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Abstract

Stochastic compositional optimization (SCO) problem constitutes a class of opti-
mization problems characterized by the objective function with a compositional
form, including the tasks with known derivatives, such as AUC maximization,
and the derivative-free tasks exemplified by black-box vertical federated learning
(VFL). From the learning theory perspective, the learning guarantees of SCO algo-
rithms with known derivatives have been studied in the literature. However, the
potential impacts of the derivative-free setting on the learning guarantees of SCO
remains unclear and merits further investigation. This paper aims to reveal the
impacts by developing a theoretical analysis for two derivative-free algorithms,
black-box SCGD and SCSC. Specifically, we first provide the sharper generaliza-
tion upper bounds of convex SCGD and SCSC based on a new stability analysis
framework more effective than prior work under some milder conditions, which is
further developed to the non-convex case using the almost co-coercivity property
of smooth function. Then, we derive the learning guarantees of three black-box
variants of non-convex SCGD and SCSC with additional optimization analysis.
Comparing these results, we theoretically uncover the impacts that a better gradient
estimation brings a tighter learning guarantee and a larger proportion of unknown
gradients may lead to a stronger dependence on the gradient estimation quality.
Finally, our analysis is applied to two SCO algorithms, FOO-based vertical VFL
and VFL-CZOFO, to build the first learning guarantees for VFL that align with the
findings of SCGD and SCSC.

1 Introduction

In recent years, stochastic compositional optimization (SCO), a class of optimization methods
that incorporate the compositional form f(g(w)), has garnered significant attention in the research
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community [1, 2, 3, 4, 5, 6, 7]. It represents a special case of stochastic bilevel optimization [8]

min
w∈W∈Rp

Ez̄ [fz̄ (w, v
∗(w))] s.t. v∗(w) = arg min

v∈Rd
Ez [hz(w, v)] , (1)

where Ez[·] represents the expectation with respect to (w.r.t.) the sample z, parameters w ∈ W ∈ Rp

and v ∈ Rd. If the inner function hz(w, v) = ∥v − gz(w)∥2 and the outer function f is only a
function of v, i.e., fz̄(w, v) = fz̄(v), the stochastic bilevel optimization reduces to the SCO:

min
w∈W∈Rp

{F (w) = f(g(w)) = Ez̄ [fz̄(Ez [gz(w)])]} , (2)

where F (w) is the compositional population risk, f : Rd → R, g : Rp → Rd, f(v) = Ez̄ [fz̄(v)] and
g(w) = Ez [gz(w)].

Many applications adhere to the form of SCO (2) such as risk averse optimization [9], group
distributionally robust optimization [10], AUC maximization [11, 12, 13, 14], model-agnostic meta-
learning [15], and first-order-optimization-based vertical federated learning (FOO-based VFL) [16].
Apart from the above applications with available derivatives, there exist derivative-free scenarios as
well, such as reinforcement learning [17] and zeroth-order-optimization-based (ZOO-based) VFL
[18, 19]. [2] discussed the extension of stochastic compositional gradient descent (SCGD) to the
derivative-free setting, called black-box SCGD, where the zeroth-order information of f or g is
available through sampling.

From the perspective of statistical learning theory [20], the theoretical guarantees pertaining to
generalization and optimization performance for SCO algorithms are worth studying to validate their
empirical behaviors. The former assesses the disparity between the empirical performance and the
population performance for the trained model. The latter measures the empirical performance gap
between the trained model and the empirical optimal model. To our knowledge, there is only one study
attempting to provide a generalization guarantee in this area. [21] has pioneered the generalization
understanding of two notable SCO algorithms, i.e., SCGD and SCSC [5] via algorithmic stability
tool. They have achieved satisfactory excess risk bounds by selecting some specific values of T to
balance stability results and optimization errors. However, the intricacy of their analysis framework
brings some unnecessary terms in their results leading to these so large T values that it is practically
challenging to complete these iterations within a reasonable timeframe. Furthermore, the study has
yet to consider a more practical scenario beyond convex and strongly convex cases, specifically, the
non-convex case. For the optimization guarantee, plenty of work devotes to studying the convergence
behaviors of some first-order SCO algorithms [2, 3, 4, 5] and their extensions [22, 23, 24, 25]. For
example, [2] proved that SCGD can converge almost surely to an existing optimal solution with
the rate O

(
T−1/4

)
for non-smooth convex problems and the rate O

(
T−2/7

)
for smooth convex

problems, where T is the total number of iterations. [5] presented that stochastically corrected
stochastic compositional gradient method (SCSC) can achieve the same convergence rate O

(
T−1/2

)
as SGD for non-compositional problems. However, there exists a research gap in the optimization
analysis for the derivative-free SCO algorithm as well as in its generalization analysis.

Considering these problems, this paper leverages algorithmic stability to obtain some similar and
even superior results of SCGD and SCSC under the milder parameter selection and the non-convex
condition. More importantly, to apply a broader class of stochastic optimization problems, this paper
pioneers the theoretical analysis of the black-box SCO algorithms, which uncovers the impacts of
black-box on the learning guarantees of SCO algorithms. Our main contributions are listed as follows.

• Generalization guarantees under some milder settings. Firstly, we provide the sharper
generalization upper bounds of convex SCGD and SCSC based on a new stability analysis
framework more effective than prior work [21] with a more practical selection of T . Subse-
quently, we develop the above convex analysis to the non-convex case by introducing the
almost co-coercivity property of smooth function, which yields satisfactory generalization
guarantees of SCGD and SCSC under the non-convex condition.

• Learning guarantees for black-box SCO algorithms. To apply a broader class of stochastic
optimization problems, we further consider three black-box variants (outer, inner, and
full black-box) of SCGD and SCSC to obtain the generalization and optimization upper
bounds similar to the ones of SCGD and SCSC. Comparing the first-order and zeroth-order
results, several key insights into the impacts of black-box on the learning guarantees of
SCO algorithms are shown: 1) a closer estimation distance brings a better result; 2) more
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estimation directions lead to a better result; 3) a larger proportion of unknown gradients
results in a stronger dependence on the gradient estimation quality.

• Applications on VFL. Finally, we explore the applications of our analysis framework to
two specific SCO algorithms, i.e., FOO-based VFL and VFL-CZOFO, where we build the
pioneering stability-based generalization and optimization guarantees for first-order and
zeroth-order VFL algorithms that align with the findings of SCGD and SCSC.

2 Preliminaries

This section describes the learning paradigm of SCO and introduces two popular SCO algorithms
(SCGD and SCSC) and their black-box variants in detail at first. Then, some necessary definitions
and assumptions are provided for our theoretical analysis. The explanations for all symbols are shown
in Table 3 located in Appendix A.

Considering a stochastic compositional optimization algorithm (2), the distributions of sample z and
z̄ are unknown. The training dataset S = Sz ∪S z̄ = {z1, ..., zn}∪ {z̄1, ..., z̄m} is available to obtain
the final output model parameter A(S) via minimizing the following compositional empirical risk

FS(w) = fS(gS(w)) =
1

m

m∑
j=1

fz̄j

(
1

n

n∑
i=1

gzi(w)

)
,

where gS(w) = 1
n

∑n
i=1 gzi(w), fS(v) = 1

m

∑m
j=1 fz̄j (v), z1, ..., zn, z̄1, ..., z̄m are independent.

Besides, we denote by w(S), w∗ the empirical optimal model parameter on S and the global op-
timal model parameter, defined as w(S) = arg min

w∈W
FS(w) and w∗ = arg min

w∈W
F (w). Then, the

generalization error, optimization error and excess risk of A(S) are given by |F (A(S)− FS(A(S))|,
FS(A(S)) − FS(w(S)) and F (A(S)) − F (w∗), respectively. Since E[F (A(S)) − F (w∗)] ≥ 0
and E[FS(w(S))− F (w∗)] ≤ 0, the excess risk of A(S) can be decomposed as the summation of
generalization error and optimization error as follows

E[F (A(S))− F (w∗)] ≤ E[|F (A(S))− FS(A(S))|] + E[FS(A(S))− FS(w(S))], (3)

where E[·] denotes the expectation w.r.t. all randomness.

In this work, we primarily investigate the learning guarantees of two prevalent SCO algorithms, i.e.,
SCGD [2] and SCSC [5], along with their black-box variants. Algorithm 1 presents the detailed
parameter update procedures of these algorithms. The difference between SCGD and SCSC lies in the
update of the outer model parameter vt. For SCGD, vt+1 is the linear combination of vt and gzit (wt).
However, this update may lead to a suboptimal convergence rate when the learning rate β of the outer
model update is smaller than the learning rate ηt utilized for the inner model update. To alleviate this
problem, SCSC updates vt+1 with the combination of the "corrected" vt and gzit (wt), where vt is
corrected by gzit (wt)− gzit (wt−1) so that vt+1 approximates gzit (wt) [5]. Besides, [2] discussed
the extension of SCGD to the derivative-free setting where only the zeroth-order information of g or f
is available through sampling, which potentially applies to a broader class of stochastic optimization
problems. Here, we show the first-order gradient estimation of f , which is similar to that of g. The
unknown first-order gradient of f is estimated by Equation (4) and then approximated by Taylor
expansion (5) in our analysis

∇̃fz̄jt (vt+1) =
1

b

b∑
l=1

ut,l

µ

(
fz̄jt (vt+1 + µut,l)− fz̄jt (vt+1)

)
(4)

=
1

b

b∑
l=1

(〈
∇fz̄jt (vt+1), ut,l

〉
ut,l +

(µ
2
(ut,l)

⊤∇2fz̄jt (v)|v=v∗
t+1

ut,l

)
ut,l

)
, (5)

where {ut,l}bl=1 is the set of independent and identically distributed (i.i.d.) random direction vectors
(obeying the d-dimensional uniform distribution), and µ is the distance between two model parameters
(vt+1 + µut,l and vt+1) used to estimate the gradient in the l-th direction.

Drawing inspiration from the classical non-compositional stability analysis work [26] and the pio-
neering work [21] investigating the generalization of SCO, we introduce the definition of uniform
model stability as follows.
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Algorithm 1 (Black-box) SCGD / SCSC
Require: v1, w1: initial outer model and inner models; β, η1: initial learning rates

for all t = 1, ..., T − 1 do
Randomly sample it ∈ [n], obtain gzit (wt) and ∇gzit (wt) (Inner black-box: obtain ∇̃gzit (wt)
similar to Equation (4))
SCGD: Update vt+1 = (1− β)vt + βgzit (wt)
SCSC: Update vt+1 = (1− β)vt + βgzit (wt) + (1− β)(gzit (wt)− gzit (wt−1))

Randomly sample jt ∈ [m], obtain ∇fz̄jt (vt+1) (Outer black-box: obtain ∇̃fz̄jt (vt+1))
Update wt+1 = wt − ηt∇gzit (wt)∇fz̄jt (vt+1)/wt+1 = wt − ηt∇gzit (wt)∇̃fz̄jt (vt+1)

/wt+1 = wt − ηt∇̃gzit (wt)∇fz̄jt (vt+1)/wt+1 = wt − ηt∇̃gzit (wt)∇̃fz̄jt (vt+1)
end for

Ensure: Final model wT

Definition 1. The randomized algorithm A for SCO problem is uniformly model (ϵz, ϵz̄)-stable if

EA

[∥∥A(S)−A(Si,z)
∥∥] ≤ ϵz and EA

[∥∥A(S)−A(Sj,z̄)
∥∥] ≤ ϵz̄,

where ∥ · ∥ is the Euclidean distance ∥ · ∥2 and S = {z1, ..., zn, z̄1, ..., z̄m} , Si,z =
{z1, ..., zi−1, z

′
i, zi+1, ..., zn, z̄1, ..., z̄m} , Sj,z̄ =

{
z1, ..., zn, z̄1, ..., z̄j−1, z̄

′
j , z̄j+1, ..., z̄m

}
for any

i ∈ [n], j ∈ [m].

According to the foundational concept of algorithmic stability, Definition 1 considers the two datasets
obtained from the perturbation of a single sample in {zi}ni+1 and {z̄j}mj=1 respectively, where the
altered sample z′i is i.i.d. to zi, and so does z̄′j . Prior to filling the relationship gap between the
uniformly model stability and the generalization error E [|F (A(S))− FS(A(S))|], it is essential to
make some fundamental assumptions, i.e., Lipschitz continuity (bounded first-order gradient) of g, f
and bounded variance of g.
Assumption 1. For any parameters w,w′ ∈ W, v, v′ ∈ Rd and some Lg, Lf > 0, functions gz(w)
and fz̄(v) are Lipschitz continuous, i.e., ∥∇gz(w)∥ ≤ Lg and ∥∇fz̄(v)∥ ≤ Lf , which also mean
that ∥gz(w)− gz(w

′)∥ ≤ Lg ∥w − w′∥ and |fz̄(v)− fz̄(v
′)| ≤ Lf ∥v − v′∥ .

In numerous compositional [2, 5, 6, 7] and non-compositional studies [26, 27], Assumption 1 serves
as a general theoretical bridge analyzing the generalization and optimization performance.
Assumption 2. For any w ∈ W and some Vg > 0, the variance of function gz(w) is upper bounded

by Vg , i.e., Ez

[
∥gz(w)− g(w)∥2

]
≤ Vg.

The bounded variance is also a classical condition for statistical learning theory [1, 2, 3, 5, 6,
7, 28, 29, 30] which limits the ranges of the variance value of the given functions g. Utilizing
these two fundamental assumptions, Theorem 1 builds a rigorous relationship between stability and
generalization error, thereby enabling stability to measure the generalization performance in the
subsequent analysis. Note that, Theorem 1 was previously proved by [21] (Theorem 2.3), so we omit
its detailed proof here for brevity.
Theorem 1. [21] Let Assumptions 1, 2 hold. Assume the randomized algorithms A for SCO problem
is uniformly model (ϵz, ϵz̄)-stable, then,

E[|F (A(S))− FS(A(S))|] ≤ LgLf (4ϵz + ϵz̄) + Lf

√
n−1Vg.

Remark 1. As mentioned in [21], Theorem 1 is the compositional counterpart of Theorem 2.2 in
[26]. In other words, the above result is equivalent to E[|F (A(S)) − FS(A(S))|] ≤ Lf ϵz̄ when
gz(w) = w, i.e., F (w) = Ez̄ [fz̄(w)] and FS(w) =

1
m

∑m
j=1 fz̄j (w). If the order of ϵz̄ is faster than

O
(
ϵz + n− 1

2

)
, the generalization upper bound of SCO algorithm will be primarily constrained by

the term 4LgLf ϵz + Lf

√
n−1Vg attributed to the compositional structure. Otherwise, there is little

difference between Theorem 1 and Theorem 2.2 [26].

The subsequent assumptions and definition are required by the stability analysis in Section 3.
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Assumption 3. For any parameters w,w′ ∈ W, v, v′ ∈ Rd and some αg, αf , α > 0, functions gz(w),
fz̄(v) and fz̄(gz(w)) are smooth, i.e., ∥∇2gz(w)∥ ≤ αg, ∥∇2fz̄(v)∥ ≤ αf and ∥∇2fz̄(gz(w))∥ ≤
α, which also mean that

∥∇gz(w)−∇gz(w
′)∥ ≤ αg ∥w − w′∥ , ∥∇fz̄(v)−∇fz̄(v

′)∥ ≤ αf ∥v − v′∥

and

∥∇fz̄(gz(w))−∇fz̄(gz(w
′))∥ ≤ α ∥w − w′∥ .

Definition 2. For any parameter v, v′ ∈ Rd, a function f : Rd → R is convex if f(v) ≥ f(v′) +
⟨∇f(v′), v − v′⟩ .
Assumption 4. For any w ∈ W, v ∈ Rd, direction vector u, step size µ > 0 and some
Mg,Mf ,M

′
g,M

′
f > 0, the following inequalities hold

∥gz(w + µu)− gz(w)∥ ≤ Mg, |fz̄(v + µu)− fz̄(v)| ≤ Mf ,

and

∥∇gz(w + µu)−∇gz(w)∥ ≤ M ′
g, ∥∇fz̄(v + µu)−∇fz̄(v)∥ ≤ M ′

f .

Remark 2. Assumption 3 is the most important condition for our analysis since there are several
key properties (Lemma 4) of smoothness required to measure the algorithmic stability. In addition,
our stability analysis framework relies crucially on another key lemma (called co-coercive lemma,
Lemma 1) derived from the smoothness and convexity of the function f(w). Therefore, we provide
the definition of convexity in Definition 2. Except for the convex case (Section 3.1), this work mainly
considers some non-convex cases (Sections 3.1, 3.2). Although the co-coercive lemma is not available
without the convexity condition, a surrogate lemma (called almost co-coercive lemma, Lemma 3)
takes a similar role within our analysis framework. Finally, Assumption 4 gives the upper bounds
of the difference between two adjacent function values for g, f,∇g,∇f , which represents a less
stringent assumption compared to the general bounded condition [26]. Specifically, Assumption 4 is
different from the assumption |f | ≤ M . Assumption 4 requires the distance between two adjacent
function outputs to be bounded, i.e., ||g(w+ µu)− g(w)|| ≤ Mg, |f(v + µu)− f(v)| ≤ Mf , which
is milder than |f | ≤ M . Besides, it also requires the distance between two adjacent gradient outputs
to be bounded, i.e., ||∇g(w + µu) − ∇g(w)|| ≤ M ′

g, ||∇f(v + µu) − ∇f(v)|| ≤ M ′
f , which is

milder than bounded gradient condition ||∇f || ≤ L [26].

3 Main Results

This section presents the learning guarantees of two SCO algorithms (SCGD and SCSC) under several
cases. The comparisons among our results and previous work are summarized in Tables 1, 2, and
their proofs are provided in Appendices C, D.

3.1 Learning Guarantees for General SCO

Firstly, we consider the generalization analysis for the general convex SCO algorithm.

Theorem 2. Let Assumptions 1, 3 hold and the function f(g(w)) is convex. Assume that the
randomized algorithms A (Algorithm 1) for SCO problem brings the model sequences {wt}Tt=1 and{
wi,z

t

}T

t=1

({
wj,z̄

t

}T

t=1

)
on S and Si,z

(
Sj,z̄

)
with the step size sequence {ηt}Tt=1.

(a) For SCGD with ηt ≤ 2β
αt , the final output A(S) = wT is uniformly model (ϵz, ϵz̄)-stable with

ϵz =
4LgLfβ log(eT )

αn
and ϵz̄ =

4LgLfβ log(eT )

αm
.

(b) For SCSC with ηt ≤ 2
αt , the final output A(S) = wT is uniformly model (ϵz, ϵz̄)-stable with

ϵz =
4LgLf log(eT )

αn
and ϵz̄ =

4LgLf log(eT )

αm
.
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Table 1: Comparisons among the stability-based generalization guarantees for SCO algorithms and
SGD (Thm.-Theorem; Cor.-Corollary; ∗-high probability bound; L,α, V,M,C.-Lipschitz continuity,
smoothness, bounded variance, bounded function, and convexity assumptions; c-a positive constant;√

-has such a property; ×-hasn’t such a property).

Algorithm Generalization
Assumptions

L α V M C.

SGD ([26] Thm. 3.8) O
(
n−1 log T

) √ √
× ×

√

SGD ([31] Thm. 4) ∗O
((

n−1
√
T + n− 1

2

)
log n

) √ √
×

√ √

SCGD/SCSC
([21] Thm. 3.7) O

(
T− 1

7 +
(
n−1 +m−1

)
T

1
7 +m− 1

2

) √ √ √ √ √

SCGD/SCSC
(Thm. 2) O

((
n−1 +m−1

)
log T + n− 1

2

) √ √ √ √ √

SGD ([26] Thm. 3.12) O
(
n−1T

αc
αc+1

) √ √
× × ×

SGD ([32] Thm. 15) O
(
n−1T

αc
αc+1

) √ √
×

√
×

SGD ([30] Thm. 1) O
(
n−1 log T

) √ √ √ √
×

SGD ([33] Cor. 17) O
(
n−1T

)
× ×

√ √
×

SCGD/SCSC
(Thm. 3, 4, Cor. 4, 2) O

((
n−1 +m−1

)
T

1
2 log T + n− 1

2

) √ √ √ √
×

VFL (Cor. 4, 5) O
(
n−1T

1
2 log T

) √ √ √ √
×

Remark 3. Based on a new stability analysis framework more effective than prior work
[21], Theorem 2 states the stability upper bounds O

((
n−1 +m−1

)
β log T

)
for SCGD and

O
((
n−1 +m−1

)
log T

)
for SCSC under the convex condition, which derives a generalization bound

O
((

n−1 +m−1
)
log T + n− 1

2

)
by combining with Theorem 1. Previously, [21] provided the sta-

bility results O
(
ηT
(
n−1 +m−1

)
+ η

(
T

1
2 + β− c

2T− c
2+1 + β

1
2T
)
+ η2β−1T

)
for SCGD and

O
(
ηT
(
n−1 +m−1

)
+ η

(
T

1
2 + β− c

2T− c
2+1 + β

1
2T
)
+ η2β− 1

2T
)

for SCSC in the same setting,

where c > 0 is an arbitrary constant. They selected η = O
(
T− 6

7

)
, β = O

(
T− 4

7

)
, c > 2,

T = O
(
max

{
n

7
2 ,m

7
2

})
for SCGD and η = O

(
T− 4

5

)
, β = O

(
T− 4

5

)
, c > 4, T =

O
(
max

{
n

5
2 ,m

5
2

})
for SCSC to yield the bounds O

(
max

{
n−1,m−1

}
·max

{
n

1
2 ,m

1
2

})
which

is slight larger than O
(
n− 1

2 +m− 1
2

)
. Compared with [21], Theorem 2 enjoys not only tighter

bounds but also some more practical parameter selections of η, β, T . There are some experiments
[2, 5, 34, 35] to validate this statement. (1) For T : [21] provided some generalization bounds for
convex SCGD and SCSC with some impractical T such as T = O(max(n7/2,m7/2)) in Theorem 4.
While our convex result (Theorem 2) can achieve similar rates even taking T = O(max(n,m)) which
better matches some empirical observations (Fig. 1, 2 in [5] and Fig. 2 in [2]). (2) For ηt: Theorem
4 in [21] took ηt = T−6/7 which is too small when T is large. While Theorem 2 takes ηt = O(t−1)
closer to some empirical selections (ηt = O(t−3/4) in [2, 5] and ηt = O(t−1) in [34, 35]). (3) For
βt: Theorem 4 in [21] took βt = T−4/7 which is also too small since [2, 5, 35] empirically select
βt = t−1/2 or βt = t−1. In contrast, Theorem 2 have no special restriction on βt.

Moreover, the bounds of Theorem 2 are similar to some popular stability bounds in the non-
compositional literature. For example, the most classical work [26] achieved the uniform sta-
bility bound O

(
n−1 log T

)
for convex SGD with ηt ≤ O

(
t−1
)
. [31] showed the uniform stability

bound O
(
n−1T

1
2 + n− 1

2

√
log(1/δ)

)
for convex pairwise SGD with ηt = O

(
T− 1

2

)
. The proof of

Theorem 2 is provided in Appendix C.
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To further weaken our assumptions, the generalization analysis of the convex SCO algorithm is
developed into the non-convex setting by introducing the almost co-coercivity property of smooth
function.
Theorem 3. Let Assumptions 1, 3 hold. Assume that the randomized algorithms A (Algorithm

1) for SCO problem brings the model sequences {wt}Tt=1 and
{
wi,z

t

}T

t=1

({
wj,z̄

t

}T

t=1

)
on S and

Si,z
(
Sj,z̄

)
with the step size sequence {ηt}Tt=1. For SCGD with ηt ≤ 1

2ρt , ρ = αgLf + βL2
gαf

and SCSC with ηt ≤ 1
2ρt , ρ = αgLf + L2

gαf , the final output A(S) = wT is uniformly model
(ϵz, ϵz̄)-stable with

ϵz =
LgLf (eT )

1
2 log(eT )

ρn
and ϵz̄ =

LgLf (eT )
1
2 log(eT )

ρm
.

Remark 4. Under the non-convex setting, Theorem 3 elucidates a satisfactory stability bound
O
((

n−1 +m−1
)
T

1
2 log T

)
but T

1
2 -times larger than Theorem 2. When T = O (max{n,m}) and

ignoring logarithmic terms, this bound is equivalent to O
(
max

{
n−1,m−1

}
·max

{
n

1
2 ,m

1
2

})
.

Therefore, under the further weakening condition, i.e., non-convexity, Theorem 3 achieves the stability
results similar to the ones of the convex SCGD and SCSC in [21] and some non-compositional,
non-convex results [26, 30, 32, 33]. The proof of Theorem 3 is provided in Appendix C.

3.2 Learning Guarantees for Black-box SCO

The aforementioned results lay the groundwork for elucidating the impacts of black-box on the
learning guarantees for the non-convex SCGD and SCSC, including additional optimization analysis.
Three black-box cases shown in Algorithm 1 are considered in this part. Prior to the analysis, we
provide the following assumption required by the optimization analysis.

Table 2: Comparisons among the optimization guarantees for SCO algorithms (Thm.-Theorem;
Cor.-Corollary; L,α, V,M,C.-Lipschitz continuity, smoothness, bounded variance, bounded function,
and convexity assumptions; d2 = O(d);

√
-has such a property; ×-hasn’t such a property).

Algorithm Optimization
Assumptions

L α V M C.

SCGD ([2] Thm. 8) O
(
T− 1

4

) √ √ √
× ×

SCSC ([5] Thm. 1) O
(
T− 1

2

) √ √ √
× ×

SCGD/SCSC ([21] Thm. 3.7) O
(
T− 1

7

) √ √ √ √ √

Outer black-box SCGD/SCSC (Thm. 4) O
(
µ2 + d2

b

) √ √ √ √
×

Inner black-box SCGD/SCSC (Cor. 1) O
(
µ2 + d2

b

) √ √ √ √
×

Full black-box SCGD/SCSC (Cor. 2) O
(
µ4 +

d2
2

b2 + d2

b

) √ √ √ √
×

VFL-CZOFO (Ours, Cor. 5) O
(
µ2 + d2

b

) √ √ √ √
×

Assumption 5. For any w ∈ W and parameter γ > 0, the empirical risk FS(w) satisfies
E
[
∥∇FS(w)∥2

]
≥ 2γE [FS(w)− FS(w(S))] .

In the absence of the convexity assumption, the gradient of empirical risk ∥∇FS(w)∥ = 0 does
not guarantee a global optimal parameter. Assumption 5 postulates that all empirical local optimal
parameters are, in fact, empirical global optimal parameters, which prepares for the characterization
of E[FS(A(S))− FS(w(S))].
Theorem 4. Let Assumptions 1, 2, 3, 4, 5 hold. Assume that the randomized algorithms A (Al-

gorithm 1) for SCO problem brings the model sequences {wt}Tt=1 and
{
wi,z

t

}T

t=1

({
wj,z̄

t

}T

t=1

)
on S and Si,z

(
Sj,z̄

)
with the step size sequence {ηt}Tt=1. For the outer black-box SCGD with
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ηt =
1

pγt , p ≥ max

{√
2α
γ ,

2(αgMf+βL2
gM

′
f)

µγ

}
and the outer black-box SCSC with ηt =

1
pγt , p ≥

max

{√
2α
γ ,

2(αgMf+L2
gM

′
f)

µγ

}
, the final output A(S) = wT has the learning guarantee

E [F (wT )− F (w∗)] ≤ O
((

n−1 +m−1
)
T

1
2 log T + n− 1

2 + µ2 + b−1d2

)
,

where d2 = d− (2p+ 1)β +
(
p+ 1

2

)2
β2 for SCGD and d2 = d− 2p− 1 +

(
p+ 1

2

)2
for SCSC.

The proof of Theorem 4 is provided in Appendix D.
Remark 5. Theorem 4 considers the outer balck-box SCGD and SCSC algorithms where
only the gradient of the outer function f is unknown. It establishes the excess risk
bound O

((
n−1 +m−1

)
T

1
2 log T + n− 1

2 + µ2 + b−1d2

)
. [21] derived the excess risk bound

O
(
max

{
n−1,m−1

}
·max

{
n

1
2 ,m

1
2

})
for the convex SCGD and SCSC with the parameter selec-

tions in Remark 3. Theorem 4 can derive this bound with the milder condition T = O (max{n,m})
and ηt = O

(
t−1
)
.

For the generalization bound, Theorem 4 is consistent with Theorem 3. As for the optimization bound,
[2] proved the convergence rate E[∥∇F (wT )∥2] ≤ O

(
T− 1

4

)
of SCGD for non-convex problems.

[5] proved the convergence rate T−1
∑T−1

t=0 E[∥∇F (wt)∥2] ≤ O
(
T− 1

2

)
of SCSC for non-convex

problems. Compared with [2, 5], Theorem 4 obtains the black-box-related bound O
(
µ2 + b−1d2

)
with some smaller learning rates required by our analytical framework. This bound is composed
of two dependencies on the estimation distance µ and the number b of estimation directions in
Equation (4), which shows the following two key insights into the impacts of black-box on the learning
guarantees of SCO algorithms. Firstly, a small µ indicates a small distance between the two function
values fz̄(v + µu) and fz̄(v) selected to make gradient estimation ∇̃fz̄(v) in the direction of the
unit vector u. Therefore, a smaller µ, i.e., a closer estimation distance, brings a better gradient
estimation, resulting in a better excess risk bound. Secondly, a large b indicates that plenty of unit
vectors ul, l = 1, ..., b with different directions are selected to make gradient estimation ∇̃fz̄(v).
Then, a larger b, i.e., more estimation directions, leads to a better gradient estimation, resulting in a
better excess risk bound. In summary, the bound of Theorem 4 verifies the fact that a better gradient
estimation brings a tighter learning guarantee for the outer black-box SCGD and SCSC.

Except for the black-box-related term, Theorem 4 chooses the learning rates affected by µ, which is
also different from Theorem 4. Although µ can be very small such as 10−4 [19], its negative impact
on ηt can be eliminated by Mf ,M

′
f since the two inequalities Mf/µ ≤ Lf and M ′

f/µ ≤ αf hold.

The inner black-box and the full black-box SCO algorithms are studied in the following two corollar-
ies, respectively.
Corollary 1. Let the assumptions of Theorem 4 hold. For the inner black-box SCGD with ηt =

1
pγt , p ≥ max

{√
2α
γ ,

2(βLgαfMg+M ′
gLf)

µγ

}
and the inner black-box SCSC with ηt = 1

pγt , p ≥

max

{√
2α
γ ,

2(LgαfMg+M ′
gLf)

µγ

}
, the final output A(S) = wT has the learning guarantee

E [F (wT )− F (w∗)] ≤ O
((

n−1 +m−1
)
T

1
2 log T + n− 1

2 + µ2 + b−1d2

)
,

where d2 = d− (2p+ 1)β +
(
p+ 1

2

)2
β2 for SCGD and d2 = d− 2p− 1 +

(
p+ 1

2

)2
for SCSC.

Corollary 2. Let the assumptions of Theorem 4 hold. For the full black-box SCGD with ηt =

1
pγt , p ≥ max

{√
2α
γ ,

2(βLgM
′
fMg+MfM

′
g)

µ2γ

}
and the full black-box SCSC with ηt = 1

pγt , p ≥

max

{√
2α
γ ,

2(LgM
′
fMg+MfM

′
g)

µ2γ

}
, the final output A(S) = wT has the learning guarantee

E [F (wT )− F (w∗)] ≤ O
((

n−1 +m−1
)
T

1
2 log T + n− 1

2 + µ4 + b−2d22 + b−1d2

)
,
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where d2 = d− 2
√(

p+ 1
2

)
β +

(
p+ 1

2

)
β for SCGD and d2 = d− 2

√(
p+ 1

2

)
+ p+ 1

2 for SCSC.

The proofs of Corollaries 1, 2 are provided in Appendix D.
Remark 6. Corollary 1 provides the excess risk bound with the same order as Theorem 4 for the
inner black-box SCGD and SCSC. The excess risk bound for the full black-box SCGD and SCSC
in Corollary 2 presents the different dependencies on µ and b, i.e., µ4 + b−2d22 + b−1d2. These
dependencies also comply with the two key insights uncovered by Theorem 4 and Corollary 1. Besides,
when µ4b > d2 or µ2b < d2 holds, the term is dominated by µ4 or b−2d22 which denotes a stronger
dependence on the gradient estimation quality. Hence, Corollary 2 shows that a larger proportion of
unknown gradients may lead to a stronger dependence on the gradient estimation quality.

4 Applications

Considering the existing derivative-free cases in VFL, the analysis framework of SCGD and SCSC is
herein applied to two VFL algorithms, FOO-based VFL [16] and VFL-CZOFO [19]. As outlined
in Algorithm 2 of Appendix A, FOO-based VFL algorithm comprises two components, the K local
clients with the model parameters wk, k ∈ [K] and the central server with the global model v.
Concerning the data privacy, different clients do not communicate with each other directly, but
exchange information indirectly through a server. For this reason, the objective function of the k-th
client adopts the same compositional structure f

(
g
(
wk
))

as SCGD and SCSC. To further ensure
data privacy without additional protection techniques, VFL-CZOFO is proposed by introducing the
idea of ZOO. Different from the general ZOO-based VFL [18], VFL-CZOFO employs a zeroth-order
gradient on the output layer of every client, with other parts utilizing the first-order gradient, which
preserves the privacy protection of ZOO while significantly enhancing convergence.

Before stating our remaining results, it should be noted that there are a few differences between
the setting of FOO-based VFL (VFL-CZOFO) and the one of SCGD (SCSC). First of all, we set
S = {z1, ..., zn} and Si,z = {z1, ..., zi−1, z

′
i, zi+1, ..., zn} according to the learning paradigm of

VFL. Therefore, Theorem 1 is simplified as Corollary 3. Secondly, the update of the outer model
(global model) for FOO-based VFL (VFL-CZOFO) is not based on the simple moving average in
SCGD (SCSC). Thirdly, Assumptions 1, 3, 4, 5 hold for every client in all K clients. Without loss of
generality, we only study the learning guarantees of FOO-based VFL and VFL-CZOFO for the k-th
client.
Corollary 3. Let Assumption 1 hold. Assume the randomized VFL algorithms A is uniformly model
ϵz-stable, then, E[|F (A(S))− FS(A(S))|] ≤ LgLf ϵz.

Corollary 3 gives the relationship between uniform model stability and generalization error under the
setting of VFL. The proof of Corollary 3 is omitted since it can be proved by Equation (15) in the
proof of Theorem 2.3 [21] without the decomposition in Equation (14). The last two results study the
theoretical performance of FOO-based VFL and VFL-CZOFO.
Corollary 4. Let Assumptions 1, 3, 4, 5 hold. For the k-th client (k ∈ [K]), assume that the
randomized FOO-based VFL algorithm (Algorithm 2) brings the model sequences

{
wk

t

}T
t=1

and{
wi,z,k

t

}T

t=1
on S and Si,z with the step size sequence {ηt}Tt=1 , ηt ≤

1
2ρt , ρ = αgLf +L2

gαf . Then,

the final output A(S) = wk
T of the k-th client has the generalization guarantee

E
[
|F (wk

T )− FS(w
k
T )|
]
≤ O

(
n−1T

1
2 log T

)
.

Corollary 5. Let Assumptions 1, 3, 4, 5 hold. For the k-th client (k ∈ [K]), assume that the random-

ized VFL-CZOFO algorithm (Algorithm 2) brings the model sequences
{
wk

t

}T
t=1

and
{
wi,z,k

t

}T

t=1

on S and Si,z with the step size sequence {ηt}Tt=1 , ηt =
1

pγt , p ≥ max

{√
2α
γ ,

2(αgMf+L2
gM

′
f)

µγ

}
.

Then, the final output A(S) = wk
T of the k-th client has the generalization guarantee

E
[
F (wk

T )− F (wk∗)
]
≤ O

(
n−1T

1
2 log T + µ2 + b−1d2

)
,

where d2 = d− 2p− 1 +
(
p+ 1

2

)2
.
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The proofs of Corollaries 4, 5 are provided in Appendix E.

Remark 7. Corollaries 4, 5 both provide the first stability-based generalization bound
O
(
n−1T

1
2 log T

)
. As for the optimization bound, Corollary 5 gives O

(
µ2 + b−1d2

)
, which origi-

nates from the outer black-box setting.

Apart from VFL, the generalization guarantee of zeroth-order horizontal federated learning (HFL)
was studied with the algorithmic stability tool. [36] established the systematic theoretical assessments
of synchronous federated zeroth-order optimization (FedZO) by developing the on-average model
stability analysis. Its generalization bounds and optimization bounds all depend on the two gradient
estimation-based parameters µ and b. From our perspective, the complicated compositional structure
may be a key factor that makes the generalization bound in Corollary 5 unaffected by the impact
of the estimated gradient quality. The reason is that the analysis framework of Theorem 2 in [36]
requires a decomposition (Equation (6)) which is hardly achieved due to the compositional structure
in our analysis.

5 Conclusions

In this paper, we provide a novel, more effective theoretical analysis of two SCO algorithms, SCGD
and SCSC, and their black-box variants utilizing the uniform model stability tool. The analysis
framework is applied to the two VFL algorithms, FOO-based VFL and VFL-CZOFO. Our results not
only offer satisfactory learning guarantees but also theoretically validate the impacts of black-box that
a better gradient estimation brings a tighter learning guarantee and a larger proportion of unknown
gradients leads to a stronger dependence on the gradient estimation quality. We hope our study can
facilitate future theoretical analyses of SCO problems and inspire new practical algorithms.
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A Notations

The main notations of this paper are summarized in Table 3.

Table 3: Summary of main notations involved in this paper.

Notations Descriptions

S the training dataset defined as {z1, ..., zn, z̄1, ..., z̄m}
Si,z Si,z = {z1, ..., zi−1, z

′
i, zi+1, ..., zn, z̄1, ..., z̄m}

Sj,z̄ Sj,z̄ =
{
z1, ..., zn, z̄1, ..., z̄j−1, z̄

′
j , z̄j+1, ..., z̄m

}
b the number of random unit vectors

w,W ∈ Rp the inner model parameter and its hypothesis function space, respectively

v ∈ Rd the outer model parameter

g, f the inner function and the outer loss function, respectively

F (w), FS(w) the population risk and empirical risk based on training dataset S, respectively

w(S) the optimal model based on the empirical risk, w(S) = arg min
w∈W

FS(w)

w∗ the optimal model based on the population risk, w∗ = arg min
w∈W

F (w)

A,A(S) the given algorithm and its output model on S, respectively

T the total number of iterations for iterative optimization algorithms

ηt the step size at the t-th update, t ∈ [T − 1]

wt the model parameter after t-th update, t ∈ [T ], wT = A(S)

Lg, Lf the parameters of Lipschitz continuity on g(w), f(v), respectively

αg, αf , α the parameters of smoothness on g(w), f(v), f(w), respectively

Vg the parameter of bounded variance on g(w)

Mg,Mf the parameters of bounded functions g(w), f(v), respectively

ϵz the parameter of stability

γ the parameter of PL condition

[·] [n] := {1, ..., n}
e the base of the natural logarithm

∥ · ∥ the Euclidean norm

The pseudo code of FOO-based VFL and VFL-CZOFO is present in Algorithm 2.

B Lemmas

Lemma 1. Assume the function f is convex and α-smooth. Then, for any w,w′, we have

⟨∇f(w)−∇f(w′), w − w′⟩ ≥ 1

α
∥∇f(w)−∇f(w′)∥2.

Lemma 2. Let e be the base of the natural logarithm. The following inequalities hold:

(a) if m ∈ (0, 1), then
t∑

k=1

k−m ≤ t1−m/(1−m);

(b) if m = 1, then
t∑

k=1

k−m ≤ log(et);
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Algorithm 2 FOO-based VFL / VFL-CZOFO
Require: v1, w

k
1 : initial global model and K local models; η0, η1: initial learning rates

for all t = 1, ..., T − 1 do
for all k ∈ [K] in parallel do

Randomly select a sample it ∈ [n], obtain gzit (w
k
t ) and ∇gzit (w

k
t )

Send gzit (w
k
t ) to server

FOO-based VFL: Receive ∇f(gzit (w
k
t ))

Update wt+1 = wt − ηt∇gzit (w
k
t )∇f(gzit (w

k
t ))

VFL-CZOFO: Receive ∇̃f(gzit (w
k
t ))

Update wt+1 = wt − ηt∇gzit (w
k
t )∇̃f(gzit (w

k
t ))

end for
Server receives gzit (w

k
t ) from K clients

FOO-based VFL: Obtain and send ∇f(gzit (w
k
t )) to the k-th client

VFL-CZOFO: Compute ∇̃f(gzit (w
k
t )) and send it to the k-th client

Obtain ∇f(vt) and update vt+1 = vt − η0∇f(vt)
end for

Ensure: K final client models w1
T , ..., w

K
T

(c) if m > 1, then
t∑

k=1

k−m ≤ m
m−1 ;

(d)
t∑

k=1

1
k+k0

≤ log(t+ 1), where k0 ≥ 1.

Lemma 3. [37, 38] Consider the gradient-based optimization method wt+1 = wt − ηt∇f̂(wt). For
two iteration sequences {wt}t∈[T ] and {w′

t}t∈[T ], if the function f̂(wt) is ρ-smooth, ηt ≤ 1/(2ρ),

and the minimum eigenvalue λmin

(
∇2f̂(wt)

)
≥ −ϵ, then〈

wt − w′
t,∇f̂(wt)−∇f̂(w′

t)
〉

≥2ηt

(
1− ηtρ

2

)
∥∇f̂(wt)−∇f̂(w′

t)∥2 − ϵ∥wt − w′
t − ηt∇f̂(wt) + ηt∇f̂(w′

t)∥2.

Lemma 4. If the function f is α-smooth, then, for any w,w′, we have

f(w)− f(w′) ≤ ⟨w − w′,∇f(w′)⟩+ 1

2
α∥w − w′∥2, (6)

1

2α
∥∇f(w)∥2 ≤ f(w)− inf

w′
f(w′) ≤ f(w) (7)

and

1

2α
∥∇FS(w)∥2 ≤ FS(w)− inf

w′
FS(w

′) ≤ FS(w). (8)

Lemma 5. [39] Assume a random vector X ∈ Rd is d-dimensional uniform distribution. For any
k ∈ N, there holds E

[
∥X∥k

]
= d/(d+ k).

Lemma 6. [39] Let ul ∈ Rd, l ∈ {1, 2, ..., b} be i.i.d. random vectors satisfying d-dimensional
uniform distribution. For every random vector v ∈ Rd independent of all ul and β ∈ (0, 1), the
following inequality holds

E

[∥∥∥∥∥1b
b∑

l=1

⟨v, ul⟩ul − βv

∥∥∥∥∥
∣∣∣∣∣v
]
≤
√

d− 2β + β2

b
∥v∥.
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Table 4: The main differences among our main results (∇f̂1(wt) = ∇g(wt)
1
b

∑b
l=1

ut,l

µ (f(vt+1 + µ

ut,l) − f(vt+1)), ∇f̂2(wt) = 1
b

∑b
l=1

ut,l

µ (g(wt + µut,l)− g(wt))∇f(vt+1), ∇f̂3(wt) =
1
b2

∑b
l=1

ut,l

µ (f(vt+1 + µut,l)− f(vt+1))
∑b

l=1
ut,l

µ (g(wt + µut,l)− g(wt))).

Results Generalization Optimization

Thm. 2 Co-coercivity —

Thm. 3 Almost co-coercivity —

Thm. 4 ∇f̂1(wt) Special decompositions of ∇̃f

Cor. 1 ∇f̂2(wt) Special decompositions of ∇̃g

Cor. 2 ∇f̂3(wt) Combination of Thm. 4 and Cor. 1

C Proofs for General SCO

Proof of Theorem 2:

(a) SCGD: As Definition 1, we define S = {z1, ..., zn, z̄1, ..., z̄m} , Si,z =
{z1, ..., zi−1, z

′
i, zi+1, ..., zn, z̄1, ..., z̄m} and Sj,z̄ =

{
z1, ..., zn, z̄1, ..., z̄j−1, z̄

′
j , z̄j+1, ..., z̄m

}
for any i ∈ [n], j ∈ [m]. The two terms EA

[∥∥∥wT − wi,z
T

∥∥∥] and EA

[∥∥∥wT − wj,z̄
T

∥∥∥] will be
estimated as follows.

1) EA

[∥∥∥wT − wi,z
T

∥∥∥]: There are two cases that need to be considered. Firstly, when it ̸= i, there
holds ∥∥∥wt+1 − wi,z

t+1

∥∥∥2
=
∥∥∥wt − wi,z

t − ηt∇gzit (wt)∇fz̄jt (vt+1) + ηt∇gzit (w
i,z
t )∇fz̄jt (v

i,z
t+1)

∥∥∥2
=
∥∥∥wt − wi,z

t

∥∥∥2 + η2t

∥∥∥∇gzit (wt)∇fz̄jt (vt+1)−∇gzit (w
i,z
t )∇fz̄jt (v

i,z
t+1)

∥∥∥2
− 2ηt

〈
wt − wi,z

t ,∇gzit (wt)∇fz̄jt (vt+1)−∇gzit (w
i,z
t )∇fz̄jt (v

i,z
t+1)

〉
.

Due to two properties of the function f(g(z)), i.e., convexity and smoothness, Lemma 1 implies that〈
wt − wi,z

t ,∇gzit (wt)∇fz̄jt (vt+1)−∇gzit (w
i,z
t )∇fz̄jt (v

i,z
t+1)

〉
=
1

β

〈
wt − wi,z

t ,∇gzit (wt)∇fz̄jt (gzit (wt))−∇gzit (w
i,z
t )∇fz̄jt (gzit (w

i,z
t ))

〉
≥ 1

αβ

∥∥∥∇gzit (wt)∇fz̄jt (gzit (wt))−∇gzit (w
i,z
t )∇fz̄jt (gzit (w

i,z
t ))

∥∥∥2 ,
where β∇fz̄jt (vt+1) = ∇fz̄jt (gzit (wt)) based on the update of SCGD. Then,∥∥∥wt+1 − wi,z

t+1

∥∥∥2
≤
∥∥∥wt − wi,z

t

∥∥∥2 + ( η2t
β2

− 2ηt
αβ

)∥∥∥∇gzit (wt)∇fz̄jt (gzit (wt))−∇gzit (w
i,z
t )∇fz̄jt (gzit (w

i,z
t ))

∥∥∥2
≤
∥∥∥wt − wi,z

t

∥∥∥2 ,
where the second inequality is caused by ηt ≤ 2β

αt ≤ 2β
α . That is

∥∥∥wt+1 − wi,z
t+1

∥∥∥ ≤
∥∥∥wt − wi,z

t

∥∥∥.
Secondly, when it = i, there holds∥∥∥wt+1 − wi,z

t+1

∥∥∥
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=
∥∥∥wt − wi,z

t − ηt∇gzit (wt)∇fz̄jt (vt+1) + ηt∇gz′
it
(wi,z

t )∇fz̄jt (v
i,z
t+1)

∥∥∥
≤
∥∥∥wt − wi,z

t

∥∥∥+ ηt

∥∥∥∇gzit (wt)∇fz̄jt (vt+1)−∇gz′
it
(wi,z

t )∇fz̄jt (v
i,z
t+1)

∥∥∥
≤
∥∥∥wt − wi,z

t

∥∥∥+ 2ηt
∥∥∇gzit (wt)

∥∥∥∥∇fz̄jt (vt+1)
∥∥

≤
∥∥∥wt − wi,z

t

∥∥∥+ 2LgLfηt.

Combining the above two cases, we can get that∥∥∥wt+1 − wi,z
t+1

∥∥∥ ≤
∥∥∥wt − wi,z

t

∥∥∥ I[it ̸= i] +
(∥∥∥wt − wi,z

t

∥∥∥+ 2LgLfηt

)
I[it = i].

Taking expectation over it,

Eit

[∥∥∥wt+1 − wi,z
t+1

∥∥∥]
≤
∥∥∥wt − wi,z

t

∥∥∥Eit [I[it ̸= i]] +
(∥∥∥wt − wi,z

t

∥∥∥+ 2LgLfηt

)
Eit [I[it = i]]

≤
∥∥∥wt − wi,z

t

∥∥∥+ 2LgLf

n
ηt.

Then, taking expectation over A and taking summation from t = 1 to T − 1 to get that

EA

[∥∥∥wT − wi,z
T

∥∥∥] ≤EA

[∥∥∥wT−1 − wi,z
T−1

∥∥∥]+ 2LgLf

n
ηt

≤
T−1∑
t=1

2LgLf

n
ηt

=
4LgLfβ

αn

T−1∑
t=1

1

t

≤4LgLfβ log(eT )

αn
,

where the last inequality is from Lemma 2 (b).

2) EA

[∥∥∥wT − wj,z̄
T

∥∥∥]: Firstly, when jt ̸= j, there holds∥∥∥wt+1 − wj,z̄
t+1

∥∥∥2
=
∥∥∥wt − wj,z̄

t − ηt∇gzit (wt)∇fz̄jt (vt+1) + ηt∇gzit (w
j,z̄
t )∇fz̄jt (v

j,z̄
t+1)

∥∥∥2
=
∥∥∥wt − wj,z̄

t

∥∥∥2 + η2t

∥∥∥∇gzit (wt)∇fz̄jt (vt+1)−∇gzit (w
j,z̄
t )∇fz̄jt (v

j,z̄
t+1)

∥∥∥2
− 2ηt

〈
wt − wj,z̄

t ,∇gzit (wt)∇fz̄jt (vt+1)−∇gzit (w
j,z̄
t )∇fz̄jt (v

j,z̄
t+1)

〉
.

Due to two properties of the function f(g(z)), i.e., convexity and smoothness, Lemma 1 implies that〈
wt − wj,z̄

t ,∇gzit (wt)∇fz̄jt (vt+1)−∇gzit (w
j,z̄
t )∇fz̄jt (v

j,z̄
t+1)

〉
=
1

β

〈
wt − wj,z̄

t ,∇gzit (wt)∇fz̄jt (gzit (wt))−∇gzit (w
j,z̄
t )∇fz̄jt (gzit (w

j,z̄
t ))

〉
≥ 1

αβ

∥∥∥∇gzit (wt)∇fz̄jt (gzit (wt))−∇gzit (w
j,z̄
t )∇fz̄jt (gzit (w

j,z̄
t ))

∥∥∥2 ,
where β∇fz̄jt (vt+1) = ∇fz̄jt (gzit (wt)) based on the update of SCGD. Then,∥∥∥wt+1 − wj,z̄

t+1

∥∥∥2
≤
∥∥∥wt − wj,z̄

t

∥∥∥2 + ( η2t
β2

− 2ηt
αβ

)∥∥∥∇gzit (wt)∇fz̄jt (gzit (wt))−∇gzit (w
j,z̄
t )∇fz̄jt (gzit (w

j,z̄
t ))

∥∥∥2
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≤
∥∥∥wt − wj,z̄

t

∥∥∥2 ,
where the second inequality is caused by ηt ≤ 2β

αt ≤ 2β
α . That is

∥∥∥wt+1 − wj,z̄
t+1

∥∥∥ ≤
∥∥∥wt − wj,z̄

t

∥∥∥.
Secondly, when jt = j, there holds∥∥∥wt+1 − wj,z̄

t+1

∥∥∥
=
∥∥∥wt − wj,z̄

t − ηt∇gzit (wt)∇fz̄jt (vt+1) + ηt∇gzit (w
j,z̄
t )∇fz̄′

jt
(vj,z̄t+1)

∥∥∥
≤
∥∥∥wt − wj,z̄

t

∥∥∥+ ηt

∥∥∥∇gzit (wt)∇fz̄jt (vt+1)−∇gzit (w
j,z̄
t )∇fz̄′

jt
(vj,z̄t+1)

∥∥∥
≤
∥∥∥wt − wj,z̄

t

∥∥∥+ 2ηt
∥∥∇gzit (wt)

∥∥∥∥∇fz̄jt (vt+1)
∥∥

≤
∥∥∥wt − wj,z̄

t

∥∥∥+ 2LgLfηt.

Combining the above two cases, we can get that∥∥∥wt+1 − wj,z̄
t+1

∥∥∥ ≤
∥∥∥wt − wj,z̄

t

∥∥∥ I[jt ̸= j] +
(∥∥∥wt − wj,z̄

t

∥∥∥+ 2LgLfηt

)
I[jt = j].

Taking expectation over jt,

Ejt

[∥∥∥wt+1 − wj,z̄
t+1

∥∥∥]
≤
∥∥∥wt − wj,z̄

t

∥∥∥Ejt [I[jt ̸= j]] +
(∥∥∥wt − wj,z̄

t

∥∥∥+ 2LgLfηt

)
Ejt [I[jt = j]]

≤
∥∥∥wt − wj,z̄

t

∥∥∥+ 2LgLf

m
ηt.

Then, taking expectation over A and taking summation from t = 1 to T − 1 to get that

EA

[∥∥∥wT − wj,z̄
T

∥∥∥] ≤EA

[∥∥∥wT−1 − wj,z̄
T−1

∥∥∥]+ 2LgLf

m
ηt

≤
T−1∑
t=1

2LgLf

m
ηt

=
4LgLfβ

αm

T−1∑
t=1

1

t

≤4LgLfβ log(eT )

αm
.

(b) SCSC: Similar to the stability proof of SCGD except for the equation ∇fz̄jt (vt+1) =

∇fz̄jt (gzit (wt)) based on the update of SCSC, we have that, for ηt = η1

t ≤ 2
αt ≤

2
α ,

EA

[∥∥∥wT − wi,z
T

∥∥∥] ≤ 4LgLf log(eT )

αn

and

EA

[∥∥∥wT − wj,z̄
T

∥∥∥] ≤ 4LgLf log(eT )

αm
.

□

Proof of Theorem 3:

SCGD: 1) EA

[∥∥∥wT − wi,z
T

∥∥∥]: Firstly, when it ̸= i, there holds∥∥∥wt+1 − wi,z
t+1

∥∥∥2
=
∥∥∥wt − wi,z

t − ηt∇gzit (wt)∇fz̄jt (vt+1) + ηt∇gzit (w
i,z
t )∇fz̄jt (v

i,z
t+1)

∥∥∥2
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=
∥∥∥wt − wi,z

t

∥∥∥2 + η2t

∥∥∥∇gzit (wt)∇fz̄jt (vt+1)−∇gzit (w
i,z
t )∇fz̄jt (v

i,z
t+1)

∥∥∥2
− 2ηt

〈
wt − wi,z

t ,∇gzit (wt)∇fz̄jt (vt+1)−∇gzit (w
i,z
t )∇fz̄jt (v

i,z
t+1)

〉
.

Without the convexity of the function f(g(z)), Lemma 1 can not hold. An almost co-coercivity
of gradient operator (Lemma 3) is introduced to build the relationship between the inner product
term

〈
wt − wi,z

t ,∇gzit (wt)∇fz̄jt (vt+1)−∇gzit (w
i,z
t )∇fz̄jt (v

i,z
t+1)

〉
and the two squared terms∥∥∥wt − wi,z

t

∥∥∥2 ,∥∥∥∇gzit (wt)∇fz̄jt (vt+1)−∇gzit (w
i,z
t )∇fz̄jt (v

i,z
t+1)

∥∥∥2. With Assumption 3, the
terms ∇g(wt) and ∇f(vt+1) are both differentiable. Thus, ∇g(wt)∇f(vt+1) is also differentiable,
which means that it is continuous on its domain. As we all know, a continuous function has primitive
functions. Then, it is reasonable to assume that there exists a primitive function f̂(wt) at least whose
derivative function ∇f̂(wt) = ∇g(wt)∇f(vt+1). For example, 1

β f(vt+1) is one of the primitive

functions f̂(wt). Then ∥∥∥wt+1 − wi,z
t+1

∥∥∥2
=
∥∥∥wt − wi,z

t

∥∥∥2 + η2t

∥∥∥∇f̂zit ,z̄jt (wt)∇f̂zit z̄jt (w
i,z
t )
∥∥∥2

− 2ηt

〈
wt − wi,z

t ,∇f̂zit ,z̄jt (wt)−∇f̂zit z̄jt (w
i,z
t )
〉
. (9)

Taking derivative of ∇f̂zit ,z̄jt (wt) over wt, we get that

∇2f̂zit ,z̄jt (wt) = ∇2gzit (wt)∇fz̄jt (vt+1) + β∇gzit (wt)∇2fz̄jt (vt+1)∇g⊤zit (wt).

Thus, ∥∥∥∇2f̂zit ,z̄jt (wt)
∥∥∥ ≤ αgLf + βL2

gαf .

Let ρ = αgLf +βL2
gαf , then f̂zit ,z̄jt (wt) is ρ-smooth. Since

∥∥∥∇2f̂zit ,z̄jt (wt)
∥∥∥ equals to the largest

singular value of ∇2f̂zit ,z̄jt (wt), we can know that λmin

(
∇2f̂zit ,z̄jt (wt)

)
≥ −

∥∥∥∇2f̂zit ,z̄jt (wt)
∥∥∥ ≥

−ρ. According to Lemma 3, we can get that〈
wt − wi,z

t ,∇f̂zit ,z̄jt (wt)−∇f̂zit z̄jt (w
i,z
t )
〉

≥2ηt

(
1− ρηt

2

)∥∥∥∇f̂zit ,z̄jt (wt)−∇f̂zit z̄jt (w
i,z
t )
∥∥∥2 − ρ

∥∥∥wt − wi,z
t −∇f̂zit ,z̄jt (wt) +∇f̂zit z̄jt (w

i,z
t )
∥∥∥2

=2ηt

(
1− ρηt

2

)∥∥∥∇f̂zit ,z̄jt (wt)−∇f̂zit z̄jt (w
i,z
t )
∥∥∥2 − ρ

∥∥∥wt+1 − wi,z
t+1

∥∥∥2 .
Now, plugging the above inequality back into Equation (9) yields∥∥∥wt+1 − wi,z

t+1

∥∥∥2
≤
∥∥∥wt − wi,z

t

∥∥∥2 + (η2t − 4η2t

(
1− ρηt

2

))∥∥∥∇f̂zit ,z̄jt (wt)∇f̂zit z̄jt (w
i,z
t )
∥∥∥2 + 2ρηt

∥∥∥wt+1 − wi,z
t+1

∥∥∥2
≤
∥∥∥wt − wi,z

t

∥∥∥2 + 2ρηt

∥∥∥wt+1 − wi,z
t+1

∥∥∥2 ,
where the second inequality is due to ηt ≤ 1

2ρt ≤
3
2ρ . The above inequality implies∥∥∥wt+1 − wi,z

t+1

∥∥∥ ≤ 1√
1− 2ρηt

∥∥∥wt − wi,z
t

∥∥∥ ,
Secondly, when it = i, there holds∥∥∥wt+1 − wi,z

t+1

∥∥∥
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=
∥∥∥wt − wi,z

t − ηt∇gzit (wt)∇fz̄jt (vt+1) + ηt∇gz′
it
(wi,z

t )∇fz̄jt (v
i,z
t+1)

∥∥∥
≤
∥∥∥wt − wi,z

t

∥∥∥+ ηt

∥∥∥∇gzit (wt)∇fz̄jt (vt+1)−∇gz′
it
(wi,z

t )∇fz̄jt (v
i,z
t+1)

∥∥∥
≤
∥∥∥wt − wi,z

t

∥∥∥+ 2ηt
∥∥∇gzit (wt)

∥∥∥∥∇fz̄jt (vt+1)
∥∥

≤
∥∥∥wt − wi,z

t

∥∥∥+ 2LgLfηt.

Combining the above two cases, we can get that∥∥∥wt+1 − wi,z
t+1

∥∥∥ ≤ 1√
1− 2ρηt

∥∥∥wt − wi,z
t

∥∥∥ I[it ̸= i] +
(∥∥∥wt − wi,z

t

∥∥∥+ 2LgLfηt

)
I[it = i].

Taking expectation over it,

Eit

[∥∥∥wt+1 − wi,z
t+1

∥∥∥]
≤ 1√

1− 2ρηt

∥∥∥wt − wi,z
t

∥∥∥Eit [I[it ̸= i]] +
(∥∥∥wt − wi,z

t

∥∥∥+ 2LgLfηt

)
Eit [I[it = i]]

≤ 1√
1− 2ρηt

∥∥∥wt − wi,z
t

∥∥∥+ 2LgLf

n
ηt.

Then, taking expectation over A and taking summation from t = 1 to T − 1 to get that

EA

[∥∥∥wT − wi,z
T

∥∥∥] ≤ 1√
1− 2ρηt

EA

[∥∥∥wT−1 − wi,z
T−1

∥∥∥]+ 2LgLf

n
ηt

≤
T−1∑
t=1

(
T−1∏

t′=t+1

1√
1− 2ρηt′

)
2LgLf

n
ηt

≤
T−1∑
t=1

(
T−1∏

t′=t+1

√
1 +

1

t′ − 1

)
LgLf

ρn

1

t

≤
T−1∑
t=1

(
T−1∏
t′=2

√
1 +

1

t′ − 1

)
LgLf

ρn

1

t

≤

√√√√T−1∏
t′=2

exp

{
1

t′ − 1

} T−1∑
t=1

LgLf

ρn

1

t

≤

√√√√exp

{
T−1∑
t′=2

1

t′ − 1

}
LgLf

ρn

T−1∑
t=1

1

t

≤LgLf (eT )
1
2 log(eT )

ρn
, (10)

where the fourth inequality is from ex ≥ 1 + x.

2) EA

[∥∥∥wT − wj,z̄
T

∥∥∥]: Firstly, when jt ̸= j, there holds∥∥∥wt+1 − wj,z̄
t+1

∥∥∥2
=
∥∥∥wt − wj,z̄

t − ηt∇gzit (wt)∇fz̄jt (vt+1) + ηt∇gzit (w
j,z̄
t )∇fz̄jt (v

j,z̄
t+1)

∥∥∥2
=
∥∥∥wt − wj,z̄

t

∥∥∥2 + η2t

∥∥∥∇gzit (wt)∇fz̄jt (vt+1)−∇gzit (w
j,z̄
t )∇fz̄jt (v

j,z̄
t+1)

∥∥∥2
− 2ηt

〈
wt − wj,z̄

t ,∇gzit (wt)∇fz̄jt (vt+1)−∇gzit (w
j,z̄
t )∇fz̄jt (v

j,z̄
t+1)

〉
.

We assume that there exists a primitive function f̂(wt) at least whose derivative function ∇f̂(wt) =
∇g(wt)∇f(vt+1). Then∥∥∥wt+1 − wj,z̄

t+1

∥∥∥2
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=
∥∥∥wt − wj,z̄

t

∥∥∥2 + η2t

∥∥∥∇f̂zit ,z̄jt (wt)∇f̂zit z̄jt (w
j,z̄
t )
∥∥∥2

− 2ηt

〈
wt − wj,z̄

t ,∇f̂zit ,z̄jt (wt)−∇f̂zit z̄jt (w
j,z̄
t )
〉
. (11)

Taking derivative of ∇f̂zit ,z̄jt (wt) over wt, we get that

∇2f̂zit ,z̄jt (wt) = ∇2gzit (wt)∇fz̄jt (vt+1) + β∇gzit (wt)∇2fz̄jt (vt+1)∇g⊤zit (wt).

Thus, ∥∥∥∇2f̂zit ,z̄jt (wt)
∥∥∥ ≤ αgLf + βL2

gαf .

Let ρ = αgLf + βL2
gαf , then f̂zit ,z̄jt (wt) is ρ-smooth. And we can know that

λmin

(
∇2f̂zit ,z̄jt (wt)

)
≥ −

∥∥∥∇2f̂zit ,z̄jt (wt)
∥∥∥ ≥ −ρ. According to Lemma 3, we can get that〈

wt − wj,z̄
t ,∇f̂zit ,z̄jt (wt)−∇f̂zit z̄jt (w

j,z̄
t )
〉

≥2ηt

(
1− ρηt

2

)∥∥∥∇f̂zit ,z̄jt (wt)−∇f̂zit z̄jt (w
j,z̄
t )
∥∥∥2 − ρ

∥∥∥wt − wj,z̄
t −∇f̂zit ,z̄jt (wt) +∇f̂zit z̄jt (w

j,z̄
t )
∥∥∥2

=2ηt

(
1− ρηt

2

)∥∥∥∇f̂zit ,z̄jt (wt)−∇f̂zit z̄jt (w
j,z̄
t )
∥∥∥2 − ρ

∥∥∥wt+1 − wj,z̄
t+1

∥∥∥2 .
Now, plugging the above inequality back into Equation (11) yields∥∥∥wt+1 − wj,z̄

t+1

∥∥∥2
≤
∥∥∥wt − wj,z̄

t

∥∥∥2 + (η2t − 4η2t

(
1− ρηt

2

))∥∥∥∇f̂zit ,z̄jt (wt)∇f̂zit z̄jt (w
j,z̄
t )
∥∥∥2 + 2ρηt

∥∥∥wt+1 − wj,z̄
t+1

∥∥∥2
≤
∥∥∥wt − wj,z̄

t

∥∥∥2 + 2ρηt

∥∥∥wt+1 − wj,z̄
t+1

∥∥∥2 ,
where the second inequality is due to ηt ≤ 1

2ρt ≤
3
2ρ . The above inequality implies∥∥∥wt+1 − wj,z̄

t+1

∥∥∥ ≤ 1√
1− 2ρηt

∥∥∥wt − wj,z̄
t

∥∥∥ ,
Secondly, when jt = j, there holds∥∥∥wt+1 − wj,z̄

t+1

∥∥∥
=
∥∥∥wt − wj,z̄

t − ηt∇gzit (wt)∇fz̄jt (vt+1) + ηt∇gzit (w
j,z̄
t )∇fz̄′

jt
(vj,z̄t+1)

∥∥∥
≤
∥∥∥wt − wj,z̄

t

∥∥∥+ ηt

∥∥∥∇gzit (wt)∇fz̄jt (vt+1)−∇gz′
it
(wj,z̄

t )∇fz̄′
jt
(vj,z̄t+1)

∥∥∥
≤
∥∥∥wt − wj,z̄

t

∥∥∥+ 2ηt
∥∥∇gzit (wt)

∥∥∥∥∇fz̄jt (vt+1)
∥∥

≤
∥∥∥wt − wj,z̄

t

∥∥∥+ 2LgLfηt.

Combining the above two cases, we can get that∥∥∥wt+1 − wj,z̄
t+1

∥∥∥ ≤ 1√
1− 2ρηt

∥∥∥wt − wj,z̄
t

∥∥∥ I[jt ̸= j] +
(∥∥∥wt − wj,z̄

t

∥∥∥+ 2LgLfηt

)
I[jt = j].

Taking expectation over jt,

Eit

[∥∥∥wt+1 − wj,z̄
t+1

∥∥∥]
≤ 1√

1− 2ρηt

∥∥∥wt − wj,z̄
t

∥∥∥Ejt [I[jt ̸= j]] +
(∥∥∥wt − wj,z̄

t

∥∥∥+ 2LgLfηt

)
Ejt [I[jt = j]]

≤ 1√
1− 2ρηt

∥∥∥wt − wj,z̄
t

∥∥∥+ 2LgLf

m
ηt.
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Then, taking expectation over A and taking summation from t = 1 to T − 1 to get that

EA

[∥∥∥wT − wj,z̄
T

∥∥∥] ≤ 1√
1− 2ρηt

EA

[∥∥∥wT−1 − wj,z̄
T−1

∥∥∥]+ 2LgLf

m
ηt

≤
T−1∑
t=1

(
T−1∏

t′=t+1

1√
1− 2ρηt′

)
2LgLf

m
ηt

≤
T−1∑
t=1

(
T−1∏

t′=t+1

√
1 +

1

t′ − 1

)
LgLf

ρm

1

t

≤
T−1∑
t=1

(
T−1∏
t′=2

√
1 +

1

t′ − 1

)
LgLf

ρm

1

t

≤

√√√√T−1∏
t′=2

exp

{
1

t′ − 1

} T−1∑
t=1

LgLf

ρm

1

t

≤

√√√√exp

{
T−1∑
t′=2

1

t′ − 1

}
LgLf

ρm

T−1∑
t=1

1

t

≤LgLf (eT )
1
2 log(eT )

ρm
, (12)

where the fourth inequality is from ex ≥ 1 + x.

SCSC: Similar to the stability proof of SCGD except for ∇2f̂zit ,z̄jt (wt) = ∇2gzit (wt)∇fz̄jt (vt+1)+

∇gzit (wt)∇2fz̄jt (vt+1)∇g⊤zit (wt) based on the update of SCSC, we have that, for ηt ≤ 1
2ρt ≤

3
2ρ , ρ = αgLf + L2

gαf ,

EA

[∥∥∥wT − wi,z
T

∥∥∥] ≤ LgLf (eT )
1
2 log(eT )

ρn
(13)

and

EA

[∥∥∥wT − wj,z̄
T

∥∥∥] ≤ LgLf (eT )
1
2 log(eT )

ρm
. (14)

□

D Proofs for Black-box SCO

Proof of Theorem 4:

SCGD: 1) EA

[∥∥∥wT − wi,z
T

∥∥∥]: Firstly, when it ̸= i, there holds∥∥∥wt+1 − wi,z
t+1

∥∥∥2
=
∥∥∥wt − wi,z

t − ηt∇gzit (wt)∇̃fz̄jt (vt+1) + ηt∇gzit (w
i,z
t )∇̃fz̄jt (v

i,z
t+1)

∥∥∥2
=
∥∥∥wt − wi,z

t

∥∥∥2 + η2t

∥∥∥∇gzit (wt)∇̃fz̄jt (vt+1)−∇gzit (w
i,z
t )∇̃fz̄jt (v

i,z
t+1)

∥∥∥2
− 2ηt

〈
wt − wi,z

t ,∇gzit (wt)∇̃fz̄jt (vt+1)−∇gzit (w
i,z
t )∇̃fz̄jt (v

i,z
t+1)

〉
=
∥∥∥wt − wi,z

t

∥∥∥2 + η2t

∥∥∥∥∥∇gzit (wt)
1

b

b∑
l=1

ut,l

µ

(
fz̄jt (vt+1 + µut,l)− fz̄jt (vt+1)

)
−∇gzit (w

i,z
t )

1

b

b∑
l=1

ut,l

µ

(
fz̄jt (v

i,z
t+1 + µut,l)− fz̄jt (v

i,z
t+1)

)∥∥∥∥∥
2
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− 2ηt

〈
wt − wi,z

t ,∇gzit (wt)
1

b

b∑
l=1

ut,l

µ

(
fz̄jt (vt+1 + µut,l)− fz̄jt (vt+1)

)
−∇gzit (w

i,z
t )

1

b

b∑
l=1

ut,l

µ

(
fz̄jt (v

i,z
t+1 + µut,l)− fz̄jt (v

i,z
t+1)

)〉
.

With Assumption 3, the terms ∇g(wt) and f(vt+1) are both differentiable. Thus,
∇g(wt)

1
b

∑b
l=1

ut,l

µ (f(vt+1 + µut,l)− f(vt+1)) is also differentiable. It is reasonable to as-

sume that there exists a primitive function f̂(wt) at least whose derivative function ∇f̂(wt) =

∇g(wt)
1
b

∑b
l=1

ut,l

µ (f(vt+1 + µut,l)− f(vt+1)). Then∥∥∥wt+1 − wi,z
t+1

∥∥∥2
=
∥∥∥wt − wi,z

t

∥∥∥2 + η2t

∥∥∥∇f̂zit ,z̄jt (wt)∇f̂zit z̄jt (w
i,z
t )
∥∥∥2

− 2ηt

〈
wt − wi,z

t ,∇f̂zit ,z̄jt (wt)−∇f̂zit z̄jt (w
i,z
t )
〉
. (15)

Taking derivative of ∇f̂zit ,z̄jt (wt) over wt, we get that

∇2f̂zit ,z̄jt (wt)

=∇2gzit (wt)
1

b

b∑
l=1

ut,l

µ

(
fz̄jt (vt+1 + µut,l)− fz̄jt (vt+1)

)
+ β∇gzit (wt)

1

b

b∑
l=1

ut,l

µ

(
∇fz̄jt (vt+1 + µut,l)−∇fz̄jt (vt+1)

)
∇g⊤zit (wt).

Thus, ∥∥∥∇2f̂zit ,z̄jt (wt)
∥∥∥

=

∥∥∥∥∥∇2gzit (wt)
1

b

b∑
l=1

ut,l

µ

(
fz̄jt (vt+1 + µut,l)− fz̄jt (vt+1)

)
+ β∇gzit (wt)

1

b

b∑
l=1

ut,l

µ

(
∇fz̄jt (vt+1 + µut,l)−∇fz̄jt (vt+1)

)
∇g⊤zit (wt)

∥∥∥∥∥
≤

∥∥∥∥∥∇2gzit (wt)
1

b

b∑
l=1

ut,l

µ

(
fz̄jt (vt+1 + µut,l)− fz̄jt (vt+1)

)∥∥∥∥∥
+

∥∥∥∥∥β∇gzit (wt)
1

b

b∑
l=1

ut,l

µ

(
∇fz̄jt (vt+1 + µut,l)−∇fz̄jt (vt+1)

)
∇g⊤zit (wt)

∥∥∥∥∥
≤ 1

µ

(
αgMf + βL2

gM
′
f

)
.

Let ρ = 1
µ

(
αgMf + βL2

gM
′
f

)
, then f̂zit ,z̄jt (wt) is ρ-smooth. And we can know that

λmin

(
∇2f̂zit ,z̄jt (wt)

)
≥ −

∥∥∥∇2f̂zit ,z̄jt (wt)
∥∥∥ ≥ −ρ. According to Lemma 3, we can get that〈

wt − wi,z
t ,∇f̂zit ,z̄jt (wt)−∇f̂zit z̄jt (w

i,z
t )
〉

≥2ηt

(
1− ρηt

2

)∥∥∥∇f̂zit ,z̄jt (wt)−∇f̂zit z̄jt (w
i,z
t )
∥∥∥2 − ρ

∥∥∥wt − wi,z
t −∇f̂zit ,z̄jt (wt) +∇f̂zit z̄jt (w

i,z
t )
∥∥∥2

=2ηt

(
1− ρηt

2

)∥∥∥∇f̂zit ,z̄jt (wt)−∇f̂zit z̄jt (w
i,z
t )
∥∥∥2 − ρ

∥∥∥wt+1 − wi,z
t+1

∥∥∥2 .
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Now, plugging the above inequality back into Equation (15) yields∥∥∥wt+1 − wi,z
t+1

∥∥∥2
≤
∥∥∥wt − wi,z

t

∥∥∥2 + (η2t − 4η2t

(
1− ρηt

2

))∥∥∥∇f̂zit ,z̄jt (wt)∇f̂zit z̄jt (w
i,z
t )
∥∥∥2 + 2ρηt

∥∥∥wt+1 − wi,z
t+1

∥∥∥2
≤
∥∥∥wt − wi,z

t

∥∥∥2 + 2ρηt

∥∥∥wt+1 − wi,z
t+1

∥∥∥2 ,
where the second inequality is due to ηt ≤ 1

2ρt ≤
3
2ρ . The above inequality implies∥∥∥wt+1 − wi,z

t+1

∥∥∥ ≤ 1√
1− 2ρηt

∥∥∥wt − wi,z
t

∥∥∥ ,
Secondly, when it = i, there holds∥∥∥wt+1 − wi,z

t+1

∥∥∥
=
∥∥∥wt − wi,z

t − ηt∇gzit (wt)∇̃fz̄jt (vt+1) + ηt∇gz′
it
(wi,z

t )∇̃fz̄jt (v
i,z
t+1)

∥∥∥
≤
∥∥∥wt − wi,z

t

∥∥∥+ ηt

∥∥∥∇gzit (wt)∇̃fz̄jt (vt+1)−∇gz′
it
(wi,z

t )∇̃fz̄jt (v
i,z
t+1)

∥∥∥
≤
∥∥∥wt − wi,z

t

∥∥∥+ 2ηt
∥∥∇gzit (wt)

∥∥∥∥∥∇̃fz̄jt (vt+1)
∥∥∥

≤
∥∥∥wt − wi,z

t

∥∥∥+ 2LgMf

µ
ηt.

Combining the above two cases, we can get that∥∥∥wt+1 − wi,z
t+1

∥∥∥ ≤ 1√
1− 2ρηt

∥∥∥wt − wi,z
t

∥∥∥ I[it ̸= i] +

(∥∥∥wt − wi,z
t

∥∥∥+ 2LgMf

µ
ηt

)
I[it = i].

Taking expectation over it,

Eit

[∥∥∥wt+1 − wi,z
t+1

∥∥∥]
≤ 1√

1− 2ρηt

∥∥∥wt − wi,z
t

∥∥∥Eit [I[it ̸= i]] +

(∥∥∥wt − wi,z
t

∥∥∥+ 2LgMf

µ
ηt

)
Eit [I[it = i]]

≤ 1√
1− 2ρηt

∥∥∥wt − wi,z
t

∥∥∥+ 2LgMf

µn
ηt.

Then, taking expectation over A and taking summation from t = 1 to T − 1 to get that

EA

[∥∥∥wT − wi,z
T

∥∥∥] ≤ 1√
1− 2ρηt

EA

[∥∥∥wT−1 − wi,z
T−1

∥∥∥]+ 2LgMf

µn
ηt

≤
T−1∑
t=1

(
T−1∏

t′=t+1

1√
1− 2ρηt′

)
2LgMf

µn
ηt

≤
T−1∑
t=1

(
T−1∏

t′=t+1

√
1 +

1

t′ − 1

)
LgMf

ρµn

1

t

≤
T−1∑
t=1

(
T−1∏
t′=2

√
1 +

1

t′ − 1

)
LgMf

ρµn

1

t

≤

√√√√T−1∏
t′=2

exp

{
1

t′ − 1

} T−1∑
t=1

LgMf

ρµn

1

t

≤

√√√√exp

{
T−1∑
t′=2

1

t′ − 1

}
LgMf

ρµn

T−1∑
t=1

1

t
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≤LgMf (eT )
1
2 log(eT )

ρµn
, (16)

where the fourth inequality is from ex ≥ 1 + x.

2) EA

[∥∥∥wT − wj,z̄
T

∥∥∥]: Firstly, when jt ̸= j, there holds∥∥∥wt+1 − wj,z̄
t+1

∥∥∥2
=
∥∥∥wt − wj,z̄

t − ηt∇gzit (wt)∇̃fz̄jt (vt+1) + ηt∇gzit (w
j,z̄
t )∇̃fz̄jt (v

j,z̄
t+1)

∥∥∥2
=
∥∥∥wt − wj,z̄

t

∥∥∥2 + η2t

∥∥∥∇gzit (wt)∇̃fz̄jt (vt+1)−∇gzit (w
j,z̄
t )∇̃fz̄jt (v

j,z̄
t+1)

∥∥∥2
− 2ηt

〈
wt − wj,z̄

t ,∇gzit (wt)∇̃fz̄jt (vt+1)−∇gzit (w
j,z̄
t )∇̃fz̄jt (v

j,z̄
t+1)

〉
=
∥∥∥wt − wj,z̄

t

∥∥∥2 + η2t

∥∥∥∥∥∇gzit (wt)
1

b

b∑
l=1

ut,l

µ

(
fz̄jt (vt+1 + µut,l)− fz̄jt (vt+1)

)
−∇gzit (w

j,z̄
t )

1

b

b∑
l=1

ut,l

µ

(
fz̄jt (v

j,z̄
t+1 + µut,l)− fz̄jt (v

j,z̄
t+1)

)∥∥∥∥∥
2

− 2ηt

〈
wt − wj,z̄

t ,∇gzit (wt)
1

b

b∑
l=1

ut,l

µ

(
fz̄jt (vt+1 + µut,l)− fz̄jt (vt+1)

)
−∇gzit (w

j,z̄
t )

1

b

b∑
l=1

ut,l

µ

(
fz̄jt (v

j,z̄
t+1 + µut,l)− fz̄jt (v

j,z̄
t+1)

)〉
.

With Assumption 3, the terms ∇g(wt) and f(vt+1) are both differentiable. Thus,
∇g(wt)

1
b

∑b
l=1

ut,l

µ (f(vt+1 + µut,l)− f(vt+1)) is also differentiable. It is reasonable to as-

sume that there exists a primitive function f̂(wt) at least whose derivative function ∇f̂(wt) =

∇g(wt)
1
b

∑b
l=1

ut,l

µ (f(vt+1 + µut,l)− f(vt+1)). Then∥∥∥wt+1 − wj,z̄
t+1

∥∥∥2
=
∥∥∥wt − wj,z̄

t

∥∥∥2 + η2t

∥∥∥∇f̂zit ,z̄jt (wt)∇f̂zit z̄jt (w
j,z̄
t )
∥∥∥2

− 2ηt

〈
wt − wj,z̄

t ,∇f̂zit ,z̄jt (wt)−∇f̂zit z̄jt (w
j,z̄
t )
〉
. (17)

Taking derivative of ∇f̂zit ,z̄jt (wt) over wt, we get that

∇2f̂zit ,z̄jt (wt)

=∇2gzit (wt)
1

b

b∑
l=1

ut,l

µ

(
fz̄jt (vt+1 + µut,l)− fz̄jt (vt+1)

)
+ β∇gzit (wt)

1

b

b∑
l=1

ut,l

µ

(
∇fz̄jt (vt+1 + µut,l)−∇fz̄jt (vt+1)

)
∇g⊤zit (wt).

Thus, ∥∥∥∇2f̂zit ,z̄jt (wt)
∥∥∥

=

∥∥∥∥∥∇2gzit (wt)
1

b

b∑
l=1

ut,l

µ

(
fz̄jt (vt+1 + µut,l)− fz̄jt (vt+1)

)
+ β∇gzit (wt)

1

b

b∑
l=1

ut,l

µ

(
∇fz̄jt (vt+1 + µut,l)−∇fz̄jt (vt+1)

)
∇g⊤zit (wt)

∥∥∥∥∥
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≤

∥∥∥∥∥∇2gzit (wt)
1

b

b∑
l=1

ut,l

µ

(
fz̄jt (vt+1 + µut,l)− fz̄jt (vt+1)

)∥∥∥∥∥
+

∥∥∥∥∥β∇gzit (wt)
1

b

b∑
l=1

ut,l

µ

(
∇fz̄jt (vt+1 + µut,l)−∇fz̄jt (vt+1)

)
∇g⊤zit (wt)

∥∥∥∥∥
≤ 1

µ

(
αgMf + βL2

gM
′
f

)
.

Let ρ = 1
µ

(
αgMf + βL2

gM
′
f

)
, then f̂zit ,z̄jt (wt) is ρ-smooth. And we can know that

λmin

(
∇2f̂zit ,z̄jt (wt)

)
≥ −

∥∥∥∇2f̂zit ,z̄jt (wt)
∥∥∥ ≥ −ρ. According to Lemma 3, we can get that〈

wt − wj,z̄
t ,∇f̂zit ,z̄jt (wt)−∇f̂zit z̄jt (w

j,z̄
t )
〉

≥2ηt

(
1− ρηt

2

)∥∥∥∇f̂zit ,z̄jt (wt)−∇f̂zit z̄jt (w
j,z̄
t )
∥∥∥2 − ρ

∥∥∥wt − wj,z̄
t −∇f̂zit ,z̄jt (wt) +∇f̂zit z̄jt (w

j,z̄
t )
∥∥∥2

=2ηt

(
1− ρηt

2

)∥∥∥∇f̂zit ,z̄jt (wt)−∇f̂zit z̄jt (w
j,z̄
t )
∥∥∥2 − ρ

∥∥∥wt+1 − wj,z̄
t+1

∥∥∥2 .
Now, plugging the above inequality back into Equation (17) yields∥∥∥wt+1 − wj,z̄

t+1

∥∥∥2
≤
∥∥∥wt − wj,z̄

t

∥∥∥2 + (η2t − 4η2t

(
1− ρηt

2

))∥∥∥∇f̂zit ,z̄jt (wt)∇f̂zit z̄jt (w
j,z̄
t )
∥∥∥2 + 2ρηt

∥∥∥wt+1 − wj,z̄
t+1

∥∥∥2
≤
∥∥∥wt − wj,z̄

t

∥∥∥2 + 2ρηt

∥∥∥wt+1 − wj,z̄
t+1

∥∥∥2 ,
where the second inequality is due to ηt ≤ 1

2ρt ≤
3
2ρ . The above inequality implies∥∥∥wt+1 − wj,z̄

t+1

∥∥∥ ≤ 1√
1− 2ρηt

∥∥∥wt − wj,z̄
t

∥∥∥ ,
Secondly, when jt = j, there holds∥∥∥wt+1 − wj,z̄

t+1

∥∥∥
=
∥∥∥wt − wj,z̄

t − ηt∇gzit (wt)∇̃fz̄jt (vt+1) + ηt∇gzit (w
j,z̄
t )∇̃fz̄′

jt
(vj,z̄t+1)

∥∥∥
≤
∥∥∥wt − wj,z̄

t

∥∥∥+ ηt

∥∥∥∇gzit (wt)∇̃fz̄jt (vt+1)−∇gzit (w
j,z̄
t )∇̃fz̄′

jt
(vj,z̄t+1)

∥∥∥
≤
∥∥∥wt − wj,z̄

t

∥∥∥+ 2ηt
∥∥∇gzit (wt)

∥∥∥∥∥∇̃fz̄jt (vt+1)
∥∥∥

≤
∥∥∥wt − wj,z̄

t

∥∥∥+ 2LgMf

µ
ηt.

Combining the above two cases, we can get that∥∥∥wt+1 − wj,z̄
t+1

∥∥∥ ≤ 1√
1− 2ρηt

∥∥∥wt − wj,z̄
t

∥∥∥ I[jt ̸= j] +

(∥∥∥wt − wj,z̄
t

∥∥∥+ 2LgMf

µ
ηt

)
I[jt = j].

Taking expectation over it,

Eit

[∥∥∥wt+1 − wj,z̄
t+1

∥∥∥]
≤ 1√

1− 2ρηt

∥∥∥wt − wj,z̄
t

∥∥∥Eit [I[jt ̸= j]] +

(∥∥∥wt − wj,z̄
t

∥∥∥+ 2LgMf

µ
ηt

)
Eit [I[jt = j]]

≤ 1√
1− 2ρηt

∥∥∥wt − wj,z̄
t

∥∥∥+ 2LgMf

µm
ηt.
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Then, taking expectation over A and taking summation from t = 1 to T − 1 to get that

EA

[∥∥∥wT − wj,z̄
T

∥∥∥] ≤ 1√
1− 2ρηt

EA

[∥∥∥wT−1 − wj,z̄
T−1

∥∥∥]+ 2LgMf

µm
ηt

≤
T−1∑
t=1

(
T−1∏

t′=t+1

1√
1− 2ρηt′

)
2LgMf

µm
ηt

≤
T−1∑
t=1

(
T−1∏

t′=t+1

√
1 +

1

t′ − 1

)
LgMf

ρµm

1

t

≤
T−1∑
t=1

(
T−1∏
t′=2

√
1 +

1

t′ − 1

)
LgMf

ρµm

1

t

≤

√√√√T−1∏
t′=2

exp

{
1

t′ − 1

} T−1∑
t=1

LgMf

ρµm

1

t

≤

√√√√exp

{
T−1∑
t′=2

1

t′ − 1

}
LgMf

ρµm

T−1∑
t=1

1

t

≤LgMf (eT )
1
2 log(eT )

ρµm
, (18)

where the fourth inequality is from ex ≥ 1 + x.

Next, we will study the optimization bound. According to Equation (6) in Lemma 4, ∇f(wt) =
β∇g(wt)∇f(vt+1), second-order Taylor expansion, Lemmas 5 and 6, we provide that, for any
p ≥

√
2,

E [FS(wt+1)− FS(wt)]

≤E
[
⟨wt+1 − wt,∇FS(wt)⟩+

1

2
α ∥wt+1 − wt∥2

]
=E

[〈
−ηt∇gzit (wt)∇̃fz̄jt (vt+1),∇FS(wt)

〉
+

1

2
α
∥∥∥ηt∇gzit (wt)∇̃fz̄jt (vt+1)

∥∥∥2]
=E
[〈

− ηt∇gzit (wt)

(
∇̃fz̄jt (vt+1)−

(
p+

1

2

)
β∇fz̄jt (vt+1) +

(
p+

1

2

)
β∇fz̄jt (vt+1)

)
,

∇FS(wt)

〉
+

1

2
α
∥∥∥ηt∇gzit (wt)

(
∇̃fz̄jt (vt+1)− β∇fz̄jt (vt+1) + β∇fz̄jt (vt+1)

)∥∥∥2 ]
≤E
[
− ηt

〈
∇gzit (wt)

(
∇̃fz̄jt (vt+1)−

(
p+

1

2

)
β∇fz̄jt (vt+1)

)
,∇FS(wt)

〉
−
(
p+

1

2

)
ηt∥∇FS(wt)∥2 + αη2t

∥∥∥∇gzit (wt)
(
∇̃fz̄jt (vt+1)− β∇fz̄jt (vt+1)

)∥∥∥2
+ αη2t ∥∇FS(wt)∥2

]
≤E
[
1

2
ηt

∥∥∥∥∇gzit (wt)

(
∇̃fz̄jt (vt+1)−

(
p+

1

2

)
β∇fz̄jt (vt+1)

)∥∥∥∥2 + 1

2
ηt ∥∇FS(wt)∥2

−
(
p+

1

2

)
ηt∥∇FS(wt)∥2 + αη2t

∥∥∥∇gzit (wt)
(
∇̃fz̄jt (vt+1)− β∇fz̄jt (vt+1)

)∥∥∥2
+ αη2t ∥∇FS(wt)∥2

]
=
1

2
ηtE

[∥∥∥∥∇gzit (wt)

(
∇̃fz̄jt (vt+1)−

(
p+

1

2

)
β∇fz̄jt (vt+1)

)∥∥∥∥2
]
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+ αη2tE
[∥∥∥∇gzit (wt)

(
∇̃fz̄jt (vt+1)− β∇fz̄jt (vt+1)

)∥∥∥2]+ (αη2t − pηt
)
E
[
∥∇FS(wt)∥2

]
=
1

2
ηtE

∥∥∥∥∥∇gzit (wt)

(
1

b

b∑
l=1

ut,l

µ

(
fz̄jt (vt+1 + µut,l)− fz̄jt (vt+1)

)
−
(
p+

1

2

)
β∇fz̄jt (vt+1)

)∥∥∥∥∥
2


+ αη2tE

∥∥∥∥∥∇gzit (wt)

(
1

b

b∑
l=1

ut,l

µ

(
fz̄jt (vt+1 + µut,l)− fz̄jt (vt+1)

)
− β∇fz̄jt (vt+1)

)∥∥∥∥∥
2


+
(
αη2t − pηt

)
E
[
∥∇FS(wt)∥2

]
=
1

2
ηtE

[∥∥∥∥∥∇gzit (wt)

(
1

b

b∑
l=1

(〈
∇fz̄jt (vt+1), ut,l

〉
ut,l +

(µ
2
(ut,l)

⊤∇2fz̄jt (v)|v=v∗
t+1

ut,l

)
ut,l

)

−
(
p+

1

2

)
β∇fz̄jt (vt+1)

)∥∥∥∥∥
2]

+ αη2tE

[∥∥∥∥∥∇gzit (wt)

(
1

b

b∑
l=1

(〈
∇fz̄jt (vt+1), ut,l

〉
ut,l

+
(µ
2
(ut,l)

⊤∇2fz̄jt (v)|v=v∗
t+1

ut,l

)
ut,l

)
− β∇fz̄jt (vt+1)

)∥∥∥∥∥
2]

+
(
αη2t − pηt

)
E
[
∥∇FS(wt)∥2

]
≤
(
2αη2t + ηt

)
L2
gE

∥∥∥∥∥1b
b∑

l=1

(µ
2
(ut,l)

⊤∇2fz̄jt (v)|v=v∗
t+1

ut,l

)
ut,l

∥∥∥∥∥
2


+ ηtE

∥∥∥∥∥∇gzit (wt)

(
1

b

b∑
l=1

〈
∇fz̄jt (vt+1), ut,l

〉
ut,l −

(
p+

1

2

)
β∇fz̄jt (vt+1)

)∥∥∥∥∥
2


+ 2αη2tE

∥∥∥∥∥∇gzit (wt)

(
1

b

b∑
l=1

〈
∇fz̄jt (vt+1), ut,l

〉
ut,l − β∇fz̄jt (vt+1)

)∥∥∥∥∥
2


+
(
αη2t − pηt

)
E
[
∥∇FS(wt)∥2

]
≤
(
2αη2t + ηt

)
L2
gE

∥∥∥∥∥1b
b∑

l=1

(µ
2
(ut,l)

⊤∇2fz̄jt (v)|v=v∗
t+1

ut,l

)
ut,l

∥∥∥∥∥
2


+ L2
gηtE

∥∥∥∥∥1b
b∑

l=1

〈
∇fz̄jt (vt+1), ut,l

〉
ut,l −

(
p+

1

2

)
β∇fz̄jt (vt+1)

∥∥∥∥∥
2


+ 2αL2
gη

2
tE

∥∥∥∥∥
(
1

b

b∑
l=1

〈
∇fz̄jt (vt+1), ut,l

〉
ut,l − β∇fz̄jt (vt+1)

)∥∥∥∥∥
2


+
(
αη2t − pηt

)
E
[
∥∇FS(wt)∥2

]
≤
(
2αη2t + ηt

)
L2
gE

∥∥∥∥∥1b
b∑

l=1

(µ
2
(ut,l)

⊤∇2fz̄jt (v)|v=v∗
t+1

ut,l

)
ut,l

∥∥∥∥∥
2


+

(
d− 2β + β2

b
2αL2

gη
2
t +

d− (2p+ 1)β +
(
p+ 1

2

)2
β2

b
L2
gηt

)
E
[∥∥∇fz̄jt (vt+1)

∥∥2]
+
(
αη2t − pηt

)
E
[
∥∇FS(wt)∥2

]
≤
(
αη2t − pηt

)
E
[
∥∇FS(wt)∥2

]
+

L2
gµ

2α2
f

4
(2αη2t + ηt)E

[
∥ut,1∥6

]
+

d− 2β + β2

b
2αL2

fL
2
gη

2
t +

d− (2p+ 1)β +
(
p+ 1

2

)2
β2

b
L2
fL

2
gηt
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≤
(
αη2t − pηt

)
E
[
∥∇FS(wt)∥2

]
+

dL2
gµ

2α2
f

4(d+ 6)
(2αη2t + ηt)

+
d− 2β + β2

b
2αL2

fL
2
gη

2
t +

d− (2p+ 1)β +
(
p+ 1

2

)2
β2

b
L2
fL

2
gηt.

Let d1 = d− 2β + β2 and d2 = d− (2p+ 1)β +
(
p+ 1

2

)2
β2 to get that

E [FS(wt+1)− FS(wt)]

≤
(
αη2t − pηt

)
E
[
∥∇FS(wt)∥2

]
+

dL2
gµ

2α2
f

4(d+ 6)
(2αη2t + ηt) +

L2
fL

2
g

b

(
2αd1η

2
t + d2ηt

)
≤− 1

2
pηtE

[
∥∇FS(wt)∥2

]
+

dL2
gµ

2α2
f

4(d+ 6)
(2αη2t + ηt) +

L2
fL

2
g

b

(
2αd1η

2
t + d2ηt

)
≤− pγηtE [FS(wt)− FS(w(S))] +

dL2
gµ

2α2
f

4(d+ 6)
(2αη2t + ηt) +

L2
fL

2
g

b

(
2αd1η

2
t + d2ηt

)
,

where the second inequality is due to ηt =
1

pγt ≤
p

2αt ≤
p
2α when p ≥

√
2α
γ , and the last inequality

is from Equation 8 in Lemma 4. Then,

E [FS(wt+1)− FS(w(S))]

≤ (1− pγηt)E [FS(wt)− FS(w(S))] +
dL2

gµ
2α2

f

4(d+ 6)
(2αη2t + ηt) +

L2
fL

2
g

b

(
2αd1η

2
t + d2ηt

)
=

(
1− 1

t

)
E [FS(wt)− FS(w(S))] +

dL2
gµ

2α2
f

4(d+ 6)

(
2

p2αt2
+

1

pαt

)
+

L2
fL

2
g

b

(
2d1
p2αt2

+
d2
pαt

)
.

We multiply both sides of the above inequality by t to get that

tE [FS(wt+1)− FS(w(S))]

≤(t− 1)E [FS(wt)− FS(w(S))] +
dL2

gµ
2α2

f

4(d+ 6)

(
2

p2αt
+

1

pα

)
+

L2
fL

2
g

b

(
2d1
p2αt

+
d2
pα

)
.

Then

(T − 1)E [FS(wT )− FS(w(S))]

≤(T − 2)E [FS(wT−1)− FS(w(S))] +
dL2

gµ
2α2

f

4(d+ 6)

(
2

p2α(T − 1)
+

1

pα

)
+

L2
fL

2
g

b

(
2d1

p2α(T − 1)
+

d2
pα

)
≤
dL2

gµ
2α2

f

4(d+ 6)

(
T−1∑
t=1

2

p2αt
+

T − 1

pα

)
+

L2
fL

2
g

b

(
T−1∑
t=1

2d1
p2αt

+
d2(T − 1)

pα

)

≤
dL2

gµ
2α2

f

4(d+ 6)

(
2 log(eT )

p2α
+

T − 1

pα

)
+

L2
fL

2
g

b

(
2d1 log(eT )

p2α
+

d2(T − 1)

pα

)
.

That is

E [FS(wT )− FS(w(S))]

≤
dL2

gµ
2α2

f

4(d+ 6)

(
2 log(eT )

p2α(T − 1)
+

1

pα

)
+

L2
fL

2
g

b

(
2d1 log(eT )

p2α(T − 1)
+

d2
pα

)
. (19)

Combining Theorem 1, Equations (16), (18) and (19), we can get that

E [F (wT )− F (w∗)] ≤ O
((

n−1 +m−1
)
T

1
2 log T + n− 1

2 + µ2 + b−1d2

)
.

SCSC: Similar to the stability proof of SCGD except for

∇2f̂zit ,z̄jt (wt)
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=∇2gzit (wt)
1

b

b∑
l=1

ut,l

µ

(
fz̄jt (vt+1 + µut,l)− fz̄jt (vt+1)

)
+∇gzit (wt)

1

b

b∑
l=1

ut,l

µ

(
∇fz̄jt (vt+1 + µut,l)−∇fz̄jt (vt+1)

)
∇g⊤zit (wt).

based on the update of SCSC, we have that, for ηt ≤ 1
2ρt ≤

3
2ρ , ρ = 1

µ

(
αgMf + L2

gM
′
f

)
,

EA

[∥∥∥wT − wi,z
T

∥∥∥] ≤ LgMf (eT )
1
2 log(eT )

ρµn
(20)

and

EA

[∥∥∥wT − wj,z̄
T

∥∥∥] ≤ LgMf (eT )
1
2 log(eT )

ρµm
. (21)

Similar to the optimization proof of SCGD, we also have that

E [FS(wT )− FS(w(S))]

≤
dL2

fµ
2α2

g

4(d+ 6)

(
2 log(eT )

p2α(T − 1)
+

1

pα

)
+

L2
gL

2
f

b

(
2d1 log(eT )

p2α(T − 1)
+

d2
pα

)
, (22)

where d1 = d− 1, d2 = d− (2p+ 1) +
(
p+ 1

2

)2
. Combining Theorem 1, Equations (20), (21) and

(22), we can get that

E [F (wT )− F (w∗)] ≤ O
((

n−1 +m−1
)
T

1
2 log T + n− 1

2 + µ2 + b−1d2

)
.

□

Proof of Corollary 1:

SCGD: 1) EA

[∥∥∥wT − wi,z
T

∥∥∥]: Firstly, when it ̸= i, there holds∥∥∥wt+1 − wi,z
t+1

∥∥∥2
=
∥∥∥wt − wi,z

t − ηt∇̃gzit (wt)∇fz̄jt (vt+1) + ηt∇̃gzit (w
i,z
t )∇fz̄jt (v

i,z
t+1)

∥∥∥2
=
∥∥∥wt − wi,z

t

∥∥∥2 + η2t

∥∥∥∇̃gzit (wt)∇fz̄jt (vt+1)− ∇̃gzit (w
i,z
t )∇fz̄jt (v

i,z
t+1)

∥∥∥2
− 2ηt

〈
wt − wi,z

t , ∇̃gzit (wt)∇fz̄jt (vt+1)− ∇̃gzit (w
i,z
t )∇fz̄jt (v

i,z
t+1)

〉
=
∥∥∥wt − wi,z

t

∥∥∥2 + η2t

∥∥∥∥∥1b
b∑

l=1

ut,l

µ

(
g⊤zit (wt + µut,l)− g⊤zit (wt)

)
∇fz̄jt (vt+1)

− 1

b

b∑
l=1

ut,l

µ

(
gzit (w

i,z
t + µut,l)− gzit (w

i,z
t )
)
∇fz̄jt (v

i,z
t+1)

∥∥∥∥∥
2

− 2ηt

〈
wt − wi,z

t ,
1

b

b∑
l=1

ut,l

µ

(
gzit (wt + µut,l)− gzit (wt)

)
∇fz̄jt (vt+1)

− 1

b

b∑
l=1

ut,l

µ

(
gzit (w

i,z
t + µut,l)− gzit (w

i,z
t )
)
∇fz̄jt (v

i,z
t+1)

〉
.

With Assumption 3, the terms ∇f(vt+1) and g(wt) are both differentiable. Thus,
1
b

∑b
l=1

ut,l

µ (g(wt + µut,l)− g(wt))∇f(vt+1) is also differentiable. It is reasonable to assume

29



that there exists a primitive function f̂(wt) at least whose derivative function ∇f̂(wt) =
1
b

∑b
l=1

ut,l

µ (g(wt + µut,l)− g(wt))∇f(vt+1). Then∥∥∥wt+1 − wi,z
t+1

∥∥∥2
=
∥∥∥wt − wi,z

t

∥∥∥2 + η2t

∥∥∥∇f̂zit ,z̄jt (wt)∇f̂zit z̄jt (w
i,z
t )
∥∥∥2

− 2ηt

〈
wt − wi,z

t ,∇f̂zit ,z̄jt (wt)−∇f̂zit z̄jt (w
i,z
t )
〉
. (23)

Taking derivative of ∇f̂zit ,z̄jt (wt) over wt, we get that

∇2f̂zit ,z̄jt (wt)

=
1

b

b∑
l=1

ut,l

µ

(
∇gzit (wt + µut,l)−∇gzit (wt)

)
∇fz̄jt (vt+1)

+ β
1

b

b∑
l=1

ut,l

µ

(
gzit (wt + µut,l)− gzit (wt)

)
∇2fz̄jt (vt+1)∇g⊤zit (wt).

Thus, ∥∥∥∇2f̂zit ,z̄jt (wt)
∥∥∥

=

∥∥∥∥∥1b
b∑

l=1

ut,l

µ

(
∇gzit (wt + µut,l)−∇gzit (wt)

)
∇fz̄jt (vt+1)

+ β
1

b

b∑
l=1

ut,l

µ

(
gzit (wt + µut,l)− gzit (wt)

)
∇2fz̄jt (vt+1)∇g⊤zit (wt)

∥∥∥∥∥
≤

∥∥∥∥∥1b
b∑

l=1

ut,l

µ

(
∇gzit (wt + µut,l)−∇gzit (wt)

)
∇fz̄jt (vt+1)

∥∥∥∥∥
+

∥∥∥∥∥β 1b
b∑

l=1

ut,l

µ

(
gzit (wt + µut,l)− gzit (wt)

)
∇2fz̄jt (vt+1)∇g⊤zit (wt)

∥∥∥∥∥
≤ 1

µ

(
βLgαfMg +M ′

gLf

)
.

Let ρ = 1
µ

(
βLgαfMg +M ′

gLf

)
, then f̂zit ,z̄jt (wt) is ρ-smooth. And we can know that

λmin

(
∇2f̂zit ,z̄jt (wt)

)
≥ −

∥∥∥∇2f̂zit ,z̄jt (wt)
∥∥∥ ≥ −ρ. According to Lemma 3, we can get that〈

wt − wi,z
t ,∇f̂zit ,z̄jt (wt)−∇f̂zit z̄jt (w

i,z
t )
〉

≥2ηt

(
1− ρηt

2

)∥∥∥∇f̂zit ,z̄jt (wt)−∇f̂zit z̄jt (w
i,z
t )
∥∥∥2 − ρ

∥∥∥wt − wi,z
t −∇f̂zit ,z̄jt (wt) +∇f̂zit z̄jt (w

i,z
t )
∥∥∥2

=2ηt

(
1− ρηt

2

)∥∥∥∇f̂zit ,z̄jt (wt)−∇f̂zit z̄jt (w
i,z
t )
∥∥∥2 − ρ

∥∥∥wt+1 − wi,z
t+1

∥∥∥2 .
Now, plugging the above inequality back into Equation (23) yields∥∥∥wt+1 − wi,z

t+1

∥∥∥2
≤
∥∥∥wt − wi,z

t

∥∥∥2 + (η2t − 4η2t

(
1− ρηt

2

))∥∥∥∇f̂zit ,z̄jt (wt)∇f̂zit z̄jt (w
i,z
t )
∥∥∥2 + 2ρηt

∥∥∥wt+1 − wi,z
t+1

∥∥∥2
≤
∥∥∥wt − wi,z

t

∥∥∥2 + 2ρηt

∥∥∥wt+1 − wi,z
t+1

∥∥∥2 ,
where the second inequality is due to ηt ≤ 1

2ρt ≤
3
2ρ . The above inequality implies∥∥∥wt+1 − wi,z

t+1

∥∥∥ ≤ 1√
1− 2ρηt

∥∥∥wt − wi,z
t

∥∥∥ ,
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Secondly, when it = i, there holds∥∥∥wt+1 − wi,z
t+1

∥∥∥
=
∥∥∥wt − wi,z

t − ηt∇̃gzit (wt)∇fz̄jt (vt+1) + ηt∇̃gz′
it
(wi,z

t )∇fz̄jt (v
i,z
t+1)

∥∥∥
≤
∥∥∥wt − wi,z

t

∥∥∥+ ηt

∥∥∥∇̃gzit (wt)∇fz̄jt (vt+1)− ∇̃gz′
it
(wi,z

t )∇fz̄jt (v
i,z
t+1)

∥∥∥
≤
∥∥∥wt − wi,z

t

∥∥∥+ 2ηt

∥∥∥∇̃gzit (wt)
∥∥∥∥∥∇fz̄jt (vt+1)

∥∥
≤
∥∥∥wt − wi,z

t

∥∥∥+ 2LfMg

µ
ηt.

Combining the above two cases, we can get that∥∥∥wt+1 − wi,z
t+1

∥∥∥ ≤ 1√
1− 2ρηt

∥∥∥wt − wi,z
t

∥∥∥ I[it ̸= i] +

(∥∥∥wt − wi,z
t

∥∥∥+ 2LfMg

µ
ηt

)
I[it = i].

Taking expectation over it,

Eit

[∥∥∥wt+1 − wi,z
t+1

∥∥∥]
≤ 1√

1− 2ρηt

∥∥∥wt − wi,z
t

∥∥∥Eit [I[it ̸= i]] +

(∥∥∥wt − wi,z
t

∥∥∥+ 2LfMg

µ
ηt

)
Eit [I[it = i]]

≤ 1√
1− 2ρηt

∥∥∥wt − wi,z
t

∥∥∥+ 2LfMg

µn
ηt.

Then, taking expectation over A and taking summation from t = 1 to T − 1 to get that

EA

[∥∥∥wT − wi,z
T

∥∥∥] ≤ 1√
1− 2ρηt

EA

[∥∥∥wT−1 − wi,z
T−1

∥∥∥]+ 2LfMg

µn
ηt

≤
T−1∑
t=1

(
T−1∏

t′=t+1

1√
1− 2ρηt′

)
2LfMg

µn
ηt

≤
T−1∑
t=1

(
T−1∏

t′=t+1

√
1 +

1

t′ − 1

)
LfMg

ρµn

1

t

≤
T−1∑
t=1

(
T−1∏
t′=2

√
1 +

1

t′ − 1

)
LfMg

ρµn

1

t

≤

√√√√T−1∏
t′=2

exp

{
1

t′ − 1

} T−1∑
t=1

LfMg

ρµn

1

t

≤

√√√√exp

{
T−1∑
t′=2

1

t′ − 1

}
LfMg

ρµn

T−1∑
t=1

1

t

≤LfMg(eT )
1
2 log(eT )

ρµn
, (24)

where the fourth inequality is from ex ≥ 1 + x.

2) EA

[∥∥∥wT − wj,z̄
T

∥∥∥]: Firstly, when jt ̸= j, there holds∥∥∥wt+1 − wj,z̄
t+1

∥∥∥2
=
∥∥∥wt − wj,z̄

t − ηt∇̃gzit (wt)∇fz̄jt (vt+1) + ηt∇̃gzit (w
j,z̄
t )∇fz̄jt (v

j,z̄
t+1)

∥∥∥2
=
∥∥∥wt − wj,z̄

t

∥∥∥2 + η2t

∥∥∥∇̃gzit (wt)∇fz̄jt (vt+1)− ∇̃gzit (w
j,z̄
t )∇fz̄jt (v

j,z̄
t+1)

∥∥∥2
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− 2ηt

〈
wt − wj,z̄

t , ∇̃gzit (wt)∇fz̄jt (vt+1)− ∇̃gzit (w
j,z̄
t )∇fz̄jt (v

j,z̄
t+1)

〉
=
∥∥∥wt − wj,z̄

t

∥∥∥2 + η2t

∥∥∥∥∥1b
b∑

l=1

ut,l

µ

(
gzit (wt + µut,l)− gzit (wt)

)
∇fz̄jt (vt+1)

− 1

b

b∑
l=1

ut,l

µ

(
gzit (w

j,z̄
t + µut,l)− gzit (w

j,z̄
t )
)
∇fz̄jt (v

j,z̄
t+1)

∥∥∥∥∥
2

− 2ηt

〈
wt − wj,z̄

t ,
1

b

b∑
l=1

ut,l

µ

(
gzit (wt + µut,l)− gzit (wt)

)
∇fz̄jt (vt+1)

− 1

b

b∑
l=1

ut,l

µ

(
gzit (w

j,z̄
t + µut,l)− gzit (w

j,z̄
t )
)
∇fz̄jt (v

j,z̄
t+1)

〉
.

With Assumption 3, the terms ∇f(vt+1) and g(wt) are both differentiable. Thus,
1
b

∑b
l=1

ut,l

µ (g(wt + µut,l)− g(wt))∇f(vt+1) is also differentiable. It is reasonable to assume

that there exists a primitive function f̂(wt) at least whose derivative function ∇f̂(wt) =
1
b

∑b
l=1

ut,l

µ (g(wt + µut,l)− g(wt))∇f(vt+1). Then∥∥∥wt+1 − wj,z̄
t+1

∥∥∥2
=
∥∥∥wt − wj,z̄

t

∥∥∥2 + η2t

∥∥∥∇f̂zit ,z̄jt (wt)∇f̂zit z̄jt (w
j,z̄
t )
∥∥∥2

− 2ηt

〈
wt − wj,z̄

t ,∇f̂zit ,z̄jt (wt)−∇f̂zit z̄jt (w
j,z̄
t )
〉
. (25)

Taking derivative of ∇f̂zit ,z̄jt (wt) over wt, we get that

∇2f̂zit ,z̄jt (wt)

=
1

b

b∑
l=1

ut,l

µ

(
∇gzit (wt + µut,l)−∇gzit (wt)

)
∇fz̄jt (vt+1)

+ β
1

b

b∑
l=1

ut,l

µ

(
gzit (wt + µut,l)− gzit (wt)

)
∇2fz̄jt (vt+1)∇g⊤zit (wt).

Thus, ∥∥∥∇2f̂zit ,z̄jt (wt)
∥∥∥

=

∥∥∥∥∥1b
b∑

l=1

ut,l

µ

(
∇gzit (wt + µut,l)−∇gzit (wt)

)
∇fz̄jt (vt+1)

+ β
1

b

b∑
l=1

ut,l

µ

(
gzit (wt + µut,l)− gzit (wt)

)
∇2fz̄jt (vt+1)∇g⊤zit (wt)

∥∥∥∥∥
≤

∥∥∥∥∥1b
b∑

l=1

ut,l

µ

(
∇gzit (wt + µut,l)−∇gzit (wt)

)
∇fz̄jt (vt+1)

∥∥∥∥∥
+

∥∥∥∥∥β 1b
b∑

l=1

ut,l

µ

(
gzit (wt + µut,l)− gzit (wt)

)
∇2fz̄jt (vt+1)∇g⊤zit (wt)

∥∥∥∥∥
≤ 1

µ

(
βLgαfMg +M ′

gLf

)
.

Let ρ = 1
µ

(
βLgαfMg +M ′

gLf

)
, then f̂zit ,z̄jt (wt) is ρ-smooth. And we can know that

λmin

(
∇2f̂zit ,z̄jt (wt)

)
≥ −

∥∥∥∇2f̂zit ,z̄jt (wt)
∥∥∥ ≥ −ρ. According to Lemma 3, we can get that〈

wt − wj,z̄
t ,∇f̂zit ,z̄jt (wt)−∇f̂zit z̄jt (w

j,z̄
t )
〉
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≥2ηt

(
1− ρηt

2

)∥∥∥∇f̂zit ,z̄jt (wt)−∇f̂zit z̄jt (w
j,z̄
t )
∥∥∥2 − ρ

∥∥∥wt − wj,z̄
t −∇f̂zit ,z̄jt (wt) +∇f̂zit z̄jt (w

j,z̄
t )
∥∥∥2

=2ηt

(
1− ρηt

2

)∥∥∥∇f̂zit ,z̄jt (wt)−∇f̂zit z̄jt (w
j,z̄
t )
∥∥∥2 − ρ

∥∥∥wt+1 − wj,z̄
t+1

∥∥∥2 .
Now, plugging the above inequality back into Equation (25) yields∥∥∥wt+1 − wj,z̄

t+1

∥∥∥2
≤
∥∥∥wt − wj,z̄

t

∥∥∥2 + (η2t − 4η2t

(
1− ρηt

2

))∥∥∥∇f̂zit ,z̄jt (wt)∇f̂zit z̄jt (w
j,z̄
t )
∥∥∥2 + 2ρηt

∥∥∥wt+1 − wj,z̄
t+1

∥∥∥2
≤
∥∥∥wt − wj,z̄

t

∥∥∥2 + 2ρηt

∥∥∥wt+1 − wj,z̄
t+1

∥∥∥2 ,
where the second inequality is due to ηt ≤ 1

2ρt ≤
3
2ρ . The above inequality implies∥∥∥wt+1 − wj,z̄

t+1

∥∥∥ ≤ 1√
1− 2ρηt

∥∥∥wt − wj,z̄
t

∥∥∥ ,
Secondly, when jt = j, there holds∥∥∥wt+1 − wj,z̄

t+1

∥∥∥
=
∥∥∥wt − wj,z̄

t − ηt∇̃gzit (wt)∇fz̄jt (vt+1) + ηt∇̃gzit (w
j,z̄
t )∇fz̄′

jt
(vj,z̄t+1)

∥∥∥
≤
∥∥∥wt − wj,z̄

t

∥∥∥+ ηt

∥∥∥∇̃gzit (wt)∇fz̄jt (vt+1)− ∇̃gzit (w
j,z̄
t )∇fz̄′

jt
(vj,z̄t+1)

∥∥∥
≤
∥∥∥wt − wj,z̄

t

∥∥∥+ 2ηt

∥∥∥∇̃gzit (wt)
∥∥∥∥∥∇fz̄jt (vt+1)

∥∥
≤
∥∥∥wt − wj,z̄

t

∥∥∥+ 2LfMg

µ
ηt.

Combining the above two cases, we can get that∥∥∥wt+1 − wj,z̄
t+1

∥∥∥ ≤ 1√
1− 2ρηt

∥∥∥wt − wj,z̄
t

∥∥∥ I[jt ̸= j] +

(∥∥∥wt − wj,z̄
t

∥∥∥+ 2LfMg

µ
ηt

)
I[jt = j].

Taking expectation over it,

Eit

[∥∥∥wt+1 − wj,z̄
t+1

∥∥∥]
≤ 1√

1− 2ρηt

∥∥∥wt − wj,z̄
t

∥∥∥Eit [I[jt ̸= j]] +

(∥∥∥wt − wj,z̄
t

∥∥∥+ 2LfMg

µ
ηt

)
Eit [I[jt = j]]

≤ 1√
1− 2ρηt

∥∥∥wt − wj,z̄
t

∥∥∥+ 2LfMg

µm
ηt.

Then, taking expectation over A and taking summation from t = 1 to T − 1 to get that

EA

[∥∥∥wT − wj,z̄
T

∥∥∥] ≤ 1√
1− 2ρηt

EA

[∥∥∥wT−1 − wj,z̄
T−1

∥∥∥]+ 2LfMg

µm
ηt

≤
T−1∑
t=1

(
T−1∏

t′=t+1

1√
1− 2ρηt′

)
2LfMg

µm
ηt

≤
T−1∑
t=1

(
T−1∏

t′=t+1

√
1 +

1

t′ − 1

)
LfMg

ρµm

1

t

≤
T−1∑
t=1

(
T−1∏
t′=2

√
1 +

1

t′ − 1

)
LfMg

ρµm

1

t

≤

√√√√T−1∏
t′=2

exp

{
1

t′ − 1

} T−1∑
t=1

LfMg

ρµm

1

t
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≤

√√√√exp

{
T−1∑
t′=2

1

t′ − 1

}
LfMg

ρµm

T−1∑
t=1

1

t

≤LfMg(eT )
1
2 log(eT )

ρµm
, (26)

where the fourth inequality is from ex ≥ 1 + x.

Next, we will study the optimization bound. According to Equation (6) in Lemma 4, ∇f(wt) =
β∇g(wt)∇f(vt+1), second-order Taylor expansion, Lemmas 5 and 6, we provide that, for any
p ≥

√
2,

E [FS(wt+1)− FS(wt)]

≤E
[
⟨wt+1 − wt,∇FS(wt)⟩+

1

2
α ∥wt+1 − wt∥2

]
=E

[〈
−ηt∇̃gzit (wt)∇fz̄jt (vt+1),∇FS(wt)

〉
+

1

2
α
∥∥∥ηt∇̃gzit (wt)∇fz̄jt (vt+1)

∥∥∥2]
=E
[〈

− ηt

(
∇̃gzit (wt)−

(
p+

1

2

)
β∇gzit (wt) +

(
p+

1

2

)
β∇gzit (wt)

)
∇fz̄jt (vt+1),

∇FS(wt)

〉
+

1

2
α
∥∥∥ηt (∇̃gzit (wt)− β∇gzit (wt) + β∇gzit (wt)

)
∇fz̄jt (vt+1)

∥∥∥2 ]
≤E
[
− ηt

〈(
∇̃gzit (wt)−

(
p+

1

2

)
β∇gzit (wt)

)
∇fz̄jt (vt+1),∇FS(wt)

〉
−
(
p+

1

2

)
ηt∥∇FS(wt)∥2 + αη2t

∥∥∥(∇̃gzit (wt)− β∇gzit (wt)
)
∇fz̄jt (vt+1)

∥∥∥2
+ αη2t ∥∇FS(wt)∥2

]
≤E
[
1

2
ηt

∥∥∥∥(∇̃gzit (wt)−
(
p+

1

2

)
β∇gzit (wt)

)
∇fz̄jt (vt+1)

∥∥∥∥2 + 1

2
ηt ∥∇FS(wt)∥2

−
(
p+

1

2

)
ηt∥∇FS(wt)∥2 + αη2t

∥∥∥(∇̃gzit (wt)− β∇gzit (wt)
)
∇fz̄jt (vt+1)

∥∥∥2
+ αη2t ∥∇FS(wt)∥2

]
=
1

2
ηtE

[∥∥∥∥(∇̃gzit (wt)−
(
p+

1

2

)
β∇gzit (wt)

)
∇fz̄jt (vt+1)

∥∥∥∥2
]

+ αη2tE
[∥∥∥(∇̃gzit (wt)− β∇gzit (wt)

)
∇fz̄jt (vt+1)

∥∥∥2]+ (αη2t − pηt
)
E
[
∥∇FS(wt)∥2

]
=
1

2
ηtE

∥∥∥∥∥
(
1

b

b∑
l=1

ut,l

µ

(
gzit (wt + µut,l)− gzit (wt)

)
−
(
p+

1

2

)
β∇gzit (wt)

)
∇fz̄jt (vt+1)

∥∥∥∥∥
2


+ αη2tE

∥∥∥∥∥
(
1

b

b∑
l=1

ut,l

µ

(
gzit (wt + µut,l)− gzit (wt)

)
− β∇gzit (wt)

)
∇fz̄jt (vt+1)

∥∥∥∥∥
2


+
(
αη2t − pηt

)
E
[
∥∇FS(wt)∥2

]
=
1

2
ηtE

[∥∥∥∥∥
(
1

b

b∑
l=1

(〈
∇gzit (wt), ut,l

〉
ut,l +

(µ
2
(ut,l)

⊤∇2gzit (w)|w=w∗
t
ut,l

)
ut,l

)

−
(
p+

1

2

)
β∇gzit (wt)

)
∇fz̄jt (vt+1)

∥∥∥∥∥
2]

+ αη2tE

[∥∥∥∥∥
(
1

b

b∑
l=1

(〈
∇gzit (wt), ut,l

〉
ut,l
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+
(µ
2
(ut,l)

⊤∇2gzit (w)|w=w∗
t
ut,l

)
ut,l

)
− β∇gzit (vt+1)

)
∇fz̄jt (vt+1)

∥∥∥∥∥
2]

+
(
αη2t − pηt

)
E
[
∥∇FS(wt)∥2

]
≤
(
2αη2t + ηt

)
L2
fE

[∥∥∥∥∥1b
b∑

l=1

(µ
2
(ut,l)

⊤∇2gzit (w)|w=w∗
t
ut,l

)
ut,l

∥∥∥∥∥
2 ]

+ L2
fηtE

[∥∥∥∥∥1b
b∑

l=1

〈
∇gzit (wt), ut,l

〉
ut,l −

(
p+

1

2

)
β∇gzit (wt)

∥∥∥∥∥
2 ]

+ 2αL2
fη

2
tE

[∥∥∥∥∥1b
b∑

l=1

〈
∇gzit (wt), ut,l

〉
ut,l − β∇gzit (wt)

∥∥∥∥∥
2 ]

+
(
αη2t − pηt

)
E
[
∥∇FS(wt)∥2

]
≤
(
αη2t − pηt

)
E
[
∥∇FS(wt)∥2

]
+

L2
fµ

2α2
g

4
(2αη2t + ηt)E

[
∥ut,1∥6

]
+

(
d− 2β + β2

b
2αL2

fη
2
t +

d− (2p+ 1)β +
(
p+ 1

2

)2
β2

b
L2
fηt

)
E
[∥∥∇gzit (wt)

∥∥2]
≤
(
αη2t − pηt

)
E
[
∥∇FS(wt)∥2

]
+

dL2
fµ

2α2
g

4(d+ 6)
(2αη2t + ηt)

+
d− 2β + β2

b
2αL2

gL
2
fη

2
t +

d− (2p+ 1)β +
(
p+ 1

2

)2
β2

b
L2
gL

2
fηt.

Let d1 = d− 2β + β2 and d2 = d− (2p+ 1)β +
(
p+ 1

2

)2
β2 to get that

E [FS(wt+1)− FS(wt)]

≤
(
αη2t − pηt

)
E
[
∥∇FS(wt)∥2

]
+

dL2
fµ

2α2
g

4(d+ 6)
(2αη2t + ηt) +

L2
gL

2
f

b

(
2αd1η

2
t + d2ηt

)
≤− 1

2
pηtE

[
∥∇FS(wt)∥2

]
+

dL2
fµ

2α2
g

4(d+ 6)
(2αη2t + ηt) +

L2
gL

2
f

b

(
2αd1η

2
t + d2ηt

)
≤− pγηtE [FS(wt)− FS(w(S))] +

dL2
fµ

2α2
g

4(d+ 6)
(2αη2t + ηt) +

L2
gL

2
f

b

(
2αd1η

2
t + d2ηt

)
,

where the second inequality is due to ηt =
1

pγt ≤
p

2αt ≤
p
2α when p ≥

√
2α
γ , and the last inequality

is from Equation 8 in Lemma 4. Then,

E [FS(wt+1)− FS(w(S))]

≤ (1− pγηt)E [FS(wt)− FS(w(S))] +
dL2

fµ
2α2

g

4(d+ 6)
(2αη2t + ηt) +

L2
gL

2
f

b

(
2αd1η

2
t + d2ηt

)
=

(
1− 1

t

)
E [FS(wt)− FS(w(S))] +

dL2
fµ

2α2
g

4(d+ 6)

(
2

p2αt2
+

1

pαt

)
+

L2
gL

2
f

b

(
2d1
p2αt2

+
d2
pαt

)
.

We multiply both sides of the above inequality by t to get that

tE [FS(wt+1)− FS(w(S))]

≤(t− 1)E [FS(wt)− FS(w(S))] +
dL2

fµ
2α2

g

4(d+ 6)

(
2

p2αt
+

1

pα

)
+

L2
gL

2
f

b

(
2d1
p2αt

+
d2
pα

)
.

Then

(T − 1)E [FS(wT )− FS(w(S))]
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≤(T − 2)E [FS(wT−1)− FS(w(S))] +
dL2

fµ
2α2

g

4(d+ 6)

(
2

p2α(T − 1)
+

1

pα

)
+

L2
gL

2
f

b

(
2d1

p2α(T − 1)
+

d2
pα

)
≤
dL2

fµ
2α2

g

4(d+ 6)

(
T−1∑
t=1

2

p2αt
+

T − 1

pα

)
+

L2
gL

2
f

b

(
T−1∑
t=1

2d1
p2αt

+
d2(T − 1)

pα

)

≤
dL2

fµ
2α2

g

4(d+ 6)

(
2 log(eT )

p2α
+

T − 1

pα

)
+

L2
gL

2
f

b

(
2d1 log(eT )

p2α
+

d2(T − 1)

pα

)
.

That is

E [FS(wT )− FS(w(S))]

≤
dL2

fµ
2α2

g

4(d+ 6)

(
2 log(eT )

p2α(T − 1)
+

1

pα

)
+

L2
gL

2
f

b

(
2d1 log(eT )

p2α(T − 1)
+

d2
pα

)
. (27)

Combining Theorem 1, Equations (24), (26) and (27), we can get that

E [F (wT )− F (w∗)] ≤ O
((

n−1 +m−1
)
T

1
2 log T + n− 1

2 + µ2 + b−1d2

)
.

SCSC: Similar to the stability proof of SCGD except for

∇2f̂zit ,z̄jt (wt)

=
1

b

b∑
l=1

ut,l

µ

(
∇gzit (wt + µut,l)−∇gzit (wt)

)
∇fz̄jt (vt+1)

+
1

b

b∑
l=1

ut,l

µ

(
gzit (wt + µut,l)− gzit (wt)

)
∇2fz̄jt (vt+1)∇g⊤zit (wt).

based on the update of SCSC, we have that, for ηt ≤ 1
2ρt ≤

3
2ρ , ρ = 1

µ

(
LgαfMg +M ′

gLf

)
,

EA

[∥∥∥wT − wi,z
T

∥∥∥] ≤ LfMg(eT )
1
2 log(eT )

ρµn
(28)

and

EA

[∥∥∥wT − wj,z̄
T

∥∥∥] ≤ LfMg(eT )
1
2 log(eT )

ρµm
. (29)

Similar to the optimization proof of SCGD, we also have that

E [FS(wT )− FS(w(S))]

≤
dL2

fµ
2α2

g

4(d+ 6)

(
2 log(eT )

p2α(T − 1)
+

1

pα

)
+

L2
gL

2
f

b

(
2d1 log(eT )

p2α(T − 1)
+

d2
pα

)
, (30)

where d1 = d− 1, d2 = d− (2p+ 1) +
(
p+ 1

2

)2
. Combining Theorem 1, Equations (28), (29) and

(30), we can get that

E [F (wT )− F (w∗)] ≤ O
((

n−1 +m−1
)
T

1
2 log T + n− 1

2 + µ2 + b−1d2

)
.

□

Proof of Corollary 2:

SCGD: 1) EA

[∥∥∥wT − wi,z
T

∥∥∥]: Firstly, when it ̸= i, there holds∥∥∥wt+1 − wi,z
t+1

∥∥∥2
=
∥∥∥wt − wi,z

t − ηt∇̃gzit (wt)∇̃fz̄jt (vt+1) + ηt∇̃gzit (w
i,z
t )∇̃fz̄jt (v

i,z
t+1)

∥∥∥2
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=
∥∥∥wt − wi,z

t

∥∥∥2 + η2t

∥∥∥∇̃gzit (wt)∇̃fz̄jt (vt+1)− ∇̃gzit (w
i,z
t )∇̃fz̄jt (v

i,z
t+1)

∥∥∥2
− 2ηt

〈
wt − wi,z

t , ∇̃gzit (wt)∇̃fz̄jt (vt+1)− ∇̃gzit (w
i,z
t )∇̃fz̄jt (v

i,z
t+1)

〉
=
∥∥∥wt − wi,z

t

∥∥∥2 + η2t

∥∥∥∥∥ 1

b2

b∑
l=1

ut,l

µ

(
fz̄jt (vt+1 + µut,l)− fz̄jt (vt+1)

)
b∑

l=1

ut,l

µ

(
gzit (wt + µut,l)− gzit (wt)

)
− 1

b2

b∑
l=1

ut,l

µ

(
fz̄jt (v

i,z
t+1 + µut,l)− fz̄jt (v

i,z
t+1)

)
b∑

l=1

ut,l

µ

(
gzit (w

i,z
t + µut,l)− gzit (w

i,z
t )
)∥∥∥∥∥

2

− 2ηt

〈
wt − wi,z

t ,
1

b2

b∑
l=1

ut,l

µ

(
fz̄jt (vt+1 + µut,l)− fz̄jt (vt+1)

) b∑
l=1

ut,l

µ

(
gzit (wt + µut,l)− gzit (wt)

)
− 1

b2

b∑
l=1

ut,l

µ

(
fz̄jt (v

i,z
t+1 + µut,l)− fz̄jt (v

i,z
t+1)

) b∑
l=1

ut,l

µ

(
gzit (w

i,z
t + µut,l)− gzit (w

i,z
t )
)〉

.

With Assumption 3, the terms f(vt+1) and g(wt) are both differentiable. Thus,
1
b2

∑b
l=1

ut,l

µ (f(vt+1 + µut,l)− f(vt+1))
∑b

l=1
ut,l

µ (g(wt + µut,l)− g(wt)) is also differentiable.

It is reasonable to assume that there exists a primitive function f̂(wt) at least whose derivative
function is 1

b2

∑b
l=1

ut,l

µ (f(vt+1 + µut,l)− f(vt+1))
∑b

l=1
ut,l

µ (g(wt + µut,l)− g(wt)). Then∥∥∥wt+1 − wi,z
t+1

∥∥∥2
=
∥∥∥wt − wi,z

t

∥∥∥2 + η2t

∥∥∥∇f̂zit ,z̄jt (wt)∇f̂zit z̄jt (w
i,z
t )
∥∥∥2

− 2ηt

〈
wt − wi,z

t ,∇f̂zit ,z̄jt (wt)−∇f̂zit z̄jt (w
i,z
t )
〉
. (31)

Taking derivative of ∇f̂zit ,z̄jt (wt) over wt, we get that

∇2f̂zit ,z̄jt (wt)

=
β

b2

b∑
l=1

ut,l

µ
∇gzit (wt)

(
∇fz̄jt (vt+1 + µut,l)−∇fz̄jt (vt+1)

) b∑
l=1

ut,l

µ

(
gzit (wt + µut,l)− gzit (wt)

)
+

1

b2

b∑
l=1

ut,l

µ

(
fz̄jt (vt+1 + µut,l)− fz̄jt (vt+1)

) b∑
l=1

ut,l

µ

(
∇gzit (wt + µut,l)−∇gzit (wt)

)
.

Thus,∥∥∥∇2f̂zit ,z̄jt (wt)
∥∥∥

=

∥∥∥∥∥ βb2
b∑

l=1

ut,l

µ
∇gzit (wt)

(
∇fz̄jt (vt+1 + µut,l)−∇fz̄jt (vt+1)

) b∑
l=1

ut,l

µ

(
gzit (wt + µut,l)− gzit (wt)

)
+

1

b2

b∑
l=1

ut,l

µ

(
fz̄jt (vt+1 + µut,l)− fz̄jt (vt+1)

) b∑
l=1

ut,l

µ

(
∇gzit (wt + µut,l)−∇gzit (wt)

) ∥∥∥∥∥
≤

∥∥∥∥∥ βb2
b∑

l=1

ut,l

µ
∇gzit (wt)

(
∇fz̄jt (vt+1 + µut,l)−∇fz̄jt (vt+1)

) b∑
l=1

ut,l

µ

(
gzit (wt + µut,l)− gzit (wt)

)∥∥∥∥∥
+

∥∥∥∥∥ 1

b2

b∑
l=1

ut,l

µ

(
fz̄jt (vt+1 + µut,l)− fz̄jt (vt+1)

) b∑
l=1

ut,l

µ

(
∇gzit (wt + µut,l)−∇gzit (wt)

)∥∥∥∥∥
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≤ 1

µ2

(
βLgM

′
fMg +MfM

′
g

)
.

Let ρ = 1
µ2

(
βLgM

′
fMg +MfM

′
g

)
, then f̂zit ,z̄jt (wt) is ρ-smooth. And we can know that

λmin

(
∇2f̂zit ,z̄jt (wt)

)
≥ −

∥∥∥∇2f̂zit ,z̄jt (wt)
∥∥∥ ≥ −ρ. According to Lemma 3, we can get that〈

wt − wi,z
t ,∇f̂zit ,z̄jt (wt)−∇f̂zit z̄jt (w

i,z
t )
〉

≥2ηt

(
1− ρηt

2

)∥∥∥∇f̂zit ,z̄jt (wt)−∇f̂zit z̄jt (w
i,z
t )
∥∥∥2 − ρ

∥∥∥wt − wi,z
t −∇f̂zit ,z̄jt (wt) +∇f̂zit z̄jt (w

i,z
t )
∥∥∥2

=2ηt

(
1− ρηt

2

)∥∥∥∇f̂zit ,z̄jt (wt)−∇f̂zit z̄jt (w
i,z
t )
∥∥∥2 − ρ

∥∥∥wt+1 − wi,z
t+1

∥∥∥2 .
Now, plugging the above inequality back into Equation (31) yields∥∥∥wt+1 − wi,z

t+1

∥∥∥2
≤
∥∥∥wt − wi,z

t

∥∥∥2 + (η2t − 4η2t

(
1− ρηt

2

))∥∥∥∇f̂zit ,z̄jt (wt)∇f̂zit z̄jt (w
i,z
t )
∥∥∥2 + 2ρηt

∥∥∥wt+1 − wi,z
t+1

∥∥∥2
≤
∥∥∥wt − wi,z

t

∥∥∥2 + 2ρηt

∥∥∥wt+1 − wi,z
t+1

∥∥∥2 ,
where the second inequality is due to ηt ≤ 1

2ρt ≤
3
2ρ . The above inequality implies∥∥∥wt+1 − wi,z

t+1

∥∥∥ ≤ 1√
1− 2ρηt

∥∥∥wt − wi,z
t

∥∥∥ ,
Secondly, when it = i, there holds∥∥∥wt+1 − wi,z

t+1

∥∥∥
=
∥∥∥wt − wi,z

t − ηt∇̃gzit (wt)∇̃fz̄jt (vt+1) + ηt∇̃gz′
it
(wi,z

t )∇̃fz̄jt (v
i,z
t+1)

∥∥∥
≤
∥∥∥wt − wi,z

t

∥∥∥+ ηt

∥∥∥∇̃gzit (wt)∇̃fz̄jt (vt+1)− ∇̃gz′
it
(wi,z

t )∇̃fz̄jt (v
i,z
t+1)

∥∥∥
≤
∥∥∥wt − wi,z

t

∥∥∥+ 2ηt

∥∥∥∇̃gzit (wt)
∥∥∥∥∥∥∇̃fz̄jt (vt+1)

∥∥∥
≤
∥∥∥wt − wi,z

t

∥∥∥+ 2MfMg

µ2
ηt.

Combining the above two cases, we can get that∥∥∥wt+1 − wi,z
t+1

∥∥∥ ≤ 1√
1− 2ρηt

∥∥∥wt − wi,z
t

∥∥∥ I[it ̸= i] +

(∥∥∥wt − wi,z
t

∥∥∥+ 2MfMg

µ2
ηt

)
I[it = i].

Taking expectation over it,

Eit

[∥∥∥wt+1 − wi,z
t+1

∥∥∥]
≤ 1√

1− 2ρηt

∥∥∥wt − wi,z
t

∥∥∥Eit [I[it ̸= i]] +

(∥∥∥wt − wi,z
t

∥∥∥+ 2MfMg

µ2
ηt

)
Eit [I[it = i]]

≤ 1√
1− 2ρηt

∥∥∥wt − wi,z
t

∥∥∥+ 2MfMg

µ2n
ηt.

Then, taking expectation over A and taking summation from t = 1 to T − 1 to get that

EA

[∥∥∥wT − wi,z
T

∥∥∥] ≤ 1√
1− 2ρηt

EA

[∥∥∥wT−1 − wi,z
T−1

∥∥∥]+ 2MfMg

µ2n
ηt

≤
T−1∑
t=1

(
T−1∏

t′=t+1

1√
1− 2ρηt′

)
2MfMg

µ2n
ηt
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≤
T−1∑
t=1

(
T−1∏

t′=t+1

√
1 +

1

t′ − 1

)
MfMg

ρµ2n

1

t

≤
T−1∑
t=1

(
T−1∏
t′=2

√
1 +

1

t′ − 1

)
MfMg

ρµ2n

1

t

≤

√√√√T−1∏
t′=2

exp

{
1

t′ − 1

} T−1∑
t=1

MfMg

ρµ2n

1

t

≤

√√√√exp

{
T−1∑
t′=2

1

t′ − 1

}
MfMg

ρµ2n

T−1∑
t=1

1

t

≤MfMg(eT )
1
2 log(eT )

ρµ2n
, (32)

where the fourth inequality is from ex ≥ 1 + x.

2) EA

[∥∥∥wT − wj,z̄
T

∥∥∥]: Firstly, when jt ̸= j, there holds∥∥∥wt+1 − wj,z̄
t+1

∥∥∥2
=
∥∥∥wt − wj,z̄

t − ηt∇̃gzit (wt)∇̃fz̄jt (vt+1) + ηt∇̃gzit (w
j,z̄
t )∇̃fz̄jt (v

j,z̄
t+1)

∥∥∥2
=
∥∥∥wt − wj,z̄

t

∥∥∥2 + η2t

∥∥∥∇̃gzit (wt)∇̃fz̄jt (vt+1)− ∇̃gzit (w
j,z̄
t )∇̃fz̄jt (v

j,z̄
t+1)

∥∥∥2
− 2ηt

〈
wt − wj,z̄

t , ∇̃gzit (wt)∇̃fz̄jt (vt+1)− ∇̃gzit (w
j,z̄
t )∇̃fz̄jt (v

j,z̄
t+1)

〉
=
∥∥∥wt − wj,z̄

t

∥∥∥2 + η2t

∥∥∥∥∥ 1

b2

b∑
l=1

ut,l

µ

(
fz̄jt (vt+1 + µut,l)− fz̄jt (vt+1)

)
b∑

l=1

ut,l

µ

(
gzit (wt + µut,l)− gzit (wt)

)
− 1

b2

b∑
l=1

ut,l

µ

(
fz̄jt (v

j,z̄
t+1 + µut,l)− fz̄jt (v

j,z̄
t+1)

)
b∑

l=1

ut,l

µ

(
gzit (w

j,z̄
t + µut,l)− gzit (w

j,z̄
t )
)∥∥∥∥∥

2

− 2ηt

〈
wt − wj,z̄

t ,
1

b2

b∑
l=1

ut,l

µ

(
fz̄jt (vt+1 + µut,l)− fz̄jt (vt+1)

) b∑
l=1

ut,l

µ

(
gzit (wt + µut,l)− gzit (wt)

)
− 1

b2

b∑
l=1

ut,l

µ

(
fz̄jt (v

j,z̄
t+1 + µut,l)− fz̄jt (v

j,z̄
t+1)

) b∑
l=1

ut,l

µ

(
gzit (w

j,z̄
t + µut,l)− gzit (w

j,z̄
t )
)〉

.

With Assumption 3, the terms ∇f(vt+1) and g(wt) are both differentiable. Thus,
1
b2

∑b
l=1

ut,l

µ (f(vt+1 + µut,l)− f(vt+1))
∑b

l=1
ut,l

µ (g(wt + µut,l)− g(wt)) is also differentiable.

It is reasonable to assume that there exists a primitive function f̂(wt) at least whose derivative
function is 1

b2

∑b
l=1

ut,l

µ (f(vt+1 + µut,l)− f(vt+1))
∑b

l=1
ut,l

µ (g(wt + µut,l)− g(wt)). Then∥∥∥wt+1 − wj,z̄
t+1

∥∥∥2
=
∥∥∥wt − wj,z̄

t

∥∥∥2 + η2t

∥∥∥∇f̂zit ,z̄jt (wt)∇f̂zit z̄jt (w
j,z̄
t )
∥∥∥2

− 2ηt

〈
wt − wj,z̄

t ,∇f̂zit ,z̄jt (wt)−∇f̂zit z̄jt (w
j,z̄
t )
〉
. (33)

Taking derivative of ∇f̂zit ,z̄jt (wt) over wt, we get that

∇2f̂zit ,z̄jt (wt)
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=
β

b2

b∑
l=1

ut,l

µ
∇gzit (wt)

(
∇fz̄jt (vt+1 + µut,l)−∇fz̄jt (vt+1)

) b∑
l=1

ut,l

µ

(
gzit (wt + µut,l)− gzit (wt)

)
+

1

b2

b∑
l=1

ut,l

µ

(
fz̄jt (vt+1 + µut,l)− fz̄jt (vt+1)

) b∑
l=1

ut,l

µ

(
∇gzit (wt + µut,l)−∇gzit (wt)

)
.

Thus,∥∥∥∇2f̂zit ,z̄jt (wt)
∥∥∥

=

∥∥∥∥∥ βb2
b∑

l=1

ut,l

µ
∇gzit (wt)

(
∇fz̄jt (vt+1 + µut,l)−∇fz̄jt (vt+1)

) b∑
l=1

ut,l

µ

(
gzit (wt + µut,l)− gzit (wt)

)
+

1

b2

b∑
l=1

ut,l

µ

(
fz̄jt (vt+1 + µut,l)− fz̄jt (vt+1)

) b∑
l=1

ut,l

µ

(
∇gzit (wt + µut,l)−∇gzit (wt)

) ∥∥∥∥∥
≤

∥∥∥∥∥ βb2
b∑

l=1

ut,l

µ
∇gzit (wt)

(
∇fz̄jt (vt+1 + µut,l)−∇fz̄jt (vt+1)

) b∑
l=1

ut,l

µ

(
gzit (wt + µut,l)− gzit (wt)

)∥∥∥∥∥
+

∥∥∥∥∥ 1

b2

b∑
l=1

ut,l

µ

(
fz̄jt (vt+1 + µut,l)− fz̄jt (vt+1)

) b∑
l=1

ut,l

µ

(
∇gzit (wt + µut,l)−∇gzit (wt)

)∥∥∥∥∥
≤ 1

µ2

(
βLgM

′
fMg +MfM

′
g

)
.

Let ρ = 1
µ2

(
βLgM

′
fMg +MfM

′
g

)
, then f̂zit ,z̄jt (wt) is ρ-smooth. And we can know that

λmin

(
∇2f̂zit ,z̄jt (wt)

)
≥ −

∥∥∥∇2f̂zit ,z̄jt (wt)
∥∥∥ ≥ −ρ. According to Lemma 3, we can get that〈

wt − wj,z̄
t ,∇f̂zit ,z̄jt (wt)−∇f̂zit z̄jt (w

j,z̄
t )
〉

≥2ηt

(
1− ρηt

2

)∥∥∥∇f̂zit ,z̄jt (wt)−∇f̂zit z̄jt (w
j,z̄
t )
∥∥∥2 − ρ

∥∥∥wt − wj,z̄
t −∇f̂zit ,z̄jt (wt) +∇f̂zit z̄jt (w

j,z̄
t )
∥∥∥2

=2ηt

(
1− ρηt

2

)∥∥∥∇f̂zit ,z̄jt (wt)−∇f̂zit z̄jt (w
j,z̄
t )
∥∥∥2 − ρ

∥∥∥wt+1 − wj,z̄
t+1

∥∥∥2 .
Now, plugging the above inequality back into Equation (33) yields∥∥∥wt+1 − wj,z̄

t+1

∥∥∥2
≤
∥∥∥wt − wj,z̄

t

∥∥∥2 + (η2t − 4η2t

(
1− ρηt

2

))∥∥∥∇f̂zit ,z̄jt (wt)∇f̂zit z̄jt (w
j,z̄
t )
∥∥∥2 + 2ρηt

∥∥∥wt+1 − wj,z̄
t+1

∥∥∥2
≤
∥∥∥wt − wj,z̄

t

∥∥∥2 + 2ρηt

∥∥∥wt+1 − wj,z̄
t+1

∥∥∥2 ,
where the second inequality is due to ηt ≤ 1

2ρt ≤
3
2ρ . The above inequality implies∥∥∥wt+1 − wj,z̄

t+1

∥∥∥ ≤ 1√
1− 2ρηt

∥∥∥wt − wj,z̄
t

∥∥∥ ,
Secondly, when jt = j, there holds∥∥∥wt+1 − wj,z̄

t+1

∥∥∥
=
∥∥∥wt − wj,z̄

t − ηt∇̃gzit (wt)∇̃fz̄jt (vt+1) + ηt∇̃gzit (w
j,z̄
t )∇̃fz̄′

jt
(vj,z̄t+1)

∥∥∥
≤
∥∥∥wt − wj,z̄

t

∥∥∥+ ηt

∥∥∥∇̃gzit (wt)∇̃fz̄jt (vt+1)− ∇̃gzit (w
j,z̄
t )∇̃fz̄′

jt
(vj,z̄t+1)

∥∥∥
≤
∥∥∥wt − wj,z̄

t

∥∥∥+ 2ηt

∥∥∥∇̃gzit (wt)
∥∥∥∥∥∥∇̃fz̄jt (vt+1)

∥∥∥
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≤
∥∥∥wt − wj,z̄

t

∥∥∥+ 2MfMg

µ2
ηt.

Combining the above two cases, we can get that∥∥∥wt+1 − wj,z̄
t+1

∥∥∥ ≤ 1√
1− 2ρηt

∥∥∥wt − wj,z̄
t

∥∥∥ I[jt ̸= j] +

(∥∥∥wt − wj,z̄
t

∥∥∥+ 2MfMg

µ2
ηt

)
I[jt = j].

Taking expectation over it,

Eit

[∥∥∥wt+1 − wj,z̄
t+1

∥∥∥]
≤ 1√

1− 2ρηt

∥∥∥wt − wj,z̄
t

∥∥∥Eit [I[jt ̸= j]] +

(∥∥∥wt − wj,z̄
t

∥∥∥+ 2MfMg

µ2
ηt

)
Eit [I[jt = j]]

≤ 1√
1− 2ρηt

∥∥∥wt − wj,z̄
t

∥∥∥+ 2MfMg

µ2m
ηt.

Then, taking expectation over A and taking summation from t = 1 to T − 1 to get that

EA

[∥∥∥wT − wj,z̄
T

∥∥∥] ≤ 1√
1− 2ρηt

EA

[∥∥∥wT−1 − wj,z̄
T−1

∥∥∥]+ 2MfMg

µ2m
ηt

≤
T−1∑
t=1

(
T−1∏

t′=t+1

1√
1− 2ρηt′

)
2MfMg

µ2m
ηt

≤
T−1∑
t=1

(
T−1∏

t′=t+1

√
1 +

1

t′ − 1

)
MfMg

ρµ2m

1

t

≤
T−1∑
t=1

(
T−1∏
t′=2

√
1 +

1

t′ − 1

)
MfMg

ρµ2m

1

t

≤

√√√√T−1∏
t′=2

exp

{
1

t′ − 1

} T−1∑
t=1

MfMg

ρµ2m

1

t

≤

√√√√exp

{
T−1∑
t′=2

1

t′ − 1

}
MfMg

ρµ2m

T−1∑
t=1

1

t

≤MfMg(eT )
1
2 log(eT )

ρµ2m
, (34)

where the fourth inequality is from ex ≥ 1 + x.

As for the optimization analysis of the full black-box SCGD, we can combine the proofs of Theorem
4 and Corollary 1 to get that

E [FS(wT )− FS(w(S))] ≤ O
(
µ4 + d22 + b−1d2

)
, (35)

where d2 = d− 2
√(

p+ 1
2

)
β +

(
p+ 1

2

)
β. Combining Theorem 1, Equations (32), (34) and (35),

we can get that

E [F (wT )− F (w∗)] ≤ O
((

n−1 +m−1
)
T

1
2 log T + n− 1

2 + µ4 + b−2d22 + b−1d2

)
.

SCSC: Similar to the proof of SCGD except for

∇2f̂zit ,z̄jt (wt)

=
1

b2

b∑
l=1

ut,l

µ
∇gzit (wt)

(
∇fz̄jt (vt+1 + µut,l)−∇fz̄jt (vt+1)

) b∑
l=1

ut,l

µ

(
gzit (wt + µut,l)− gzit (wt)

)
+

1

b2

b∑
l=1

ut,l

µ

(
fz̄jt (vt+1 + µut,l)− fz̄jt (vt+1)

) b∑
l=1

ut,l

µ

(
∇gzit (wt + µut,l)−∇gzit (wt)

)
.

41



based on the update of SCSC, we have that, for ηt ≤ 1
2ρt ≤

3
2ρ , ρ = 1

µ2

(
LgM

′
fMg +MfM

′
g

)
,

EA

[∥∥∥wT − wi,z
T

∥∥∥] ≤ MfMg(eT )
1
2 log(eT )

ρµ2n
(36)

and

EA

[∥∥∥wT − wj,z̄
T

∥∥∥] ≤ MfMg(eT )
1
2 log(eT )

ρµ2m
. (37)

As for the optimization analysis of the full black-box SCGD, we can combine the proofs of Theorem
4 and Corollary 1 to get that

E [FS(wT )− FS(w(S))] ≤ O
(
µ4 + b−2d22 + b−1d2

)
, (38)

where d2 = d− 2
√(

p+ 1
2

)
+
(
p+ 1

2

)
. Combining Theorem 1, Equations (36), (37) and (38), we

can get that

E [F (wT )− F (w∗)] ≤ O
((

n−1 +m−1
)
T

1
2 log T + n− 1

2 + µ4 + b−2d22 + b−1d2

)
.

□

E Proofs of Applications

Before stating our remain proofs, it should be noted that there are a few differences between the setting
of FOO-based VFL (VFL-CZOFO) and the one of SCGD (SCSC). First of all, we set S = {z1, ..., zn}
and Si,z = {z1, ..., zi−1, z

′
i, zi+1, ..., zn} according to the learning paradigm of VFL. Secondly, the

update of the outer model (global model) for FOO-based VFL (VFL-CZOFO) is not based on the
simple weighted summation of SCGD (SCSC). Luckily, these differences will not make a difference
in our proofs.

Proof of Corollary 4:

FOO-based VFL: Considering the independence of all clients, we just prove the corresponding
result of the k-th client for some k ∈ [K]. Firstly, when it ̸= i, there holds∥∥∥wk

t+1 − wi,k
t+1

∥∥∥2
=
∥∥∥wk

t − wi,k
t − ηt∇g(wk

t )∇f(g(wk
t )) + ηt∇g(wi,k

t )∇f(g(wi,k
t ))

∥∥∥2
=
∥∥∥wk

t − wi,k
t

∥∥∥2 + η2t

∥∥∥∇g(wk
t )∇f(g(wk

t ))−∇g(wi,k
t )∇f(g(wi,k

t ))
∥∥∥2

− 2ηt

〈
wk

t − wi,k
t ,∇g(wk

t )∇f(g(wk
t ))−∇g(wi,k

t )∇f(g(wi,k
t ))

〉
,

where wi,z,k
t is simplified as wi,k

t . With Assumption 3, the terms ∇g(wk
t ) and ∇f(g(wk

t )) are both
differentiable. Thus, ∇g(wk

t )∇f(g(wk
t )) is also differentiable, which means that it is continuous on

its domain. As we all know, a continuous function has primitive functions. Then, it is reasonable to
assume that there exists a primitive function f̂(wk

t ) at least whose derivative function ∇f̂(wk
t ) =

∇g(wk
t )∇f(g(wk

t )). For example, considering the independence between vt and g(wk
t ), f(g(w

k
t ))

is one of the primitive functions f̂(wk
t ). Then∥∥∥wk

t+1 − wi,k
t+1

∥∥∥2
=
∥∥∥wk

t − wi,k
t

∥∥∥2 + η2t

∥∥∥∇f̂(wk
t )∇f̂(wi,k

t )
∥∥∥2 − 2ηt

〈
wk

t − wi,k
t ,∇f̂(wk

t )−∇f̂(wi,k
t )
〉
. (39)

Taking derivative of ∇f̂(wk
t ) over wk

t , we get that

∇2f̂(wk
t ) = ∇2g(wk

t )∇f(g(wk
t )) +

(
∇g(wk

t )
)2 ∇2f(g(wk

t )).
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Thus, ∥∥∥∇2f̂zit ,z̄jt (wt)
∥∥∥ ≤ αgLf + L2

gαf .

Let ρ = αgLf + L2
gαf , then f̂(wk

t ) is ρ-smooth. And we can know that λmin

(
∇2f̂(wk

t )
)

≥

−
∥∥∥∇2f̂(wk

t )
∥∥∥ ≥ −ρ. According to Lemma 3, we can get that〈

wk
t − wi,k

t ,∇f̂(wk
t )−∇f̂(wi,k

t )
〉

≥2ηt

(
1− ρηt

2

)∥∥∥∇f̂(wk
t )−∇f̂(wi,k

t )
∥∥∥2 − ρ

∥∥∥wk
t − wi,k

t −∇f̂(wk
t ) +∇f̂(wi,k

t )
∥∥∥2

=2ηt

(
1− ρηt

2

)∥∥∥∇f̂(wk
t )−∇f̂(wi,k

t )
∥∥∥2 − ρ

∥∥∥wk
t+1 − wi,k

t+1

∥∥∥2 .
Now, plugging the above inequality back into Equation (39) yields∥∥∥wk

t+1 − wi,k
t+1

∥∥∥2
≤
∥∥∥wk

t − wi,k
t

∥∥∥2 + (η2t − 4η2t

(
1− ρηt

2

))∥∥∥∇f̂(wk
t )∇f̂(wi,k

t )
∥∥∥2 + 2ρηt

∥∥∥wk
t+1 − wi,k

t+1

∥∥∥2
≤
∥∥∥wk

t − wi,k
t

∥∥∥2 + 2ρηt

∥∥∥wk
t+1 − wi,k

t+1

∥∥∥2 ,
where the second inequality is due to ηt ≤ 1

2ρt ≤
3
2ρ . The above inequality implies∥∥∥wk

t+1 − wi,k
t+1

∥∥∥ ≤ 1√
1− 2ρηt

∥∥∥wk
t − wi,k

t

∥∥∥ ,
Secondly, when it = i, there holds∥∥∥wk

t+1 − wi,k
t+1

∥∥∥
=
∥∥∥wk

t − wi,k
t − ηt∇g(wk

t )∇f(g(wk
t )) + ηt∇g(wi,k

t )∇f(g(wi,k
t ))

∥∥∥
≤
∥∥∥wk

t − wi,k
t

∥∥∥+ ηt

∥∥∥∇g(wk
t )∇f(g(wk

t ))−∇g(wi,k
t )∇f(g(wi,k
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∥∥∥

≤
∥∥∥wk

t − wi,k
t

∥∥∥+ 2ηt
∥∥∇g(wk

t )
∥∥∥∥∇f(g(wk

t ))
∥∥

≤
∥∥∥wk

t − wi,k
t

∥∥∥+ 2LgLfηt.

Combining the above two cases, we can get that∥∥∥wk
t+1 − wi,k

t+1

∥∥∥ ≤ 1√
1− 2ρηt

∥∥∥wk
t − wi,k

t

∥∥∥ I[it ̸= i] +
(∥∥∥wk

t − wi,k
t

∥∥∥+ 2LgLfηt

)
I[it = i].

Taking expectation over it,

Eit

[∥∥∥wk
t+1 − wi,k

t+1

∥∥∥]
≤ 1√

1− 2ρηt

∥∥∥wk
t − wi,k

t
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(∥∥∥wk
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t

∥∥∥+ 2LgLfηt

)
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≤ 1√
1− 2ρηt

∥∥∥wk
t − wi,k

t

∥∥∥+ 2LgLf

n
ηt.

Then, taking expectation over A and taking summation from t = 1 to T − 1 to get that

EA

[∥∥∥wk
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EA
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exp
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1
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1

t
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√√√√exp

{
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1

t

≤LgLf (eT )
1
2 log(eT )
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, (40)

where the fourth inequality is from ex ≥ 1 + x. Combining Theorem 3 and Equation (40), we can
get that

E
[
|F (wk

T )− FS(w
k
T )|
]
≤ O

(
n−1T

1
2 log T

)
.

□

Proof of Corollary 5: Similar to the proofs of Theorem 4 and Corollary 4, we can get the result of
Corollary 5. □

F Key Challenges and Technical Tools

In this section, the key challenges and technical tools of extending the theoretical analysis for SCO
problems from white-box cases to black-box cases are listed as follows.

(1) Generalization: Considering three different types of black-box SCO methods, we apply our new
non-convex analysis (Theorem 3) to these cases (Theorem 4, Corollary 1 and 2) in Section 3.2. Due
to the difference related to function form, there are some differences related to the upper bounds
of first-order and second-order gradients of ∇̃f between Theorem 3 and the generalization part of
Theorem 4. The differences among Theorem 3 and Corollary 1, Corollary 2 are the same as Theorem
4.

(2) Optimization: For optimization, the estimated gradient does introduce several extra terms
regarding the accuracy of the gradient estimation, i.e., ∇̃f − (p + 1/2)β∇f and ∇̃f − β∇f .
These terms are derived from some special strategies (such as a special decomposition ∇̃f =
∇̃f + (p+ 1/2)β∇f − (p+ 1/2)β∇f ). We propose an extended lemma (Lemma 6) from [39] and
combine this lemma with these strategies to limit the expansion of E[FS(wt+1)− FS(w(S))] during
the iterations. Otherwise, these extra terms will lead to the divergence of our result.

Finally, we want to emphasize our advantages compared with previous work related to the generaliza-
tion guarantee of SCO [21].

(1) Better results: For convex optimization, Theorem 2 leverages the co-coercivity property of
convex and smooth function to provide the stability bound O((n−1 +m−1)β log T ) under milder
parameter selection than [21]. And our proof is more concise since it avoids the intermediate step
which measures the distance between v and g(w) in the analysis of [21].

(2) Non-convex guarantee: We leverage a special lemma, almost co-coercivity lemma, to develop
our proof framework to non-convex case to obtain the first stability bound O((n−1 +m−1)T

1
2 log T )

under milder parameter selection than [39].
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Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]

Justification: The paper’s contributions are from the theoretical analysis perspective.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [NA]
Justification: The paper’s contributions are from the theoretical analysis perspective.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: The paper’s contributions are from the theoretical analysis perspective. It
theoretically explains the impact of black-box on the learning guarantees of SCO algorithms,
which may benefit the algorithm designing of SCO algorithm.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper’s contributions are from the theoretical analysis perspective without
any data or model being released.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: The paper’s contributions are from the theoretical analysis perspective. The
algorithms analyzed in the paper have been cited properly.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper’s contributions are from the theoretical analysis perspective without
any new assets being released.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper’s contributions are from the theoretical analysis perspective.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper’s contributions are from the theoretical analysis perspective.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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