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Abstract

As versatile agents, large-scale language mod-
els (LLMs) have demonstrated impressive per-
formance across various domains. Their capa-
bilities in language-based pattern recognition
and machine learning have garnered significant
attention and have been applied to numerous
tasks with remarkable success. However, dif-
ferent LLMs still rely on specific instruction
prompts, and the design of prompt tokens is still
heavily dependent on manual design, which
hinders the widespread application of LLMs.
In response to this challenge, we propose a con-
cise and effective input optimization method,
which consists of two modules: original input
rewriting and filtering. Inspired by the con-
cept of collaboration between large and small
models, we introduce a rewriting module be-
tween input prompts and LLMs inference. This
module rewrites the input component based on
the preferences of the LLMs for the data. The
filtering module performs the quality inspec-
tion on the rewritten data and filters out invalid
and hallucinatory data. Experimental results on
language pattern recognition tasks verify that
our rewriting and filtering method effectively
transforms ambiguous data into more precise
input prompts. In comparison to the original in-
puts, performance improvement is consistently
observed across various tasks.

1 Introduction

Large language models (LLMs) trained on ter-
abytes of tokenized data have achieved ground-
breaking progress across a myriad of pattern recog-
nition tasks. Those LLMs, such as GPT-3.5 (Ope-
nAl, 2022), typically use manually crafted or pre-
defined prompt templates as directives to guide the
model in accomplishing various tasks.

Previous studies (Qin and Eisner, 2021; Liu et al.,
2021b) demonstrate that LLMs exhibit sensitiv-
ity to prompts, and manual design of appropriate
prompts can be a laborious and time-consuming
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Figure 1: The example on the left illustrates the sensi-
tivity of LLMs to input data. In the context of the same
translation task, providing more detailed input (bottom)
leads to better results. The right figure shows the perfor-
mance improvement of the LLMs on various translation
datasets after rewriting.

task. To address this issue, soft prompts (Qin and
Eisner, 2021) convert discrete prompt words into
continuous vectors, enabling end-to-end training.
Prefix Tuning (Li and Liang, 2021) inserts a series
of continuous task-specific prefixes at the begin-
ning of the input, then fine-tunes these prefixes
while keeping the other parameters frozen. Fur-
thermore, APO (Pryzant et al., 2023) optimizes the
prompt by using the discrete feedback of the LLMs
as gradient updates. RLPrompt (Deng et al., 2022)
employs reinforcement learning to conduct a direc-
tionless Monte Carlo search in the semantic space
and get impressive results.

In the context of using LLMs, tokens typically
consist of two components: instruction and input.
These two components are usually concatenated
and fed into the LLMs. The aforementioned ap-
proaches primarily optimize the instruction to
achieve improved results. However, in tasks like
machine translation, the model is equally sensitive
to the ¢nput. As depicted in Figure 1 left, in the
task of translating German to English, LL.Ms pro-
vide better responses when the original German
text is modified while preserving the original mean-
ing. In tasks such as machine translation, sum-



marization and abstraction, the instruction compo-
nent is typically short and may not require signifi-
cant modifications. However, the input component
plays a major role in the input tokens in these tasks.
Therefore, the benefits brought by optimizing the
input part may be greater on this type of task.

Inspired by ALMs (Mialon et al., 2023), we pro-
pose the Rewriting Original Inputs (ROI) strategy,
which aims to optimize the important input com-
ponent before feeding it into LLMs. Rewriting
involves improving the grammar, expression, and
other linguistic aspects of the input while maintain-
ing the original meaning intact. We explore two
rewriting methods: 1) utilizing the LLMs them-
selves. 2) employing a language model fine-tuned
on the rewritten dataset. Neither of those methods
requires training of the LLMs. We draw inspiration
from back translation in machine translation and
use this way to construct rewriting data and train
the rewriting model. As shown in Figure 1 right,
on several translation datasets, the results of LLMs
show varying degrees of improvement when the
original input data is rewritten while keeping the
original meaning. For tasks that are unsuitable for
constructing rewritten data, we use LLMs them-
selves to modify the input component, which turns
out to be effective. Furthermore, we find that not
all rewriting yields positive gains. So we incorpo-
rate a filtering module to eliminate sentences that
introduce hallucinations or alter the original mean-
ing. For those data, we revert to using the original
input. We conduct experiments on both natural
language understanding (NLU) and language gen-
eration (NLG) tasks. For the NLG task, we per-
formed experiments on four machine translation
datasets, while for NLU tasks, we chose the GLUE
benchmark.

Regarding the contributions of this paper, we
observe that existing prompt engineering methods
yield limited benefits for tasks where the input com-
ponent plays a predominant role. Building upon
this observation, we then introduce the Rewrite
Original Input (ROI) module, coupled with a fil-
tering algorithm, to enhance the performance of
LLMs on these downstream tasks. In this method,
there is no need to train any parameters in the
LLMs and the framework is applicable to a wide
range of different LLMs. The experimental re-
sults on both NLU and NLG tasks verify that the
ROI module effectively transforms ambiguous data
into more precise and explicit input prompts. Com-
pared to the original input, our ROI method reaches

consistent and notable performance improvements
across all tasks.

2 Related Work

Large Language Models. Significant strides in the
domain of deep learning have been facilitated by
the advent of large language models. These mod-
els commonly utilize transformer-based (Vaswani
et al., 2017) architecture and amass models that
comprise hundreds of millions of parameters via
layer stacking. Such models are pre-trained on vast
quantities of unlabeled data, utilizing techniques
like Masking. Examples of such models include
GPT-3.5 (Brown et al., 2020), LLaMA (Touvron
et al., 2023), PaLM (Chowdhery et al., 2022), and
more. The extensive parameter scale and volumi-
nous training data equip LLMs with formidable
natural comprehension capabilities. To further im-
prove the performance of LLMs on unseen tasks,
FLAN (Wei et al., 2021) incorporates an additional
instruction-tuning stage after pre-training, enhanc-
ing the ability of the LLMs to handle diverse and
complex user instructions.

Augmenting Large Language Model without
Training. Training large language models from
scratch poses a significant challenge for researchers
due to their massive parameter size and the need for
extensive pre-training data. LLMs exhibit excellent
context-learning capabilities, allowing the comple-
tion of specific tasks through contextual prompts,
known as in-context learning (ICL) (Dong et al.,
2022). Unlike supervised learning, in-context learn-
ing does not require parameter updates but directly
uses LL.Ms for prediction. LLMs can understand
given demonstrations and make accurate predic-
tions. The performance of ICL heavily depends on
the nature of demonstrations, including both their
format and sequence. KATE (Liu et al., 2021a) indi-
cates that the selection of nearest-neighbor samples
as context instances can significantly enhance the
performance of LLMs. Additionally, Gonen (Go-
nen et al., 2022) proposes selecting instances with
low perplexity, while Rubin (Rubin et al., 2021)
puts forth a two-stage, retrieval-based method for
demonstration selection. To handle specific inputs,
an unsupervised retriever is first constructed to
identify examples similar to candidate instances,
following this, a supervised retriever selects ap-
propriate demonstrations from among these candi-
dates.

Augmenting Large Language Model with



Prompt Tuning. The utilization of a shared model
across tasks has significantly propelled the appli-
cation and development of LLMs. However, the
reliance on textual prompts requires manual de-
sign, and even with carefully crafted prompts, their
performance still falls short compared to model
fine-tuning. As a result, current work primarily
aims to enhance the performance of LLMs through
differentiable tuning of prompts. Brian (Lester
et al., 2021) and Li (Li and Liang, 2021) pro-
pose a method called prefix tuning to adjust soft
prompts for tuning frozen models. The tokens of
soft prompts are learnable vectors, and they ap-
pend the soft prompt vectors at the beginning of
the input text, inputting the combined sequence
into the model, thus realizing end-to-end training
on the training set. Similarly, P-Tuning (Liu et al.,
2021b) adds an encoder module in front of LLMs
to fine-tune prompts at the embedding level, which
is more flexible compared to prefix tuning. In ad-
dition, APE (Zhou et al., 2022) and RLPrompt
(Deng et al., 2022) incorporate reinforcement learn-
ing into prompt optimization. They design scor-
ing functions in response to model feedback and
make discrete-level corrections to prompts. Be-
yond prompt optimization, methods for parameter-
efficient fine-tuning (PEFT) have also been pro-
posed to make LL.Ms adapt to downstream tasks
efficiently without the need to fine-tune all pa-
rameters. Techniques like Adapter-Tuning (He
et al., 2021) insert smaller neural network layers
or blocks into pre-trained networks, and only these
adapter parameters are updated for downstream
tasks. Similarly, LoRA (Hu et al., 2021) approxi-
mates the parameter update of the weight matrix
W of the model by learning a low-rank matrix with
fewer parameters. All the aforementioned meth-
ods can be categorized as part of ALMs. Besides
these techniques, ALMs also improve the perfor-
mance of LLMs by retrieving external information
(Borgeaud et al., 2022) or training auxiliary models
(Yang et al., 2022).

3 Method

In this section, we begin by giving a definition of
the process of how LLMs are utilized to generate
outputs. Subsequently, we present our method in
a comprehensive manner. Finally, we analyze the
differences between our approach and other prompt
engineering methods.

To start, we offer a formalized definition of

how LLMs complete downstream tasks. LLMs
are constructed based on the transformer architec-
ture, which comprises deep networks with multi-
ple layers of stacked multi-head attention mech-
anisms. Unlike conventional language models,
LLMs are characterized by the parameter size, pre-
training data, and computational demands. LLMs
employ prompt-based inference mechanisms, en-
abling the expression of various natural language
tasks through instruction prompts. For specific
tasks, corresponding instruction templates P =
{p1,p2, ..., pm} are often designed by human be-
ings, where m is the length of the instruction.
Meanwhile, some tasks are accompanied by cor-
responding input sequences X = {x1,x2, ..., Zpn}.
After embedding the input sequences into the in-
struction templates or splicing with them, we get
the complete input prompts. For example, for senti-
ment analysis tasks, the input prompt can be trans-
formed into

Xprompt = I8, the, ..., positive, or, negative, 7{ X} (1)

Then, LLMs generate responses Y =
{y1,y2,...,yx} based on complete instruc-
tions. k is the output length. The generation of
each token y; can be represented as

Y; = argma:vijVPM (yj|Xprompta yi<j)7 (2)

where V' represents the vocabularies and the pre-
diction of the token j relies on both the X,ompt
and the preceding tokens. The generation pro-
cess of LLMs ceases when it produces an end-of-
sentence (eos) token, thereby generating a complete
response sequence Y.

3.1 Rewriting Original Input (ROI)

We first introduce our rewriting module in detail.
Previous studies have demonstrated that the LLMs
are highly sensitive to the instruction P, highlight-
ing that even slight modifications can result in sig-
nificant variations in the outputs of the model. As
a consequence, a considerable amount of research
has emerged that aims to optimize the design of
instruction prompts. However, for some tasks the
instruction P is relatively fixed, the benefits of op-
timizing this aspect are limited. Instead, the input
component X emerges as more crucial.

We observe that input sentences expressing the
same meaning may elicit different responses from
the LLMs under the same instruction template. In
other words, LLMs are also sensitive to input com-
ponents. In real-world scenarios, LLMs face the
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Figure 2: The pipeline of our proposed method for boostrapping Large Language Models. The raw data is first input
to the LLMs to construct the rewriting data. Subsequently, a filtering process is applied to retain only the rewritten
data that demonstrates improved performance, while the remaining data continues to utilize the original data. The
generated rewritten data is then used to train the rewriting model. During testing, the original data is first input to
the rewriting model to obtain rewritten sentences. These rewritten sentences are subsequently input to the LLMs to

generate the final results.

challenge of dealing with different writing styles
and preferences from users. They need to be capa-
ble of producing sensible outputs for these diverse
expressions. To this end, we propose to modify
the input data before it is processed by the LL.Ms.
We introduce a rewriting module that operates on
the input data as depicted in Figure 2. This can be
expressed by the following equation:

Yj = argmaxijVPM(yj’R(XPrompt))- (3)

We propose that LLMs have their own prefer-
ences regarding the data they process, which may
diverge from conventional human expression pat-
terns. Therefore, we design a process where the
original input data is rewritten using either the
LLMs itself or a language model with fewer pa-
rameters. Specifically, inspired by the technique
of back translation in machine translation, we uti-
lize LLMs to write back the training set output as
input and form the rewritten data with the original
input of the training set, as shown in the first part
of figure 2. We then use this train set to fine-tune a
language model with fewer parameters and we call
this model a rewriting model. The rewriting model
learns the preferences of the LLMs towards input
data. When new test data is available, we first input
the input component to the rewriting model and
then pass the rewritten result to LLMs for further
processing.

We give an example of our rewriting method.
For the machine translation task from German to
English, we first back-translate the training data
from English to German and combine it with the
original German input to form the rewritten data.
This data is used to train the rewriting model. Dur-
ing testing, the German input is first optimized
through the rewriting model and then input into
LLMs.

For judgment tasks involving grammar, senti-
ment, etc., there is no one-to-one correspondence
between input and output. In this scenario, where it
is not possible to construct a rewriting dataset, we
leverage the capabilities of the LLMs themselves
to perform rewriting, so that the input component
adapts to the preferences of LLMs themselves.

Similar to other prompt engineering methods,
our rewriting method is not limited to a single
dataset. Furthermore, since any LLMs can be
paired with a rewritten model, our method is gener-
alizable to different models. To verify this, we test
on different 7B LLMs. Our method is not appli-
cable to tasks involving reasoning, planning, and
other abilities. In these tasks, the input compo-
nent is relatively fixed, and prompts need to focus
more on activating the reasoning capabilities of the
LLMs, so methods such as Chain of Thoughts (Wei
et al., 2022) are more suitable. Furthermore, we
have found that not all data receive positive ben-



efits from rewriting. Due to the unstable output
of LLMs, they sometimes produce so-called hal-
lucinations. Therefore, it is necessary to filter and
select the data after rewriting.

3.2 The Filtering Algorithm

During the rewriting process, it is inevitable that
some noise data will be generated, and not all
rewrites are beneficial. To address this, we intro-
duce a filtering mechanism that follows the rewrit-
ing model. This mechanism helps eliminate noise
data by replacing unhelpful rewrites with origi-
nal sentences. This noise elimination process also
contributes to enhancing the performance of the
training of the rewriting model. Specifically, for
different tasks, we calculate similarity using perti-
nent evaluation metrics and set thresholds for fil-
tering. The relevant algorithm is illustrated in Al-
gorithm 1. For instance, in a translation task, we
can use word-level edit distance to calculate the
similarity between the original text and the rewrit-
ten sentences. When the similarity between the
rewritten sentences and the original text is low, it
might be because LLMs have outputted hallucina-
tions, or that extensive rewriting increases the train-
ing difficulty for the rewriting model. Therefore,
we replace them with the original text, preserving
only the rewritten data that have a small degree of
change and are effective.

We first utilize the ROUGE-L metric to calcu-
late the similarity. Only when the ROUGE-L score
between the original and the rewritten sentence sur-
passes a certain threshold, we add it to the rewritten
dataset. Furthermore, as rewriting is analogous to
a language translation task, we use BLEU as an-
other metric to evaluate similarity. Rewriting often
involves rearranging word orders, deleting inap-
propriate words, adding new terms, etc., which
is directly related to the concept of edit distance.
Therefore, we also adopt edit distance as a similar-
ity measure. The relevant formula is as follows:

Ltotal — ldist .
Liotal

4

stm =

The L;y4q; in the formula indicates the sum of the
lengths of the two sentences. [4;5; denotes the edit-
ing distance between two sentences, which is the
minimum number of editing operations required to
convert from one to the other.

Algorithm 1 Filtering Algorithm

Input: Rewrite dataset R =
Rwrite function F, Original
D = {(z1,91), (z2,92), -+, (Tn, yn) }

Output: Rewrite dataset R

1: Rewrite the original statement and qualify it

2: for (z;,y;) € D do

30 1y = Fiaar(wg) or ry = Fiaep (@i, i)

4 SiMgeore = metric(ri, z;);

50 if siMmgeore < 7y then

6

7

8

{0},

dataset

R; = x;;
else
: R; =1
9: end if
10: end for
11: return R;

4 Experiments

4.1 Datasets and Setup

We conduct experiments on both NLU and NLG
tasks to investigate the impact of our method on
various downstream tasks. For the NLU task, we
chose the GLUE benchmark (Wang et al., 2018),
as it combines instruction prompts and data inputs.
Therefore, we modify and optimize the entire input.
For the NLG task, we focus on translation tasks
and utilize datasets from different domains. We
tailor our ROI module based on the requirements
and characteristics of each task. This approach is
adopted to enhance the effectiveness and efficiency
of our solution across different downstream tasks.
Detailed descriptions of the corresponding datasets
and rewriting methods are provided as follows:

CoLA dataset is a binary classification task
dataset, the objective of which is to determine
whether a sentence is grammatically correct.

SST-2 dataset is a text classification dataset tar-
geted for sentiment analysis. By leveraging the
sentiment orientation of sentences.

MRPC dataset focuses on examining the un-
derstanding of a language model of similar sen-
tences. Each data entry provides two sentences and
requires the model to judge whether they express
the same meaning.

QNLI dataset is a collection of question-
sentence pairs designed for question-answering
tasks. In this dataset, each example consists of
a question and a corresponding sentence, and the
model is required to determine whether the sen-
tence entails or is logically implied by the question.



CoLA SST-2 MRPC OQNLI WNLI QQP RTE AVG
Accuracy T
origininput 0.7133 0.8268 0.6637 0.4455 0.4913 0.5353 0.3754 0.5787
Rewrite 0.6711 0.7729 0.6649 0.4958 0.5086 0.5422 0.4765 0.5902
Ilama-7b-hf
F1 Score 1
origin input 0.8132 0.8015 0.5829 0.5951 0.3952 0.1905 0.3268 0.5293
Rewrite 0.772  0.7537 0.6118 0.6615 0.5015 0.2791 0.4413 0.5744
Accuracy T
origin input  0.6567 0.9025 0.5367 0.2811 0.5774 0.6507 0.3898 0.5707
Rewrite 0.6673 0.8990 0.5220 0.2912 0.4929 0.6524 0.4255 0.5643
flan-alpaca-gpt4
F1 Score 1
origin input  0.7879 0.8986 0.5190 0.3832 0.6105 0.1293 0.199 0.5039
Rewrite 0.7974 0.8954 0.5208 0.4019 0.6250 0.1476 0.1675 0.5079

Table 1: The experimental results from the GLUE benchmark feature two different versions of the alpaca model:
Ilama-7b-hf and flan-alpaca-gpt4. The former has 7 billion parameters, while the latter holds 3 billion.

WNLI dataset comprises a set of sentence pairs,
each corresponding to a binary classification task.
In each example, there is a sentence containing a
pronoun (e.g., “he” or “she”), and another sentence
containing the possible antecedent of that pronoun.
The task for LMs is to determine whether the pro-
noun in the first sentence correctly refers to the
antecedent in the second sentence.

QQP is also a dataset for detecting sentence
similarity. Based on the meaning of the sentences.

RTE provides a premise and a hypothesis for
each data entry. LLMs need to judge whether the
hypothesis can be inferred from the premise.

For NLG tasks, we conduct experiments on ma-
chine translation task. We utilized four differ-
ent domain-specific German-to-English translation
datasets: IT, Medical, Koran, and Law.

4.2 TImplementation Details

We conduct experiments on different versions of
the Alpaca (Taori et al., 2023) model with varying
parameter sizes and pre-training data. The origi-
nal alpaca model is based on the LLaMA model
and is fine-tuned with 52k instructions. For the
rewrite models, we select models with fewer pa-
rameters, such as mBart (Liu et al., 2020) and mT5
(Xue et al., 2020). For different versions of the
alpaca model, we set the temperature coefficient
to 0.1 and the num beams to 4. The initial learn-
ing rate is set to 2e-5, the batch size is 4, and the
dropout is 0.3. During the inference stage, depend-
ing on the task, we would first input the original
Xprompt 1nto the rewrite model or the LLMs self
to get the rewrite sentence, and then complete the
corresponding downstream tasks.

4.3 Main Results

Table 1 presents the accuracy and F1 scores of ROI
and original inputs on various NLU tasks. We use
the same set of training parameters for all tasks.
For each model and each evaluation metric, the
original and our rewritten results are listed sepa-
rately. The results demonstrate that ROI can be
applied to various downstream tasks and, in most
cases, improve the accuracy and F1 scores of the
rewritten inputs. For example, on the RTE dataset,
the performance of ROI is about 10% higher than
that of the original inputs on llama-7b-hf. On the
QQP dataset, our method improves F1 by 8% com-
pared to the original input on llama-7b-hf model.
This observation holds across different parameter
sizes of the alpaca model.

It can be seen that there is some inconsistency
in the improvement of our method on different
datasets. For example, ROIs perform poorly on the
SST-2 and CoL A datasets. Compared to other tasks,
these two datasets are relatively simple, and the per-
formance of LLMs alone is already high, making it
difficult for ROI to significantly improve the perfor-
mance. Additionally, we find that the improvement
of ROI is more pronounced on larger parameter
alpaca models. For instance, on the RTE dataset,
the alpaca model with 7B parameters achieves an
improvement of about 10% in accuracy, while the
model with 3B parameters only achieves an im-
provement of about 4%. Roughly the same trend is
observed in other datasets. We analyze that LLMs
with larger parameters have a better understand-
ing of language and a stronger knowledge reserve
which can carry out more effective rewriting.

The experimental results of using ROI in NLG
tasks are presented in Table 2. We use the same



BLEU 1 Edit Dist 1
IT 2775  0.6220
Origin Input Kor'an 12.37  0.5758
Medical  31.67  0.6370
Law 2421  0.6350
IT 28.06 0.6130
Rewrite Koran 12.51  0.5668
Medical 34.57 0.6434
Law 2694  0.6369

Table 2: The experimental results for NLG task. IT,
Koran, Medical, and Law are four different fields of
translation datasets of de-en. The rewrite model is uni-
formly used in all experiments with mbart-cc-25.

training parameters for all datasets in different do-
mains. It can be seen that the alpaca model does
not perform well on the translation dataset for
these four domains which did not appear in the
pre-training phase. However, by using appropri-
ate ROI, the translation performance improves to a
certain extent in most domains. In the Medical do-
main, the translation performance shows the most
significant improvement. Compared to using the
original inputs, the ROI method achieves a BLEU
score increase of 2.9 and an improvement of 0.64%
in Edit Distance Similarity.

We observe that our method shows limited ef-
fectiveness in some domains. In the koran domain,
our method shows a positive enhancement of 0.14
in BLEU and a slight decrease in edit distance. In
the IT domain, our method has an improvement
of 0.31 in BLUE and a slight decrease in edit dis-
tance. Therefore, the effectiveness of the ROI in
improving the performance of LLMs is dependent
on the dataset used. Similar to NLU tasks, the
ROI method exhibits significant variations in per-
formance improvements across different datasets.
Despite these variations, it remains applicable to
the majority of datasets.

4.4 Ablation Studies

In this section, we perform ablation studies on vari-
ous parts of our method. Initially, we conduct abla-
tion experiments on different filtering algorithms.
Subsequently, we explore the impact of various
rewriting models. Finally, we examine the volume
of training data required for the rewriting model.
The experimental results of comparing different
filtering metrics in NLG tasks are presented in Ta-
ble 3. We use three evaluation metrics to construct
similarity scores for filtering out noisy or poorly

rewritten data. When the similarity score between
the rewritten sentence and the original sentence
is low, it often means that the rewritten sentence
contains hallucinations. In such cases, we still use
the original data as inputs for LLMs. Additionally,
a high similarity score between the rewritten sen-
tence and the original sentence indicates that the
changes made by the rewrite model are minimal,
making it easier to train the model. However, this
also means that the effectiveness of the rewrite is
not significant. Conversely, a low similarity score
between the rewritten sentence and the original
sentence indicates that the model made significant
changes to the original sentence, which may lead to
better rewrite results. However, this also increases
the difficulty of training the rewrite model. To bal-
ance these two cases, we conduct experiments with
different threshold values. The results in Table 3
show that the RougeL metric performs the best for
filtering out noisy data, and setting a threshold of
0.5 results in the best performance.

The experimental results of comparing different
filtering algorithms in NLU tasks are presented in
Table 4. Similar to NLG tasks, we use three eval-
uation metrics and test different threshold values.
Unlike translation tasks, we require the model to
modify the entire prompt input, making it easier to
introduce noisy data during the rewriting process.
Additional irrelevant information can interfere with
the judgment of LLMs, resulting in irrelevant re-
sponses. The experimental results show that the
RougeL metric still performs the best, followed
by the Edit Distance metric. Moreover, setting a
filtering threshold of 0.5 results in the best rewrite
performance. When using the RougeL. metric with
a threshold of 0.5, the accuracy can reach 0.4765,

thresholds BLEU 1 Edit Dist 1

0.3 4.002 0.486

RougeL 0.5 3.310 0.453
0.8 4.673 0.497

0.3 5.915 0.313

BLEU 0.5 5.915 0.313
0.8 5.195 0.313

0.3 2.797 0.2154

Edit Dis 0.5 4.532 0.3044
0.8 5.915 0.3133

Table 3: The same thresholds are set on the three evalu-
ation metrics for the experiments. For this experiment,
we uniformly use the I'T domain de-en translation data.



and when using the Edit Distance metric with a
threshold of 0.8, the F1 score can reach 0.4429.

The experimental results of comparing different
rewrite models in the translation task are presented
in Table 5. We select three language models with
different parameter sizes and pre-training data. the
results show that the large parameter rewrite model
outperforms the small parameter rewrite model sig-
nificantly. On the four datasets, the performance
of using mbart-cc-25 is significantly higher than
that of using tiny-mbart. We analyze that the large
parameter model has a more abundant pre-training
dataset and stronger understanding ability. In ad-
dition, when the parameter sizes are comparable,
the rewrite performance of mbart is better than that
of mT5. As shown in Table 5, using mbart per-
forms significantly better than using mT5 on the
four domains.

To validate the potential of using ROl in practical
applications, we conduct experiments on transla-
tion datasets from various domains by training the
rewriting model with varying amounts of data. We
start with a small number of randomly selected data
through ROI and gradually increase the size of the
training data. As shown in Figure 3, as the train-
ing data increases, the rewriting quality improves,
and the translation performance improves. Besides,
only about 5000 pieces of rewritten data need to
be used to exceed the translation performance us-
ing the original input on several domains. This
suggests that by constructing a small amount of
rewriting data, we can enable the rewriting model
to learn suitable rewriting patterns, thereby demon-
strating the practical applicability of ROI. More-
over, we find that due to the unstable quality of the
RO, the translation performance of LLMs does not

thresholds Accuracy T F1 Score 1

0.3 0.4257 0.4270

RougeL 0.5 0.4765 0.4413
0.8 0.4228 0.4272

0.3 0.3754 0.3268

BLEU 0.5 0.3754 0.3268
0.8 0.3754 0.3268

0.3 0.3826 0.4429

Edit Dis 0.5 0.4115 0.4398
0.8 0.4007 0.4429

Table 4: The same thresholds are set on the three evalu-
ation metrics for the experiments. For this experiment,
we uniformly chose the RTE dataset.

BLEU 1 Edit Dist

IT 3.31 0.4530
mbart-ce-25 Koran  11.8938 0.5354
Medical 6.8341 0.4218
Law 14.8217 0.5299
IT 0.0941 0.1514
finy-mbart KOI‘fin 0.0927 0.3230
Medical 0.0565 0.2545
Law 0.0733 0.3515
IT 0.1977 0.1378
Koran 0.2482 0.2770
mT5 .
Medical 0.9383 0.3028
Law 0.4808 0.2480

Table 5: mbart-cc-25 tiny-mbart mTS denotes three
rewrite models, each with different parameter counts.

Figure 3: Translation performance when training a
rewriting model using 100, 1000, 5000, and 10000
pieces of rewritten data, respectively.

continue to improve when we increase the number
of rewritten data to 10000. This indirectly con-
firms the effectiveness of the filtering algorithm in
selecting high-quality rewriting instances.

5 Conclusion

In this paper, we propose original input rewriting
with filtering, a simple and versatile framework
for optimizing input components to LLMs. This
method mainly focuses on tasks in that the instruc-
tion component is relatively simple but the input
part is important. We optimize the input component
by rewriting model to make it more consistant with
the preferences of LLMs for data. Through exten-
sive experiments on multiple benchmarks, we vali-
date its effectiveness. The simplicity and efficacy
of our framework make it a promising approach
with substantial potential.



6 Limitation

Our proposed method has demonstrated promis-
ing performance on various versions of the Alpaca
model. However, we acknowledge that we have not
yet conducted experiments on larger-scale LLMs
like GPT-3.5. At the same time, our method is pri-
marily limited to single-turn question-answering
language tasks. We look forward to addressing all
of these issues in our future work.
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