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D2K: Turning Historical Data into Retrievable Knowledge for
Recommender Systems
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ABSTRACT
A vast amount of user behavior data is constantly accumulating on
today’s large recommendation platforms, recording users’ various
interests and tastes. Preserving knowledge from the old data while
new data continually arrives is a vital problem for recommender
systems. Existing approaches generally seek to save the knowledge
implicitly in the model parameters. However, such a parameter-
centric approach lacks scalability and flexibility—the capacity is
hard to scale, and the knowledge is inflexible to utilize. Hence, in
this work, we propose a framework that turns massive user behav-
ior data to retrievable knowledge (D2K). It is a data-centric approach
that is model-agnostic and easy to scale up. Different from only
storing unary knowledge such as the user-side or item-side informa-
tion, D2K proposes to store ternary knowledge for recommendation,
which is determined by the complete recommendation factors—
user, item, and context. The knowledge retrieved by target samples
can be directly used to enhance the performance of any recommen-
dation algorithms. Specifically, we introduce a Transformer-based
knowledge encoder to transform the old data into knowledge with
the user-item-context cross features. A personalized knowledge
adaptation unit is devised to effectively exploit the information
from the knowledge base by adapting the retrieved knowledge to
the target samples. Extensive experiments on two public datasets
show that D2K significantly outperforms existing baselines and is
compatible with a major collection of recommendation algorithms.

1 INTRODUCTION
Real-world recommender systems accumulate a substantial volume
of user logs every day [22]. It makes training a recommender with
all the data intractable since the computational resources are limited.
However, using only the recent logs by truncating the data to a
fixed time window is suboptimal because valuable information may
be abandoned together with the old data [19, 20]. Hence, the major
problem is preserving useful knowledge from the old data effectively.

Most existing studies in recommendation scenarios [15, 28, 30,
32] consider preserving the knowledge in model parameters implic-
itly using continual learning techniques. We refer to it as parameter-
centric knowledge. As shown in Figure 1(a), the key point of the
parameter-centric approach is inheriting knowledge from the old
model trained on old data. Knowledge distillation [28, 30] is usu-
ally utilized to transfer the knowledge to the new model with the
old one acting as the teacher. Memory-augmented networks are
introduced to enhance the memorization capacity of the model by
augmenting the networks with an external memory component
[8, 9, 12]. Additional information is stored in the external memory,
such as user interest representations [4, 26], or knowledge graph-
enhanced item representations [11]. The number of parameters
for each user/item is expanded so that more information can be
memorized. Meta-learning is also explored in continual learning for
recommendation [32] by learning to optimize future performance.

(a) (b)
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information
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Raw data
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knowledge
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Data-centr ic 

Parameter 
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Figure 1: Parameter-centric knowledge vs. data-centric
knowledge in preserving information. (a) Workflow com-
parison. (b) Conceptual illustration of information capacity.

Nevertheless, the long-standing catastrophic forgetting problem
still limits the performance and usability of the parameter-centric
knowledge. Catastrophic forgetting means the knowledge in the
old data is preserved in the model parameters, and updating the
model with new data interferes with previously learned knowledge
[16]. We argue that there are two major reasons for catastrophic
forgetting. The first is that the memorization capacity could not
scale up with the data size. The number of model parameters is fixed
while the user logs keep growing. When adding new information
into the fixed-size parameters, we have to erase some of the stored
information and insert the new information, inevitably resulting in
information loss. As shown in Figure 1(b), the raw data contains
the full information and has the largest information capacity. The
parameter-centric methods transform the raw data into a fixed
number of parameters and thereby cannot scale up as the data size
increases, resulting in the loss of information. The second reason
for the forgetting issue is that the stored knowledge in parameters
is difficult to utilize appropriately. It is always hard to manage the
trade-off between the old and newly learned knowledge [29].

It could be inevitable for a model to suffer from catastrophic
forgetting, so we try a data-centric approach that turn the histor-
ical data into retrievable knowledge as shown in Figure 1(a). The
retrievable knowledge could help the model to recollect the old but
useful patterns. The strengths of the data-centric knowledge base
are in three folds: (i) Scalability. The number of entries in the
knowledge base can grow with the data amount. For the knowl-
edge base, adding new information is a simple process of inserting
new entries instead of the complex process of updating model pa-
rameters, which is more scalable as presented in Figure 1(b). (ii)
Explicitness. We could store explicit knowledge, which will act as
additional features to enhance prediction performance. It is easier
to utilize compared to the implicit knowledge in model parameters.
(iii) Flexibility. A knowledge base is model-agnostic. Thus, it is
compatible with different backbone models.
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Unary knowledge

Figure 2: Comparison between unary knowledge and ternary
knowledge. "klg" stands for knowledge.

Despite the desirable properties of the data-centric approach, it
is still challenging to determine what type of knowledge should
be extracted from the data and to be stored. As shown in Figure 2,
the log means a female user (UID-1) who lives in LA has clicked an
Apple electronic device (IID-1) on a weekday morning. To preserve
information in that log, unary knowledge format is always utilized—
the knowledge is indexed by a unary term such as the user ID
[17, 22]. Thus the log data could only provide one signal that the
user has an interest in the item or the user interest is updated
according to the item. We believe that the user feedback, positive
or negative, is affected by three types of information together, i.e.,
user information, item information, and context information. These
three aspects interact with each other and affect user feedback
[1, 10, 13, 21]. Therefore, the knowledge should be in a ternary
form that contains all user-item-context information. As shown
in Figure 2, we want the log data to tell us how the ternary cross
feature <UID-1, Electronics, Weekday>1 affects the label. By listing
all the ternary features from the log, we are capable of extracting
more fine-grained and abundant knowledge. As such, the stored
knowledge directly records the underlying causes and motives of a
particular recommendation outcome (click or not).

In this paper, we propose a framework that turns massive user
behavior data to retrievable knowledge (D2K). D2K aims to trans-
form the old data that is not included in the training set into a
key-value style knowledge base. Ternary knowledge is extracted
from the log data and stored in the knowledge base. The knowledge
will be retrieved by target samples to enhance the performance
of any recommendation algorithms. Specifically, in D2K, there are
two major components. The first is a Transformer-based knowledge
encoder that encodes any ternary cross features into a knowledge
vector. All the unique ternary features in the old data will be used
as keys in the knowledge base, and the values will be given by
the knowledge encoder. The second is a personalized knowledge
adaptation unit which is leveraged when utilizing the information
from the knowledge base. The global knowledge is adapted to the
current target sample through a neural network whose parameters
come from the input target sample. Our main contributions are
summarized as three folds:

1For simplicity, we use one feature for each aspect.

• For the problem of preserving information from massive user
logs, we are the first to provide a data-centric approach by
building a knowledge base. It could be a better choice for rec-
ommendation scenarios than the parameter-centric approaches.

• We are the first to propose a ternary knowledge base for recom-
mendation to transform the old data into retrievable knowledge.
Ternary knowledge provides more fine-grained and abundant
information compared to traditional unary knowledge.

• We design a Transformer-based knowledge encoder to effec-
tively extract knowledge for any given ternary features and a
personalized knowledge adaptation unit to adapt the knowl-
edge to specific target samples without introducing much more
parameters.

2 METHODOLOGY
In this section, we first introduce the preliminaries and give a
big picture of the framework, followed by detailed explanations of
D2K’s knowledge generation and knowledge utilization procedures.

2.1 Preliminaries
In this section, we formulate the problem and describe the notations.
The user behavior log is the core data type of the recommendation
scenario. Each log data point is denoted as (𝑥,𝑦) where 𝑥 = {𝑢, 𝑣, 𝑐}.
The data sample represents one user behavior that user 𝑢 has inter-
acted with item 𝑣 under context 𝑐 with the feedback label 𝑦.

There are multiple feature fields in each data point. The user
features are denoted as 𝑢 = {𝑓 𝑢

𝑖
}𝐹𝑢
𝑖=1, item features are 𝑣 = {𝑓 𝑣

𝑗
}𝐹𝑣
𝑗=1

and context features are 𝑐 = {𝑓 𝑐
𝑘
}𝐹𝑐
𝑘=1. 𝐹𝑢 , 𝐹𝑣 , 𝐹𝑐 denote the number

of the features for the user, the item, and the context, respectively.
The features could be categorical or numerical, and they can be
either single-value (such as gender, category, etc) or multi-value
(such as user historical sequence of clicked items).

In our proposed D2K framework, we argue that retrieving knowl-
edge of the target sample from the old data could benefit the pre-
diction. Thus the estimation function is formulated as

𝑦 = 𝑓Θ (𝑢, 𝑣, 𝑐,RΦ (𝑢, 𝑣, 𝑐)) . (1)

RΦ represents the knowledge retrieval and utilization procedure
from the old data, which is parameterized by Φ and 𝑓Θ is the learned
scoring function.

2.2 D2K Framework Overlook
The overall framework is shown in Figure 3. The entire dataset
could be divided into two parts according to timestamp: old data
and recent data. The recent data corresponds to the normal train
and test data. We aim to extract and preserve useful knowledge
from the old data to help the prediction on the recent data samples.
Figure 3 provides an overlook of the D2K framework, which con-
sists of two parts: knowledge generation and knowledge utilization.
In the knowledge generation process, the old data is transformed
into a ternary knowledge base via a knowledge encoder. In the
knowledge utilization process, for each target sample in the recent
data, we generate user-item-context features as the query to lookup
the corresponding knowledge from the knowledge base. The re-
trieved knowledge is then adapted and injected into an arbitrary
recommendation model (RS model).
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Figure 3: The framework of D2K.

2.3 Knowledge Generation
In this section, we first introduce the ternary knowledge with its
design motivations. Then we present the knowledge encoder and
the procedure to transform the old data into a knowledge base.

2.3.1 Ternary Knowledge. The major design of D2K is utilizing
ternary tuples as the keys of the knowledge base, as shown in
Figure 3. One user behavior is affected by three aspects: user aspect,
item aspect, and context aspect. These three aspects interact with
each other and indicate whether the clicking event will happen.
Unlike the unary knowledge widely used in memory-augmented
networks, ternary knowledge is "direct" knowledge that could be
used solely to produce a prediction as described in Definition 1.

Definition 1 (Direct Knowledge). A knowledge vector 𝒛𝑥 re-
trieved by the sample 𝑥 is defined as direct knowledge if it car-
ries enough information to produce a prediction on sample 𝑥 as

func(𝒛𝑥 )
𝑝𝑟𝑜𝑑𝑢𝑐𝑒
−−−−−−−→ 𝑦.

Take the ternary keys in Figure 3 as an example, the knowledge of
"<UID-1, Electronics, Weekdays>" has all three aspects of a clicking
event (user aspect, item aspect, and context aspect). Thus it could be
directly used to produce a prediction solely2. On the contrary, unary
knowledge is not able to produce a prediction directly. For example,
if the knowledge is only the interest representation vector of the
target user (use user ID to retrieve), the knowledge alone could not
produce a prediction. It has to be combined with the target item and
context information to produce a clicking estimation. Therefore,
we extract and preserve the ternary knowledge in D2K as it carries
the direct information of clicking events.

2.3.2 Knowledge Encoder. The crucial problem of D2K is how to en-
code the knowledge of each ternary key. We propose a Transformer-
based [24] knowledge encoder as shown in Figure 4. For ease of
expression, we omit the 𝑢, 𝑖, 𝑐 feature source and denote the input

2The knowledge could be used together with the input 𝑥 for better performance, we
only want to illustrate the strength of the direct knowledge.

User 
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I tem 
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Ternary cross 

features 

...

Linear

Predicted 
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...

Input 
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Feature 
representations

Transformer  
Encoder

Combination

Figure 4: The structure of the knowledge encoder of D2K.

sample 𝑥 = {𝑓𝑖 }𝐹𝑖=1 with 𝐹 features. We define that

𝑄 = 𝐾 = 𝑉 =
©­­«

𝒆1
.
.
.

𝒆𝐹

ª®®¬ , (2)

where 𝒆𝑖 is the embedding of the 𝑖-th feature in 𝑥 . Note that feature
𝑓𝑖 could be either a single-value or multiple-value feature (such
as user-clicked items). If feature 𝑓𝑖 has multiple values, the em-
bedding 𝒆𝑖 is the average pooling of the elements of 𝑓𝑖 as 𝒆𝑖 =
1
𝑛𝑖

∑𝑛𝑖
𝑝=1 𝒃𝑝 , where 𝒃𝑝 is the embedding of each feature element

and 𝑛𝑖 is the number of feature values of feature field 𝑖 . The output
of the Transformer-based encoder is

𝐸 = TRM(𝑄,𝐾,𝑉 ), (3)

where TRM represents Transformer. And the resulting matrix 𝐸 ∈
R𝐹×𝑑 could be regarded as stacked representations from three
sources of user, item, or context as {𝒈𝑢1 , ...,𝒈

𝑢
𝐹𝑢
,𝒈𝑣1 , ...,𝒈

𝑣
𝐹𝑣
,𝒈𝑐1, ...,𝒈

𝑐
𝐹𝑐
}.

We use 𝒈 to denote the feature representations. The Transformer is
chosen as the major component because of its superior modeling ca-
pacity and flexibility w.r.t. the input length. The Transformer could
take input of various lengths, which is especially useful because the
number of input features differs in the encoder training (𝐹 features)
and the knowledge extracting process of D2K (3 features).

To extract the knowledge of each ternary cross feature, we gen-
erate all the combinations of the user-item-context cross features.
The cross features are described as

𝒄𝑖 𝑗𝑘 = concat(𝒈𝑢𝑖 ,𝒈
𝑣
𝑗 ,𝒈

𝑐
𝑘
), ∀𝑖 ∈ [1, 𝐹𝑢 ], 𝑗 ∈ [1, 𝐹𝑣], 𝑘 ∈ [1, 𝐹𝑐 ] . (4)

Each ternary cross feature 𝒄𝑖 𝑗𝑘 is further input to a knowledge
network and gets the corresponding knowledge vector as

𝒛𝑖 𝑗𝑘 = MLP(𝒄𝑖 𝑗𝑘 ), ∀𝑖 ∈ [1, 𝐹𝑢 ], 𝑗 ∈ [1, 𝐹𝑣], 𝑘 ∈ [1, 𝐹𝑐 ], (5)

where 𝒛𝑖 𝑗𝑘 ∈ R𝑑𝑘 represents the knowledge extracted for the
ternary key ⟨𝑓 𝑢

𝑖
, 𝑓 𝑣

𝑗
, 𝑓 𝑐
𝑘
⟩ and 𝑑𝑘 is the length of the knowledge

vector. After obtaining the knowledge vector of each ternary cross
feature, we concatenate them and feed them into a linear layer as

𝑦 = 𝜎 (𝒘𝑇
𝑙
· (concat(𝒛111, ..., 𝒛𝐹𝑢𝐹𝑣𝐹𝑐 )) + 𝑏𝑙 ), (6)

where 𝒘𝑙 ∈ R𝐹𝑢𝐹𝑣𝐹𝑐𝑑𝑘×1 is the weight vector, 𝑏𝑙 is the bias and
𝜎 (𝑥) = 1

1+𝑒−𝑥 is the sigmoid function. This way, the knowledge
vector 𝒛𝑖 𝑗𝑘 could be regarded as linear distinguishable. In other
words, the Transformer and MLP layers map the knowledge into a
linearly separable space.
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The encoder is trained using binary cross-entropy loss as

L𝑒𝑛𝑐 = −
∑︁

(𝑥,𝑦) ∈D𝑜𝑙𝑑

𝑦 · log(𝑦) + (1 − 𝑦) · log(1 − 𝑦), (7)

where D𝑜𝑙𝑑 represents the old data shown in Figure 3.

2.3.3 Process of the Knowledge Base Generation. After the encoder
is trained, the Transformer and the knowledge network are then
fixed and used to generate knowledge of any given ternary cross
feature. All the ternary cross features that appear in D𝑜𝑙𝑑 will
be fed into the encoder to derive the corresponding knowledge
representations. The detailed process for generating the knowledge
base K is shown in Algorithm 1.

For the feature with multiple values, it will be split and treated as
multiple single values. Say 𝑓 𝑢

𝑖
= {𝑏𝑢𝑝 }

𝑛𝑖
𝑝=1, then there are 𝑛𝑖 tuples

for the ternary features of ⟨𝑓 𝑢
𝑖
, 𝑓 𝑣

𝑗
, 𝑓 𝑐
𝑘
⟩, which are {⟨𝑏𝑢𝑝 , 𝑓 𝑣𝑗 , 𝑓

𝑐
𝑘
⟩}𝑛𝑖

𝑝=1.

2.3.4 Knowledge Update. As the historical data grows, the knowl-
edge should be updated in the knowledge base. We will train a new
encoder to handle the new data that exceeds the current encoder’s
capacity. For example, each encoder will be responsible for 7-day
logs, the subsequent historical logs will be used to train a new en-
coder and these logs will be turned into knowledge via the process
shown in Algorithm 1.

If the current knowledge base does not contain the ternary key,
the new entry will be directly inserted into the base. Otherwise, we
use different approaches: (1) Recent Priority (RP), the old knowl-
edge vector will be directly replaced by the new one. (2) Average
Pooling (AP), the new knowledge vector and the old vectors will
be averaged.

2.4 Knowledge Utilization
2.4.1 Query Generation. As illustrated in Figure 3, given a target
data sample, we convert it into a query set to retrieve the corre-
sponding knowledge. As the keys are in the ternary format, the
query terms should also be ternary. For a given target sample 𝑥 , we
derive its query set 𝑄𝑥 as,

𝑄𝑥 = {𝑞𝑡 }
𝑁𝑞

𝑡=1 = {⟨𝑓 𝑢𝑖 , 𝑓
𝑣
𝑗 , 𝑓

𝑐
𝑘
⟩},

∀𝑖 ∈ [1, 𝐹𝑢 ], 𝑗 ∈ [1, 𝐹𝑣], 𝑘 ∈ [1, 𝐹𝑐 ],
(8)

where 𝑁𝑞 = 𝐹𝑢 × 𝐹𝑣 × 𝐹𝑐 is the total number of query terms. All
the query terms in𝑄𝑥 represent the complete information we want
from the knowledge base for sample 𝑥 .

2.4.2 Knowledge Lookup. The query set𝑄𝑥 will be used to retrieve
the knowledge by looking up the corresponding keys in the knowl-
edge base K . The retrieved knowledge of the target sample 𝑥 is
[𝒛111, ..., 𝒛𝑖 𝑗𝑘 , ..., 𝒛𝐹𝑢𝐹𝑣𝐹𝑐 ]. If a query 𝑞𝑡 in 𝑄𝑥 involves multi-value
features, it will be split into several single-value features, and the
retrieved knowledge vectors will be averaged. For example, if in
𝑞𝑡 = ⟨𝑓 𝑢

𝑖
, 𝑓 𝑣

𝑗
, 𝑓 𝑐
𝑘
⟩, 𝑓 𝑢

𝑖
is a multi-value feature that 𝑓 𝑢

𝑖
= {𝑏𝑢𝑝 }

𝑛𝑖
𝑝=1,

then the knowledge vector of 𝑞𝑡 is

𝒛𝑖 𝑗𝑘 =
1
𝑛𝑖

𝑛𝑖∑︁
𝑝=1

𝒛𝑝 𝑗𝑘 , (9)

where 𝒛𝑝 𝑗𝑘 is the retrieved knowledge of {⟨𝑏𝑢𝑝 , 𝑓 𝑣𝑗 , 𝑓
𝑐
𝑘
⟩}. It should be

noticed that the retrieved knowledge vectors in K are all constant

Linear
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...
Layer L

...

weights-1 &  

bias-1
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bias-2
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bias-L

Input 

features

Global 
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knowledge

Figure 5: The structure of the personalized knowledge adap-
tation unit.

values. Their values will not be updated in the training process
afterwards.

2.4.3 Knowledge Adaptation. The knowledge we acquired from
the previous section is actually the "global" knowledge because
the encoder is trained on the entire old dataset D𝑜𝑙𝑑 . Thus the
knowledge of each ternary key reflects a global and average knowl-
edge of a certain user-item-context feature triplet. For example,
the knowledge of the ternary tuple "LA (user location) & Apple
(item category) & Morning (context)" reflects the average influence
on the clicking probability of these three features interacting with
each other. It is global knowledge because it is learned from all the
samples containing these ternary features. We want to make the
knowledge "personalized" w.r.t the target sample 𝑥 .

As shown in Figure 5, we propose the personalized knowledge
adaptation unit. The main idea of the personalized knowledge adap-
tation unit is to use the target sample 𝑥 as MLP parameters [2, 6].
The corresponding model parameters in the MLP are generated
by a specific target sample 𝑥 . Thus for different 𝑥 , the MLP will
be different. The knowledge vector is fed forward through the
𝑥-personalized MLP and gets the personalized knowledge represen-
tation w.r.t 𝑥 . This is a parameter-efficient and personalized way of
adapting global knowledge.

The input vector is 𝒙 = [𝒆1, ..., 𝒆𝐹 ]. A linear projection layer is
first conducted to map the input to a suitable shape as

𝒘𝑥 = 𝒘𝑝𝑟𝑜 · 𝒙, (10)

where 𝒘𝑥 ∈ R(𝐿𝑑𝑘 (𝑑𝑘+1) ) , 𝒘𝑝𝑟𝑜 ∈ R𝐿𝑑𝑘 (𝑑𝑘+1)×𝐹𝑑 and 𝒙 ∈ R𝐹𝑑 . 𝐿
represents the number of layers in the adaptation MLP. As shown
in Figure 5, the weights and biases of each MLP layer are sliced and
reshaped from the projected input𝒘𝑥 . We have

𝒘𝑥 = concat({𝒘𝑙
𝑥 , 𝒃

𝑙
𝑥 }𝐿𝑙=1), (11)

where 𝒘𝑙
𝑥 will be reshaped as 𝒘𝑙

𝑥 ∈ R𝑑𝑘×𝑑𝑘 and 𝒃𝑙𝑥 ∈ R𝑑𝑘 . The
personalized knowledge �̂�𝑖 𝑗𝑘 is calculated as

�̂�𝑖 𝑗𝑘 = 𝛿𝐿 (𝒘𝐿
𝑥 (. . . 𝛿1 (𝒘1

𝑥 · 𝒛𝑖 𝑗𝑘 + 𝒃1𝑥 ) . . .) + 𝒃𝐿𝑥 ), (12)

where �̂�𝑖 𝑗𝑘 ∈ R𝑑𝑘 and 𝛿𝑙 is the activation function of layer 𝑙 . We
use Tanh as the activation function that 𝛿𝑙 (𝑥) = 𝑒𝑥−𝑒−𝑥

𝑒𝑥+𝑒−𝑥 .
4



465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

D2K: Turning Historical Data into Retrievable Knowledge for Recommender Systems WWW ’25, April 28–May 2, 2025, Sydney, Austrilia

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

2.4.4 Knowledge Injection. For injecting the knowledge to an arbi-
trary deep recommendation model M, we propose two different
ways: concatenation and separate tower. The first way is to con-
catenate the knowledge vector with the original input as

�̂� = concat(𝒙, {�̂�𝑖 𝑗𝑘 }) . (13)

The knowledge-augmented input �̂� ∈ R𝐹𝑑+𝑁𝑞𝑑𝑘 will be fed into
the deep feed-forward network component of M. This will change
the shape of the parameter matrix of M.

The second way is incorporating the knowledge by adding a
separate tower to produce the final estimation as

𝑦 = 𝜎 (M(𝒙) + P(concat({�̂�𝑖 𝑗𝑘 }))), (14)

where P is the knowledge predictor which could be implemented as
either a linear function or a deep neural network. Adding a separate
tower will not affect the original structure ofM thus it is flexible
and easier for implementation. Lastly, the knowledge-enhanced
recommendation model is trained using binary cross entropy loss.

3 EXPERIMENTS
In this section, we present the experimental results and correspond-
ing analysis. The implementation code is made public3. Four re-
search questions (RQ) lead the following discussions.
• RQ1: Does D2K achieves best performance?
• RQ2: Is every component of D2K effective and essential?
• RQ3: How to reduce the size of the knowledge base? What is

the effect of using a smaller knowledge base?
• RQ4: What is the performance of knowledge update methods?

3.1 Experimental Settings
3.1.1 Datasets. To verify the effectiveness of the D2K framework,
we use two large-scale public datasets from real-world scenarios:
AD and Eleme. Statistics can be found in Appendix A.2.
• AD4 is a displayed advertisement dataset provided by Taobao,

a large online shopping platform in China. It contains the expo-
sure and clicking logs of over one million users from 20170506
to 20170512. Apart from the ordinary user/item/context fea-
tures, it also provides the sequential behaviors in the previous
22 days of each user.

• Eleme5 is constructed by click logs from Eleme online recom-
mendation system. Eleme mainly provides food takeouts to
users. It provides abundant features which are valuable to D2K.

Dataset Partition. All the samples are sorted in chronological
order first. And we use a fixed time window (e.g., a day) to split
the data into several blocks as D1, ...,D𝑇 . The old data D𝑜𝑙𝑑 is
formed as D𝑜𝑙𝑑 = {D1, ...,D𝑝1 }, training set is formed as D𝑡𝑟 =

{D𝑝1+1, ...,D𝑝2 } and the remaining blocks form the test set D𝑡𝑒 =

{D𝑝2+1, ...,D𝑇 }, where 𝑝1 and 𝑝2 are partition points.

3.1.2 Compared Methods. As the proposed D2K is a framework
compatible with arbitrary recommendation models, we choose
DeepFM [10], DIN [33] and DCNv2 [27] as the backbones of our
experiments because they are widely used models. The compared
3https://bit.ly/40bzoPV
4https://tianchi.aliyun.com/dataset/56
5https://tianchi.aliyun.com/dataset/131047

methods could be used to preserve knowledge from the old data
and are all compatible with any recommendation model.
• Fixed Window is the most basic method. It uses the data in a

fixed-size of time window as the training data directly. For this
method, we test two different variants. The first one only uses
recent data D𝑡𝑟 as the training set (Fixed Window (R)), and
the second one uses all data as the training set as {D𝑜𝑙𝑑 ,D𝑡𝑟 }
(Fixed Window (A)). The second variant is not practical in
the real world. We test it because it contains the maximum
information we could possibly get for our offline datasets.

• Incremental is the simple incremental update baseline. It it-
eratively uses D1, ...,D𝑝2 to train the recommendation model.
The next data block will not be used until the model converges
on the previous data block. It’s widely used in real world [28].

• IncCTR [28] is an advanced method for incremental learn-
ing. The major improvement of IncCTR is using the old model
trained on old data as a teacher to teach the model trained
on the new data. We use the knowledge distillation variant of
IncCTR (KD-batch) because its performance is better.

• Pretrain embedding uses D𝑜𝑙𝑑 to pretrain a model. The new
model will inherit the embedding table of the pretrained model
as the initialization of its embeddings. The new model is then
trained on D𝑡𝑟 . We use the same model structure as the three
backbone models respectively in the pre-training.

• MemoryNet represents the unary knowledge in external mem-
ory. The memory’s key is the user ID, and the value is a learned
user interest representation using her sequential behaviors. The
network structure to capture the user interest is HPMN [22].

• Random is a simple coreset selection method that uses ran-
dom sampling to select some of the data samples from D𝑜𝑙𝑑

so as to compress it. Thus the training data is regarded as
D𝑡𝑟+Zip(D𝑜𝑙𝑑 ). The selected coreset size is 10% of D𝑜𝑙𝑑 .

• SVP-CF [23] is a coreset selectionmethod specifically proposed
for recommender systems. It uses a proxy model to select the
samples that the proxy predicts with the largest deviation from
the ground truth. These most difficult samples are regarded as
the coreset. The selected coreset size is 10% of D𝑜𝑙𝑑 .

We then introduce four different D2K variants in the following:
• D2K-base is the basic version of D2K framework without the

personalized knowledge adaptation unit.
• D2K-adp-sep has the personalized knowledge adaptation unit,

but it uses a separate embedding table for the input 𝑥 when
used as the MLP parameters. It means the input sample 𝑥 has
two different embeddings, one for ordinary use and another for
knowledge adaptation. We use separate embeddings to avoid
these two roles of 𝑥 affecting each other. The separate embed-
ding has the same size as the original one.

• D2K-adp-small differs with D2K-adp-sep only on the embed-
ding size for the adaptation unit. It uses a 1/4 embedding size
for input 𝑥 in the adaptation unit to reduce parameters.

• D2K-adp-share uses share embedding of input 𝑥 for the adap-
tation unit. It is exactly the model that we propose in Section 2.

3.2 Overall Performance (RQ1)
In this section, we compare the performance of D2K with other
parameter-centric approaches and the coreset methods. The overall
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performance of D2K is shown in Table 1 and Table 2. The reported
results are the average performance of five trials with different
random seeds. We have the following observations:

• For both datasets and backbone models, D2K-adp-share (blue
shaded) performs better than all the baseline methods in terms
of AUC. The AUC improvement rates against the best baselines
are 1.35%, 1.70%,1.52% on the AD dataset for the three backbone
models, respectively. And the improvement rates on Eleme are
2.90%, 2.33%, and 1.89%. In fact, an improvement rate at 1%-
level in AUC is likely to yield a significant online performance
improvement [19, 21]. As for LL, D2K-adp-share performs better
on AD but not as well on the Eleme dataset. For recommender
systems, the item’s relative ranking order (AUC) is the key
metric, and is more important than the point-wise accuracy
of the ranking score (LL). Hence, the results are satisfying in
general.

• Compared with the Fixed Window (A) on all data D𝑜𝑙𝑑 + D𝑡𝑟

(gray shaded), D2K-adp-share outperforms it. Theoretically, the
Fixed Window (A) on all data contains the maximum informa-
tion of our offline datasets, whereas D2K inevitably has some
loss of information. The results show that directly using all
data as training samples may not be the best practice. Though
with the maximum information, Fixed Window (A) is essentially
parameter-centric and preserves the knowledge in the model
parameters through gradient descent. Transforming the old data
into ternary knowledge maintains all three important factors
for recommendation, leading to superior performance.

• The two incremental learning (continual learning) baselines
(Incremental & IncCTR) perform worse than Fixed Window (R)
on the AD dataset but better than it on Eleme. Eleme dataset
has more data, making it difficult to memorize the important
patterns by only utilizing the recent data. AD dataset is smaller
thus each data block may not cover enough samples for the
incremental learning methods to be trained sufficiently. These
reasons could explain why incremental learning performs worse
on AD dataset. D2K-adp-share, on the contrary, is less affected
by these issues and steadily outperforms the baselines.

• Pretrain embedding and MemoryNet could be seen as using
unary knowledge to preserve the information in the old data.
Pretrain embedding uses unique feature ids as keys and the
corresponding pretrained embedding vectors as values. Mem-
oryNet uses user ID as keys and user interest representations
as knowledge. As D2K-base performs better than the two base-
lines, we could verify that the direct ternary knowledge stored in
D2K provides more useful information to the recommendation
models than the unary knowledge.

• The coreset selection baselines Random & SVP-CF are simple
yet effective methods to preserve knowledge because, in most
cases, they perform better than FixedWindow (R) on recent data.
The coreset methods even produce better results than the other
more complex methods on the AD dataset. However, the coreset
methods are based heavily on heuristics such as pre-defined
data selection criteria. And they drop a large portion of original
data, which could lead to severe information loss.

The time & space overhead of D2K is shown in Appendix A.3.
To further demonstrate the usefulness of D2K, we also test the

performance of only using the "direct knowledge" (Definition 1) to
produce predictions without original input 𝑥 in Appendix A.4.

Table 1: Performance on AD. Improvements over baselines
are statistically significant with 𝑝 < 0.05.

Method DeepFM DIN DCNv2
AUC LL AUC LL AUC LL

Fixed Window (R) 0.6202 0.1952 0.6203 0.1949 0.6211 0.1952
Incremental 0.6188 0.1954 0.6183 0.1960 0.6192 0.1957

IncCTR (KD-batch) 0.6191 0.1955 0.6194 0.1955 0.6107 0.1973
Pretrain embedding 0.6202 0.1949 0.6209 0.1950 0.6212 0.1948

MemoryNet 0.6192 0.1952 0.6195 0.1959 0.6215 0.1956
Random 0.6223 0.1946 0.6233 0.1946 0.6240 0.1946
SVP-CF 0.6234 0.1946 0.6234 0.1946 0.6246 0.1945
D2K-base 0.6328 0.1940 0.6333 0.1938 0.6339 0.1937

D2K-adp-sep 0.6325 0.1938 0.6338 0.1937 0.6338 0.1938
D2K-adp-small 0.6330 0.1939 0.6339 0.1937 0.6337 0.1938
D2K-adp-share 0.6318 0.1946 0.6340 0.1939 0.6341 0.1940

Fixed Window (A) 0.6237 0.1944 0.6228 0.1945 0.6235 0.1944

Table 2: Performance on Eleme. Improvements over baselines
are statistically significant with 𝑝 < 0.05.

Method DeepFM DIN DCNv2
AUC LL AUC LL AUC LL

Fixed Window (R) 0.5769 0.0987 0.5950 0.0913 0.5800 0.1356
Incremental 0.5863 0.0932 0.5968 0.0949 0.5857 0.0951

IncCTR(KD-batch) 0.5806 0.0897 0.5957 0.0917 0.6033 0.0910
Pretrain embedding 0.5775 0.0976 0.5883 0.0915 0.5724 0.1142

MemoryNet 0.5745 0.0994 0.5910 0.0911 0.5845 0.1302
Random 0.5763 0.0965 0.5959 0.0900 0.5817 0.0997
SVP-CF 0.5771 0.0962 0.5893 0.0899 0.5885 0.1031
D2K-base 0.5832 0.1031 0.5917 0.0892 0.5863 0.3256

D2K-adp-sep 0.6196 0.0955 0.6093 0.0901 0.6266 0.1193
D2K-adp-small 0.6176 0.1365 0.6009 0.0981 0.6401 0.1343
D2K-adp-share 0.6033 0.1081 0.6107 0.0905 0.6147 0.1913

Fixed Window (A) 0.5918 0.0897 0.6072 0.0895 0.6019 0.0994

3.3 Ablation Study (RQ2)
In the ablation study section, we mainly analyze the Transformer-
based encoder and personalized knowledge adaptation unit. We
also test the different ways of injecting the knowledge into a rec-
ommendation model.

3.3.1 Transformer-based Knowledge Encoder. We conduct exten-
sive experiments to verify the effectiveness of the proposed knowl-
edge encoder. The first compared method is removing the Trans-
former structure in Figure 4 ("w/o TRM"). The second compared
method is replacing the Transformer into a feedforward network
("MLP") that takes each feature vector {𝒆𝑖 }𝐹𝑖=1 as input separately
and output a vector with the same dimension The output of these
two methods correspond to {𝒈𝑢1 , ...,𝒈

𝑢
𝐹𝑢
,𝒈𝑣1 , ...,𝒈

𝑣
𝐹𝑣
,𝒈𝑐1, ...,𝒈

𝑐
𝐹𝑐
} in

Figure 4. The results are shown in Table 3.
From the results, we could verify the importance of the proposed

Transformer-based encoder. The two compared methods do not
model the interactions between the input features thus perform
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Table 3: The performance of using different knowledge en-
coders.

Dataset Encoder DeepFM DIN DCNv2
w/o TRM 0.6281±0.0001 0.6244±0.0003 0.6278±0.0003
MLP 0.6307±0.0002 0.6325±0.0003 0.6331±0.0002AD

D2K-adp-share 0.6318±0.0004 0.6340±0.0003 0.6341±0.0004

w/o TRM 0.6011±0.0071 0.6012±0.0121 0.6076±0.0081
MLP 0.6030±0.0023 0.6097±0.0105 0.6100±0.0051Eleme

D2K-adp-share 0.6033±0.0069 0.6107±0.0106 0.6147±0.0088

not as well as the Transformer encoder. As the number of input
features differs in the training (𝐹 features) and inference (3 features)
process of the encoder, Transformer is the most suitable structure.

3.3.2 Personalized Knowledge Adaptation Unit. To verify the ef-
fectiveness of the proposed knowledge adaptation method in Sec-
tion 2.4.3, we develop four different variants of D2K implementation
as shown in Table 1 and Table 2. By comparing the results of the
different variants, we have the following observations: (1) D2K-
base does not use the adaptation unit. Thus it performs worse than
the other three variants in most cases. This result shows that the
adaptation unit is essential to the performance, and we have to
make the global knowledge adaptive to the current target sample.
(2) D2K-adp-sep utilizes a separate embedding table for the input 𝑥
in the adaptation unit to avoid interference from the original input.
D2K-adp-small uses a smaller embedding size than D2K-adp-sep
to reduce the number of additional parameters introduced by the
adaptation unit. By comparing the results of D2K-adp-sep/D2K-adp-
small and D2K-adp-share, we cannot say for sure that incorporating
a separate embedding is beneficial. Even if separate embedding is
good for performance, it will cost much more GPU memory con-
sumption than the shared embedding variant. Thus we believe
using shared embedding is a better practice for the personalized
knowledge adaptation unit.

3.3.3 Knowledge Injection Variants. We compare three different
knowledge injection variants that have been mentioned in Sec-
tion 2.4.4. The results are shown in Figure 6. "TOWER:LR" and
"TOWER:MLP" represent using linear layer and deep neural net-
works as the additional predictor P in Eq. (14), respectively.

From the figure, we have the following observations: (1) Con-
cat and additional tower do not necessarily better than the other
one. For different datasets, we need to try both of the variants of
injecting knowledge. (2) "TOWER:MLP" always performs worse
than "TOWER:LR". This could be because the knowledge vectors
we use are already mapped into the linearly separable space, as
shown in Figure 4. LR is enough to utilize the information in the
knowledge vectors, but MLP may be rather overfitting because of
its complexity.

3.4 Reducing Knowledge Base Size (RQ3)
The major concern of utilizing D2K is its space complexity issue
because there could be a large number of unique ternary cross
features in real-world applications. To reduce the number of entries,
we could omit some of the features to build the knowledge base,
such as user ID or item ID, because these features may have too
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Figure 6: Comparison between different ways of knowledge
injection.

many values. We further investigate what the performance would
be if we decreased the size of the knowledge base of D2K. We select
fewer feature fields to reduce the total number of entries in the
knowledge base. For example, if the data sample 𝑥 originally has
20 fields, we only use 18 or 15 fields in the process of building
knowledge and querying. The experimental results are shown in
Figure 7. We use three different feature sets (FS) with different
numbers of selected fields. In the AD dataset, FS1 has 36 ternary
cross-feature fields, FS2 has 8 cross fields, and FS3 has 3 cross fields.
The numbers for the Eleme dataset are 36, 12 and 8. Details are in
Appendix A.5.

We plot the number of entries in each feature set (histogram)with
the corresponding AUCs (blue curve) in each sub-figure. We further
show the AUCs of the Fixed Window (R) on D𝑡𝑟 (red horizontal
line) and the best baseline of each group of the experiment (orange
horizontal line).
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Figure 7: Performance of D2K under different sizes of knowl-
edge base. The orange line represents AUC of the best base-
line of each group and the red line represents the AUC of the
Fixed Window (R).

From the figure, we have the following analysis: (1) The number
of entries will be largely reduced if we use fewer fields to build the
knowledge base. In the AD dataset, FS2 & FS3 knowledge bases only
have 21% and 4% entries of FS1. While in Eleme, the numbers are
60% and 19%. (2) Reducing the number of entries will no doubt hurt
the performance of D2K on each backbone model. But we could
observe a marginal effect of increasing the size of the knowledge
base in most cases. For example, in AD:DeepFM, the FS1 knowledge
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base is about five times FS2, while FS2 is about five times FS3. But
FS2’s AUC has more improvement against FS3 than FS1 against
FS2. (3) Although the performance of D2K drops significantly with
the smaller knowledge base, it could still outperform the basic
baseline of Fixed Window (R) on D𝑡𝑟 , which is widely used in
real-world systems. Furthermore, when compared with the best
baseline of each group, D2K with the smallest knowledge base still
achieves competitive performance. These results demonstrate the
practicability of D2K and verify the effectiveness of reducing the
size of the knowledge base by using fewer features fields.

3.5 Knowledge Update (RQ4)
In this section, we investigate the performance of using different
update mechanism described in Section 2.3.4. We split D𝑜𝑙𝑑 into
two parts chronologically: the first is used in knowledge base ini-
tialization and the second is used to update the base, as described
in Section 2.3.4.

The results are shown in Table 4. We have the following observa-
tions: (1) The performance of different update mechanisms is close
to "w/o update". This is because the two D𝑜𝑙𝑑 we use covers 4 days,
thus one single knowledge encoder may be sufficient enough to
memorize the useful patterns. (2) The average pooling (AP) strategy
is better than the recent priority (RP) method. Because the recent
priority method simply drops the old knowledge vector, which may
result in information loss although it is easier to implement. The
average pooling strategy is like an "ensemble" of the old and new
encoder models, thus it has better performance.

We are also curious about the situation if the knowledge is not
updated timely. Thus we test the robustness against the outdated
knowledge in Appendix A.6.

Table 4: The performance of using different update mecha-
nisms. RP: Recent Priority, AP: Average Pooling.

Dataset Update DeepFM DIN DCNv2
w/o update 0.6318±0.0004 0.6340±0.0003 0.6341±0.0004

RP 0.6309±0.0002 0.6322±0.0002 0.6333±0.0003AD
AP 0.6322±0.0002 0.6343±0.0003 0.6344±0.0001

w/o update 0.6033±0.0069 0.6107±0.0106 0.6147±0.0088
RP 0.6030±0.0073 0.6009±0.0118 0.6110±0.0074Eleme
AP 0.6039±0.0055 0.6118±0.0099 0.6151±0.0076

4 RELATEDWORKS
This section reviews related works on continual learning with and
without external memory and coreset selection techniques.

Continual Learning w/o External Memory. Continual learn-
ing aims at continually accumulating knowledge over time with-
out the need to retrain from scratch [7]. Knowledge is gradually
integrated into the model parameters by managing the stability-
plasticity dilemma.Wang et al. [28] propose incrementally updating
the model parameters with only the newly incoming samples since
the last model update. The old model acts as the teacher to distill
knowledge to the new model. Mi et al. [14] propose to periodically
replay previous training samples to the current model with an adap-
tive distillation loss. Conure [31] supports the continual learning for

multiple recommendation tasks by isolating the model parameters
for different tasks. Zhang et al. [32] propose to use meta-learning
in continual model updates for recommendation by learning to
optimize future performance.

Preserving the knowledge in the parameters of the models suf-
fers from catastrophic forgetting. D2K, on the contrary, has better
flexibility and scalability by maintaining the knowledge base.

Continual Learning w/ External Memory. Memory-augmented
networks [9, 12] could be viewed as a case of continual learning
with external memory to preserve additional knowledge. In the rec-
ommendation scenarios, the user behavior data is used to update the
states of the external memory, storing the user representation vec-
tors. NMRN [26] maintains an augmented memory of several latent
vectors activated by a specific user ID. NMRN reads from memory
and generates a vector representing the user’s long- short-term
interests. RUM [4] introduces a first-in-first-out writing mechanism
to emphasize the latest user behaviors in the user memory matrix.
KSR [11] constructs a key-value memory network to store the user’s
attribute-level preferences by incorporating a knowledge graph. To
handle the lifelong user modeling, Ren et al. [22] further adopts a hi-
erarchical and periodical updating mechanism to capture the user’s
multi-scale interests in their memory. Similarly, user representa-
tion vectors are also maintained in the external memory for UIC
[17], in which the computation of the user representation vectors
is decoupled from the inference process to reduce the latency.

However, the keys used in the memory-augmented networks
are unary (e.g., indexed by user ID, in most cases). The extracted
knowledge is insufficient to preserve the abundant knowledge in
a user log. Moreover, the maintenance of the memory-augmented
networks is always complicated [18] because the stored vectors will
be updated in the training process as parameters thus should always
be maintained in GPUs. D2K’s knowledge vectors, however, is
constant values that could be stored in CPUmemories and persisted
in hard disks.

Coreset Selection. The coreset is a subset of data samples on
which the model could achieve comparable performance as trained
on the full dataset, which is commonly seen in the field of Com-
puter Vision [3, 5]. SVP-CF [23] designs a data-specific sampling
strategy for recommendation, which employs a base model as a
proxy to tag the importance of each data sample. The importance of
each sample is defined as the average prediction error of the proxy
model over epochs. Coreset selection is generally heuristic and
lacks generalizability, where the sampling strategy relies heavily
on the selected proxy or pre-defined rules.

5 CONCLUSIONS AND FUTUREWORKS
This paper proposes the D2K framework to turn historical data into
retrievable knowledge effectively.We designed a ternary knowledge
base that uses user-item-context cross features as keys. The ternary
knowledge preserves the abundant information extracted from the
user logs. D2K shows superiority over the other methods on two
large-scale datasets. For future work, we plan to support fussy
search. Now D2K uses an exact match on the ternary features,
which may cause some of the queries not to have a match in the
knowledge base and it may hurt the performance.
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A APPENDIX
A.1 Pseudo Code of Knowledge Base

Generation Process in Section 2.3
The algorithm of knowledge base generation is shown in Algo-
rithm 1.

Algorithm 1 Knowledge base generation of D2K.
Require: Old dataset D𝑜𝑙𝑑 , knowledge encoder Enc.
Ensure: The knowledge base K .
1: Train the encoder Enc on D𝑜𝑙𝑑 using loss function in Eq. (7).
2: repeat
3: Get all of the ternary user-item-context cross features of

sample 𝑥 as {⟨𝑓 𝑢
𝑖
, 𝑓 𝑣

𝑗
, 𝑓 𝑐
𝑘
⟩}.

4: repeat
5: Feed the cross feature ⟨𝑓 𝑢

𝑖
, 𝑓 𝑣

𝑗
, 𝑓 𝑐
𝑘
⟩ into Enc and get the

resulted knowledge vector 𝒛𝑖 𝑗𝑘 .
6: Add the entry to the knowledge base asK[⟨𝑓 𝑢

𝑖
, 𝑓 𝑣

𝑗
, 𝑓 𝑐
𝑘
⟩] =

𝒛𝑖 𝑗𝑘
7: until all the ternary features of sample 𝑥 are processed.
8: until all samples in D𝑜𝑙𝑑 have been processed.

A.2 Datasets Statistics
Unlike most of the recommendation datasets that only record the
clicked (positive) samples, these two datasets also include the ex-
posed but not clicked (negative) samples so that no negative sam-
pling process is required. The statistics of the datasets are shown
in Table 5.

Table 5: The preprocessed dataset statistics. "ID #" represents
the number of unique feature ids.

Dataset Users # Items # Interaction # Feature Fields # ID #
AD 1,061,768 827,009 25,029,435 14 3,029,333

Eleme 5,782,482 1,853,764 49,114,930 25 16,516,885

A.3 Time and Space Overhead of D2K
We list the time overhead of the retrieval process, the knowledge
building process, and the memory consumption of loading the D2K
knowledge base, as shown in Table 6. We tested these statistics
on a machine with an AMD EPYC 7302 16-Core Processor as CPU
and 256GB memory. The additional overhead introduced by D2K is
generally acceptable for real-world deployment. Specifically, the
retrieval time for each batch (1024 samples) is less than 100ms,
which meets the low latency requirement of the recommender
systems [17, 25]. The knowledge base only needs to be built once
for later use with reasonable memory consumption and wall time.

A.4 Direct Knowledge
As we define the knowledge of D2K as "direct" in Definition 1, we
test the performance of solely utilizing the knowledge without the
input 𝑥 being fed to the recommendation model. We only utilize the

Table 6: Time & space overheads of D2K.

Dataset Time of Retrieval Time of Building K Mem. Consumption
AD 44.7ms/batch 62mins 76.32GB

Eleme 89.8ms/batch 113mins 138.48GB

linear knowledge tower as the predictor to produce the estimation,
which is the P(concat({�̂�𝑖 𝑗𝑘 })) part in Eq. (14).

"ONLY_KLG_LR w/ adp" uses the adapted knowledge �̂�𝑖 𝑗𝑘 in
the linear predictor and "ONLY_KLG_LR w/o adp" uses the global
knowledge vector 𝒛𝑖 𝑗𝑘 . We also list the performance of the DeepFM
trained on D𝑡𝑟 as a basic comparison. The results are shown in
Table 7.We observe that direct knowledge with adaptation performs
well. It even achieves better results on AD compared to DeepFM.
The adaptation unit uses the information of target sample 𝑥 after
all. Thus the performance of "w/o adp" is worse than that of "w/
adp". However, the AUC of "w/o adp" is still better than 0.5 by far,
which verifies that the global direct knowledge retrieved by 𝑥 has
considerable discrimination ability.

Table 7: The performance of using direct knowledge solely.
"adp": personalized knowledge adaptation unit.

Dataset Model AUC LL
DeepFM trained on D𝑡𝑟 0.6202±0.0009 0.1952±0.0002
ONLY_KLG_LR w/ adp 0.6247±0.0003 0.1943±0.0002AD
ONLY_KLG_LR w/o adp 0.6068±0.0002 0.1955±0.0000
DeepFM trained on D𝑡𝑟 0.5769±0.0026 0.0987±0.0107
ONLY_KLG_LR w/ adp 0.5663±0.0012 0.0972±0.0031Eleme
ONLY_KLG_LR w/o adp 0.5426±0.0007 0.0901±0.0000

A.5 Feature Selection Details in Section 3.4
The feature selection details are shown in Table 8. The correspond-
ing feature meanings could be found in the dataset links in Sec-
tion 3.1.1.

A.6 Outdated Knowledge
As the methods in Section 3.1.2 need to preserve the knowledge in
D𝑜𝑙𝑑 , we are curious about the robustness of the stored knowledge.
We test how the methods will perform if the knowledge preserved
by them is outdated. In the real-world, it is possible that the knowl-
edge is not updated timely online.

To implement the outdated knowledge, we intentionally left a
gap between D𝑜𝑙𝑑 and D𝑡𝑟 . It means D𝑜𝑙𝑑 = {D1, ...,D𝑝1 } but
D𝑡𝑟 = {D𝑝1+𝐺 , ...,D𝑝2 }, where 𝐺 is the gap time interval (nota-
tions refer to Section 3.1.1). 𝐺 is set to 24 hours.

The results are shown in Table 9 and Table 10. Every method
is tested with outdated knowledge, except for the Fixed Window
(R) on D𝑡𝑟 which is used as a basic baseline (The results are the
same with Table 1 and Table 2). From the tables, we observe that
the performance of all the methods drops because the knowledge
is not up-to-date. However, D2K-adp-share still outperforms the
basic baseline Fixed Window (R) and other baselines with outdated
knowledge. These results show that even if the knowledge is out-
dated in D2K’s knowledge base, a competitive performance could
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Table 8: Detailed feature selection for Section 3.4

Feature Set User Item Context
(AD) FS1 userid, cms_segid, cms_group_id, final_gender_code, age_level, shopping_level, occupation, hist_brands, hist_cates adgroup_id, cate_id, campaign_id, customer weekday
(AD) FS2 userid, cms_segid, cms_group_id, hist_cates adgroup_id, cate_id weekday
(AD) FS3 cms_segid, cms_group_id, hist_brands cate_id weekday

(Eleme) FS1 user_id, gender, visit_city, is_supervip, shop_id_list, category_1_id_list shop_id, city_id, district_id, brand_id, category_1_id, merge_standard_food_id hours
(Eleme) FS2 user_id, gender, shop_id_list shop_id, city_id, district_id, brand_id hours
(Eleme) FS3 gender, visit_city, is_supervip brand_id, category_1_id hours

still be expected. The robustness of D2K is further verified compared
to other methods to preserve knowledge.

Table 9: The performance of outdated knowledge on AD.

Method DeepFM DIN DCNv2
Fixed Window (R) 0.6202±0.0009 0.6203±0.0008 0.6211±0.0011

Incremental 0.6182±0.0012 0.6181±0.0016 0.6190±0.0012
IncCTR(KD-batch) 0.6188±0.0003 0.6185±0.0005 0.6114±0.0009
Pretrain embedding 0.6111±0.0008 0.6144±0.0005 0.6158±0.0009

MemoryNet 0.6110±0.0009 0.6138±0.0008 0.6159±0.0006
Random 0.6194±0.0006 0.6206±0.0003 0.6210±0.0004
SVP-CF 0.6191±0.0010 0.6206±0.0003 0.6213±0.0003

D2K-adp-share 0.6228±0.0011 0.6262±0.0002 0.6253±0.0021

Table 10: The performance of outdated knowledge on Eleme.

Method DeepFM DIN DCNv2
Fixed Window (R) 0.5769±0.0026 0.5950±0.0125 0.5800±0.0054

Incremental 0.5797±0.0091 0.5751±0.0103 0.5829±0.0081
IncCTR(KD-batch) 0.5867±0.0045 0.6065±0.0059 0.6098±0.0124
Pretrain embedding 0.5661±0.0029 0.5813±0.0025 0.5733±0.0110

MemoryNet 0.5681±0.0092 0.5909±0.0116 0.5865±0.0112
Random 0.5741±0.0128 0.5957±0.0094 0.5905±0.0089
SVP-CF 0.5813±0.0129 0.5833±0.0066 0.5854±0.0082

D2K-adp-share 0.6028±0.0102 0.6079±0.0074 0.6123±0.0081
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