11£1.26
5 SIGUA 92.31£1.10 91.88+0.92 93.77+1.40 86.22+1.75 94.9240.83 83.464+2.98 92.90+1.82 86.3443.51
= Co-teaching 97.53+0.12 95.6210.30 96.051+0.96 94.1641.37 98.05+40.06 96.1810.85 97.961+0.09 95.0240.39
= Decoupling 98.3940.08 81.5640.72 97.824+0.31 66.48+0.78 98.3340.11 74.554+0.97 98.0510.30 71.87+1.24
Co-teaching+ 98.25+0.13 92.6340.34 97.3040.16 92.0040.31 98.00+0.16 93.064-0.24 96.8340.28 89.99+40.37
JoCor 98.4240.14 98.044-0.07 98.0140.19 96.85+0.43 98.4540.17 96.984-0.25 98.624-0.06 96.0740.31
Co-variance 98.8010.04 98.331£0.09 98.28+0.12 9539+1.24 98.931+0.04 97.17+0.14 98.40+0.15 96.1210.96
APL 91.7340.20 89.06£0.41 90.2240.80 78.54+4.33 90.84+40.22 86.531+0.76 90.961+0.77 85.55+2.86
CDR 85.6240.96 71.83+1.37 85.7240.65 69.07+2.31 86.75+1.19 73.631+2.82 85.9241.43 73.14£3.12
- MentorNet 90.37£0.17 86.5340.65 87.9240.18 83.70+0.49 88.7440.33 85.6340.59 87.5240.15 83.27+1.42
<] SIGUA 87.64+1.29 87.23+0.32 69.5945.75 68.93+2.80 79.9743.23 76.144+4.24 79.9743.23 76.14+4.24
§ Co-teaching 91.48+0.10 88.80+£0.29 90.7740.23 86.9140.71 91.2440.11 89.18+0.36 90.6040.12 87.9040.45
o Decoupling 88.89+0.47 70.4540.62 87.03+£0.32 60.1240.23 88.4240.37 65.984+1.05 87.16£0.77 63.4840.88
Co-teaching+ 89.95+0.18 83.73+£0.44 88.33+£0.45 71.76+£1.57 89.6840.41 79.4740.92 88.64+0.26 75.4042.40
JoCor 91.9740.13 89.96+0.19 91.5240.24 87.40+0.58 92.0140.17 89.424-0.33 91.4340.71 87.59+40.94
Co-variance 92.21+0.17 90.491+0.24 91.6610.31 87.07£0.51 92.19£0.30 88.70+0.94 91.48+0.52 88.04£0.58
APL 89.0540.43 83.5143.03 89.29+1.23 68.07+4.98 90.88+1.31 80.86+2.28 90.214+0.52 72.754+4.25
CDR 83.45+1.23 61.9941.42 82.7240.76 59.76+1.06 83.4240.88 63.1941.22 82.11£0.27 60.05+1.39
MentorNet 93.1840.26 92.0240.24 92.7840.25 81.0540.37 92.9940.16 90.164-0.16 92.2140.27 87.60+0.79
= SIGUA 92.3140.32 89.73+0.34 75.8842.43 72.2143.61 82.9442.06 78.144+4.25 77.2947.68 76.40+3.85
:§ Co-teaching 93.6140.11 91.8940.25 93.5340.20 90.3740.49 93.6240.19 90.6540.43 93.1340.36 89.9940.65
ke Decoupling 88.46+0.19 65.2243.74 87.80+0.83 63.0243.28 89.0440.61 66.7340.64 87.25+0.93 62.06+1.34
Co-teaching+ 90.3140.30 87.60+0.54 89.8540.37 69.1711.58 90.3140.31 80.1540.92 88.4340.55 70.1613.00
JoCor 93.704-0.20 92.1610.26 93.541-0.43 90.734-0.17 93.741-0.12 90.9710.39 93.3240.42 89.3740.56
Co-variance 93.751+0.17 92.221+0.42 93.541+0.26 91.2910.33 93.651+0.14 90.75+0.27 93.42+1.02 90.15+1.29
APL 76.20+1.07 67.2040.89 77.7440.98 62.05+0.96 79.0540.61 70.88+1.04 78.3240.52 66.25+1.92
CDR 69.7440.92 50.864-0.74 72.0740.19 52.01£0.59 71.1140.84 53.5940.76 71.5540.32 52.18+1.50
o MentorNet 80.9240.48 74.67+1.17 77.9840.31 69.39+1.73 78.0240.29 71.5640.93 77.0240.71 68.1742.52
Z SIGUA 78.1940.22 77.674+0.41 74.4140.81 61.9145.27 75.7540.53 74.0540.41 74.3440.39 67.98+1.34
= Co-teaching 82.35+0.16 77.9610.39 80.94£0.46 72.814£0.92 81.1740.60 74.3740.64 79.9240.57 73.29+1.62
S | Decoupling 74.0540.38 55.6210.61 74.6210.48 53.3440.71 75.0040.50 56.9310.65 74.161+0.25 54.7140.95
Co-teaching+ 75.8840.32 62.931+0.70 75.8610.33 54.3840.82 76.3140.52 59.5440.77 75.11+0.78 57.30%1.53
JoCor 80.961-0.25 76.6510.43 80.334+0.20 71.6241.05 79.0340.13 74.33+1.09 78.2140.34 71.4611.27
Co-variance 82.30£0.29 77.61£0.28 81.60+0.18 73.12+1.18 81.8310.24 74.4411.01 82.171£0.99 74.31+£1.26
APL 49.63+2.33 46.8140.48 46.8240.90 35.48+1.12 48.6210.80 37.79+0.82 48.9040.75 39.88+1.25
CDR 45.07£0.81 32.5440.88 46.7810.83 35.2940.63 46.52+0.76 35.76+0.74 45.751+0.85 34.6910.79
MentorNet 56.6940.37 54.2940.29 55.6010.42 47.42+1.07 55.0040.47 50.5740.52 56.5010.46 50.8610.36
‘é’ SIGUA 54.4440.75 53.2240.73 48.131+0.39 43.73+0.32 49.51+0.52 49.7441.50 53.2240.44 50.024-0.28
& | Co-teaching 56.994-0.28 54.8510.53 55.6110.20 46.29+1.07 56.4010.73 51.631+0.33 56.611+0.36 51.3740.32
= Decoupling 50.7440.20 39.78+0.14 51.3640.54 38.69+1.03 51.4440.73 39.98+1.12 50.4740.52 37.9240.98
Co-teaching+ 50.8440.40 44.8141.01 51.1240.62 39.344-0.99 51.68+1.09 43.0841.65 50.7140.86 42.77+£0.93
JoCor 57.154+0.33 55.48+0.29 55.961+0.26 47.23+1.57 56.551-0.89 52.4010.65 56.8810.45 51.324-0.46
Co-variance 57.15£0.20 54.93£0.21 55.52+0.35 47.45+1.05 56.07£0.79 52.28F£0.47 56.92+0.47 52.24+0.31

Table 2: Mean and standard deviations of test accuracy (%) on five balanced noisy datasets with
different noise levels. The test accuracy is calculated over the last ten epochs. The results are reported
over five trials. The best mean results are in bold.

Datasets. We verify the effectiveness of the proposed method on the manually corrupted version of
the following datasets: MNIST (LeCun et al., 1998), F-MNIST (Xiao et al., 2017), SVHN (Netzer



Under review as a conference paper at ICLR 2022

etal., 2011), CIFAR-10 (Krizhevsky, 2009), and NEWS (Lang, 1995). The five datasets are popularly
used in prior works. Note that for NEWS, we borrowed the pre-trained word embeddings from GloVe
(Pennington et al., 2014). The important statistics of the used synthetic datasets are summarized in
Appendix A.1.

Generating noisy labels. We consider broad types of noisy labels: Symmetric noise (abbreviated as
Sym.), Pairflip noise (abbreviated as Pair.), Tridiagonal noise (abbreviated as Trid.), and Instance-
dependent noise (abbreviated as Ins.). For all types of noise, the noise rates are set to 20% and 40%
consistently. which aim to ensure that clean labels in noisy classes are diagonally dominant (Ma
et al., 2020). More details about generating noisy labels are provided in Appendix A.2. We leave
10% of noisy training examples as a validation set. Note that the clean labels are dominating in noisy
classes and that noisy labels are random, the accuracy on the noisy validation set and the accuracy on
the clean test data set are positively correlated. The noisy validation set can therefore be used.

Implementation and measurement. For a fair comparison, we implement all methods with default
parameters by PyTorch, and conduct all the experiments on a NVIDIA Titan Xp GPU Cluster. For
MNIST, F-MNIST, SVHN, and CIFAR-10, we employ a 9-layer CNN structure from (Han et al., 2018),
which is a standard testbed for weakly supervised learning. For NEWS, we use a 3-layer MLP with
the Softsign active function. The details of network structures are presented in Appendix A.3. Adam
optimizer (momentum=0.9) is with an initial learning rate of 0.001, and the batch size is set to 128
and we run 200 epochs. The learning rate is linearly decayed to zero from 80 to 200 epochs. Note
that deep networks are highly non-convex, even with the same network and optimization method,
different initializations can lead to different local optimal (Malach & Shalev-Shwartz, 2017). Thus,
following (Han et al., 2018; Yu et al., 2019), we also take two networks with the same architecture
but different initializations as two classifiers. Here, we assume the noise level 7 is known and set
R(T) =1- min{leT7 7} with T,=10. If 7 is not known in advance, it can be inferred using
validation sets (Liu & Tao, 2016; Yu et al., 2018). To measure the performance, we use the test
accuracy, i.e. test accuracy = (# of correct predictions) / (# of testing). Intuitively, the higher test
accuracy means that a method is more robust to noisy labels.

Experimental results. The results of experiments on balanced noisy datasets are provided in Table 2.
In general, the proposed method achieves superior robustness compared with multiple baselines.
More specifically, for each dataset, our method can achieve the best performance in most cases. In
some cases, although it cannot surpass all baselines, it often obtains the second-best performance,
e.g., MNIST with pairflip noise. Thus, the performance is still competitive.

Ablation study. It is easy to analyze the role of the used divergence strategy by comparing our
method with Co-teaching. As we employ « to keep divergence of two deep networks, we the
algorithm stability with different values of «.. The experiments are conducted with five datasets with
symmetric noise. Implementation details are kept the same as above. The results in Appendix A.5
demonstrate the stability of our method with different . As can be seen, our method is not sensitive
to the change of o, which is conducive for practical applications.

4.3 EXPERIMENTS ON IMBALANCED NOISY DATASETS

Datasets and implementation. We consider two kinds of
experimental settings for imbalanced noisy cases, where
the examples with non-dominant labels are hard exam-
ples and are critical for generalization. As discussed, Co-
variance emphasizes the data with high variances between
two networks, which are probably hard examples. There- I
fore, we exploit imbalanced noisy cases to verify the ef- (@)
fectiveness of the proposed method, and show that it can
better mine hard clean examples than baselines, follow-
ing superior robustness. In more detail, the first one is
asymmetric noise (abbreviated as Asym.), which consid-
ers the visual similarity in the flip process and is closer .

to instance noise (Patrini et al., 2017). This type of noise TR T a2 0T
always makes noisy datasets imbalanced. We inject asym-
metric noise on the image datasets, i.e., MNIST, F-MNIST, .
SVHN, and CIFAR-10. The noise rate is set to 20%, 30%, long-tailed datasets.

Proportion
o o

Proportion
o o

Figure 2: Illustrations for two types of
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Noise type Asym. 20% Asym. 30% Asym. 40% Asym. 45% st
APL 98.6310.05 | 98.03F0.38 | 88.65E£1.72 | 90.82£2.04
CDR 96.7340.19 | 94.3341.07 | 91.054£0.76 | 76.79£3.07 e |
MentorNet 96.324-0.17 | 93.7543.91 90.964-0.97 | 67.9145.44 B
5| SIGUA 93.964-0.82 | 89.15+1.15 | 62.5940.15 | 50.224-2.74 Ewa T
S | Co-teaching 98.254-0.08 | 98.264-0.11 95.084:0.43 | 76.1745.38 2 I
= | Decoupling 98.714£0.06 | 95.0240.23 86.7240.41 83.2940.55 gre T
Co-teaching+ | 98.7940.11 | 96.704£0.24 | 94.994041 | 93.4740.49 ol
JoCor 98.054:0.37 | 94.9543.84 | 94.55+£1.08 | 80.5042.11 N s N
Co-variance 99.55£0.03 | 99.42F0.02 | 99.18F£0.07 | 99.01F0.14 a
(+0.76) (+1.16) (+4.10) (+5.54) R
APL 90.13F£0.17 | 86.26%0.47 | 80.34E£0.63 | 60.15£2.72 (== T —
CDR 89.78+£0.41 85.17£1.04 | 79.0541.39 | 52.7542.44 "
« | MentorNet 89.694£0.19 | 84.2043.36 | 67.2142.94 | 61.1842.98 Lo
% | SIGUA 76.9742.59 | 63.6447.36 | 45964340 | 43.5242.37 S
§ Co-teaching 91.0340.14 | 88.6740.60 | 68.07+£4.58 | 64.8744.88 H
= | Decoupling 90.744:0.35 | 85344030 | 79454042 | 60.3942.87 & T 1
Co-teaching+ | 91.6640.34 | 89.38+£0.39 | 82.3340.64 | 68.2943.14 ©
JoCor 90.954-0.21 85594391 | 79.7942.39 | 62.5342.33 g
Co-variance 93.12F0.15 | 92115028 | 84101293 | 74.30E3.92 “
(+1.46) (+2.73) (+1.77) (+6.01) o
APL 92571044 | 89.22F0.46 | 8400E£1.07 | 79.52E1.18 — e —
CDR 90.1740.37 | 86.1640.30 | 81.794£0.82 | 79.4540.62 >
MentorNet 92.6340.32 | 89.3140.41 83.024£2.06 | 71.6843.27
> | SIGUA 71.7842.55 | 66.8443.53 | 43344593 | 42.0648.72 D
T | Co-teaching 94.8740.36 | 93.4840.42 | 91.55+£0.33 | 88.7944.22 -
“ | Decoupling 92.7740.61 | 86334123 | 82.60+£0.85 | 80.3840.84
Co-teaching+ | 93.3240.29 | 89.88+£0.36 | 86.6041.09 | 85.0141.02
JoCor 93.4040.28 | 90.7940.23 | 72944638 | 67.1344.15
Covariance 9538F0.21 | 95.10£029 | 94.62£0.28 | 94.00F£0.30 “
(+0.51) (+1.62) (+3.07) (+5.21)
APL 79.98F£031 | 7632FE1.16 | 70.72£098 | 67.01£0.53 iR
CDR 78.8640.41 | 74494094 | 70524047 | 67.3540.30 .
< | MentorNet 77.9840.31 | 78.8140.56 | 69.39+£1.73 | 53.11%1.15 <
< | SIGUA 74.4140.81 | 70554092 | 61.91£527 | 33.5944.73 £’
g Co-teaching 80.94+£0.96 | 80.8740.24 | 72.8140.92 | 57.20£1.91 2. +
S | Decoupling 79.1840.42 | 74.5640.54 | 69.56+£0.52 | 63.1143.56 g B
Co-teaching+ | 79.6740.30 | 75744022 | 70.704+0.41 | 64.1143.64 *
JoCor 80.3340.20 | 80254040 | 71.624£1.05 | 53.4741.41 o008 oo sz
Co-variance 84781022 | 8270F0.42 | 75.24F1.44 | 68.80F2.14 “
(+3.84) (+1.83) (+2.43) (+1.45)

Figure 4: Illustrations of the hy-
Figure 3: Mean and standard deviations of test accuracy (%) perparameter sensitivity for the pro-
on two closed-set noisy datasets with different noise levels.  posed method on four imbalanced
The test accuracy is calculated over the last ten epochs. The noisy datasets. The error bar for
results are reported over five trials. The best mean results are  standard deviation in each figure
in bold. The improvements over baselines are highlighted.  has been shaded.

40%, and 45% respectively. More details are provided in Appendix A.4. The second one is long-
tailed noise (abbreviated as L-Tailed.), where training data exhibit long-tailed distributions with class
imbalance (Yang & Xu, 2020). In this paper, we reduce the proportion of training examples with
different classes to simulate long-tailed distributions. We use two simulation ways, which are shown
in Figure 2. Taking MNIST as an example, the built datasets are called L-MNIST-1 (Figure 2(a))
and L-MNIST-2 (Figure 2(b)). Other used datasets are named in the same way. We employ MNIST
and SVHN in this setting. Besides, asymmetric noise is further imposed on long-tailed datasets,
which forms noisy long-tailed datasets. The implementation details are kept the same as the cases in
experiments on balanced noisy datasets, including optimization and network structures.

Experimental results. The results of experiments only with asymmetric noise are presented in
Table 3. Extensive results show that our method can achieve clear leads over all baselines. For the
most challenging cases, i.e., our method achieves more than 5% improvements on MNIST, F-MNIST,
and SVHN. For CIFAR-10, our method also achieves superior robustness. In addition, the analyses of
the hyperparameter sensitivity are provided in Figure 4. The curves demonstrate the importance of
divergence in sample selection and the stability of our method. The results on four noisy long-tailed
datasets are shown in Figure 5. From all training curves, we can see that Co-variance can achieve
superior robustness on long-tailed noisy datasets.

It should be noted that the baseline JoCor is weak on imbalanced noisy datasets. Compared with its
performance on balanced noisy datasets, we can see that it cannot handle these realistic cases well.
Moreover, JoCor is rather unstable during training, with large error bars. This issue is pessimistic,
and could limit practical applications largely.

4.4 EXPERIMENTS ON THE REAL-WORLD NOISY DATASET

Datasets and implementation. ClothingIM (Xiao et al., 2015) is employed in this paper, which
consists of 1M noisy training examples collected from online shopping websites. We follow previous



Under review as a conference paper at ICLR 2022

— APL —— CDR —— MentorNet - SIGUA Co-teaching Decoupling Co-teaching+ JoCor —— Co-variance

— Asym. 20% — — Asym. 30% — — Asym. 40% — — Asym. 45% —

— L-SVHN-1 — — L-MNIST-1 -

— L-MNIST-2 -

— L-SVHN-2 -

Epoch Epoch Epoch

Figure 5: Test accuracy vs. the number of epochs on four long-tailed noisy datasets. The error bar for
standard deviation in each figure has been shaded.

work (Patrini et al., 2017) and use ResNet-50 with ImageNet pretrained weights. As we mainly
focus on sample selection, it is not fair to compare our method with some state of art methods,
e.g., DivideMix (Li et al., 2020) and ELR+ (Liu et al., 2020), which combine multiple methods.
Therefore, to compare with it, we follow the paradigm of DivideMix

3 . A Method Accuracy (%)

to boost our method. The enhanced method is named DivideMix+, APL 5446
where we replace the sample selection procedure (Permuter et al., CDR 66.59
2006) in DivideMix by Co-variance. For preprocessing, we resize the entormet e
image to 256 <256, crop the middle 224 x224 as input, and perform Co-teaching 67.94
normalization. The experiments on ClothingIM are performed once Decoupling 67.65
. . Co-teaching+ 63.83

due to the huge computational cost. We use a ResNet-50 pretrained JoCor 69.06
on ImageNet as did in (Patrini et al., 2017). We also use the Adam Co-variance 71.60
optimizer and set the batch size to 64. During training, we run 20 DivideMix 74.76
epochs in total and set the learning rate 8 x 1074, 5 x 107, and ELR+ 7481
DivideMix+ 74.92

5 x 10~° for 5 epochs each.

Experimental results. The classification performance achieved on Table 3 Test accuracy (%) on
ClothingIM is shown in Table 3. Specifically, compared with Co- ClothingIM. The best results
variance with the baselines without multiple techniques combination, are in bold.

our method achieves an improvement of +2.54% over the best baseline JoCor. When we combine
other advanced methods to boost our method as did in DivideMix, DivideMix+ can outperform
DivideMix and ELR+, which means that our method can be exploited to improve the cutting edge
performance of state-of-the-art methods.

5 CONCLUSION

This paper presents a robust learning paradigm called Co-variance, which trains deep neural networks
robustly with noisy labels. Co-variance maintains two networks simultaneously. The core idea is
to make each network selects its clean data for peer network and tries to choose the data with high
variances between two networks at the same time. The proposed sample selection procedure is
sample-efficient, and can ensure enough (hard) clean examples for generalization. Comprehensive
experiments with superior performance justify our claims well.
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A COMPLEMENTARY EXPERIMENTAL SETTINGS
A.1 THE DETAILS OF USED DATASETS

For the details of used datasets in experiments on closed-set noisy datasets, the important statistics of
the used datasets are summarized in Table 4.

type | # of training | # of testing | # of class size
MNIST image 60,000 10,000 10 28 x28x1
F-MNIST | image 60,000 10,000 10 28x28x 1
SVHN image 73,257 26,032 10 32%x32x%3
CIFAR-10 | image 50,000 10,000 10 32x32x3
NEWS text 11,314 7,532 20 300-D

Table 4: Summary of simulated closed-set noisy datasets used in the experiments.

A.2 THE DETAILS OF GENERATING NOISY LABELS FOR BALANCED CASES
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Here, we introduce the details of generating different types of noisy labels. We mainly follow the
settings in (Zhang et al., 2021b). The details are described as follows:

¢ Instance-independent noise
- Symmetric noise.: We flip clean labels in each class uniformly to incorrect labels of other classes.
- Pairflip noise: We flip clean labels in each class to its adjacent class.

- Tridiagonal noise: the noise corresponds to a spectral of classes where adjacent classes are easier to
be mutually mislabeled, which can be implemented by two consecutive pair flipping transformations
in the opposite direction.

We corrupt clean datasets manually by the label transition matrix 7', where T;; = P (y = e; ly = e;),
given that noisy y is flipped from clean y. When the noise rate is set to e, the transition matrices for
the above three types of label noise are shown in (4), (5), and (6).

¢ Instance-dependent noise

- Instance noise: We consider that the probability that an instance is mislabeled depends on its
features/instances. The generation of such a kind of noise follows the procedure in (Zhu et al., 2021).
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A.3 THE DETAILS OF NETWORK STRUCTURES

We use a 9-layer CNN for MNIST, F-MNIST, SVHN, and CIFAR-10. The CNN is shown in Table 5.
We use a 3-layer MLP for NEWS, which is shown in Table 6.

Input
3x3 Conv, 128 LReLU
3x3 Conv, 128 LReLU
3x3 Conv, 128 LReLU
2x2 Max-pool, stride 2

Dropout, p = 0.25 Input
3x3 Conv, 256 LReLU Dense 300—1280
3x3 Conv, 256 LReLU BatchNorm1D
3x3 Conv, 256 LReLU Softsign
22 Max-pool, stride 2 Dense 1280—160
Dropout, p = 0.25 BatchNorm1D
3x3 Conv, 512 LReLU Dense 160— # of classes
3x3 Conv, 256 LReLU
3x3 Conv, 128 LReLU Table 6: The MLP used on NEWS.
Avg-pool

Dense 128 —# of classes

Table 5: The CNN used on MNIST, F-MNIST, SVHN,
and CIFAR-10.

A.4 THE DETAILS OF GENERATING NOISY LABELS FOR IMBALANCED CASES

In this paper, we consider two types of ways for building imbalanced noisy datasets. The first
one is asymmetric noise, which is injected into four datasets, i.e., MNIST, F-MNIST, SVHN, and
CIFAR-10. For MNIST, flipping 2—7, 3—8, 5+6. For F-MNIST, flipping TSHIRT—SHIRT,
PULLOVER—COAT, SANDALS—SNEAKER. For SVHN, flipping 2—7, 3—8, 5<+6. For CIFAR-
10, flipping TRUCK—AUTOMOBILE, BIRD—AIRPLANE, DEER—HORSE, CAT++DOG. As
some flip processes (e.g., 2—7, but not 2<+7) are not bidirectional, the simulated noisy datasets are
imbalanced accordingly.

A.5 SUPPLEMENTARY EXPERIMENTAL RESULTS

The results of ablation study on balanced closed-set noisy datasets are provided in Figure 6, which
shows that Co-variance is stable with the change of a.

Figure 6: Illustrations of the hyperparameter sensitivity for the proposed method. The error bar for
standard deviation in each figure has been shaded.

B OTHER DEEP LEARNING METHODS FOR LEARNING WITH NOISY LABELS

Expect for the introduced sample selection approach, a large body of work proposed various methods
for coping with noisy labels, which include but are not limited to, learning a label noise transition
matrix (Hendrycks et al., 2018; Yao et al., 2020b), reweighting examples (Liu & Tao, 2016; Ren
et al., 2018; Fang et al., 2020), recalibrating labels (Tanaka et al., 2018; Zheng et al., 2020; Zhang
et al., 2021a), using graph models (Xiao et al., 2015; Li et al., 2017; Vahdat, 2017), designing robust
loss functions (Zhang & Sabuncu, 2018; Xu et al., 2019; Ma et al., 2020), exploiting (implicit)
regularization (Zhang et al., 2018; Kim et al., 2019; Hu et al., 2020; Xia et al., 2021; Chen et al.,
2021; Wei & Liu, 2021), and combining semi-supervised learning (Nguyen et al., 2020; Li et al.,
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2020; Liu et al., 2020; Zhou et al., 2021), etc. We suggest that readers can refer (Song et al., 2020)
for more details of learning with noisy labels.
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