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ABSTRACT

While concept-based explanations improve interpretability over local attributions,
they often rely on correlational signals and lack causal validation. We introduce
VISIONLOGIC, a novel neural–symbolic framework that produces faithful, hi-
erarchical explanations as global logical rules over causally validated concepts.
VISIONLOGIC first learns activation thresholds to convert neuron activations into
a reusable predicate vocabulary and induces class-level logical rules from these
predicates. It then grounds predicates to visual concepts via ablation-based causal
tests with iterative region refinement, ensuring that discovered concepts correspond
to features that are causal for predicate activation. Across different vision architec-
tures such as CNNs and ViTs, it produces interpretable concepts and compact rules
that largely preserve the original model’s predictive performance. In our large-scale
human evaluations, VISIONLOGIC’s concept explanations significantly improve
participants’ understanding of model behavior over prior concept-based methods.
VISIONLOGIC bridges neural representations and symbolic reasoning, providing
more trustworthy explanations suited for safety-critical applications.

1 INTRODUCTION

Deep learning-based vision models have achieved remarkable success across numerous tasks, yet
their black-box nature remains a major obstacle to trustworthy AI. This challenge has only intensified
with the transition from Convolutional Neural Networks (CNNs) (LeCun et al., 1998; He et al.,
2016) to Vision Transformers (ViTs) (Dosovitskiy et al., 2021), which introduce greater architectural
complexity and opacity. To address this issue, a wide range of interpretability methods have been
proposed. Among them, concept-based explanations (Nguyen et al., 2016; Bau et al., 2017; Kim
et al., 2018; Ghorbani et al., 2019; Fel et al., 2023) have attracted particular interest because they
uncover high-level semantic concepts rather than low-level attribution maps such as Grad-CAM and
its extensions (Selvaraju et al., 2017; Wang et al., 2020; Jiang et al., 2021).

However, existing concept-based methods rely almost entirely on correlational evidence without
causal validation, leading to potentially unfaithful or misleading explanations (Lopez-Paz et al., 2017;
Zhang et al., 2023). For instance, TCAV (Kim et al., 2018) uses linear classifiers in activation space,
while ACE (Ghorbani et al., 2019) applies clustering—both purely correlational approaches that lack
rigorous causal foundations. As a result, these methods often conflate dataset biases with genuine
model reasoning, such as associating the concept pasture with the class cow, a classic case where
correlation fails to imply causation (Wu et al., 2023). Consequently, the concepts themselves may be
spurious, leaving a fundamental methodological gap: the absence of principled causal validation for
robust, interpretable concepts.

We address this gap with VISIONLOGIC, a novel neural-symbolic framework for generating faithful,
interpretable explanations via global logical rules defined over causally validated concepts. Our
approach operates in two stages. First, we transform high-level neuron activations into abstract
predicates by learning activation thresholds and derive logical rules that approximate the model’s
class-level decision making. These predicates provide an intermediate symbolic representation that
captures key aspects of the model’s internal reasoning while remaining flexible and generalizable
across input images. By converting neuron activations into predicates, we not only abstract the
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model’s computations but also create a structured foundation for reasoning about causally relevant
concepts at a higher semantic level.

Original Image Visual Concepts (Grounding Box) Visual Concepts (Segmentation)

Figure 1: Causally validated concepts discov-
ered by VISIONLOGIC, highlighted with bound-
ing boxes and colored overlays.

Second, we ground these predicates into high-
level visual concepts using ablation-based causal
tests. For each image, we start with an initial
bounding box likely to influence the predicate,
perturb the region with random noise or similar
masking strategies, and check whether this flips
the predicate’s truth value. A transition from ac-
tivation to deactivation provides causal evidence
that the region is critical for the predicate. We
then propose an efficient algorithm to iteratively
refine the bounding box for more precise localiza-
tion. For further refinement, segmentation meth-
ods such as Mask R-CNN (He et al., 2017) or
SAM (Kirillov et al., 2023) are used to validate
the intersection of the segmentation and refined
box. Finally, the refined regions are consolidated
across images within the same class to form con-
sistent, causally validated visual concepts.

The final result is a set of causally validated con-
cepts and global logical rules that collectively pro-
vide transparent, faithful explanations of model
behavior. For example, VISIONLOGIC discovers
concepts such as Beak and Claw for the class
House Finch in ImageNet (Deng et al., 2009),
which are combined to form the logical rule: Beak ∧ Claw ⇒ House Finch, as illustrated in Figure 1.
This rule reveals how the vision model leverages these causally validated visual concepts to make
class-level predictions, providing interpretable insights into the model’s decision-making process.

Our extensive human studies confirm that the concepts discovered by VISIONLOGIC significantly
enhance understanding of the model’s decision-making process compared to prior concept-based
methods. Experiments on both CNNs and ViTs further demonstrate that VISIONLOGIC maintains
strong predictive performance, achieving over 90% top-5 test accuracy on covered images, while
providing explanations that are both causally grounded and human-understandable. To the best of
our knowledge, VISIONLOGIC is the first framework to deliver both causally validated concepts and
interpretable logic-rule explanations. We envision this as an important step toward bridging the gap
between complex neural network representations and human-interpretable causal reasoning, offering
trustworthy insights for high-stakes applications. Our contributions are summarized as follows:

• We propose VISIONLOGIC, a novel neural-symbolic framework that learns activation thresh-
olds to form predicate-based abstractions and extracts logical rules over causally validated
high-level visual concepts, bridging symbolic reasoning with neural representations.

• We develop an efficient, iterative refinement algorithm that precisely localizes causally
relevant image regions using bounding-box adjustment and segmentation masks, ensuring
accurate and consistent concept discovery.

• We conduct a large-scale human evaluation demonstrating significant improvements over
state-of-the-art concept-based explanation methods in understanding the model’s decision-
making process through causally validated concepts and human-aligned interpretability.

• We empirically show that VISIONLOGIC largely retains the discriminative power of vision
models with compact rules, and its grounded concepts are highly interpretable to humans,
thereby providing a strong tool for understanding decision-making in vision models.

2 RELATED WORK

Existing approaches to interpreting vision models increasingly focus on concept-based methods,
which aim to link internal representations to human-interpretable concepts rather than pixel-level
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attributions (Selvaraju et al., 2017; Chattopadhay et al., 2018; Wang et al., 2020). Early studies
explore the hidden semantics of neural networks by visualizing what individual neurons or layers
encode. For instance, Nguyen et al. (2016) generate synthetic images that maximally activate specific
neurons, while Mahendran & Vedaldi (2015) reconstruct inputs from intermediate feature maps to
reveal the information preserved at different network depths. Network Dissection (Bau et al., 2017)
further provides a systematic framework to quantify the alignment between hidden units and semantic
concepts across diverse architectures. Although these methods offer valuable qualitative insights into
model representations, they remain largely descriptive and lack systematic approaches to associate
neurons with semantically meaningful concepts.

Subsequent work introduces concept discovery methods to establish explicit links between model
activations and human-interpretable concepts. NET2VEC (Fong & Vedaldi, 2018) trains linear
predictors on activation patterns to align feature maps with semantic labels, while TCAV (Kim et al.,
2018) uses linear classifiers to score concept importance in activation space. However, all these
approaches rely almost entirely on correlational evidence without any form of causal validation. As
a result, they may capture spurious correlations between concepts and model decisions—for example,
a concept might appear predictive of a class simply because both frequently co-occur in the training
data, even if it plays no causal role in the model’s reasoning (Wu et al., 2023).

More recent methods have attempted to refine concept discovery. For instance, ACE (Ghorbani et al.,
2019) applies unsupervised clustering to extract concepts directly from activation patterns, while
ICE (Zhang et al., 2021) improves upon ACE by introducing invertible concept-based explanations
and leveraging Non-Negative Concept Activation Vectors to enhance interpretability and fidelity.
CRAFT (Fel et al., 2023) further integrates sensitivity analysis into concept scoring to better measure
how concept perturbations affect model predictions. Nevertheless, all these approaches still rely
on unsupervised discovery techniques such as clustering or matrix factorization, which provide no
causal guarantees (Lopez-Paz et al., 2017; Zhang et al., 2023). Consequently, the identified concepts
themselves may be spurious, leaving a fundamental methodological gap: the lack of principled causal
validation for robust and trustworthy interpretability in deep vision models.

3 THE VISIONLOGIC FRAMEWORK

VISIONLOGIC explains deep vision models by replacing the final decision layer with an interpretable
program over causally validated concepts. The framework proceeds in three stages: (i) derive binary
predicates from neuron activations, (ii) compose these predicates into class-wise rules and define an
inference score, and (iii) ground predicates to image regions via occlusion ablation.

3.1 DERIVING PREDICATES FROM NEURON ACTIVATIONS

We begin with the final-layer activations Z(x) ∈ Rd for an input x. For class c, the network computes
the logit Fc(x) = WcZ(x) + bc, with Wc ∈ Rd and bc ∈ R. The term Wc

j zj(x) measures how
much channel j pushes toward class c on this input. We sort channels by this per-example contribution
so that rank 1 is the largest. Averaged over examples of class c, the representativeness of channel j is
captured by its expected rank; the most representative channel minimizes:

j∗ = argmin
j∈J

Ex∈Xc

[
Rc
(
Wc

j Zj(x)
)]

. (1)

Since bc adds a constant to Fc(x), it cannot change the within-example ordering of contributions
{Wc

jZj(x)}j . The ranking is thus bias-invariant (Geng et al., 2022). For clarity, all classwise
statistics in Section 3 use only training examples correctly classified by the base model, preventing
predicate learning from contamination by misclassified instances.

We convert real-valued activations to binary predicates pj(x) ∈ {0, 1} that serve as logical atoms.
Rather than fixing ad hoc thresholds, we learn per-channel thresholds Tj and sharpness sj > 0 (note:
temperature = 1/sj), which define a differentiable gate during training and a Boolean at test time:

p̃j(x) = σ
(
sj(zj(x)− Tj)

)
, pj(x) = I(zj(x) ≥ Tj) . (2)

The relaxed gate p̃j enables gradient-based learning of (Tj , sj); after training, we harden to pj . We
call a predicate invalid if its learned threshold makes pj(x)≡0 on all data; otherwise it is valid.
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Note that some activation functions such as GELU (Hendrycks & Gimpel, 2016) can produce positive
and negative responses with distinct semantics. To allow a single channel to encode two features, we
define branch-specific predicates:

pj,+(x) = I(zj(x) ≥ Tj,+) , pj,−(x) = I(zj(x) ≤ Tj,−) , (3)

trained with the same relaxation as Eq. 2 using branch-specific (Tj,±, sj,±).

A channel can be informative even when it is not the largest contributor on an example. We therefore
require both high contribution rank and sufficient activation magnitude. We adopt a single, class-
agnostic threshold Tj shared across classes so that each predicate simply denotes “feature present”
for neuron j; this deliberately handles polysemanticity by reuse—the same predicate may activate in
multiple classes (Elhage et al., 2022). For class c and input x, let uc

j(x) = Wc
j zj(x) and Rc(uc

j(x))
be its within-example rank (1 is best). We define

pj,≤k(x) = I
(
Rc
(
uc
j(x)

)
≤ k ∧ zj(x) ≥ Tj

)
, k ∈ {1, 2, 3}. (4)

During training, we replace the non-differentiable rank test with a soft top-k weight wc
j(x) ∈

[0, 1] computed with SoftSort (Prillo & Eisenschlos, 2020), which approximates the indicator
I
(
Rc(uc

j(x)) ≤ k
)
. The relaxed gate is p̃j,≤k(x) = wc

j(x) · σ
(
sj(zj(x) − Tj)

)
. We instantiate

a small set of rank windows k ∈ {1, 2, 3} and impose structured sparsity (group lasso) across
{pj,≤1, pj,≤2, pj,≤3} so the optimizer selects at most one k per channel (i.e., the most predictive
window), preventing predicate proliferation. The top-k gate, combined with the shared threshold Tj ,
suppresses spurious activations and keeps the predicate vocabulary compact and easy to learn.

Learning objective. Given the predicate vector P (x) = [p1(x), . . . , pm(x)]⊤, we train a
lightweight linear head frule(x) = WruleP (x) + brule with the base network frozen. At test time we
do not use frule; it serves solely to learn stable thresholds. The head supplies calibrated logits and,
crucially, gradients that help place thresholds during learning:

min
Θpred,Θrule

Lteach
(
frule(x), fnn(x)

)︸ ︷︷ ︸
distill the frozen teacher

+λT ∥T − T (0)∥22 + λs

∑
j

(sj − 1)2︸ ︷︷ ︸
threshold/temperature stability

+ λuseΩ(P̃ )︸ ︷︷ ︸
compact predicate set

, (5)

where Θpred = {T, s}, Θrule = {Wrule,brule}, and P̃ collects the relaxed gates p̃j(x) = σ
(
sj(zj(x)−

Tj)
)
. The distillation loss Lteach is the Kullback–Leibler divergence between the teacher and rule-head

predictive distributions. The per-channel seed T (0) is initialized at a high percentile of zj(x) over
influential training examples (we use the 0.8-quantile; influential = SoftSort top-k by contribution
with k = 3). We initialize Wrule with classwise normalized predicate frequencies (mean-centered
by the global frequency per predicate) and set brule from class priors; values are then refined
during learning. The stability terms keep thresholds near T (0) and temperatures near 1, preventing
degenerate always-on/off gates. The compactness penalty Ω(P̃ ) is a group-lasso over the rank variants
{pj,≤1, pj,≤2, pj,≤3} for each channel, which selects a single rank regime and prevents predicate
proliferation. More implementation details and hyperparameters are provided in the Appendix C.2.

Observation. Empirically, the learned thresholds Tj often align with the k=1 specialization of the
rank-aware predicate in Eq. 4: restrict to correctly classified examples from the class c⋆(j) where
neuron j is most representative (i.e., has the lowest expected contribution rank), keep those instances
x ∈ Xc⋆(j) with p

(c⋆)
j,≤1(x) = 1 (i.e., Rc⋆(j)(u

c⋆(j)
j (x)) = 1), and observe that Tj tends to be close

to the minimum zj(x) over that subset. With SoftSort providing the soft top-k proxy and structured
sparsity selecting a single k per channel, training recovers this heuristic in a data-driven way.

3.2 LEARNING LOGICAL RULES AND AN INFERENCE SCORE

Given the learned predicate vocabulary P , we induce symbolic rules and a rank-based inference
score to explain the base model’s predictions. For class c, we evaluate all predicates on each training
example x ∈ Xc that the base model classifies correctly, obtaining a binary vector P (x) ∈ {0, 1}m.
Each distinct vector defines a conjunctive clause that requires exactly the predicates that are true

4
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Figure 2: Grounding predicates to visual concepts. The orange panel illustrates how a bounding
box is iteratively refined to capture the candidate region that causally influences an example predicate
p788 via noise ablation. The blue panel shows a further refinement step using segmentation masks.

and forbids those that are false. Joining all such clauses with disjunctions yields a DNF that exactly
captures the training patterns of class c:

∀x,

( ∨
v∈Vc

( ∧
i:vi=1

pi(x) ∧
∧

i:vi=0

¬pi(x)
))

=⇒ Label(x) = c, (6)

where Vc is the set of unique predicate patterns observed in Xc. Because exact matching is brittle on
unseen data, we summarize class characteristic strength with a rank profile.

We build a class profile by counting predicate appearances across the class-c clauses in Eq. 6 and
sorting predicates by frequency to obtain a ranking Rc(pi) (lower rank = more characteristic of c).
For a test input x with active predicates P (x), we compute the explanation score:

S(x, c) =
1

|P (x)|
∑

pj∈P (x)

Rc(pj), (7)

and predict with ĉ(x) = argminc S(x, c). Intuitively, the chosen class is the one whose characteristic
predicates best explain those active on x. Because predicates use a single, class-agnostic threshold Tj

per neuron, a predicate can fire in multiple classes (i.e., polysemanticity), but disambiguation comes
from the class profiles {Rc}: the same predicate typically has different ranks across classes, so the
score S(x, c) separates them.

Observation. Recall we initialize Wrule with classwise normalized predicate frequencies (mean-
centered by each predicate’s global frequency). Since the class profile ranking Rc(·) is induced by
these frequencies, the resulting weights are, up to a positive monotone transform, equivalent to using
inverse ranks (i.e., Wc,i

rule ∝ 1/Rc(pi)). Consequently, maximizing f c
rule(x) is monotone-equivalent

to minimizing S(x, c). A formal proof is given in Claim 1 (see Appendix C.2).

3.3 GROUNDING PREDICATES TO VISION CONCEPTS

The final step grounds abstract predicates in the input space, linking logical atoms to interpretable
visual features. Our binary predicate formulation enables principled causal reasoning—a key advan-
tage over existing concept-based methods that rely on statistical correlations without establishing
genuine causal relationships between visual features and model decisions.

Given an image x and predicate pj , we test whether a region is necessary for pj(x) by replacing
that region with random noise1 to obtain x′, then recomputing pj(x

′). A flip from activation to
deactivation indicates that the region is causally important for pj(x). To find such regions efficiently,
we initialize a bounding box intended to deactivate pj (typically large and image-covering). For
CNNs, the initialization can be seeded from the feature map associated with pj ; for ViTs, it is aligned
to the patch grid. We then iteratively refine the box until pj reactivates, following a procedure similar

1Other replacements, e.g., blurring, mean-filling, or blacking out, are also effective; in our experiments,
blurring often performs best. We use random noise here for clarity and consistency in visualization.
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Table 1: Utility scores in three application scenarios. The Utility benchmark measures how well
explanations help users identify general rules that transfer to unseen instances. During training,
participants are shown images along with the explanations and model predictions, and are asked to
infer the underlying decision rules. At test time, the benchmark evaluates participants’ accuracy in
predicting the model’s output on novel images. Higher Utility scores indicate that the explanations
provide more useful information for understanding the model’s behavior on new samples. For each
scenario, the first and second best results are in bold and underlined respectively. Our proposed
method VISIONLOGIC achieves consistently higher Utility scores than prior approaches, with
statistically significant improvements in the explanatory model’s behavior across all three scenarios.

Husky vs. Wolf Otter vs. Beaver Kit Fox vs. Red Fox

Session n◦ 1 2 3 Utility 1 2 3 Utility 1 2 3 Utility

Baseline 65.7 68.6 70.3 1.00 84.4 90.3 92.2 1.00 84.1 89.0 84.1 1.00
Control 55.3 63.6 70.0 0.92 85.1 88.3 92.9 1.00 80.8 79.2 79.2 0.93

ACE 60.4 71.1 74.6 1.01 80.4 85.7 90.5 0.96 80.6 83.2 76.2 0.93
CRAFT 55.5 60.8 65.3 0.89 86.3 90.9 90.9 1.00 76.8 81.8 76.8 0.92
VISIONLOGIC 74.8 90.0 91.0 1.25 96.8 98.4 99.2 1.10 84.1 84.5 82.9 0.98

to Geng et al. (2024); in some cases, only a few refinement steps are sufficient. The full algorithm
is provided in Appendix A. Because the refinement is stochastic, multiple runs may yield different
boxes; we retain the smallest successful box to improve precision. We also verify sufficiency by
constructing an image with random noise everywhere except the candidate region and checking
whether pj remains activated. This provides causal evidence that the candidate region influences pj .

To better match object boundaries, we add a segmentation-based refinement step using off-the-shelf
methods such as Mask R-CNN (He et al., 2017) or SAM (Kirillov et al., 2023). We intersect
the segmentation mask with the refined box and repeat the intervention to confirm the expected
predicate flip, thereby strengthening causal validity. Figure 2 illustrates the workflow. Finally, we
aggregate validated regions across multiple images of the same class to form consistent, causally
supported visual concepts, establishing a robust link between the concepts and pj and ensuring that
the explanations faithfully reflect the model’s decision-making.

4 EXPERIMENTS

4.1 HUMAN EVALUATION OF CAUSALLY GROUNDED CONCEPTS

Setup. We evaluate the practical utility of our proposed VISIONLOGIC, alongside prior concept-
based methods ACE and CRAFT, in terms of concept explanations using the human-in-the-loop
framework of Colin et al. (2022), which assesses how well explanations help participants understand
a model’s behavior across three real-world scenarios: (1) detecting bias in AI decisions (using Husky
vs. Wolf classification), (2) identifying novel model strategies that are non-obvious to untrained
observers (using Otter vs. Beaver classification2), and (3) understanding failure cases (using Kit Fox
vs. Red Fox classification). Each scenario adopts the meta-predictor paradigm: during the training
phase, participants study example images paired with explanation images and model outputs, then
predict the model’s output on unseen images without access to the corresponding explanations.

In total, 531 participants were recruited from Prolific (Prolific, 2024), in which 465 passed screening
criteria aligned with Colin et al. (2022). We designed questionnaires for five conditions: (1) baseline
(no explanation), (2) control (bottom-up saliency maps (Simonyan et al., 2014)), (3) ACE (Ghorbani
et al., 2019), (4) CRAFT (Fel et al., 2023), and (5) VISIONLOGIC (ours), where ACE and CRAFT
are considered state-of-the-art. To ensure fair comparison on the adapted datasets, all methods were
re-run under identical experimental settings. Following prior work (Colin et al., 2022; Fel et al.,
2023), we report the utility score, defined as participants’ average test accuracy across the three
sessions, normalized by the baseline; higher values indicate more effective human understanding of
the model. Additional experimental details, including the participant recruitment process and the
number of images used in each session and phase, are provided in Appendix F.1.

2This task replaces the legacy “Leaves” dataset from Colin et al. (2022) that is no longer available.
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Figure 3: Data distribution for each explanation method in three scenarios. Our method VISIONLOGIC
consistently enhances human understanding of model behavior over prior concept-based methods.

Table 2: Evaluation of VISIONLOGIC’s rule-based explanations across vision models. The first
column lists the models; the remaining columns report results for the proposed metrics. The #Valid
metric gives the number of valid predicates; the following parentheses show the total predicate count.
Model #Valid Complexity Coverage (%) Fidelity (%) Top-1 Acc. (%) Top-5 Acc.(%)

ResNet 1944 (2048) 9.49 83.48 75.42 69.27 93.53
ConvNet 1303 (2048) 33.75 83.77 86.07 80.34 97.23
ViT 1465 (1536) 42.63 80.48 87.55 80.70 97.38
Swin 1460 (1536) 53.58 88.64 78.60 72.83 91.26

Results. Table 1 shows that VISIONLOGIC consistently outperforms ACE and CRAFT across all
three scenarios. In the first two scenarios, VISIONLOGIC achieves utility scores significantly higher
than 1, demonstrating clear benefits provided by our method to the participants when assisting them
to infer model predictions. In the third scenario, we observe the same trend as prior work (Fel et al.,
2023) where no existing method provides more effective information than Baseline. Nevertheless,
our method shows substantial improvement over ACE and CRAFT; a utility score of 0.98 suggests
that causally grounded concepts provide actionable guidance for understanding model failures.

To rigorously examine the performance gain of our method over Baseline, Control, ACE, and CRAFT
in the evaluation shown in Table 1, we perform statistical tests on the collected data. We initially
follow the procedure of Colin et al. (2022): an analysis of variance (ANOVA; (Scheffe, 1999))
followed by Tukey’s honestly significant difference (HSD) test for pairwise comparisons (Tukey,
1949). However, we noticed that the assumption checks for normality and homogeneity, which are
crucial to the validity of parametric test results (Öztuna et al., 2006), are absent from prior works
(Fel et al., 2023). To this end, we performed a complete statistical testing procedure with assumption
checks. Figure 3 shows that the data is highly skewed as test accuracy is upper bounded by 1.0, hence
violating the normality assumption. Therefore, non-parametric statistics are more appropriate for
testing whether there is any statistically significant difference between the five conditions listed.

A Kruskal-Wallis test (McKight & Najab, 2010) with a null hypothesis of “All condition distributions
are identica” and an alternative hypothesis of “At least one condition distribution differs” at a
significance level of 0.05 rejects the null hypothesis with p = 3.4×10−5, 8.83×10−4 for the first two
scenarios. We then utilize Dunn’s test (Dinno, 2015) to analyze pairwise differences with Bonferroni
correction (Weisstein, 2004) applied. In the first scenario, VISIONLOGIC is shown to be significantly
better than all other conditions with p = 3.03 × 10−2, 4.00 × 10−4, 2.41 × 10−2, p < 0.001,
respectively, suggesting that our method is effective in helping participants detect biases in the model.
In the second scenario, VISIONLOGIC is shown to be significantly more effective than ACE and
CRAFT with p = 4.5× 10−3 and 3.09× 10−2 respectively, supporting its improvement over prior
methods on the task of identifying unobvious visual clues. Full test details, including the statistical
tests involved, assumption checks, corrections, and test statistics are reported in Appendix F.2.

4.2 EVALUATING LOGICAL RULE-BASED EXPLANATIONS

Setup. We evaluate the global logical rule–based explanations generated by VISIONLOGIC on deep
vision models. To demonstrate generalizability across architectures, we cover four representative
backbones: ResNet-50 (He et al., 2016), ConvNeXt-Base (Liu et al., 2022), ViT-B (Dosovitskiy
et al., 2021), and Swin-T (Liu et al., 2021). VISIONLOGIC learns thresholds and logical rules on
the full ImageNet-1k training set (Deng et al., 2009) (1,281,167 images) and is evaluated on the
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Figure 4: Hidden predicates grounded in visual concepts. In each image, the predicate appears above
the frame, and the colored region in the image highlights the concept identified by VISIONLOGIC.

50,000-image validation set. To our knowledge, no prior method extracts explicit, global logical rules
at this scale on modern backbones. Existing rule-extraction approaches (e.g., Cohen (1995); Zilke
et al. (2016); Zarlenga et al. (2021); Hemker et al. (2023)) have only been applied to small datasets or
shallow architectures, and have not scaled to state-of-the-art vision models. And the closest related
effort (Jiang et al., 2024) relies on indirect evidence (e.g., counting sub-explanations) rather than
explicitly extracting rules. Thus, VISIONLOGIC provides, to the best of our knowledge, the first
explicit, global interpretable rules for large vision models such as CNNs and ViTs.

Results. Accordingly, we assess how well VISIONLOGIC preserves the base model’s decisions and
discriminative power, as well as the complexity of per-sample explanations, using metrics defined in
Appendix D.1. Table 2 reports results across different base models under these metrics. Trained on
the ImageNet training set, VISIONLOGIC exhibits strong generalization to the unseen validation set.
VISIONLOGIC attains high coverage (80–89%) across all backbones while maintaining strong fidelity
on covered images (76–88%). On covered, labeled images, VISIONLOGIC’s rule-based predictions
maintain competitive top-1/top-5 accuracy (ConvNeXt: 80.34%/97.23%; ViT: 80.70%/97.38%),
indicating that the symbolic rules retain much of the base models’ discriminative signal.
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For a model-wise comparison, CNNs tend to produce shorter explanations than Transformers. For
example, ResNet requires, on average, 9.49 predicates per image, whereas Swin requires 53.58, even
though ResNet exposes more valid predicates overall (1,944 vs. 1,460). This aligns with recent
findings (Jiang et al., 2024): CNNs exhibit more “disjunctive” (rule-like) behavior, while ConvNeXt
and Transformers appear more “compositional,” reflected in their longer clauses. Even 50 predicates,
however, remain far more compact and interpretable than the thousands of hidden neurons driving
base model decisions. Nevertheless, the rules may still appear complex to humans, and developing
simplification methods that preserve predictive performance is an important direction for future work.

4.3 QUALITATIVE ANALYSIS OF VISUAL CONCEPTS

We present human-interpretable visual concepts encoded by predicates discovered in both ResNet and
ViT. Each concept judgment is based on consistent visual inspection across many instances; Figure 4
shows representative cases. The 2nd and 4th rows are from ViT, the others from ResNet. Sampled
concepts include squirrel head, squirrel tail/paws, bird head, bird beak, fox ears, and church tops.

Polysemanticity. We observe a many-to-many relationship between predicates and concepts (pol-
ysemanticity). A single predicate can deactivate when either of two distinct concepts is ablated,
implying that one neuron-predicate may encode multiple concepts (within or across classes). Con-
versely, one concept can be encoded by multiple predicates, so masking its region can deactivate
several predicates simultaneously. For example, in the 5th image of row 1, both the tail and paws of
the squirrel are captured by p1916 (ResNet). Predicate p1878 simultaneously encodes fox ears and
church tops; while semantically different, both share a triangular geometry, which may explain the
reuse. Predicate p489 (rows 3 and 5) frequently encodes bird beak across species (jay, vulture, kite,
etc.), and recurs in local explanations for bird images, indicating an influential role in inference.

We also find cases where a single concept is captured by multiple predicates. In class fox (rows 5–6),
both p1878 and p170 encode fox ears. A predicate may also attend to multiple instances of the same
concept within an image: in row 6, image 3 (two foxes), p1878 captures both pairs of ears. Such
behaviors highlight the role of predicates as global concept detectors rather than merely local ones.

Top-ranked predicates encode global structure. Beyond the local and modular concepts discussed
above, some predicates capture global object structure. Figure 10 (Appendix E) illustrates two classes
(church, squirrel), where p908, p(498,−), p219, and p(312,+) (ResNet/ViT) encode the entire church
or squirrel. Causally, masking any single part does not deactivate these predicates, but masking the
whole object does. These global predicates are typically top-ranked within their classes and tend to be
more class-specific, whereas local predicates are more frequently shared across classes. This pattern
holds for both CNNs and Transformers and suggests a potential avenue for further rule simplification.

CNNs vs. Transformers. Similar concepts are found in both model families (see rows 1–2, where
both capture the same concept on the same image). A key difference is that Transformers tend to
involve more predicates per concept, whereas CNNs yield sparser, more distinct encodings. We
hypothesize three factors: (1) CNN backbones expose a larger overall predicate set than ViTs;
(2) activation functions (ReLU vs. GELU) induce different predicate sparsity via positive/negative
branches; and (3) convolution versus attention imposes different inductive biases on concept formation.
Validating these hypotheses and conducting in-depth analysis of learned predicates and rule structures,
particularly differences between CNN- and ViT-based models, remains a direction for future work.

5 CONCLUSION

We introduce VISIONLOGIC, a novel neural-symbolic framework that produces faithful, hierarchical
explanations as global logical rules over causally validated concepts, directly addressing the core
limitation of prior concept-based methods that heavily rely on correlational statistics. VISIONLOGIC
(i) learns activation thresholds to convert neuron activations into a reusable predicate vocabulary, (ii)
induces compact, class-level logical rules over learned predicates that approximate the base model’s
predictions, and (iii) grounds predicates to visual concepts via ablation-based causal tests with iterative
refinement. Across CNNs and ViTs, VISIONLOGIC largely retains models’ discriminative power with
compact rules. In human studies, it explains model behavior better than state-of-the-art concept-based
methods, yielding clearer and more useful explanations. By unifying neural representations with
symbolic reasoning, VISIONLOGIC offers trustworthy, actionable insight for high-stakes applications.
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A THE BOUNDING BOX LOCALIZATION ALGORITHM

Algorithm 1 presents the detailed procedure for using bounding box localization to identify regions
that significantly contribute to the computation of predicate pj(x). While the MASKREGION function
in our implementation can replace the highlighted region with random noise3, it also supports
alternative masking strategies such as blurring, mean-fill, white-fill, and black-fill. We use blurring
by default, as it performs most consistently in our experiments and aligns with our goal of non-
destructive ablation. The GETFEATUREMAPREGION function thresholds the feature map at 15% of
its maximum activation value, which results in connected segments of surviving pixels. It then draws
a bounding box around the single largest segment (Zhou et al., 2016; Selvaraju et al., 2020). This
yields a coarse initial estimate, which serves as a starting point for our iterative refinement algorithm,
allowing it to converge toward more accurate and compact solutions.

Algorithm 1: BOUNDING BOX LOCALIZATION ALGORITHM

Input: Input image x, predicate pj , model M , shrink factor λ, max attempts max_attempt
Output: Critical region R for predicate pj

1 Function InitialGuess(x, pj)
2 if isCNN(M) then
3 R← GetFeatureMapRegion(pj) /* Initialize using feature map if model

is CNN */
4 else
5 R← LargeCentralBox(x) /* Use a large central box as default */

6 return R

7 Function RefineRegion(R, λ)
// Extract current region dimensions

8 x, y, h, w ← R
// Generate a random sub-box with approximately λ times the area of

R
9 Rnew ← GenerateNewBox(R, λ)

10 return Rnew

11 Function LocateCriticalRegion(x, pj , M , λ, max_attempt)
12 R← InitialGuess(x, pj) /* Start with an initial region guess */
13 while True do
14 x′ ← MaskRegion(x,R) /* Replace region R in x with noise */
15 pmasked ←M(x′)
16 pcrop ←M(CropRegion(x,R)) /* Run model on cropped region alone */
17 if pmasked < τ and pcrop ≥ τ then
18 refined← False
19 for i← 1 to max_attempt do
20 Rnew ← RefineRegion(R, λ) /* Try a smaller random sub-region

*/
21 x′′ ← MaskRegion(x,Rnew)
22 pmasked_new ←M(x′′)
23 pcrop_new ←M(CropRegion(x,Rnew))
24 if pmasked_new < τ and pcrop_new ≥ τ then
25 R← Rnew
26 refined← True
27 break /* Accept this refined region and continue */

28 if not refined then
29 break /* Stop if no better sub-region found */

30 else
31 break /* Initial region fails to meet constraints */

32 return R /* Return final critical region */

3Random-noise masks may introduce out-of-distribution artifacts and yield unstable model outputs.
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B LLM USAGE

Large Language Models (LLMs) were used as a general-purpose assistive tool in the preparation
of this work. Specifically, LLMs supported tasks such as refining the clarity of writing, suggesting
alternative phrasings, and checking the consistency of technical terminology. They were not used
for generating research ideas, conducting experiments, or producing original scientific contributions.
All substantive research decisions, analysis, and results presented in this paper are the responsibility
of the authors. The authors have carefully reviewed and verified all LLM-assisted text to ensure
accuracy and originality.

C EXPERIMENTAL SETUP

All experiments are conducted on Ubuntu 22.04 LTS with an AMD EPYCTM 7532 (32 cores), 128 GB
RAM, and a single NVIDIA A100 (40 GB). We use pretrained ImageNet-1k models to extract
final-layer activations for all 1,281,167 training images. These activations are used to learn valid
predicates and thresholds. We then compute class profiles and evaluate the induced logical rules on
the ImageNet validation set (50,000 images) using the metrics in Appendix D.1. Hyperparameter
choices and implementation details for the bounding-box algorithm (Algorithm 1) and predicate
learning are discussed in the following subsections.

C.1 BOUNDING BOXES

We localize predicate-supporting regions via iterative noise ablation using Algorithm 1.

Initialization. For CNNs, we first form an activation heatmap from the last-layer feature map. We
binarize it at 15% of its maximum intensity, which results in connected pixel segments, and then draw
the tightest axis-aligned bounding box around the single largest segment (Zhou et al., 2016; Selvaraju
et al., 2020). If no pixels survive, we fall back to a centered box covering 90% of the image area. For
ViTs, we initialize with a centered box covering 90% of the image, aligned to the patch grid.

Refinement. At each iteration, we propose up to 10 random shrinks of the current box using a shrink
factor λ = 0.9 (uniformly sampling aspect ratio and position within the shrunken envelope). A
proposal is accepted if ablating its region (replace with noise) flips the target predicate from active to
inactive, pj(x)=1 → pj(x

′)=0; otherwise it is rejected. We repeat until no accepted proposal exists.
We run 5 independent trials per predicate (different random seeds) and keep the smallest accepted
box across trials.

Sufficiency check. To verify that the retained region is sufficient to trigger the predicate, we paste
the final box back into a noise canvas and confirm re-activation, pj(x̂)=1.

Further refinement. We further refine the box using off-the-shelf segmentation models—SAM
(Kirillov et al., 2023), Mask R-CNN (He et al., 2017), or ISNet (Jin et al., 2021). We intersect
the predicted mask with the current box and then re-validate causality using the same ablation
and sufficiency checks. Empirically, SAM and Mask R-CNN often produce fine-grained, part-
level segments (e.g., an animal’s ear or leg). While this does not affect the correctness of our
pipeline, it can occasionally be cumbersome because it yields multiple disjoint regions to handle. By
contrast, ISNet focuses on foreground–background separation and is therefore better aligned with our
goal of isolating the entire foreground object (e.g., the whole car or animal) before computing the
mask–box intersection. We hence mostly use ISNet with the default setting and hyperparameters in
our experiments.

C.2 THRESHOLD LEARNING PROBLEM

Selecting influential examples. For each channel j, we score contributions uc
j(x) = Wc

j zj(x) per
class c and per example x. Influential examples for j are those where j is among the SoftSort top-k
contributors (Eq. 4) with k = 3. Concretely, we apply SoftSort to the vector {uc

ℓ(x)}dℓ=1 to obtain a
differentiable top-k mask wc

ℓ(x) ∈ [0, 1], and declare x influential for j if j belongs to the top-k set
under this mask (i.e., wc

j(x) is one of the k largest values). Intuitively, this selects examples where
channel j provides strong, class-relevant evidence, yielding stable, noise-resistant threshold seeds.
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Seed threshold and sharpness. The seed threshold and sharpness are

T
(0)
j = Quantile0.8

{
zj(x)

∣∣∣ x is influential for j
}
, s

(0)
j = 1.

We initialize T
(0)
j at a high percentile (0.8) of zj(x) over influential examples to anchor “feature

present” in the activation tail, gain robustness to outliers, and start from a conservative, compact
predicate set. We set s(0)j = 1 (logistic slope) and constrain sj ∈ [0.5, 5] during training for numerical
stability.

Objective and optimization. We optimize Eq. 5 with Adam; learning rates are 10−3 for {T, s} and
5× 10−4 for {Wrule,brule}, using batch size 512 and early stopping on validation KL (patience 5).
Regularization uses

λT = 1.0, λs = 0.1 (keeps sj≈1), λuse = 5× 10−3,

with a group lasso over {pj,≤1, pj,≤2, pj,≤3} per channel to select a single rank window. We clip
Tj to the empirical range of zj (per channel, class-agnostic) and add a small ϵ = 10−6 inside the
sigmoid to avoid saturation in mixed precision.

Schedule and convergence. We train for up to 30 epochs; Wrule and brule are warm-started from
classwise normalized predicate frequencies (mean-centered by each predicate’s global frequency),
then jointly refined with {T, s}. Convergence is declared when validation KL improves by < 10−4

or when the patience budget is exhausted.

Hardening and test-time prediction. After training, we harden p̃j(x) = σ(sj(zj(x) − Tj)) to
pj(x) = I(zj(x) ≥ Tj) and discard frule. Test-time prediction uses the symbolic rank-based score:

ĉ(x) = argmin
c

S(x, c),

i.e., the class whose characteristic predicates best explain those active on x (Section 3.2).

Notes and ablations. Empirically, the learned thresholds Tj often align with the k=1 specialization
of the rank-aware predicate (cf. Observation), even though we train with candidate windows k ∈
{1, 2, 3} and let structured sparsity select one per channel. In practice, k=1 is chosen for the majority
of channels, with k=2 or k=3 retained for a minority of polysemantic channels that contribute reliably
without being the single top contributor. Performance and rule sparsity are stable for k ∈ {2, 3, 4};
using k=3 as the candidate ceiling slightly improves recall of informative channels while keeping
the predicate vocabulary compact. Using per-class thresholds harms transfer and readability; the
class-agnostic Tj yields stable, reusable predicates and defers disambiguation to the class profiles
{Rc} via S(x, c).
Claim 1 (Monotone equivalence of rule head and rank score). Initialize Wrule from classwise
normalized predicate frequencies (mean-centered by each predicate’s global frequency), which
induces the same ordering over predicates as the class profile ranks Rc(·). If, during training, the
(training-only) head weights are set to a strictly decreasing affine function of rank, e.g.,

W c,i
rule = αc − βRc(pi), β > 0, (8)

and a class-independent bias brule is used (or scores are compared after subtracting class-specific
constants), then

argmax
c

f c
rule(x) = argmin

c
S(x, c).

Proof. Let A(x) = {i : pi(x) = 1} be the active predicates and m = |A(x)|. Using Eq. 8 with a
class-independent bias,

f c
rule(x) =

∑
i∈A(x)

(
αc − βRc(pi)

)
+ brule = mαc − β

∑
i∈A(x)

Rc(pi) + brule.

Since m, αc, and brule do not affect the ordering induced by the sum of ranks, maximizing f c
rule(x)

over c is equivalent to minimizing
∑

i∈A(x) Rc(pi). By definition,

S(x, c) =
1

m

∑
i∈A(x)

Rc(pi),

so argmaxc f
c

rule(x) = argminc S(x, c).
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C.3 ADDITIONAL RESULTS ON THRESHOLD LEARNING

Figure 5–8 show the empirical distributions of learned per-channel thresholds {Tj} across four
architectures.

(i) Transformers and ConvNeXt are bimodal and near-symmetric. For ViT and Swin (Figure 7, 8),
and for ConvNeXt (Figure 6), thresholds concentrate in two tight modes near ±1. This is consistent
with (a) sign-aware predicates (pj,+ and pj,−) and (b) LayerNorm/GELU producing roughly zero-
mean, unit-scale channel responses, so “feature present” naturally anchors away from 0 on both
branches.

(ii) ResNet is strictly positive and right-skewed. For ResNet (Figure 5), thresholds are nonnegative
and exhibit a heavy right tail. This aligns with ReLU activations (no negative branch) and localized
high-energy features that occasionally require larger cutoffs; large Tj outliers are infrequent but
present.

(iii) Conservativeness and the k=1 heuristic. Across all models, thresholds sit well away from
0, indicating a conservative notion of “feature present.” Qualitatively, many Tj align with our k=1
heuristic (Section 3.1): for a given channel j, Tj tends to be close to the minimum activation among
correctly classified examples where j is top-1 by contribution for its most representative class. This
matches the view that training recovers a data-driven, architecture-stable cutoff.

Figure 5: Distribution of learned thresholds
for valid predicates in ResNet.

Figure 6: Distribution of learned thresholds
for valid predicates in ConvNeXt.

Figure 7: Distribution of learned thresholds
for valid predicates in ViT.

Figure 8: Distribution of learned thresholds
for valid predicates in Swin.
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D ADDITIONAL DETAILS ON ASSESSING RULE-BASED EXPLANATIONS

D.1 MERTICS

For completeness, we report the metrics used to evaluate global logical rule–based explanations:

• Number of valid predicates: Count of predicates that take both True and False values
on the evaluation set under the learned thresholds.

• Explanation complexity: Average number of predicates in the selected explanation per
image (equivalently, the average number of literals in the satisfied DNF clause).

• Coverage: Fraction of images for which VISIONLOGIC returns a valid explanation (e.g., at
least one rule is satisfied or a score-based explanation is produced).

• Fidelity (covered): Among covered images, the percentage for which VISIONLOGIC’s
predicted class matches the base model’s predicted class.

• Top-1 accuracy (covered): Among covered images with ground-truth labels, the percentage
for which VISIONLOGIC’s top-1 class equals the ground-truth class.

• Top-5 accuracy (covered): Among covered images with ground-truth labels, the percentage
for which VISIONLOGIC’s top-5 class equals the ground-truth class.

D.2 PROBING ROBUSTNESS OF VISION MODELS

Although VISIONLOGIC is trained exclusively on positive examples, it still correctly identifies a
non-trivial fraction of images misclassified by the neural networks. This is evident from the gap
between Fidelity (covered) and Top-1 accuracy (covered): VISIONLOGIC can match erroneous model
predictions with rules, offering insights into misclassification causes and helping probe robustness
under perturbations and adversarial settings.

We investigate the success of adversarial attacks through the lens of local explanations generated
by VISIONLOGIC. From a logical rule perspective, misclassification typically occurs when (a) the
top-ranked predicates of the ground truth class are deactivated, and (b) predicates associated with
other classes become active. While these often co-occur, we define (a) as the root cause—denoted
as a Type A cause—if it alone can alter the prediction without (b). Similarly, we define a Type B
cause when (b) alone is sufficient to induce misclassification. These two causes are attack-agnostic,
enabling us to understand the underlying logic behind different attacks.

We provide concrete examples in Figure 9. The original image follows the rule p669 ∧ p844 ∧ p489 ⇒
“jay". After the PGD (Madry et al., 2018) attack, the rule becomes p1220∧p489∧p537∧p844 ⇒ “tray",
which is a Type B cause, as introducing the new predicate p1220 significantly increases the explanation
score for the class “tray". The Gaussian Noise attack yields p2032 ∧ p1074 ∧ p2028 · · · ∧ p669 ∧ p844 ∧
p489 ⇒ “badger", introducing many new predicates, which is a Type B cause. The Pixelation attack
results in p2028 ∧ p376 ∧ p1940 · · · ∧ p211 ⇒ “black grouse", deactivating all original predicates, thus
exhibiting a Type A cause.

Figure 9: This displays the original image, followed by the images after PGD, Gaussian noise, and
Pixelate attacks from left to right.

To conduct a systematic evaluation, we randomly sample 1,000 images from the ImageNet validation
set, applying a successful attack to each image once using Projected Gradient Descent (PGD) (Madry
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et al., 2018), Gaussian noise (Goodfellow et al., 2016), and Pixelate attacks (Engstrom et al., 2019),
respectively.

Table 3: Statistics of root causes under various adversarial attacks.
ResNet ConvNet ViT Swin

Attack Type A Type B Type A Type B Type A Type B Type A Type B

Gaussian 79 921 116 884 149 851 109 891
Pixelate 214 786 329 671 267 733 298 702
PGD 377 623 561 439 653 347 612 388

Table 3 presents the statistics of root causes across different adversarial attacks. The Gaussian noise
attack tends to affect all active predicates simultaneously, often activating new predicates, which is
primarily explained by Type B causes. The Pixelate attack operates similarly but has a higher chance
of deactivating existing predicates, leading to more Type A causes, as it dilutes the fine-grained
details of regions attended by the predicates. Finally, the PGD attack is the most efficient and selects
either Type A or Type B causes to achieve the quickest result. For ResNet, which generates shorter
explanations, it favors introducing new predicates. For transformers, which use more predicates
in their explanations, it leans more toward deactivations. We aim to investigate more attacks and
defenses in future work.

E ADDITIONAL OBSERVATIONS ON PREDICATES

Figure 10: Top-ranked predicates often capture global structure. Red: ResNet; green: ViT.

Top-ranked predicates encode global structure. Beyond the local and modular concepts discussed
above, some predicates capture global object structure. Figure 10 illustrates two classes (church,
squirrel), where p908, p(498,−), p219, and p(312,+) (ResNet/ViT) encode the entire church or squirrel.
Causally, masking any single part does not deactivate these predicates, but masking the whole object
does. These global predicates are typically top-ranked within their classes and tend to be more
class-specific, whereas local predicates are more frequently shared across classes. This pattern holds
for both CNNs and Transformers and suggests a potential avenue for further rule simplification.

Predicates robustly identify visual concepts across variations in appearance. The human
visual system can recognize objects belonging to the same concept despite significant differences in
appearance, such as color and shape. Interestingly, our learned predicates exhibit a similar capability.
For example, in the third row of Figure 4, the concept “bird’s head” appears from both the front
and the side, yet p1890 consistently attends to it. Similarly, p1878 captures varying forms, sizes, and
angles of “church tops”.

Sensitivity to location changes. Some predicates appear to be location-invariant, while others are
not, as illustrated in Figure 11. Predicate p170 in the top row remains active even when the “fox’s ears”
are shifted across the third, fourth, and fifth images. In contrast, predicate p1916 in the bottom row,
which encodes “squirrel’s tail”, is deactivated once the tail moves away from its original position.
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Figure 11: Sensitivity to spatial changes. The predicate encoding “fox’s ears” appears to be location-
invariant, whereas the predicate encoding “squirrel’s tail” is sensitive to positional shifts.

F HUMAN EVALUATION

F.1 EXPERIMENT SETUP

We describe the evaluation setup in detail as follows.

Participants. We recruited participants from Prolific (Prolific, 2024), a popular online platform for
human evaluation of research projects. The users recruited have high qualifications as we requested
a task acceptance rate greater than 98%. Our questionnaire is approved by the Social Sciences,
Humanities & Education REB at University X, and all users provided informed consent before they
started the experiment. The questionnaire is designed to be completed in 8-10 minutes and users who
passed the screening received USD$ 2.00 upon completion.

Statistics. For the Husky vs. Wolf scenario, n = 161 participants passed screening and filtering,
respectively n = 31, 25, 40, 35, 30 for control, baseline, ACE, CRAFT and VISIONLOGIC.

For the Otter vs. Beaver scenario, n = 114 participants passed screening and filtering, respectively
n = 22, 22, 27, 25, 18 for control, baseline, ACE, CRAFT, and VISIONLOGIC.

For the Kit Fox vs. Red Fox scenario, n = 190 participants passed screening and filtering, respectively
n = 35, 35, 45, 40, 35 for control, baseline, ACE, CRAFT, and VISIONLOGIC.

Study design. We followed the experimental design proposed by Colin et al. (2022), which
quantitatively assesses to what degree a concept-based explanation method can help a human observer
understand the behavior of an AI model. Each participant is only tested on a single condition
(control, baseline, ACE, CRAFT, or VISIONLOGIC) to avoid possible experimental confounds. For
fairness, we compare only the causally grounded concepts produced by VISIONLOGIC, excluding
any rule-structure information, against the four other conditions.

The screening, training, and testing phases are exactly as described in Colin et al. (2022). After
granting consent (shown in Figure 12), participants are presented with detailed instructions and the
study goal: learning to predict which class an AI model will predict for a given image. They start
with a practice session that shows simple images along with their explanations and model prediction,
followed by some unseen images without explanations, where they are expected to answer the model’s
prediction correctly. Participants who failed this session were not allowed to proceed with the study.
They are then tested on their understanding of the study goal by a short quiz (exactly formulated as in
Colin et al. (2022)). Again, participants who failed this session were not allowed to proceed.

After the above two screening phases, participants went through 3 sessions of training phases (5, 10,
and 15 images, respectively, with explanations and model decisions) followed by a testing phase (7
new images without explanation). The answers for the testing phases are collected to compute the
main result. Figure 13 shows an example of the training phase. As described in Colin et al. (2022), we
implemented a reservoir (Figure 14) for training images as a reference point for participants during
the testing phase. The last test image of each session is an image from the reservoir, and participants
who incorrectly answered the last test question were filtered out.
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Figure 12: The online questionnaire begins with a consent form.

F.2 STATISTICAL TEST RESULTS FOR SIGNIFICANCE

We provide statistical test results in Figure 15, 16, 17, 18.
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Figure 13: The online questionnaire displaying an example of the training session with the original
image, the explanation, and the model prediction.
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Figure 14: The online questionnaire displaying the testing session with a reservoir containing all
examples during the training phase.
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Starting analysis for EXP1 
======================================================================== 
Loading exp1 data files... 
============================================================ 
✓ Control : 31 participants loaded from Control_exp1_individual_results.csv 
✓ Baseline: 25 participants loaded from Baseline_exp1_individual_results.csv 
✓ ACE     : 40 participants loaded from ACE_exp1_individual_results.csv 
✓ CRAFT   : 35 participants loaded from CRAFT_exp1_individual_results.csv 
✓ LOGIC   : 30 participants loaded from LOGIC_exp1_individual_results.csv 
 
Total participants loaded: 161 
Methods found: ['ACE', 'Baseline', 'CRAFT', 'Control', 'LOGIC'] 
============================================================ 
NORMALITY TEST (Shapiro-Wilk) 
============================================================ 
H0: Data is normally distributed 
H1: Data is not normally distributed 
Significance level: 0.05 
------------------------------------------------------------ 
Control  | n=31 | W=0.9372 | p=0.0689 | Normal 
Baseline | n=25 | W=0.9521 | p=0.2790 | Normal 
ACE      | n=40 | W=0.9404 | p=0.0357 | Not Normal 
CRAFT    | n=35 | W=0.9376 | p=0.0473 | Not Normal 
LOGIC    | n=30 | W=0.8189 | p=0.0001 | Not Normal 
 
Overall normality assumption: ✗ VIOLATED 
============================================================ 
HOMOGENEITY OF VARIANCE TEST (Levene's Test) 
============================================================ 
H0: All groups have equal variances 
H1: At least one group has different variance 
Significance level: 0.05 
------------------------------------------------------------ 
Levene's statistic: 1.3810 
p-value: 0.2430 
Homogeneity assumption: ✓ MET 
 
Group variances: 
Method    |   n | Variance |    SD    |    SE 
--------------------------------------------- 
Control  |  31 |   0.0334 |   0.1827 |   0.0328 
Baseline |  25 |   0.0385 |   0.1962 |   0.0392 
ACE      |  40 |   0.0593 |   0.2435 |   0.0385 
CRAFT    |  35 |   0.0317 |   0.1780 |   0.0301 

Figure 15: Complete statistical test results for scenario 1, page 1.
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LOGIC    |  30 |   0.0299 |   0.1730 |   0.0316 
 
============================================================ 
NON-PARAMETRIC ANALYSIS 
============================================================ 
============================================================ 
KRUSKAL-WALLIS TEST (Non-parametric) 
============================================================ 
H0: All group distributions are identical 
H1: At least one group distribution differs 
Significance level: 0.05 
------------------------------------------------------------ 
H-statistic: 25.8440 
p-value: 0.000034 
Degrees of freedom: 4 
Result: ✓ SIGNIFICANT 
 
→ Significant differences found between method distributions. 
→ Proceeding to Dunn's post-hoc test... 
 
============================================================ 
DUNN'S TEST (Non-parametric post-hoc) 
============================================================ 
Pairwise p-values (Bonferroni corrected): 
             ACE  Baseline   CRAFT  Control   LOGIC 
ACE       1.0000    1.0000  0.5956   1.0000  0.0241 
Baseline  1.0000    1.0000  1.0000   1.0000  0.0303 
CRAFT     0.5956    1.0000  1.0000   1.0000  0.0000 
Control   1.0000    1.0000  1.0000   1.0000  0.0004 
LOGIC     0.0241    0.0303  0.0000   0.0004  1.0000 
 
Pairwise Comparisons Summary (Bonferroni corrected, α = 0.05): 
====================================================================== 
ACE      vs Baseline | p:  1.0000 
ACE      vs CRAFT    | p:  0.5956 
ACE      vs Control  | p:  1.0000 
ACE      vs LOGIC    | p:  0.0241 *** 
Baseline vs CRAFT    | p:  1.0000 
Baseline vs Control  | p:  1.0000 
Baseline vs LOGIC    | p:  0.0303 *** 
CRAFT    vs Control  | p:  1.0000 
CRAFT    vs LOGIC    | p:  0.0000 *** 
Control  vs LOGIC    | p:  0.0004 *** 
 

Figure 16: Complete statistical test results for scenario 1, page 1.
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Starting analysis for EXP2 
======================================================================== 
Loading exp2 data files... 
============================================================ 
✓ Control : 22 participants loaded from Control_exp2_individual_results.csv 
✓ Baseline: 22 participants loaded from Baseline_exp2_individual_results.csv 
✓ ACE     : 27 participants loaded from ACE_exp2_individual_results.csv 
✓ CRAFT   : 25 participants loaded from CRAFT_exp2_individual_results.csv 
✓ LOGIC   : 18 participants loaded from LOGIC_exp2_individual_results.csv 
 
Total participants loaded: 114 
Methods found: ['ACE', 'Baseline', 'CRAFT', 'Control', 'LOGIC'] 
============================================================ 
NORMALITY TEST (Shapiro-Wilk) 
============================================================ 
H0: Data is normally distributed 
H1: Data is not normally distributed 
Significance level: 0.05 
------------------------------------------------------------ 
Control  | n=22 | W=0.7308 | p=0.0000 | Not Normal 
Baseline | n=22 | W=0.6701 | p=0.0000 | Not Normal 
ACE      | n=27 | W=0.8543 | p=0.0014 | Not Normal 
CRAFT    | n=25 | W=0.8510 | p=0.0018 | Not Normal 
LOGIC    | n=18 | W=0.6087 | p=0.0000 | Not Normal 
 
Overall normality assumption: ✗ VIOLATED 
============================================================ 
HOMOGENEITY OF VARIANCE TEST (Levene's Test) 
============================================================ 
H0: All groups have equal variances 
H1: At least one group has different variance 
Significance level: 0.05 
------------------------------------------------------------ 
Levene's statistic: 2.5161 
p-value: 0.0455 
Homogeneity assumption: ✗ VIOLATED 
 
Group variances: 
Method    |   n | Variance |    SD    |    SE 
--------------------------------------------- 
Control  |  22 |   0.0230 |   0.1517 |   0.0323 
Baseline |  22 |   0.0282 |   0.1678 |   0.0358 
ACE      |  27 |   0.0222 |   0.1491 |   0.0287 
CRAFT    |  25 |   0.0123 |   0.1111 |   0.0222 

Figure 17: Complete statistical test results for scenario 2, page 1.
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LOGIC    |  18 |   0.0011 |   0.0332 |   0.0078 
 
============================================================ 
NON-PARAMETRIC ANALYSIS 
============================================================ 
 
============================================================ 
KRUSKAL-WALLIS TEST (Non-parametric) 
============================================================ 
H0: All group distributions are identical 
H1: At least one group distribution differs 
Significance level: 0.05 
------------------------------------------------------------ 
H-statistic: 13.5628 
p-value: 0.008830 
Degrees of freedom: 4 
Result: ✓ SIGNIFICANT 
 
→ Significant differences found between method distributions. 
→ Proceeding to Dunn's post-hoc test... 
============================================================ 
DUNN'S TEST (Non-parametric post-hoc) 
============================================================ 
Pairwise p-values (Bonferroni corrected): 
             ACE  Baseline   CRAFT  Control   LOGIC 
ACE       1.0000    1.0000  1.0000   1.0000  0.0045 
Baseline  1.0000    1.0000  1.0000   1.0000  0.1556 
CRAFT     1.0000    1.0000  1.0000   1.0000  0.0309 
Control   1.0000    1.0000  1.0000   1.0000  0.1463 
LOGIC     0.0045    0.1556  0.0309   0.1463  1.0000 
 
Pairwise Comparisons Summary (Bonferroni corrected, α = 0.05): 
====================================================================== 
ACE      vs Baseline | p:  1.0000 
ACE      vs CRAFT    | p:  1.0000 
ACE      vs Control  | p:  1.0000 
ACE      vs LOGIC    | p:  0.0045 *** 
Baseline vs CRAFT    | p:  1.0000 
Baseline vs Control  | p:  1.0000 
Baseline vs LOGIC    | p:  0.1556 
CRAFT    vs Control  | p:  1.0000 
CRAFT    vs LOGIC    | p:  0.0309 *** 
Control  vs LOGIC    | p:  0.1463 

Figure 18: Complete statistical test results for scenario 2, page 2.
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