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Abstract

As versatile agents, large-scale language mod-001
els (LLMs) have demonstrated impressive per-002
formance across various domains. Their capa-003
bilities in language-based pattern recognition004
and machine learning have garnered significant005
attention and have been applied to numerous006
tasks with remarkable success. However, dif-007
ferent LLMs still rely on specific instruction008
prompts, and the design of prompt tokens is still009
heavily dependent on manual design, which010
hinders the widespread application of LLMs.011
In response to this challenge, we propose a con-012
cise and effective input optimization method,013
which consists of two modules: original input014
rewriting and filtering. Inspired by the con-015
cept of collaboration between large and small016
models, we introduce a rewriting module be-017
tween input prompts and LLMs inference. This018
module rewrites the input component based on019
the preferences of the LLMs for the data. The020
filtering module performs the quality inspec-021
tion on the rewritten data and filters out invalid022
and hallucinatory data. Experimental results on023
language pattern recognition tasks verify that024
our rewriting and filtering method effectively025
transforms ambiguous data into more precise026
input prompts. In comparison to the original in-027
puts, performance improvement is consistently028
observed across various tasks.029

1 Introduction030

Large language models (LLMs) trained on ter-031

abytes of tokenized data have achieved ground-032

breaking progress across a myriad of pattern recog-033

nition tasks. Those LLMs, such as GPT-3.5 (Ope-034

nAI, 2022), typically use manually crafted or pre-035

defined prompt templates as directives to guide the036

model in accomplishing various tasks.037

Previous studies (Qin and Eisner, 2021; Liu et al.,038

2021b) demonstrate that LLMs exhibit sensitiv-039

ity to prompts, and manual design of appropriate040

prompts can be a laborious and time-consuming041

Figure 1: The example on the left illustrates the sensi-
tivity of LLMs to input data. In the context of the same
translation task, providing more detailed input (bottom)
leads to better results. The right figure shows the perfor-
mance improvement of the LLMs on various translation
datasets after rewriting.

task. To address this issue, soft prompts (Qin and 042

Eisner, 2021) convert discrete prompt words into 043

continuous vectors, enabling end-to-end training. 044

Prefix Tuning (Li and Liang, 2021) inserts a series 045

of continuous task-specific prefixes at the begin- 046

ning of the input, then fine-tunes these prefixes 047

while keeping the other parameters frozen. Fur- 048

thermore, APO (Pryzant et al., 2023) optimizes the 049

prompt by using the discrete feedback of the LLMs 050

as gradient updates. RLPrompt (Deng et al., 2022) 051

employs reinforcement learning to conduct a direc- 052

tionless Monte Carlo search in the semantic space 053

and get impressive results. 054

In the context of using LLMs, tokens typically 055

consist of two components: instruction and input. 056

These two components are usually concatenated 057

and fed into the LLMs. The aforementioned ap- 058

proaches primarily optimize the instruction to 059

achieve improved results. However, in tasks like 060

machine translation, the model is equally sensitive 061

to the input. As depicted in Figure 1 left, in the 062

task of translating German to English, LLMs pro- 063

vide better responses when the original German 064

text is modified while preserving the original mean- 065

ing. In tasks such as machine translation, sum- 066
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marization and abstraction, the instruction compo-067

nent is typically short and may not require signifi-068

cant modifications. However, the input component069

plays a major role in the input tokens in these tasks.070

Therefore, the benefits brought by optimizing the071

input part may be greater on this type of task.072

Inspired by ALMs (Mialon et al., 2023), we pro-073

pose the Rewriting Original Inputs (ROI) strategy,074

which aims to optimize the important input com-075

ponent before feeding it into LLMs. Rewriting076

involves improving the grammar, expression, and077

other linguistic aspects of the input while maintain-078

ing the original meaning intact. We explore two079

rewriting methods: 1) utilizing the LLMs them-080

selves. 2) employing a language model fine-tuned081

on the rewritten dataset. Neither of those methods082

requires training of the LLMs. We draw inspiration083

from back translation in machine translation and084

use this way to construct rewriting data and train085

the rewriting model. As shown in Figure 1 right,086

on several translation datasets, the results of LLMs087

show varying degrees of improvement when the088

original input data is rewritten while keeping the089

original meaning. For tasks that are unsuitable for090

constructing rewritten data, we use LLMs them-091

selves to modify the input component, which turns092

out to be effective. Furthermore, we find that not093

all rewriting yields positive gains. So we incorpo-094

rate a filtering module to eliminate sentences that095

introduce hallucinations or alter the original mean-096

ing. For those data, we revert to using the original097

input. We conduct experiments on both natural098

language understanding (NLU) and language gen-099

eration (NLG) tasks. For the NLG task, we per-100

formed experiments on four machine translation101

datasets, while for NLU tasks, we chose the GLUE102

benchmark.103

Regarding the contributions of this paper, we104

observe that existing prompt engineering methods105

yield limited benefits for tasks where the input com-106

ponent plays a predominant role. Building upon107

this observation, we then introduce the Rewrite108

Original Input (ROI) module, coupled with a fil-109

tering algorithm, to enhance the performance of110

LLMs on these downstream tasks. In this method,111

there is no need to train any parameters in the112

LLMs and the framework is applicable to a wide113

range of different LLMs. The experimental re-114

sults on both NLU and NLG tasks verify that the115

ROI module effectively transforms ambiguous data116

into more precise and explicit input prompts. Com-117

pared to the original input, our ROI method reaches118

consistent and notable performance improvements 119

across all tasks. 120

2 Related Work 121

Large Language Models. Significant strides in the 122

domain of deep learning have been facilitated by 123

the advent of large language models. These mod- 124

els commonly utilize transformer-based (Vaswani 125

et al., 2017) architecture and amass models that 126

comprise hundreds of millions of parameters via 127

layer stacking. Such models are pre-trained on vast 128

quantities of unlabeled data, utilizing techniques 129

like Masking. Examples of such models include 130

GPT-3.5 (Brown et al., 2020), LLaMA (Touvron 131

et al., 2023), PaLM (Chowdhery et al., 2022), and 132

more. The extensive parameter scale and volumi- 133

nous training data equip LLMs with formidable 134

natural comprehension capabilities. To further im- 135

prove the performance of LLMs on unseen tasks, 136

FLAN (Wei et al., 2021) incorporates an additional 137

instruction-tuning stage after pre-training, enhanc- 138

ing the ability of the LLMs to handle diverse and 139

complex user instructions. 140

Augmenting Large Language Model without 141

Training. Training large language models from 142

scratch poses a significant challenge for researchers 143

due to their massive parameter size and the need for 144

extensive pre-training data. LLMs exhibit excellent 145

context-learning capabilities, allowing the comple- 146

tion of specific tasks through contextual prompts, 147

known as in-context learning (ICL) (Dong et al., 148

2022). Unlike supervised learning, in-context learn- 149

ing does not require parameter updates but directly 150

uses LLMs for prediction. LLMs can understand 151

given demonstrations and make accurate predic- 152

tions. The performance of ICL heavily depends on 153

the nature of demonstrations, including both their 154

format and sequence. KATE (Liu et al., 2021a) indi- 155

cates that the selection of nearest-neighbor samples 156

as context instances can significantly enhance the 157

performance of LLMs. Additionally, Gonen (Go- 158

nen et al., 2022) proposes selecting instances with 159

low perplexity, while Rubin (Rubin et al., 2021) 160

puts forth a two-stage, retrieval-based method for 161

demonstration selection. To handle specific inputs, 162

an unsupervised retriever is first constructed to 163

identify examples similar to candidate instances, 164

following this, a supervised retriever selects ap- 165

propriate demonstrations from among these candi- 166

dates. 167

Augmenting Large Language Model with 168
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Prompt Tuning. The utilization of a shared model169

across tasks has significantly propelled the appli-170

cation and development of LLMs. However, the171

reliance on textual prompts requires manual de-172

sign, and even with carefully crafted prompts, their173

performance still falls short compared to model174

fine-tuning. As a result, current work primarily175

aims to enhance the performance of LLMs through176

differentiable tuning of prompts. Brian (Lester177

et al., 2021) and Li (Li and Liang, 2021) pro-178

pose a method called prefix tuning to adjust soft179

prompts for tuning frozen models. The tokens of180

soft prompts are learnable vectors, and they ap-181

pend the soft prompt vectors at the beginning of182

the input text, inputting the combined sequence183

into the model, thus realizing end-to-end training184

on the training set. Similarly, P-Tuning (Liu et al.,185

2021b) adds an encoder module in front of LLMs186

to fine-tune prompts at the embedding level, which187

is more flexible compared to prefix tuning. In ad-188

dition, APE (Zhou et al., 2022) and RLPrompt189

(Deng et al., 2022) incorporate reinforcement learn-190

ing into prompt optimization. They design scor-191

ing functions in response to model feedback and192

make discrete-level corrections to prompts. Be-193

yond prompt optimization, methods for parameter-194

efficient fine-tuning (PEFT) have also been pro-195

posed to make LLMs adapt to downstream tasks196

efficiently without the need to fine-tune all pa-197

rameters. Techniques like Adapter-Tuning (He198

et al., 2021) insert smaller neural network layers199

or blocks into pre-trained networks, and only these200

adapter parameters are updated for downstream201

tasks. Similarly, LoRA (Hu et al., 2021) approxi-202

mates the parameter update of the weight matrix203

W of the model by learning a low-rank matrix with204

fewer parameters. All the aforementioned meth-205

ods can be categorized as part of ALMs. Besides206

these techniques, ALMs also improve the perfor-207

mance of LLMs by retrieving external information208

(Borgeaud et al., 2022) or training auxiliary models209

(Yang et al., 2022).210

3 Method211

In this section, we begin by giving a definition of212

the process of how LLMs are utilized to generate213

outputs. Subsequently, we present our method in214

a comprehensive manner. Finally, we analyze the215

differences between our approach and other prompt216

engineering methods.217

To start, we offer a formalized definition of218

how LLMs complete downstream tasks. LLMs 219

are constructed based on the transformer architec- 220

ture, which comprises deep networks with multi- 221

ple layers of stacked multi-head attention mech- 222

anisms. Unlike conventional language models, 223

LLMs are characterized by the parameter size, pre- 224

training data, and computational demands. LLMs 225

employ prompt-based inference mechanisms, en- 226

abling the expression of various natural language 227

tasks through instruction prompts. For specific 228

tasks, corresponding instruction templates P = 229

{p1, p2, ..., pm} are often designed by human be- 230

ings, where m is the length of the instruction. 231

Meanwhile, some tasks are accompanied by cor- 232

responding input sequences X = {x1, x2, ..., xn}. 233

After embedding the input sequences into the in- 234

struction templates or splicing with them, we get 235

the complete input prompts. For example, for senti- 236

ment analysis tasks, the input prompt can be trans- 237

formed into 238

Xprompt = Is, the, ..., positive, or, negative, ?{X} (1) 239

Then, LLMs generate responses Y = 240

{y1, y2, ..., yk} based on complete instruc- 241

tions. k is the output length. The generation of 242

each token yj can be represented as 243

yj = argmaxyj∈V PM (yj |Xprompt, yi<j), (2) 244

where V represents the vocabularies and the pre- 245

diction of the token j relies on both the Xprompt 246

and the preceding tokens. The generation pro- 247

cess of LLMs ceases when it produces an end-of- 248

sentence (eos) token, thereby generating a complete 249

response sequence Y . 250

3.1 Rewriting Original Input (ROI) 251

We first introduce our rewriting module in detail. 252

Previous studies have demonstrated that the LLMs 253

are highly sensitive to the instruction P , highlight- 254

ing that even slight modifications can result in sig- 255

nificant variations in the outputs of the model. As 256

a consequence, a considerable amount of research 257

has emerged that aims to optimize the design of 258

instruction prompts. However, for some tasks the 259

instruction P is relatively fixed, the benefits of op- 260

timizing this aspect are limited. Instead, the input 261

component X emerges as more crucial. 262

We observe that input sentences expressing the 263

same meaning may elicit different responses from 264

the LLMs under the same instruction template. In 265

other words, LLMs are also sensitive to input com- 266

ponents. In real-world scenarios, LLMs face the 267
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Figure 2: The pipeline of our proposed method for boostrapping Large Language Models. The raw data is first input
to the LLMs to construct the rewriting data. Subsequently, a filtering process is applied to retain only the rewritten
data that demonstrates improved performance, while the remaining data continues to utilize the original data. The
generated rewritten data is then used to train the rewriting model. During testing, the original data is first input to
the rewriting model to obtain rewritten sentences. These rewritten sentences are subsequently input to the LLMs to
generate the final results.

challenge of dealing with different writing styles268

and preferences from users. They need to be capa-269

ble of producing sensible outputs for these diverse270

expressions. To this end, we propose to modify271

the input data before it is processed by the LLMs.272

We introduce a rewriting module that operates on273

the input data as depicted in Figure 2. This can be274

expressed by the following equation:275

yj = argmaxyj∈V PM (yj |R(XPrompt)). (3)276

We propose that LLMs have their own prefer-277

ences regarding the data they process, which may278

diverge from conventional human expression pat-279

terns. Therefore, we design a process where the280

original input data is rewritten using either the281

LLMs itself or a language model with fewer pa-282

rameters. Specifically, inspired by the technique283

of back translation in machine translation, we uti-284

lize LLMs to write back the training set output as285

input and form the rewritten data with the original286

input of the training set, as shown in the first part287

of figure 2. We then use this train set to fine-tune a288

language model with fewer parameters and we call289

this model a rewriting model. The rewriting model290

learns the preferences of the LLMs towards input291

data. When new test data is available, we first input292

the input component to the rewriting model and293

then pass the rewritten result to LLMs for further294

processing.295

We give an example of our rewriting method. 296

For the machine translation task from German to 297

English, we first back-translate the training data 298

from English to German and combine it with the 299

original German input to form the rewritten data. 300

This data is used to train the rewriting model. Dur- 301

ing testing, the German input is first optimized 302

through the rewriting model and then input into 303

LLMs. 304

For judgment tasks involving grammar, senti- 305

ment, etc., there is no one-to-one correspondence 306

between input and output. In this scenario, where it 307

is not possible to construct a rewriting dataset, we 308

leverage the capabilities of the LLMs themselves 309

to perform rewriting, so that the input component 310

adapts to the preferences of LLMs themselves. 311

Similar to other prompt engineering methods, 312

our rewriting method is not limited to a single 313

dataset. Furthermore, since any LLMs can be 314

paired with a rewritten model, our method is gener- 315

alizable to different models. To verify this, we test 316

on different 7B LLMs. Our method is not appli- 317

cable to tasks involving reasoning, planning, and 318

other abilities. In these tasks, the input compo- 319

nent is relatively fixed, and prompts need to focus 320

more on activating the reasoning capabilities of the 321

LLMs, so methods such as Chain of Thoughts (Wei 322

et al., 2022) are more suitable. Furthermore, we 323

have found that not all data receive positive ben- 324
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efits from rewriting. Due to the unstable output325

of LLMs, they sometimes produce so-called hal-326

lucinations. Therefore, it is necessary to filter and327

select the data after rewriting.328

3.2 The Filtering Algorithm329

During the rewriting process, it is inevitable that330

some noise data will be generated, and not all331

rewrites are beneficial. To address this, we intro-332

duce a filtering mechanism that follows the rewrit-333

ing model. This mechanism helps eliminate noise334

data by replacing unhelpful rewrites with origi-335

nal sentences. This noise elimination process also336

contributes to enhancing the performance of the337

training of the rewriting model. Specifically, for338

different tasks, we calculate similarity using perti-339

nent evaluation metrics and set thresholds for fil-340

tering. The relevant algorithm is illustrated in Al-341

gorithm 1. For instance, in a translation task, we342

can use word-level edit distance to calculate the343

similarity between the original text and the rewrit-344

ten sentences. When the similarity between the345

rewritten sentences and the original text is low, it346

might be because LLMs have outputted hallucina-347

tions, or that extensive rewriting increases the train-348

ing difficulty for the rewriting model. Therefore,349

we replace them with the original text, preserving350

only the rewritten data that have a small degree of351

change and are effective.352

We first utilize the ROUGE-L metric to calcu-353

late the similarity. Only when the ROUGE-L score354

between the original and the rewritten sentence sur-355

passes a certain threshold, we add it to the rewritten356

dataset. Furthermore, as rewriting is analogous to357

a language translation task, we use BLEU as an-358

other metric to evaluate similarity. Rewriting often359

involves rearranging word orders, deleting inap-360

propriate words, adding new terms, etc., which361

is directly related to the concept of edit distance.362

Therefore, we also adopt edit distance as a similar-363

ity measure. The relevant formula is as follows:364

sim =
Ltotal − ldist

Ltotal
; (4)365

The Ltotal in the formula indicates the sum of the366

lengths of the two sentences. ldist denotes the edit-367

ing distance between two sentences, which is the368

minimum number of editing operations required to369

convert from one to the other.370

Algorithm 1 Filtering Algorithm

Input: Rewrite dataset R = {∅},
Rwrite function F , Original dataset
D = {(x1, y1), (x2, y2), ..., (xn, yn)}

Output: Rewrite dataset R
1: Rewrite the original statement and qualify it
2: for (xi, yi) ∈ D do
3: ri = Ftask(xi) or ri = Ftask(xi, yi);
4: simscore = metric(ri, xi);
5: if simscore < γ then
6: Ri = xi;
7: else
8: Ri = ri;
9: end if

10: end for
11: return R;

4 Experiments 371

4.1 Datasets and Setup 372

We conduct experiments on both NLU and NLG 373

tasks to investigate the impact of our method on 374

various downstream tasks. For the NLU task, we 375

chose the GLUE benchmark (Wang et al., 2018), 376

as it combines instruction prompts and data inputs. 377

Therefore, we modify and optimize the entire input. 378

For the NLG task, we focus on translation tasks 379

and utilize datasets from different domains. We 380

tailor our ROI module based on the requirements 381

and characteristics of each task. This approach is 382

adopted to enhance the effectiveness and efficiency 383

of our solution across different downstream tasks. 384

Detailed descriptions of the corresponding datasets 385

and rewriting methods are provided as follows: 386

CoLA dataset is a binary classification task 387

dataset, the objective of which is to determine 388

whether a sentence is grammatically correct. 389

SST-2 dataset is a text classification dataset tar- 390

geted for sentiment analysis. By leveraging the 391

sentiment orientation of sentences. 392

MRPC dataset focuses on examining the un- 393

derstanding of a language model of similar sen- 394

tences. Each data entry provides two sentences and 395

requires the model to judge whether they express 396

the same meaning. 397

QNLI dataset is a collection of question- 398

sentence pairs designed for question-answering 399

tasks. In this dataset, each example consists of 400

a question and a corresponding sentence, and the 401

model is required to determine whether the sen- 402

tence entails or is logically implied by the question. 403
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CoLA SST-2 MRPC QNLI WNLI QQP RTE AVG

llama-7b-hf

Accuracy ↑
origin input 0.7133 0.8268 0.6637 0.4455 0.4913 0.5353 0.3754 0.5787

Rewrite 0.6711 0.7729 0.6649 0.4958 0.5086 0.5422 0.4765 0.5902
F1 Score ↑

origin input 0.8132 0.8015 0.5829 0.5951 0.3952 0.1905 0.3268 0.5293
Rewrite 0.772 0.7537 0.6118 0.6615 0.5015 0.2791 0.4413 0.5744

flan-alpaca-gpt4

Accuracy ↑
origin input 0.6567 0.9025 0.5367 0.2811 0.5774 0.6507 0.3898 0.5707

Rewrite 0.6673 0.8990 0.5220 0.2912 0.4929 0.6524 0.4255 0.5643
F1 Score ↑

origin input 0.7879 0.8986 0.5190 0.3832 0.6105 0.1293 0.199 0.5039
Rewrite 0.7974 0.8954 0.5208 0.4019 0.6250 0.1476 0.1675 0.5079

Table 1: The experimental results from the GLUE benchmark feature two different versions of the alpaca model:
llama-7b-hf and flan-alpaca-gpt4. The former has 7 billion parameters, while the latter holds 3 billion.

WNLI dataset comprises a set of sentence pairs,404

each corresponding to a binary classification task.405

In each example, there is a sentence containing a406

pronoun (e.g., “he” or “she”), and another sentence407

containing the possible antecedent of that pronoun.408

The task for LMs is to determine whether the pro-409

noun in the first sentence correctly refers to the410

antecedent in the second sentence.411

QQP is also a dataset for detecting sentence412

similarity. Based on the meaning of the sentences.413

RTE provides a premise and a hypothesis for414

each data entry. LLMs need to judge whether the415

hypothesis can be inferred from the premise.416

For NLG tasks, we conduct experiments on ma-417

chine translation task. We utilized four differ-418

ent domain-specific German-to-English translation419

datasets: IT, Medical, Koran, and Law.420

4.2 Implementation Details421

We conduct experiments on different versions of422

the Alpaca (Taori et al., 2023) model with varying423

parameter sizes and pre-training data. The origi-424

nal alpaca model is based on the LLaMA model425

and is fine-tuned with 52k instructions. For the426

rewrite models, we select models with fewer pa-427

rameters, such as mBart (Liu et al., 2020) and mT5428

(Xue et al., 2020). For different versions of the429

alpaca model, we set the temperature coefficient430

to 0.1 and the num beams to 4. The initial learn-431

ing rate is set to 2e-5, the batch size is 4, and the432

dropout is 0.3. During the inference stage, depend-433

ing on the task, we would first input the original434

Xprompt into the rewrite model or the LLMs self435

to get the rewrite sentence, and then complete the436

corresponding downstream tasks.437

4.3 Main Results 438

Table 1 presents the accuracy and F1 scores of ROI 439

and original inputs on various NLU tasks. We use 440

the same set of training parameters for all tasks. 441

For each model and each evaluation metric, the 442

original and our rewritten results are listed sepa- 443

rately. The results demonstrate that ROI can be 444

applied to various downstream tasks and, in most 445

cases, improve the accuracy and F1 scores of the 446

rewritten inputs. For example, on the RTE dataset, 447

the performance of ROI is about 10% higher than 448

that of the original inputs on llama-7b-hf. On the 449

QQP dataset, our method improves F1 by 8% com- 450

pared to the original input on llama-7b-hf model. 451

This observation holds across different parameter 452

sizes of the alpaca model. 453

It can be seen that there is some inconsistency 454

in the improvement of our method on different 455

datasets. For example, ROIs perform poorly on the 456

SST-2 and CoLA datasets. Compared to other tasks, 457

these two datasets are relatively simple, and the per- 458

formance of LLMs alone is already high, making it 459

difficult for ROI to significantly improve the perfor- 460

mance. Additionally, we find that the improvement 461

of ROI is more pronounced on larger parameter 462

alpaca models. For instance, on the RTE dataset, 463

the alpaca model with 7B parameters achieves an 464

improvement of about 10% in accuracy, while the 465

model with 3B parameters only achieves an im- 466

provement of about 4%. Roughly the same trend is 467

observed in other datasets. We analyze that LLMs 468

with larger parameters have a better understand- 469

ing of language and a stronger knowledge reserve 470

which can carry out more effective rewriting. 471

The experimental results of using ROI in NLG 472

tasks are presented in Table 2. We use the same 473
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BLEU ↑ Edit Dist ↑

Origin Input

IT 27.75 0.6220
Koran 12.37 0.5758

Medical 31.67 0.6370
Law 24.21 0.6350

Rewrite

IT 28.06 0.6130
Koran 12.51 0.5668

Medical 34.57 0.6434
Law 26.94 0.6369

Table 2: The experimental results for NLG task. IT,
Koran, Medical, and Law are four different fields of
translation datasets of de-en. The rewrite model is uni-
formly used in all experiments with mbart-cc-25.

training parameters for all datasets in different do-474

mains. It can be seen that the alpaca model does475

not perform well on the translation dataset for476

these four domains which did not appear in the477

pre-training phase. However, by using appropri-478

ate ROI, the translation performance improves to a479

certain extent in most domains. In the Medical do-480

main, the translation performance shows the most481

significant improvement. Compared to using the482

original inputs, the ROI method achieves a BLEU483

score increase of 2.9 and an improvement of 0.64%484

in Edit Distance Similarity.485

We observe that our method shows limited ef-486

fectiveness in some domains. In the koran domain,487

our method shows a positive enhancement of 0.14488

in BLEU and a slight decrease in edit distance. In489

the IT domain, our method has an improvement490

of 0.31 in BLUE and a slight decrease in edit dis-491

tance. Therefore, the effectiveness of the ROI in492

improving the performance of LLMs is dependent493

on the dataset used. Similar to NLU tasks, the494

ROI method exhibits significant variations in per-495

formance improvements across different datasets.496

Despite these variations, it remains applicable to497

the majority of datasets.498

4.4 Ablation Studies499

In this section, we perform ablation studies on vari-500

ous parts of our method. Initially, we conduct abla-501

tion experiments on different filtering algorithms.502

Subsequently, we explore the impact of various503

rewriting models. Finally, we examine the volume504

of training data required for the rewriting model.505

The experimental results of comparing different506

filtering metrics in NLG tasks are presented in Ta-507

ble 3. We use three evaluation metrics to construct508

similarity scores for filtering out noisy or poorly509

rewritten data. When the similarity score between 510

the rewritten sentence and the original sentence 511

is low, it often means that the rewritten sentence 512

contains hallucinations. In such cases, we still use 513

the original data as inputs for LLMs. Additionally, 514

a high similarity score between the rewritten sen- 515

tence and the original sentence indicates that the 516

changes made by the rewrite model are minimal, 517

making it easier to train the model. However, this 518

also means that the effectiveness of the rewrite is 519

not significant. Conversely, a low similarity score 520

between the rewritten sentence and the original 521

sentence indicates that the model made significant 522

changes to the original sentence, which may lead to 523

better rewrite results. However, this also increases 524

the difficulty of training the rewrite model. To bal- 525

ance these two cases, we conduct experiments with 526

different threshold values. The results in Table 3 527

show that the RougeL metric performs the best for 528

filtering out noisy data, and setting a threshold of 529

0.5 results in the best performance. 530

The experimental results of comparing different 531

filtering algorithms in NLU tasks are presented in 532

Table 4. Similar to NLG tasks, we use three eval- 533

uation metrics and test different threshold values. 534

Unlike translation tasks, we require the model to 535

modify the entire prompt input, making it easier to 536

introduce noisy data during the rewriting process. 537

Additional irrelevant information can interfere with 538

the judgment of LLMs, resulting in irrelevant re- 539

sponses. The experimental results show that the 540

RougeL metric still performs the best, followed 541

by the Edit Distance metric. Moreover, setting a 542

filtering threshold of 0.5 results in the best rewrite 543

performance. When using the RougeL metric with 544

a threshold of 0.5, the accuracy can reach 0.4765, 545

thresholds BLEU ↑ Edit Dist ↑

RougeL
0.3 4.002 0.486
0.5 3.310 0.453
0.8 4.673 0.497

BLEU
0.3 5.915 0.313
0.5 5.915 0.313
0.8 5.195 0.313

Edit Dis
0.3 2.797 0.2154
0.5 4.532 0.3044
0.8 5.915 0.3133

Table 3: The same thresholds are set on the three evalu-
ation metrics for the experiments. For this experiment,
we uniformly use the IT domain de-en translation data.
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and when using the Edit Distance metric with a546

threshold of 0.8, the F1 score can reach 0.4429.547

The experimental results of comparing different548

rewrite models in the translation task are presented549

in Table 5. We select three language models with550

different parameter sizes and pre-training data. the551

results show that the large parameter rewrite model552

outperforms the small parameter rewrite model sig-553

nificantly. On the four datasets, the performance554

of using mbart-cc-25 is significantly higher than555

that of using tiny-mbart. We analyze that the large556

parameter model has a more abundant pre-training557

dataset and stronger understanding ability. In ad-558

dition, when the parameter sizes are comparable,559

the rewrite performance of mbart is better than that560

of mT5. As shown in Table 5, using mbart per-561

forms significantly better than using mT5 on the562

four domains.563

To validate the potential of using ROI in practical564

applications, we conduct experiments on transla-565

tion datasets from various domains by training the566

rewriting model with varying amounts of data. We567

start with a small number of randomly selected data568

through ROI and gradually increase the size of the569

training data. As shown in Figure 3, as the train-570

ing data increases, the rewriting quality improves,571

and the translation performance improves. Besides,572

only about 5000 pieces of rewritten data need to573

be used to exceed the translation performance us-574

ing the original input on several domains. This575

suggests that by constructing a small amount of576

rewriting data, we can enable the rewriting model577

to learn suitable rewriting patterns, thereby demon-578

strating the practical applicability of ROI. More-579

over, we find that due to the unstable quality of the580

ROI, the translation performance of LLMs does not581

thresholds Accuracy ↑ F1 Score ↑

RougeL
0.3 0.4257 0.4270
0.5 0.4765 0.4413
0.8 0.4228 0.4272

BLEU
0.3 0.3754 0.3268
0.5 0.3754 0.3268
0.8 0.3754 0.3268

Edit Dis
0.3 0.3826 0.4429
0.5 0.4115 0.4398
0.8 0.4007 0.4429

Table 4: The same thresholds are set on the three evalu-
ation metrics for the experiments. For this experiment,
we uniformly chose the RTE dataset.

BLEU ↑ Edit Dist ↑

mbart-cc-25

IT 3.31 0.4530
Koran 11.8938 0.5354

Medical 6.8341 0.4218
Law 14.8217 0.5299

tiny-mbart

IT 0.0941 0.1514
Koran 0.0927 0.3230

Medical 0.0565 0.2545
Law 0.0733 0.3515

mT5

IT 0.1977 0.1378
Koran 0.2482 0.2770

Medical 0.9383 0.3028
Law 0.4808 0.2480

Table 5: mbart-cc-25 tiny-mbart mT5 denotes three
rewrite models, each with different parameter counts.

Figure 3: Translation performance when training a
rewriting model using 100, 1000, 5000, and 10000
pieces of rewritten data, respectively.

continue to improve when we increase the number 582

of rewritten data to 10000. This indirectly con- 583

firms the effectiveness of the filtering algorithm in 584

selecting high-quality rewriting instances. 585

5 Conclusion 586

In this paper, we propose original input rewriting 587

with filtering, a simple and versatile framework 588

for optimizing input components to LLMs. This 589

method mainly focuses on tasks in that the instruc- 590

tion component is relatively simple but the input 591

part is important. We optimize the input component 592

by rewriting model to make it more consistant with 593

the preferences of LLMs for data. Through exten- 594

sive experiments on multiple benchmarks, we vali- 595

date its effectiveness. The simplicity and efficacy 596

of our framework make it a promising approach 597

with substantial potential. 598
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6 Limitation599

Our proposed method has demonstrated promis-600

ing performance on various versions of the Alpaca601

model. However, we acknowledge that we have not602

yet conducted experiments on larger-scale LLMs603

like GPT-3.5. At the same time, our method is pri-604

marily limited to single-turn question-answering605

language tasks. We look forward to addressing all606

of these issues in our future work.607
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