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ABSTRACT

Recent advances in tabular data generation have greatly enhanced synthetic data
quality. However, extending diffusion models to tabular data is challenging due
to the intricately varied distributions and a blend of data types of tabular data.
This paper introduces TABSYN, a methodology that synthesizes tabular data by
leveraging a diffusion model within a variational autoencoder (VAE) crafted latent
space. The key advantages of the proposed TABSYN include (1) Generality: the
ability to handle a broad spectrum of data types by converting them into a single
unified space and explicitly capture inter-column relations, (2) Quality: optimizing
the distribution of latent embeddings to enhance the subsequent training of diffusion
models, which helps generate high-quality synthetic data, (3) Speed: much fewer
number of reverse steps and faster synthesis speed than existing diffusion-based
methods. Extensive experiments on six datasets with five metrics demonstrate that
TABSYN outperforms existing methods. Specifically, it reduces the error rates
by 86% and 67% for column-wise distribution and pair-wise column correlation
estimations compared with the most competitive baselines. Code has been made
available at https://github.com/amazon-science/tabsyn.

1 INTRODUCTION The proposed TabSyn
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for tabular data generation (Kim et al., 2022; Kotelnikov et al., 2023; Kim et al., 2023; Lee et al.,
2023). Despite the progress made by these methods, tailoring a diffusion model for tabular data
leads to several challenges. Unlike image data, which comprises pure continuous pixel values with
local spatial correlations, tabular data features have complex and varied distributions (Xu et al.,
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2019), making it hard to learn joint probabilities across multiple columns. Moreover, typical tabular
data often contains mixed data types, i.e., continuous (e.g., numerical features) and discrete (e.g.,
categorical features) variables. The standard diffusion process assumes a continuous input space with
Gaussian noise perturbation, which leads to additional challenges with categorical features. Existing
solutions either transform categorical features into numerical ones using techniques like one-hot
encoding (Kim et al., 2023; Liu et al., 2023b) and analog bit encoding (Zheng & Charoenphakdee,
2022) or resort to two separate diffusion processes for numerical and categorical features (Kotelnikov
et al., 2023; Lee et al., 2023). However, it has been proven that simple encoding methods lead to
suboptimal performance (Lee et al., 2023), and learning separate models for different data types
makes it challenging for the model to capture the co-occurrence patterns of different types of data.
Therefore, we seek to develop a diffusion model in a joint space of numerical and categorical features
that preserves the inter-column correlations.

This paper presents TABSYN, a principled approach for tabular data synthesis. To handle mixed-
typed inputs, TABSYN first transforms raw tabular data into a continuous embedding space, where
well-developed diffusion models with Gaussian noises become feasible. Subsequently, we learn a
score-based diffusion model in the embedding space to capture the distribution of latent embeddings.
To learn an informative, smoothed latent space while maintaining the decoder’s reconstruction ability,
we specifically designed a Variational AutoEncoder (VAE (Kingma & Welling, 2013)) model for
tabular-structured data. Our proposed VAE model includes 1) Transformer-architecture encoders
and decoders for modeling inter-column relationships and obtaining token-level representations,
facilitating token-level tasks. 2) Adaptive loss weighting to dynamically adjust the reconstruction
loss weights and KL-divergence weights, allowing the model to improve reconstruction performance
gradually while maintaining a regularized embedding space. 3) Finally, when applying diffusion
models in the latent space, we adopt a simplified forward diffusion process, which adds Gaussian
noises of linear standard deviation with respect to time. We demonstrate through theoretical analysis
and empirical justifications that this approach can reduce the errors in the reverse process, thus
improving sampling speed.

The advantages of TABSYN are three-fold: (1) Generality: Mixed-type Feature Handling - TABSYN
transforms diverse input features, encompassing numerical, categorical, etc., into a unified embedding
space. (2) Quality: High Generation Quality - with tailored designs of the VAE model, the tabular
data is mapped into regularized latent space of good shape, e.g., a standard normal distribution. This
will greatly simplify training the subsequent diffusion model (Vahdat et al., 2021), making TABSYN
more expressive and enabling it to generate high-quality synthetic data. (3) Speed: With the proposed
linear noise schedule, our TABSYN can generate high-quality synthetic data with fewer than 20
reverse steps, which is significantly fewer than existing methods.

Recognizing the absence of unified and comprehensive evaluations for synthetic tabular data (Du &
Li, 2024), we perform extensive experiments, which involve comparing TABSYN with seven state-of-
the-art methods on six mixed-type tabular datasets using over five distinct evaluation metrics. The
experimental results demonstrate that TABS YN consistently outperforms previous methods (see Figure
1). Specifically, TABSYN reduces the average errors in column-wise distribution shape estimation
(i.e., single density) and pair-wise column correlation estimation (i.e., pair correlation) tasks by 86%
and 67% than the most competitive baselines. Furthermore, we demonstrate that TABS YN achieves
competitive performance across two downstream tabular data tasks, machine learning efficiency and
missing value imputation. Specifically, the well-learned unconditional TABSYN is able to be applied
to missing value imputation without retraining. Moreover, thorough ablation studies and visualization
case studies substantiate the rationale and effectiveness of our developed approach.

2 RELATED WORKS

Deep Generative Models for Tabular Data Generation. Generative models for tabular data have
become increasingly important and have widespread applications Assefa et al. (2021); Zheng &
Charoenphakdee (2022); Hernandez et al. (2022). To deal with the imbalanced categorical features,
Xu et al. (2019) proposes CTGAN and TVAE based on the popular Generative Adversarial Net-
works (Goodfellow et al., 2014) and VAE (Kingma & Welling, 2013), respectively. Multiple advanced
methods have been proposed for synthetic tabular data generation in the past year. Specifically, GOG-
GLE (Liu et al., 2023b) became the first to explicitly model the dependency relationship between
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Figure 2: An overview of the proposed TABSYN. Each row data z is mapped to latent space z via a
column-wise tokenizer and an encoder. A diffusion process zy — zr is applied in the latent space.
Synthesis 2z — 2 starts from the base distribution p(z7) and generates samples z in latent space
through a reverse process. These samples are then mapped from latent z to data space Z using a
decoder and a detokenizer.

columns, proposing a VAE-based model using graph neural networks as the encoder and decoder
models. Inspired by the success of large language models in modeling the distribution of natural
languages, GReaT transformed each row in a table into a natural sentence and learned sentence-level
distributions using auto-regressive GPT2. In recent years, the physical diffusion process has inspired
a lot of advanced research in deep learning. For example, DIFFormer (Wu et al., 2023) develops a
scalable Transformer model for geometric data via a constrained diffusion process, and the Denoising
Diffusion models have achieved great success in image generation (Ho et al., 2020). STaSy (Kim
et al., 2023), TabDDPM (Kotelnikov et al., 2023), and CoDi (Lee et al., 2023) concurrently applied
the popular diffusion-based generative models for synthetic tabular data generation.

Generative Modeling in the Latent Space. While generative models in the data space have
achieved significant success, latent generative models have demonstrated several advantages, includ-
ing more compact and disentangled representations, robustness to noise, and greater flexibility in
controlling generated styles (van den Oord et al., 2017; Razavi et al., 2019; Esser et al., 2021). For
example, the recent GAN literature (Li et al., 2022) has demonstrated superior controllability via
adversarial learning in the latent space. Recently, the Latent Diffusion Models (LDM) (Rombach
et al., 2022; Vahdat et al., 2021) have achieved great success in image generation as they exhibit
better scaling properties and expressivity than the vanilla diffusion models in the data space (Ho et al.,
2020; Song et al., 2021b; Karras et al., 2022). The success of LDMs in image generation has also
inspired their applications in video (Blattmann et al., 2023) and audio data (Liu et al., 2023a). To the
best of our knowledge, the proposed work is the first to explore the application of latent diffusion
models for general tabular data generation tasks.

3 SYNTHETIC TABULAR DATA GENERATION WITH TABSYN

Figure 2 gives an overview of TABSYN. In Section 3.1, we first formally define the tabular data
generation task. Then, we introduce the design details of TABSYN’s autoencoding and diffusion
process in Section 3.2 and 3.3. We summarize the training and sampling algorithms in Appendix A.

3.1 PROBLEM DEFINITION OF TABULAR DATA GENERATION

Let Myum and M, be the number of numerical columns and categorical columns, respectively.
Each row is represented as a vector of numerical features and categorical features © = [£""™, 2],
where 2" € RMoum and ¢t ¢ RMear, Specifically, the i-th categorical attribute has C; finite
candidate values, therefore we have z$?* € {1, -+, C;}, Vi. This paper focuses on the unconditional
generation task. With a tabular dataset 7 = {x}, we aim to learn a parameterized generative model

po(T ), with which realistic and diverse synthetic tabular data & € T can be generated.
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3.2 AUTOENCODING FOR TABULAR DATA

Tabular data is highly structured of mixed-type column features, with different columns having distinct
meanings and being highly dependent on each other. These characteristics make it challenging to
design an approximate encoder to model and effectively utilize the rich relationships between columns.
Motivated by the successes of Transformers in classification/regression of tabular data (Gorishniy
et al., 2021), we first learn a unique tokenizer for each column, and then the token(column)-wise
representations are fed into a Transformer for capturing the intricate relationships among columns.

Feature Tokenizer. The feature tokenizer converts each column (both numerical and categorical) into
a d-dimensional vector. First, we use one-hot encoding to pre-process categorical features, i.e., xcat =

I\/Ica
xh € R Each record is represented as & = [z™™, z¢h, - g ] € RMoum 355" 0
Then we apply a linear transformation for numencal columns and create an embeddmg lookup table
for categorical columns, where each category is assigned a learnable d-dimensional vector, i.e.,

num __ . num num num cat _ _oh cat cat
e =" wM + o, e = - W b7 ()

where whum, prum peat ¢ RIxd pyeat ¢ RCiXd are learnable parameters of the tokenizer,

erum eat ¢ R1¥4, Now, each record is expressed as the stack of the embeddings of all columns

B = [el™, - ey, e, e, ] € R, @

Transformer Encoding and Decoding. As with typical VAEs, we use the encoder to obtain the
mean and log variance of the latent variable. Then, we acquire the latent embeddings with the
reparameterization tricks. The latent embeddings are then passed through the decoder to obtain the

reconstructed token matrix £ € RM*?_ The detailed architectures are in Appendix D.

Detokenizer. Finally, we apply a detokenizer to the recovered token representation of each column to
reconstruct the column values. The design of the detokenizer is symmetrical to that of the tokenizer:

i,?um _ énum . w?um + b?um’ :ﬁ _ Softmax( Cat Wcat blqat)’ (3)
s __ [4snum snum ~oh ~oh
T = [T B BT B,

where ™ € RIOX1 poum ¢ RIX1 Weat ¢ RIXCi peat ¢ R1XCi are detokenizer’s parameters.

Training with adaptive weight coefficient. The VAE model is usually learned with the classical
ELBO loss function, but here we use 8-VAE (Higgins et al., 2016), where a coefficient /3 balances
the importance of the reconstruction loss and KL-divergence loss

L= grecon(ma "i}) + ngb (4)

Lrecon 18 the reconstruction loss between the input data and the reconstructed one, and ¢y is the KL
divergence loss that regularizes the mean and variance of the latent space. In the vanilla VAE model,
[ is set to be 1 because the two loss terms are equally important to generate high-quality synthetic
data from Gaussian noises. However, in our model, (3 is expected to be smaller, as we do not require
the distribution of the embeddings to precisely follow a standard Gaussian distribution because we
have an additional diffusion model. Therefore, we propose to adaptively schedule the scale of 3 in
the training process, encouraging the model to achieve lower reconstruction error while maintaining
an appropriate embedding shape.

With an initial (maximum) 8 = Bax, We monitor the epoch-wise reconstruction 10ss £yecon. When
Lrecon fails to decrease for a predefined number of epochs (which indicates that the KL-divergence
dominates the overall loss), the weight is scheduled by 3 = A8, A < 1. This process continues until
[ approaches a predefined minimum value [.,;,. This strategy is simple yet very effective, and we
empirically justify the effectiveness of the design in Section 4.

3.3 SCORE-BASED GENERATIVE MODELING IN THE LATENT SPACE

Training and sampling via denoising. After the VAE model is well-learned, we extract the latent
embeddings through the encoder and flatten the encoder’s output as z = Flatten(Encoder(x)) €
R *Md guch that the embedding of a record is a vector rather than a matrix. To learn the underlying
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distribution of embeddings p(z), we consider the following forward diffusion process and reverse
sampling process (Song et al., 2021b; Karras et al., 2022):

zi =z9+o(t)e, e ~N(0,I), (Forward Process) ®)
dzy = =26 (t)o(t)Vy, logp(z¢)dt + /26 (t)o (t)dwy, (Reverse Process) (6)

where zy = z is the initial embedding from the encoder, z; is the diffused embedding at time ¢, and
o(t) is the noise level. In the reverse process, V, log p:(2:) is the score function of z;, and w; is
the standard Wiener process. The training of the diffusion model is achieved via denoising score
matching (Karras et al., 2022):

L =Epzo)Etnp)Eeno,n)l€0(2t,t) — s)H%, where z; = zg + o(l)e, @)

where € is a neural network (named denoising function) to approximate the Gaussian noise using the
perturbed data ; and the time ¢. Then V ,, logp(z;) = —€g(24,t)/0(t). After the model is trained,
synthetic data can be obtained via the reverse process in Eq. 6. The detailed algorithm description of
TABSYN is provided in Appendix A. Detailed derivations are in Appendix B.

Schedule of noise level o(¢). The noise level o(¢) defines the scale of noises for perturbing
the data at different time steps and significantly affects the final Differential Equation solution
trajectories (Song et al., 2021b; Karras et al., 2022). Following the recommendations in Karras et al.
(2022), we set the noise level o(t) = ¢ that is linear w.r.t. the time. We show in Proposition 1 that the
linear noise level schedule leads to the smallest approximation errors in the reverse process:

Proposition 1. Consider the reverse diffusion process in Equation (6) from z, to z, (ty > t,), the
numerical solution 2, has the smallest approximation error to z;, when o(t) = t.

See proof in Appendix C. A natural corollary of Proposition 1 is that a small approximation error
allows us to increase the interval between two timesteps, thereby reducing the overall number of
sampling steps and accelerating the sampling. In Section 4, we demonstrate that with this design,
TABSYN can generate synthetic tabular data of high quality within less than 20 NFEs (number of
function evaluations), which is much smaller than other tabular-data synthesis methods based on
diffusion (Kim et al., 2023; Kotelnikov et al., 2023).

4 BENCHMARKING SYNTHETIC TABULAR DATA GENERATION ALGORITHMS

4.1 EXPERIMENTAL SETUPS

Datasets. We select six real-world tabular datasets consisting of both numerical and categorical
attributes: Adult, Default, Shoppers, Magic, Faults, Beijing, and News. Table 6 provides the overall
statistics of these datasets, and the detailed descriptions can be found in Appendix E.1.

Baselines. We compare the proposed TABSYN with seven existing synthetic tabular data generation
methods. The first two are classical GAN and VAE models: CTGAN (Xu et al., 2019) and TVAE (Xu
et al., 2019). Additionally, we evaluate five SOTA methods introduced recently: GOGGLE (Liu
et al., 2023b), a VAE-based method; GReaT (Borisov et al., 2023), a language model variant; and
three diffusion-based methods: STaSy (Kim et al., 2023), TabDDPM (Kotelnikov et al., 2023), and
CoDi (Lee et al., 2023). Notably, these approaches were nearly simultaneously introduced, limiting
opportunities for extensive comparison. For reference, we also compare with the representative
interpolation-based method SMOTE (Chawla et al., 2002). Our paper fills this gap by providing the
first comprehensive evaluation of their performance in a standardized setting.

Evaluation Methods. We evaluate the quality of the synthetic data from three aspects: 1) Low-order
statistics — column-wise density estimation and pair-wise column correlation, estimating the density
of every single column and the correlation between every column pair (Section 4.2). We also perform
Classifier Two Sample Test (C2ST) to evaluate if the synthetic data can be detected from the real data
via a machine learning model (Appendix F.3); 2) High-order metrics — a-precision and S-recall
scores (Alaa et al., 2022) that measure the overall fidelity and diversity of synthetic data (the results
are deferred to Appendix F.2); 3) Privacy Protection: we also evaluate if the synthetic data is
randomly sampled according to the distribution density rather than copied from the training data
via Distance to Closest Records (DCR) in Appendix F.6; 4) Performance on downstream tasks —
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Table 1: Error rate (%) of column-wise density estimation. Bold Face represents the best score on
each dataset. Lower values indicate more accurate estimation (superior results). TABS YN outperforms
the best generative baseline model by 86.0% on average.

Method Adult Default Shoppers Magic Beijing News \ Average
SMOTE 1.60+0.23 1.48+0.15 2.68+0.19 0.91+0.05 1.85+0.21 5.31+0.46 \ 2.30
CTGAN 16.84+0.03 16.83+0.04 21.1540.10 9.81+0.08 21.39+0.05  16.09+0.02 17.02
TVAE 14.22+0.08  10.17+0.05 24.51+0.06  8.25+0.06 19.16+0.06  16.62+0.03 15.49
GOGGLE! 16.97 17.02 22.33 1.90 16.93 25.32 16.74
GReaT? 12.12+0.04  19.94+0.06 14.51+0.12 16.16+0.00  8.25+0.12 OOM 14.20
STaSy 11.29-+0.06 5.77+0.06 9.37+0.09 6.29+0.13 6.71+0.03 6.89-+0.03 7.72
CoDi 21.384+0.06  15.77+0.07 31.84+0.05 11.56+0.26 16.94+0.02 32.27+0.04 21.63
TabDDPM? 1.75+0.03 1.57+0.08 2.7240.13 1.01+0.09 1.30+0.03 78.75+0.01 14.52
TABSYN 0.58+0.06 0.85+0.04 1.43+0.24 0.88+0.09 1.12+0.05 1.64+0.04 1.08
Improv. 66.9% | 45.9% | 47.4% | 12.9% | 13.8% | 76.2% | 86.0% |

' GOGGLE fixes the random seed during sampling in the official codes, and we follow it for consistency.
2 GReaT cannot be applied on News because of the maximum length limit.
3 TabDDPM fails to generate meaningful content on the News dataset.

Table 2: Error rate (%) of pair-wise column correlation score. Bold Face represents the best score
on each dataset. TABS YN outperforms the best baseline model by 67.6% on average.

Method Adult Default Shoppers Magic Beijing News \ Average
SMOTE 3.28+0.29 8.41+0.38 3.56+0.22 3.16+0.41 2.39+0.35 5.38+0.76 4.36
CTGAN 20.2341.20 26.95+0.93 13.08+0.16  7.00+0.19  22.95+0.08  5.37+0.05 15.93

TVAE 14.15+0.88  19.50+0.95 18.67+0.38  5.82+0.49 18.01+0.08  6.17+0.09 13.72
GOGGLE 45.29 21.94 23.90 9.47 45.94 23.19 28.28
GReaT 17.59+0.22 70.02+0.12  45.164+0.18 10.23+0.40 59.60+0.55 OOM 44.24
STaSy 14.51+0.25  5.96+0.26 8.49+0.15 6.61+0.53 8.00+0.10 3.07+0.04 7.7
CoDi 22.4940.08 68.41+0.05 17.78+0.11 6.53+0.25 7.07+0.15 11.10+0.01 22.23

TabDDPM  3.01+0.25 4.89+0.10 6.61+0.16 1.70+0.22 2.71+0.09 13.16+0.11 5.34

TABSYN 1.54+0.27 2.05+0.12 2.07+0.21 1.06+0.31 2.24+0.28 1.44+0.03 1.73
Improve. 48.8% | 58.1% | 68.7% | 37.6% | 17.3% | 53.1% | 67.6% |

machine learning efficiency (MLE) and missing value imputation. MLE is to compare the testing
accuracy on real data when trained on synthetically generated tabular datasets. The performance on
privacy protection is measured by MLE tasks that have been widely adopted in previous literature
(Section 4.3). We also extend TABSYN for the missing value imputation task, which aims to fill in
missing features/labels given partial column values (Appendix F.4). The reported results are averaged
over 20 randomly sampled synthetic data. The implementation details are in Appendix E.

4.2 ESTIMATING LOW-ORDER STATISTICS OF DATA DENSITY

Metrics. We employ the Kolmogorov-Sirnov Test (KST) for numerical columns and the Total
Variation Distance (TVD) for categorical columns to quantify column-wise density estimation. For
pair-wise column correlation, we use Pearson correlation for numerical columns and contingency
similarity for categorical columns. The performance is measured by the difference between the
correlations computed from real data and synthetic data. For the correlation between numerical and
categorical columns, we first group numerical values into categorical ones via bucketing, then calcu-
late the corresponding contingency similarity. Further details on these metrics are in Appendix E.3.

Column-wise distribution density estimation. In Table 1, we note that TABSYN consistently
outperforms baseline methods in the column-wise distribution density estimation task. On average,
TABSYN surpasses the most competitive baselines by 86.0%. While STaSy and TabDDPM perform
well, STaSy is sub-optimal because it treats one-hot embeddings of categorical columns as continuous
features. Additionally, TabDDPM exhibits unstable performance across datasets, failing to generate
meaningful content on the News dataset despite a standard training process.
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Table 3: AUC (classification task) and RMSE (regression task) scores of Machine Learning Ef-
ficiency. 1 ({) indicates that the higher (lower) the score, the better the performance. TABSYN
consistently outperforms all others across all datasets.

Methods Adult Default Shoppers Magic Beijing News! \ Average Gap
AUC 1 AUC 1 AUC 1 AUC 1 RMSE | RMSE | \ %
Real .927+.000 .770+.005 .926+.001 .946+.001 .423+.003 .842+.002 \ 0%
SMOTE .899+.007 .741+.009 911+.012 .934+.008 .593+.011 .897+.036 ‘ 9.39%
CTGAN .886+.002 .696+.005 .875+.009 .855+.006 .902+.019 .880+.016 24.5%
TVAE .878+.004 724+ .005 .871+.006 .887+.003 .770+.011 1.01+.016 20.9%
GOGGLE 778+.012 .584+.005 .658+.052 .654+.024 1.09+.025 .877+.002 43.6%
GReaT .913+.003 .755+.006 .902+.005 .888+.008 .653+.013 OOM 13.3%
STaSy .906+.001 .752+.006 .914+.005 .934+.003 .656+.014 .871+.002 10.9%
CoDi .871+.006 .525+.006 .865+.006 .932+.003 .818+.021 1.21+.005 30.5%
TabDDPM? .907+.001 .758+.004 .918+.005 .935+.003 592+ 011 4.8643.04 9.14%*
TABSYN .915+.002 .764+.004 .920+.005 .938+.002 .582+.008 .861+.027 ‘ 7.23%

! Following CoDi (Lee et al., 2023), the continuous targets are standardized to prevent large values.
2 TabDDPM collapses on News, leading to an extremely high error on this dataset. We exclude this dataset
when computing the average gap of TabDDPM.

Pair-wise column correlations. Table 2 displays the results of pair-wise column correlations.
TABS YN outperforms the best baselines by an average of 67.6%. Notably, the performance of GReaT
is significantly poorer in this task than in the column-wise task. This indicates the limitations of
autoregressive language models in density estimation, particularly in capturing the joint probability
distributions between columns.

4.3 PERFORMANCE ON DOWNSTREAM TASKS

Machine Learning Efficiency. We then evaluate the quality of synthetic data by evaluating their
performance in Machine Learning Efficiency tasks. Following established settings (Kotelnikov et al.,
2023; Kim et al., 2023; Lee et al., 2023), we first split a real table into a real training and a real testing
set. The generative models are learned on the real training set, from which a synthetic set of equivalent
size is sampled. This synthetic data is then used to train a classification/regression model (XGBoost
Classifier and XGBoost Regressor (Chen & Guestrin, 2016)), which will be evaluated using the real
testing set. The performance of MLE is measured by the AUC score for classification tasks and
RMSE for regression tasks. The detailed settings of the MLE evaluations are in Appendix E.4.

In Table 3, we demonstrate that TABS YN consistently outperforms all the baseline methods. The
performance gap between methods is smaller compared to column-wise density and pair-wise column
correlation estimation tasks (Tables 1 and 2). This suggests that some columns may not significantly
impact the classification/regression tasks, allowing methods with lower performance in previous
tasks to show competitive results in MLE (e.g., GReaT on Default dataset). This underscores the
need for a comprehensive evaluation approach beyond just MLE metrics. As shown above, we have
incorporated low-order and high-order statistics for a more robust assessment.

Missing Value Imputation. One advantage of the diffusion model is that a well-trained uncon-
ditional model can be directly used for data imputation (e.g., image inpainting (Song et al., 2021b;
Lugmayr et al., 2022)) without additional training. This paper explores adapting TABSYN for missing
value imputation, a crucial task in real-world tabular data. Due to space limitation, the detailed
algorithms for missing value imputation and the results are deferred to Appendix F.4.

4.4 ABLATION STUDIES

The effect of adaptive 3-VAE. We assess the effectiveness of scheduling the weighting coefficient
£ in the VAE model. Figure 3 presents the trends of the reconstruction loss and the KL-divergence loss
with the scheduled 3 and constant 3 values (from 10~ to 10~?) across 4,000 training epochs. Notably,
a large (3 value leads to subpar reconstruction, while a small /5 value results in a large divergence



Published as a conference paper at ICLR 2024

Reconstruction Loss KL Divergence Loss

—6-01  — p-00001 Table 4: The results of single-

B=001 —— B=1e05

—— B=0001 — Scheduled column density and pair-wise

M column correlation estimation

with different 8 values on the

— p=01  — B=00001
B=001 —— B=1e05
10° —— B=0001 —— Scheduled B 15

Lo s Adult dataset.

0 1000 2000 3000 4000 0 0 1000 2000 3000 4000 B Single Pair
Training Epochs Training Epochs
1071 1.24  3.05
. C . . 1072 0.87 2.79
Figure 3: The trends of the validation reconstruction (left) and 10-3 072 295
KL-divergence (right) losses on the Adult dataset, with varying 10~4 0.69  2.01
constant 3, and our proposed scheduled 3 (Bmax = 0.01, Biin = 1075 41.96  69.17
1075, X = 0.7). The proposed scheduled 3 obtains the lowest Scheduled 3 0.58  1.54
reconstruction loss with a fairly low KL-divergence loss.
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best quality with fewer NFEs (indicating faster sampling speed). TABSYN 0.58 154

between the embedding distribution and the standard Gaussian, making the balance hard to achieve.
In contrast, by dynamically scheduling 8 during training (Bmax = 0.01, Bmin = 1075, X = 0.7),
we not only prevent excessive KL divergence but also enhance quality. Table 4 further evaluates
the learned embeddings from various 3 values of the VAE model via synthetic data quality (single-
column density and pair-wise column correlation estimation tasks). This demonstrates the superior
performance of our proposed scheduled 5 approach to train the VAE model.

The effect of linear noise levels. We evaluate the effectiveness of using linear noise levels, o (t) = t,
in the diffusion process. As Section 3.3 outlines, linear noises lead to linear trajectories and faster
sampling speed. Consequently, we compare TABSYN and two other diffusion models (STaSy and
TabDDPM) in terms of the single-column density and pair-wise column correlation estimation errors
relative to the number of function evaluations (NFEs), i.e., denoising steps to generate the real data.
As continuous-time diffusion models, the proposed TABSYN and STaSy are flexible in choosing
NFEs. For TabDDPM, we use the DDIM sampler (Song et al., 2021a) to adjust NFEs. Figure 4
shows that TABS YN not only significantly improves the sampling speed but also consistently yields
better performance (with fewer than 20 NFEs for optimal results). In contrast, STaSy requires 50-200
NFEs, varying by datasets, and achieves sub-optimal performance. TabDDPM achieves competitive
performance with 1,000 NFEs but significantly drops in performance when reducing NFEs.

Comparing different encoding/diffusion methods. We assess the effectiveness of learning the
diffusion model in the latent space learned by VAE by creating two TABSYN variants: 1) TABSYN-
OneHot: replacing VAE with one-hot encodings of categorical variables and 2) TABSYN-DDPM:
substituting the diffusion process in Equation (5) with DDPM as used in TabDDPM. Results in
Table 5 demonstrate: 1) One-hot encodings for categorical variables plus continuous diffusion models
lead to the worst performance, indicating that it is not appropriate to treat categorical columns simply
as continuous features; 2) TABSYN-DDPM in the latent space outperforms TabDDPM in the data
space, highlighting the benefit of learning high-quality latent embeddings for improved diffusion
modeling; 3) TABSYN surpasses TABSYN-DDPM, indicating the advantage of employing tailored
diffusion models in the continuous latent space for better data distribution learning.
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Figure 5: Visualization of synthetic data’s single column distribution density (from STaSy, TabDDPM,
and TABSYN) v.s. the real data. Upper: numerical columns; Lower: Categorical columns. Note
that numerical columns show competitive performance with baselines, while TABSYN excels in
estimating categorical column distributions.
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Figure 6: Heatmaps of the pair-wise column correlation of synthetic data v.s. the real data. The value
represents the absolute divergence between the real and estimated correlations (the lighter, the better).
TABSYN gives the most accurate column correlation estimation.

4.5 VISUALIZATION

In Figure 5, we compare column density across eight columns from four datasets (one numerical and
one categorical per dataset). TabDDPM matches TABSYN’s accuracy on numerical columns but falls
short on categorical ones. Figure 6 displays the divergence heatmap between estimated pair-wise
column correlations and real correlations. TABSYN gives the most accurate correlation estimation,
while other methods exhibit suboptimal performance. These results justify that employing generative
modeling in latent space enhances the learning of categorical features and joint column distributions.

5 CONCLUSIONS

In this paper, we have proposed TABSYN for synthetic tabular data generation. The TABSYN
framework leverages a VAE to map tabular data into a latent space, followed by utilizing a diffusion-
based generative model to learn the latent distribution. This approach presents the dual advantages
of accommodating numerical and categorical features within a unified latent space, thus facilitating
a more comprehensive understanding of their interrelationships and enabling the utilization of
advanced generative models in a continuous embedding space. To address potential challenges,
TABSYN proposes a model design and training methods, resulting in a highly stable generative model.
In addition, TABS YN rectifies the deficiency in prior research by employing a diverse set of evaluation
metrics to comprehensively compare the proposed method with existing approaches, showcasing the
remarkable quality and fidelity of the generated samples in capturing the original data distribution.
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A  ALGORITHMS

In this section, we provide an algorithmic illustration of the proposed TABSYN. Algorithm 1 and
Algorithm 2 present the algorithms of the VAE and Diffusion phases of the training process of
TABSYN, respectively. Algorithm 3 presents TABSYN’s sampling algorithm.

Algorithm 1: TABSYN: Training of VAE Algorithm 2: TABSYN: Training of Diffu-
1: Sample z = (2™, 2°3%) ~ p(T) sion :
2: Get tokenized feature e via Eq. 1 I: Sample the embedding 2o from
3: Get p and log o via VAE’s Transformer p(z) = p(p)
encoder 2: Sample time steps ¢ from p(t) thenzget o(t)
4: Reparameterization: 2 = p + € - o, where 3: Sample noise vectors & ~ N (0,071)
e~ N(0,I) 4: Get perturbed data z; = zg + €
5: Get € via VAE’s Transformer decoder 5: Calculate loss £(0) = [|€g(zt, 1) - el3
6: Get detokenized feature 2 via Eq. 3 6: Update the network parameter 6 via Adam

7: Calculate loss optimizer
L= grecon(zy 2) + 6€k1(/»l'a U)
8: Update the network parameter via Adam
optimizer
9: if {;econ fails to decrease for S steps then
10: B+ AB
11: end if

Algorithm 3: TABSYN: Sampling

1: Sample z7 ~ N (0,02(T)I), tmax =T
: fori = max,---,1do
Vzti 1ng(zt7‘,) = —€p (ztz ) tl)/o—(tl)
get z;, , viasolving the SDE in Eq. 6.
end for
Put z; as input of the VAE’s Transformer decoder, then acquire é
Get detokenized feature 2 via Eq. 3
2 is the sampled synthetic data

AN A S ol

B DIFFUSION MODELS BASICS

Diffusion models are often presented as a pair of two processes.

* A fixed forward process governs the training of the model, which adds Gaussian noises of
increasing scales to the original data.

* A corresponding backward process involves utilizing the trained model iteratively to denoise
the samples starting from a fully noisy prior distribution.

B.1 FORWARD PROCESS

Although there are different mathematical formulations (discrete or continuous) of the diffusion
model, Song et al. (2021b) provides a unified formulation via the Stochastic Differential Equation
(SDE) and defines the forward process of Diffusion as (note that in this paper, the independent
variable is denoted as z)

dz = f(z,t)dt + g(t) dwy, (8)
where f(-) and g(-) are the drift and diffusion coefficients and are selected differently for different
diffusion processes, e.g., the variance preserving (VP) and variance exploding (VE) formulations. w;

is the standard Wiener process. Usually, f(-) is of the form f(z,t) = f(¢) z. Thus, the SDE can be
equivalently written as

dz = f(t) z dt + g(¢) dwy. ©)

13
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Let z be a function of the time t, i.e., z; = z(¢), then the conditional distribution of z; given zg
(named as the perturbation kernel of the SDE) could be formulated as:

p(2¢|z0) = N (245 8(t) 20, 8% (t)o? (1)), (10)

s(t) = exp (/Ot f(g)dg) Cand o(t) = /Ot gzgg de. (11

Therefore, the forward diffusion process could be equivalently formulated by defining the perturbation
kernels (via defining appropriate s(¢) and o (t)).

where

Variance Preserving (VP) implements the perturbation kernel Eq. 10 by setting s(t) = /1 — 5(¢),
and o(t) = ﬂ(t)t) (s%(t) + s%(t)o%(t) = 1). Denoising Diffusion Probabilistic Models
(DDPM, Ho et al. (2020)) belong to VP-SDE by using discrete finite time steps and giving specific
functional definitions of 3().

Variance Exploding (VE) implements the perturbation kernel Eq. 10 by setting s(¢) = 1, indicating
that the noise is directly added to the data rather than weighted mixing. Therefore, The noise variance
(the noise level) is totally decided by o (¢). The diffusion model used in TABSYN belongs to VE-SDE,
but we use linear noise level (i.e., o(t) = t) rather than o(t) = /¢ in the vanilla VE-SDE (Song
et al., 2021b). When s(¢) = 1, the perturbation kernels become:

p(z|z0) = N(24;0,02(0)I) = 2z = zo + o(t)e, (12)
which aligns with the forward diffusion process in Eq. 5.

B.2 REVERSE PROCESS

The sampling process of diffusion models is defined by a corresponding reverse SDE:

dz = [f(z,t) — 92(t>vz log py(z)]dt + g(t)dw. (13)
For VE-SDE, s(t) =1 & f(z,t) = -z =0, and
\/ £)de = / £)de = o*(1),
(14)
= dt = 20 ,

g(t) = /20 (D)o (D).

Plugging ¢(t) into Eq. 13, the reverse process in Eq. 6 is recovered:
dz = —20(t)6(t)V, log pi(z)dt + /20 () (t)dw;. (15)

B.3 TRAINING

As f(z,1),g(t), w; are all known, if V, log p;(z) (named the score function) is also available, we
can sample synthetic data via the reverse process from random noises. Diffusion models train a
neural network (named the denoising function) Dy(z;,t) to approximate V , log p;(z). However,
V. log p:(z) itself is intractable, as the marginal distribution p;(z) = p(z:) is intractable. Fortunately,
the conditional distribution p(z|zg) is tractable. Therefore, we can train the denoising function
to approximate the conditional score function instead V , log p(z¢|zo), and the training process is
called denoising score matching:

minEZONP(ZO)EZtNP(zt\Zo) HDQ(Zt’ t) - vzt logp(zt|zo))||§, (16)
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where V, log p(z;|zo) has analytical solution according to Eq. 10:

1
V1 =—V,,
t ng(zt|z0) p(Zt|ZO) ,p(zt|zo)
— (i (- s()z) - plalz)
T palz) e TR
1
- - — s(t 17
oz 7t~ *(t)z0) {17)
1
= _32(7,‘ 2 (0] (s(t)zo + s(t)o(t)e — s(t)zo)
_ €
-~ s(t)o(t)
Therefore, Eq. 16 becomes
€
nE, w,zEs Dy(ze,t) + ———|I2
min Bz p(z0)Bzinp(aiz0) [ Do (21, 1) + s(t)a(t)HQ as)
= minEzONp(zo)Eztwp(zt\zo)H€9<zt7t) — €||g,
where Dg(z,t) = —z‘(’t()z;(g After the training ends, sampling is enabled by solving Eq. 13

(replacing V; log p;(z) with Dy(z,t)).

C PROOFS

C.1 PROOF FOR PROPOSITION 1

We first introduce Lemma 1 (from (Karras et al., 2022)), which introduces a family of SDEs sharing
the same solution trajectories with different forwarding processes:

Lemma 1. Ler g(t) be a free parameter functional of t, and the following family of (forward) SDEs
have the same marginal distributions of the solution trajectories with noise levels o (t) for any choice

of g(t):

dz = (;g2(t) - d(t)a(t)) V2 logp(z;o(t))dt + g(t)dwy. (19)

The reverse family of SDEs of Eq. 19 is given by changing the sign of the first term:

dz = — g2 (1)V = Togp(z: (1) — 6()o(1)V= logp(=: 0 (D)t + 9w, (20)

Lemma 1 indicates that for a specific (forward) SDE following Eq. 19, we can obtain its solution
trajectory by solving Eq. 20 of any g(t).

Since our forwarding diffusion process (Eq. 5) lets g(t) = /26(t)o(t) (see derivations in Ap-
pendix B), its solution trajectory can be solved via letting g(¢) = 0 in Eq. 20:
dz = —6(t)o(t)Vz log p(z; o(t))dt,
d 2n
= = —6(1)0(t)V logp(z: 0(1)):
Eq. 21 is usually named the Probability-Flow ODE, since it depicts a deterministic reverse process
without noise terms. Based on Lemma 1, we can study the solution of Eq. 6 using Eq. 21.

To prove Proposition 1, we only have to study the absolute error between the ground-truth z;_a; the
approximated one by solving Eq. 6 from z;, where At — 0:

lze—ae — 225, 22)

Since z; = zg + o(t)e, there is z,_a; = 2z — € - (0(t) — o(t — At)).
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The solution of z;_a; from z; can be obtained using 1st-order Euler method:

2P 2y — At%
=z + At a( )o(t)Vz, log p(zt) ’
= 20+ AL 5D () (—eo(20,6)/7(1)) 29
:Zt—O'() (Zt,t)
=2t — 0( ) At 7
Iz a0 = ] =€ (o(6) = ot = A1) — (t)ere o
=e-(o(t) —o(t — At) — 6(t)At).
Specifically, if o(t) = t,5(t) = 1, there is
[ETRNE ZEEleArtH =0. (25)
Comparably, setting o(t) = v/t (as in VE-SDE Song et al. (2021b)) leads to
At
zi-a0 — 222 | = le(Vi = VE— At — —2)| > 0. (26)

Therefore, the proof is complete.

D NETWORK ARCHITECTURES

D.1 ARCHITECTURES OF VAE

2Vt

In Sec. 3.2, we introduce the general architecture of our VAE module, which consists of a tokenizer,
a Transformer encoder, a Transformer decoder, and a detokenizer. Figure 7 is a detailed illustration
of the architectures of the Transformer encoder and decoder.

Reparameterization

Z=p+o-e,eeN(0,I)

VAE's Transformer Encoder

.
’

/u Encoder h log o Encoder
Add & Norm Add & Norm
Feed Forward Feed Forward

2%
Add & Norm Add & Norm

' '
Self-Attention Self-Attention

A

no
X

Decoder

Add & Norm

Feed Forward

Add & Norm

Self-Attention

4
VAE's Transformer Decodar

Figure 7: Architectures of VAE’s Encoder and Decoder. Both the encoder and decoder are imple-
mented as a two-layer Transformer of identical architectures.

The VAE’s encoder takes the tokenizer’s output E € RM*? a5 input. As we are using the Variational
AutoEncoder, the encoder module consists of a ¢ encoder and a log o encoder of the same architecture.
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Each encoder is implemented as a two-layer Transformer, each with a Self-Attention (without multi-
head) module and a Feed Forward Neural Network (FFNN). The FFNN used in TABSYN is a simple
two-layer MLP with ReL U activation(the input of the FFNN is denoted by Hj):
H, = ReLU(FC(H,)) € RM*P,
H, = Fc(H,),€ RM*4,
where FC denotes the fully-connected layer, and D is FFNN’s hidden dimension. In this paper, we

setd = 4 and D = 128 for all datasets. "Add & Norm" in Figure 7 denotes residual connection and
Layer Normalization (Ba et al., 2016), respectively.

27)

The VAE encoder outputs two matrixes: mean matrix g € R**9 and log standard deviation matrix
log o € RM*4, Then, the latent variables are obtained via the parameterization trick:

Z=p+o-g,e~N(0MI). (28)

The VAE’s decoder is another two-layer Transformer of the same architecture as the encoder, and it
takes Z as input. The decoder is expected to output £ € R *4 for the detokenizer.

D.2 ARCHITECTURES OF DENOISING MLP

In Figure 7, we present the architecture of the denoising neural networks £¢(z¢, t) in Eq. 7, which is
a simple MLP of the similar architecture as used in TabDDPM (Kotelnikov et al., 2023).

Input MLP (the denoising function) Ouput

hidden layer 1  hidden layer 2 hidden layer 3

| input layer output layer

2t

Figure 8: Architectures of denoising function €¢(z;,t). The denoising function is a 5-layer MLP
with SiLU activations. tenp, 1S the sinusoidal timestep embeddings.

The denoising MLP takes the current time step ¢ and the corresponding latent vector z; € R'*M9 a5
input. First, z; is fed into a linear projection layer that converts the vector dimension to be dpiqden:

ho = Fcin(zt) c Rlehidden7 (29)
where hy is the transformed vector, and dp;iqqen 1S the output dimension of the input layer.

Then, following the practice in TabDDPM (Kotelnikov et al., 2023), the sinusoidal timestep embed-
dings tenp, € RY Xdnidden ig added to hg to obtain the input vector hpiqden:

hin = ho + temn. (30)
The hidden layers are three fully connected layers of the size dniqden —2%dhidden — 2*Ahidden — dhiddens
with SiLU activation functions (in consistency with TabDDPM (Kotelnikov et al., 2023)):
hi = SiLU(FCy(hg) € RI*Z*dnidden),
hy = SiLU(FCy(hy) € RYX2*dniaden) (3D
hs = SiLU(FC3(hy) € R Xdnidden),
The estimated score is obtained via the last linear layer:
€0(24,t) = hout = FCout(h3) € R *%n, (32)
Finally, eg(z¢,t) is applied to Eq. 7 for model training.
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E DETAILS OF EXPERIMENTAL SETUPS

We implement TABSYN and all the baseline methods with PyTorch. All the methods are optimized
with Adam (Kingma & Ba, 2015) optimizer. All the experiments are conducted on an Nvidia RTX
4090 GPU with 24G memory.

E.1 DATASETS

We use 6 tabular datasets from UCI Machine Learning Repository': Adult, Default, Shoppers,
Magic, Beijing, and News, where each tabular dataset is associated with a machine-learning task.
Classification: Adult, Default, Magic, and Shoppers. Regression: Beijing and News. The statistics of
the datasets are presented in Table 6.

Table 6: Statistics of datasets. # Num stands for the number of numerical columns, and # Cat stands
for the number of categorical columns.

Dataset #Rows #Num #Cat #Train # Validation  # Test Task
Adult 48,842 6 9 28,943 3,618 16,281 Classification
Default 30,000 14 11 24,000 3,000 3,000  Classification
Shoppers 12,330 10 8 9, 864 1,233 1,233  Classification
Magic 19,019 10 1 15,215 1,902 1,902  Classification
Beijing 43,824 7 5 35,058 4,383 4,383 Regression
News 39,644 46 2 31,714 3,965 3,965 Regression

In Table 6, # Rows denote the number of rows (records) in the table. # Num and # Cat denote the
number of numerical features and categorical features, respectively. Note that the target column
is counted as either a numerical or a categorical feature, depending on the task type. Specifically,
the target column belongs to the categorical column if the task is classification; otherwise, it is a
numerical column. Each dataset is split into training, validation, and testing sets for the Machine
Learning Efficiency experiments. As Adult has its official testing set, we directly use it as the testing
set. The original training set of Adult is further split into training and validation split with the ratio
8 : 1. The remaining datasets are split into training/validation/testing sets with the ratio 8 : 1 : 1 with
a fixed seed.

Below is a detailed introduction to each dataset:

* Adult’: The "Adult Census Income" dataset contains the demographic and employment-
related features people. The task is to predict whether an individual’s income exceeds
50, 000.

+ Default®: The "Default of Credit Card Clients Dataset" dataset contains information on
default payments, demographic factors, credit data, history of payment, and bill statements
of credit card clients in Taiwan from April 2005 to September 2005. The task is to predict
whether the client will default payment next month.

* Shoppers*: The "Online Shoppers Purchasing Intention Dataset" contains information of
user’s webpage visiting sessions. The task is to predict if the user’s session ends with the
shopping behavior.

» Magic’: The "Magic Gamma Telescope" dataset is to simulate registration of high energy
gamma particles in a ground-based atmospheric Cherenkov gamma telescope using the
imaging technique. The task is to classify high-energy Gamma particles in the atmosphere.

"https://archive.ics.uci.edu/datasets
https://archive.ics.uci.edu/dataset/2/adult
*https://archive.ics.uci.edu/dataset/350/default+of+credit+card+clients
*https://archive.ics.uci.edu/dataset/468/online+shoppers+purchasing+
intentiontdataset
5https://archive.ics.uci.edu/dataset/159/magic+gamma+telescope
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* Beijing’: The "Beijing PM2.5 Data" dataset contains the hourly PM2.5 data of US Embassy
in Beijing and the meteorological data from Beijing Capital International Airport. The task
is to predict the PM2.5 value.

» News’: The "Online News Popularity" dataset contains a heterogeneous set of features
about articles published by Mashable in two years. The goal is to predict the number of
shares in social networks (popularity).

E.2 BASELINES
In this section, we introduce and compare the properties of the baseline methods used in this paper.

* CTGAN and TVAE are two methods for synthetic tabular data generation proposed in one
paper (Xu et al., 2019), using the same techniques proposed but based on different basic
generative models — GAN for CTGAN while VAE for TVAE. The two methods contain
two important designs: 1) Mode-specific Normalization to deal with numerical columns
with complicated distributions. 2) Conditional Generation of numerical columns based on
categorical columns to deal with class imbalance problems.

* GOGGLE (Liu et al., 2023b) is a recently proposed synthetic tabular data generation model
based on VAE. The primary motivation of GOGGLE is that the complicated relationships
between different columns are hardly exploited by previous literature. Therefore, it proposes
to learn a graph adjacency matrix to model the dependency relationships between different
columns. The encoder and decoder of the VAE model are both implemented as Graph
Neural Networks (GNNs), and the graph adjacent matrix is jointly optimized with the GNNs
parameters.

* GReaT (Borisov et al., 2023) treats a row of tabular data as a sentence and applies the
Auto-regressive GPT model to learn the sentence-level row distributions. GReaT involves a
well-designed serialization process to transform a row into a natural language sentence of a
specific format and a corresponding deserialization process to transform a sentence back
to the table format. To ensure the permutation invariant property of tabular data, GReaT
shuffles each row several times before serialization.

* STaSy (Kim et al., 2023) is a recent diffusion-based model for synthetic tabular data
generation. STaSy treats the one-hot encoding of categorical columns as continuous features,
which are then processed together with the numerical columns. STaSy adopts the VP/VE
SDEs from Song et al. (2021b) as the diffusion process to learn the distribution of tabular
data. STaSy further proposes several training strategies, including self-paced learning and
fine-tuning, to stabilize the training process, increasing sampling quality and diversity.

* CoDi (Lee et al., 2023) proposes to utilize two diffusion models for numerical and cate-
gorical columns, respectively. For numerical columns, it uses the DDPM (Ho et al., 2020)
model with Gaussian noises. For categorical columns, it uses the multinominal diffusion
model (Hoogeboom et al., 2021) with categorical noises. The two diffusion processes are
inter-conditioned on each other to model the joint distribution of numerical and categorical
columns. In addition, CoDi adopts contrastive learning methods to further bind the two
diffusion methods.

e TabDDPM (Kotelnikov et al., 2023). Like CoDi, TabDDPM introduces two diffusion
processes: DDPM with Gaussian noises for numerical columns and multinominal diffusion
with categorical noises for categorical columns. Unlike CoDi, which introduces many
additional techniques, such as co-evolved learning via inter-conditioning and contrastive
learning, TabDDPM concatenates the numerical and categorical features as input and output
of the denoising function (an MLP). Despite its simplicity, our experiments have shown that
TabDDPM performs even better than CoDi.

We further compare the properties of these baseline methods and the proposed TABSYN in Table 7.
The compared properties include: 1) Compatibility: if the method can deal with mixed-type data
columns, e.g., numerical and categorical. 2) Robustness: if the method has stable performance across

®https://archive.ics.uci.edu/dataset/381/beijing+pm2+5+data
7https ://archive.ics.uci.edu/dataset/332/online+news+popularity
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different datasets (measured by the standard deviation of the scores (< 10% or not) on different
datasets (from Table 1 and Table 2). 3) Quality: Whether the synthetic data can pass column-wise
Chi-Squared Test (p > 0.95). 4) Efficiency: Each method can generate synthetic tabular data of
satisfying quality within less than 20 steps.

Table 7: A comparison of the properties of different generative models for tabular data. Base
model denotes the base generative model type: Generative Adversarial Networks (GAN), Variational
AutoEncoders (VAE), Auto-Regressive Language Models (AR), and Diffusion.

Method Base Model Compatibility Robustness Quality Efficiency

CTGAN GAN v X X v
TVAE VAE v v X v
GOGGLE VAE X X X v
GReaT AR v X X X
STaSy Diffusion X v v X
CoDi Diffusion v X X X
TabDDPM Diffusion v X v X
TABSYN Diffusion v v v v

E.3 METRICS OF LOW-ORDER STATISTICS

In this section, we give a detailed introduction of the metrics used in Sec. 4.2.

E.3.1 COLUMN-WISE DENSITY ESTIMATION

Kolmogorov-Sirnov Test (KST): Given two (continuous) distributions p,.(z) and ps(z) (r denotes real
and s denotes synthetic), KST quantifies the distance between the two distributions using the upper
bound of the discrepancy between two corresponding Cumulative Distribution Functions (CDFs):

KST:SUP|FT($)_FS($>L (33)
where F,.(z) and F(x) are the CDFs of p,.(x) and ps(x), respectively:
F(z) = / p(z)dz. (34)

Total Variation Distance (TVD): TVD computes the frequency of each category value and expresses
it as a probability. Then, the TVD score is the average difference between the probabilities of the
categories:
1
TVD = 5 ze;) |R(w) — S(w)], (35)

where w describes all possible categories in a column 2. R(-) and S(-) denotes the real and synthetic
frequencies of these categories.

E.3.2 PAIR-WISE COLUMN CORRELATION

Pearson Correlation Coefficient: The Pearson correlation coefficient measures whether two continu-
ous distributions are linearly correlated and is computed as:

Cov(z,
Pry = M> (36)

OOy
where x and y are two continuous columns. Cov is the covariance, and ¢ is the standard deviation.
Then, the performance of correlation estimation is measured by the average differences between the

real data’s correlations and the synthetic data’s corrections:

1
Pearson Score = §IEI,,,|/>R(CU7 y) — PS(% vl @7
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where pf(x,7) and p®(x,y)) denotes the Pearson correlation coefficient between column z and
column y of the real data and synthetic data, respectively. As p € [—1, 1], the average score is divided
by 2 to ensure that it falls in the range of [0, 1], then the smaller the score, the better the estimation.

Contingency similarity: For a pair of categorical columns A and B, the contingency similarity score
computes the difference between the contingency tables using the Total Variation Distance. The
process is summarized by the formula below:

. 1
Contingency Score = 3 Z Z |Ra.g — Sa.pl, (38)
acA BEB

where « and /3 describe all the possible categories in column A and column B, respectively. R, g
and S, g are the joint frequency of o and /3 in the real data and synthetic data, respectively.

E.4 DETAILS OF MACHINE LEARNING EFFICIENCY EXPERIMENTS

As preliminarily illustrated in Sec. 4.3 and Appendix E.1, each dataset is first split into the real
training and testing set. The generative models are learned on the real training set. After the models
are learned, a synthetic set of equivalent size is sampled.

The performance of synthetic data on MLE tasks is evaluated based on the divergence of test scores
using the real and synthetic training data. Therefore, we first train the machine learning model on the
real training set, split into training and validation sets with a 8 : 1 ratio. The classifier/regressor is
trained on the training set, and the optimal hyperparameter setting is selected according to the perfor-
mance on the validation set. After the optimal hyperparameter setting is obtained, the corresponding
classifier/regressor is retrained on the training set and evaluated on the real testing set. We create 20
random splits for training and validation sets, and the performance reported in Table 3 is the mean
and std of the AUC/RMSE score over the 20 random trails. The performance of synthetic data is
obtained in the same way.

Below is the hyperparameter search space of the XGBoost Classifier/Regressor used in MLE tasks,
and we select the optimal hyperparameters via grid search.

¢ Number of estimators: [10, 50, 100]
* Minimum child weight: [5, 10, 20].
e Maximum tree depth: [1,10].

e Gamma: [0.0, 1.0].

We use the implementations of these metrics from SDMetric®.

F ADDITION EXPERIMENTAL RESULTS

In this section, we compare the training and sampling time of different methods, taking the Adult
dataset as an example.

F.1 TRAINING / SAMPLING TIME

As shown in Fig. 8, though having an additional VAE training process, the proposed TABSYN has
a similar training time to most of the baseline methods. In regard to the sampling time, TABSYN
requires merely 1.784s to generate synthetic data of the same size as Adult’s training data, which
is close to the one-step sampling methods CTGAN and TVAE. Other diffusion-based methods take
a much longer time for sampling. E.g., the most competitive method TabDDPM (Kotelnikov et al.,
2023) takes 28.92s for sampling. The proposed TABSYN reduces the sampling time by 93%, and
achieves even better synthesis quality.

8https ://docs.sdv.dev/sdmetrics
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Table 8: Comparison of training and sampling time of different methods, on Adult dataset. TABSYN’s
training time is the summation of VAE’s and Diffusion’s training time.

Method Training Sampling
CTGAN 1029.8s 0.8621s
TVAE 352.6s 0.5118s
GOGGLE 1h 34min 5.342s
GReaT 2h 27min 2min 19s
STaSy 2283s 8.941s
CoDi 2h 56min 4.616s
TabDDPM 1031s 28.92s

TABSYN 1758s + 664s 1.784s

F.2 SAMPLE-WISE QUALITY SCORE OF SYNTHETIC DATA (a-PRECISON AND [3-RECALL)

Experiments in Sec. 4 have evaluated the performance of synthetic data generated from different
models using low-order statistics, including the column-wise density estimation (Table 1) and pair-
wise column correlation estimation (Table 2). However, these results are insufficient to evaluate
synthetic data’s overall density estimation performance, as the generative model may simply learn to
estimate the density of each single column individually rather than the joint probability of all columns.
Furthermore, the MLE tasks also cannot reflect the overall density estimation performance since
some unimportant columns might be overlooked. Therefore, in this section, we adopt higher-order
metrics that focus more on the entire data distribution, i.e., the joint distribution of all the columns.

Following Liu et al. (2023b) and Alaa et al. (2022), we adopt the a-Precision and /3-Recall proposed
in Alaa et al. (2022), two sample-level metric quantifying how faithful the synthetic data is. In
general, a-Precision evaluates the fidelity of synthetic data — whether each synthetic example comes
from the real-data distribution, 3-Recall evaluates the coverage of the synthetic data, e.g., whether
the synthetic data can cover the entire distribution of the real data (In other words, whether a real data
sample is close to the synthetic data). Liu et al. (2023b) also adopts the third metric, Authenticity —
whether the synthetic sample is generated randomly or simply copied from the real data. However,
we found that authenticity score and beta-recall exhibit a predominantly negative correlation — their
sum is nearly constant, and an improvement in beta-recall is typically accompanied by a decrease in
authenticity score (we believe this is the reason for the relatively small differences in quality scores
among the various models in GOGGLE (Liu et al., 2023b)). Therefore, we believe that beta-recall
and authenticity are not suitable for simultaneous use.

In Table 9 and Table 10 we report the scores of a-Precision and 3-Recall, respectively. TABSYN
obtains the best a-Precision scores on all the datasets, demonstrating the superior capacity of TABSYN
in generating synthetic data that is close to the real ones. In Table 10, we observe that TabSyn
consistently achieves high 3-Recall scores across six datasets. Although some baseline methods
obtain higher [-recall scores on specific datasets, it can hardly be concluded that the synthetic data
generated by these methods are of better quality since 1) their synthetic data has poor a-Precision
scores (e.g., GReaT on Adult, and STaSy on Magic), indicating that the synthetic data is far from the
real data’s manifold; 2) they fail to demonstrate stably competitive performance on other datasets
(e.g., GReaT has high $-Recall scores on Adult but poor scores on Magic). We believe that to assess
the quality of generation, the first consideration is whether the generated data is sufficiently authentic
(a-Precision), and the second is whether the generated data can cover all the modes of the real dataset
(B-Recall). According to this criterion, the quality of data generated by TabSyn is the highest. It not
only possesses the highest fidelity score but also consistently demonstrates remarkably high coverage
on every dataset.

F.3 DETECTION: CLASSIFIER TWO SAMPLE TESTS (C2ST)

We further study how difficult it is to tell apart the real data from the synthetic data, therefore
evaluating if the synthetic data can recover the real data distribution. To this end, we employ the
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Table 9: Comparison of a-Precision scores. Bold Face represents the best score on each dataset.
Higher values indicate superior results. TABSYN outperforms all other baseline methods on all
datasets.

Methods Adult Default Shoppers Magic Beijing News | Average Ranking
CTGAN 77.74+0.15 62.08+0.08 76.97+0.39 86.90+0.22 96.27+0.14 96.96+0.17 82.82 5
TVAE 98.17+0.17 85.57+0.34 58.19+0.26 86.19+0.48 97.20+0.10 86.41+0.17 85.29 4
GOGGLE 50.68 68.89 86.95 90.88 88.81 86.41 78.77 8
GReaT 55.79+0.03 85.90+0.17 78.88+0.13 85.46+0.54 98.32+0.22 - 80.87 6
STaSy 82.87+0.26 90.48+0.11 89.65+0.25 86.56+0.19 89.16+0.12 94.76+0.33 88.91 2
CoDi 77.58+0.45 82.38+0.15 94.95+0.35 85.01+0.36 98.13+0.38 87.15+0.12 87.03 3
TabDDPM  96.36+0.20 97.59+0.36 88.55+0.68 98.59+0.17 97.93+0.30 0.00+0.00 79.83 7
TABSYN 99.52+0.10 99.26+0.27 99.16+0.22 99.38+t0.27 98.47+0.10 96.80+0.25 ‘ 98.67 1

Table 10: Comparison of 3-Recall scores. Bold Face represents the best score on each dataset.
Higher values indicate superior results. TABSYN gives consistently high -recall scores, indicating
that the synthetic data covers a wide range of the real distribution. Although some baseline methods
obtain higher scores on specific datasets, they fail to demonstrate stably competitive performance on
other datasets.

Methods Adult Default Shoppers Magic Beijing News | Average Ranking
CTGAN 30.80+0.20 18.22+0.17  31.80+0.350 11.75+0.20 34.80+0.10 24.97+0.29 25.39 7
TVAE 38.87+0.31 23.13+0.11 19.78+0.10 32.44+0.35 28.45+0.08 29.66+0.21 28.72 6
GOGGLE 8.80 14.38 9.79 9.88 19.87 2.03 10.79 8
GReaT 49.1240.18  42.04+0.19 44.90+0.17 34.91+0.28 43.34+0.31 - 43.34 2
STaSy 29.21+0.34 39.31+0.39 37.24+0.45  53.97+057  54.79+0.18 39.42+0.32 42.32 3
CoDi 9.20+0.15 19.94+0.22 20.82+0.23 50.56+0.31 52.19+0.12 34.40+0.31 31.19 5
TabDDPM  47.05+0.25 47.83+0.35 47.79+0.25 48.46+0.42 56.92+0.13 0.00+0.00 41.34 4
TABSYN 47.56+0.22  48.00+0.35 48.95+0.28  48.03+0.23 55.84+0.19  45.04+0.34 ‘ 48.90 1

detection metric provided by sdmetrics °. In Table 11, we present the results obtained using logistic
regression as the detection method. As indicated in the table, the Detection score exhibits superior

Table 11: Detection score (C2ST) using logistic regression classifier. Higher scores indicate better
performance.

Method Adult  Default Shoppers Magic Beijing News

SMOTE 0.9710  0.9274 0.9086 0.9961  0.9888  0.9344
CTGAN 0.5949  0.4875 0.7488 0.6728  0.7531  0.6947

TVAE 0.6315  0.6547 0.2962 0.7706  0.8659  0.4076
GOGGLE  0.1114  0.5163 0.1418 0.9526  0.4779  0.0745
GReaT 0.5376  0.4710 0.4285 0.4326  0.6893 -

STaSy 0.4054  0.6814 0.5482 0.6939  0.7922  0.5287
CoDi 0.2077  0.4595 0.2784 0.7206  0.7177  0.0201

TabDDPM  0.9755 0.9712 0.8349 0.9998  0.9513 0.0002
TABSYN 0.9986 0.9870 0.9740 0.9732 0.9603 0.9749

discriminative power compared to other metrics, such as single-column density estimation, pair-wise
column shape estimation, and MLE. The detection score shows significant variations across different
models for synthetic data generation. As indicated in the table, the Detection score exhibits superior
discriminative power compared to other metrics, such as single-column density estimation, pair-wise
column shape estimation, and MLE. The detection score shows significant variations across different
models for synthetic data generation. The proposed TABSYN consistently achieves notably high
scores across all datasets (SMOTE (Chawla et al., 2002) directly interpolates within the training set,
80 it is not surprising that it achieves high scores in the detection metric.).

*https://docs.sdv.dev/sdmetrics/metrics/metrics—in-beta/
detection-single-table
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F.4 MISSING VALUE IMPUTATION

Adapting TABSYN for missing value imputation An essential advantage of the Diffusion Model
is that an unconditional model can be directly used for missing data imputation tasks (e.g., image
inpainting (Song et al., 2021b; Lugmayr et al., 2022) and missing value imputation) without retraining.

Following the inpainting methods proposed in Lugmayr et al. (2022), we apply the proposed TABSYN
in Missing Value Imputation Tasks.

For a row of tabular data z; = [2]™™, 204, - -- 208, ], 2] € RV M 208 € RIXC5 - Assume
the index set of masked numerical columns is Mpum, and of masked categoncal columns 1S Mcat, WE

first preprocess the masked columns as follows:

* The value of a masked numerical column is set as the averaged value of this column, i.e.,
TP = mean(z num) Vi € Muyum.-

* The masked categorical column is set as z{" < C%, - %_, . C%] € R V) € meat.

The updated z; (we omit the subscript in the remaining parts) is fed to TABSYN’s frozen VAE’s
encoder to obtain the embedding z € R'*M9  As TABSYN’s VAE employs the Transformer
architecture, there is a deterministic mapping from the masked indexes in the data space myum and
Mecat to the masked indexes in the latent space. For example, the first dimension of the numerical
column is mapped to dimension 1 to d in z. Therefore, we can create a masking vector m indicating
whether each dimension is masked. Then, the known and unknown part of z could be expressed as
m © z and (1 — m) © z, respectively.

Following Lugmayr et al. (2022), the reverse step is modified as a mixture of the known part’s
forwarding and the unknown part’s denoising:

zir:own =z+ O'(ti_l)é',é? ~ N(O,I),

1

tz 1
Z;lnknown =z, +/ dZt.,
i—1 i
t; 39)

Zy,_, =mO z}f“(’wn +(1-m)0O z?;iklmw“,

where dz; = —d(t)o(t)Vy, log p(z)dt + /& (t)o(t)dws.

The reverse imputation from time ¢; to ¢;_; also involves resampling in order to reduce the error
brought by each step (Lugmayr et al., 2022). Resampling indicates that Eq. 39 will be repeated for U
steps from z;, to z;, _,. After completing the reverse steps, we obtain the imputed latent vector 2,
which could be put into TABSYN’s VAE decoder to recover the original input data.

The algorithm for missing value imputation is presented in Algorithm 4.
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Algorithm 4: TABSYN for Missing Value Imputation

1: 1. VAE encoding
2z = [ZPum 0B ... ;R?Cat] isa daFa sample having missing values.
3: Myum denotes the missing numerical columns.

4: Mmeat denotes the missing categorical columns.

SHEES mean(z™™), V5 € muum-
6
7
8

5
2t [d e e ] € RIXOLY) € e
. z = Flatten(Encoder(z)) € R¥*Md

9: 2. Obtaining the masking vector

10: m € R1xMd

11: forj=1,...,Mddo

12:  if (1j/d]) € mpum or (|j/d] — Mpum) € Meat then

13: m; = 0
14:  else

15: mj =1
16:  end if

17: end for

18:

19: 3. Missing Value Imputation via Denoising
20: 2z, = 2+ 0(tmax)e, € ~ N(0,1)

21: for i = max,--- ,1do

22: foru=1,---,Udo

23: 2O =z + 0 (ti—1)e,e ~ N(0,1)

24: zt‘liriklnown =z, + ftii—l dzti

25: dz is defined in Eq. 6

26: 2z, , =mQO zi‘in_olwn +(1-m)o za“_klnown
27: ifu<Uandt>1 then

28: ### Resampling

29: zZi, =2, , + \/O'Q(ti) —02(t;i_1)e,e ~ N(0,1)
30: end if

31:  end for

32: end for

33: 2o = z4,

34:

35: 4. VAE decoding
36: 2 = Decoder(Unflatten(zg))
37: z is the imputed data

Classification/Regression as missing value imputation. With Algorithm 4, we are able to use
TABSYN for imputation with any missing columns. In this section, we consider a more interesting ap-
plication — treating classification/regression as missing value imputation tasks directly. As illustrated
in Section E.1, each dataset is assigned a machine learning task, either a classification or regression
on the target column in the dataset. Therefore, we can mask the values of the target columns, then
apply TABSYN to impute the masked values, completing the classification or regression tasks.

In Table 12, we present TABSYN’s performance in missing value imputation tasks on the target
column of each dataset. The performance is compared with directly training a classifier/regressor,
using the remaining columns to predict the target column (the ’Real’ row in Machine Learning
Efficiency tasks, Table 3). Surprisingly, imputing with TabSyn shows highly competitive results on all
datasets. On four of six datasets, TabSyn outperforms training a discriminate ML classifier/regressor
on real data. We suspect that the reason for this phenomenon may be that discriminative ML models
are more prone to overfitting on the training set. In contrast, by learning the smooth distribution of
the entire data, generative models significantly reduce the risk of overfitting. The excellent results
on the missing value imputation task further highlight the significant importance of our proposed
TabSyn for real-world applications.
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Our TABSYN is not trained conditionally on other columns for the missing value imputation tasks,

and the performance can be further improved by training a separate conditional model specifically for
this task. We leave it for future work.

Table 12: Performance of TABSYN in Missing Value Imputation tasks, compared with training an
XGBoost classifier/regressor using the real data.

Methods Adult Default Shoppers Magic Beijing News
AUCT AUCT AUC 1 AUCT RMSE| RMSE|

Real with XGBoost 92.7 77.0 92.6 94.6 0.423 0.842

Impute with TABSYN  93.2 87.2 96.6 88.8 0.258 1.253

F.5 IMPACTS OF THE QUALITY OF VAES

Intuitively, the performance of TabSyn appears to be highly dependent on the quality of the pre-
trained VAE model. Therefore, we conduct further research to investigate how a less trained VAE
model would impact the quality of synthetic data generated by TabSyn. To this end, we investigate
the quality of synthetic data generated by TabSyn using the embeddings of the VAE obtained at
different epochs as the latent space. Figure 9 plots the results of single-column density estimation
and pair-wise column correlation estimation on the Adult and Default datasets, with intervals set at
400 epochs. We can observe that increasing the training epochs of the VAE does indeed improve the
quality of TabSyn’s generated data. Additionally, even when the VAE is sub-optimal (e.g., training
epochs around 2000), TabSyn’s performance is already very close to the optimal ones. Furthermore,
even with a relatively low number of VAE training epochs (e.g., 800-1200), TabSyn’s performance
approaches or even surpasses the most competitive baseline, TabDDPM. Based on this observation, we
recommend thoroughly training the VAE to achieve superior data generation quality when resources
are abundant. However, when resources are limited, reducing the VAE training duration still yields
decent performance.
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Figure 9: Performance of TABSYN with VAE:s trained for different epochs. By default, TABSYN’s
VAE is trained with 4000 epochs

F.6 PRIVACY PROTECTION: DISTANCE TO CLOSEST RECORD (DCR)

To study if the synthetic data will cause privacy information leakage issues, we compute the DCRs of
the synthetic data. Specifically, we follow the ’synthetic vs. holdout’ setting '°. We initially divide
the dataset into two equal parts: the first part served as the training set for training our generative
model, while the second part was designated as the holdout set, which is not used for training. After

completing model training, we sample a synthetic set of the same size as the training set (and the
holdout set).

1Ohttps ://www.clearbox.ai/blog/2022-06-07-synthetic-data-for-privacy-\
preservation-part-2
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We then calculate the DCR scores for each sample in the synthetic set concerning both the training
set and the holdout set. We can create histograms to visualize the distribution of DCR scores for the
synthetic set in comparison to both the training and holdout sets. Intuitively, if there is a privacy issue
(e.g. if the synthetic set is directly copied from the training set), then the DCR scores for the training
set should be closer to O than those for the testing set. Conversely, if there is no privacy issue, the
distributions of DCR scores of the training and holdout sets should largely overlap. In Figure 10, we
plot the distributions of synthetic sets’ DCRs concerning the training set and holdout set on Default
and Shoppers. We can observe that deep generative models such as CoDi, STaSy, TabDDPM, and
TabSyn do not suffer from privacy issues, while the interpolation-based method SMOTE might not
be able to protect privacy information.
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Figure 10: Distributions of the DCR scores between the synthetic dataset and the training/holdout
datasets. Deep generative models have similar DCR distributions concerning the training set and
holdout set, while in the interpolation-based method SMOTE, DCRs concerning the training set are
much smaller than DCRs concerning the holdout set.

Additionally, we calculate the probability that a synthetic sample is closer to the training set (rather
than the holdout set). When this probability is close to 50% (i.e., 0.5), it indicates that the distribution
of distances between synthetic and training instances is very similar (or at least not systematically
smaller) than the distribution of distances between synthetic and holdout instances, which is a positive
indicator in terms of privacy risk. Table 13 displays the results obtained by different models on
Default and Shoppers datasets.

Table 13: DCR score (the probability that a synthetic example is closer to the training set rather than
the holdout set (%, a score closer to 50% is better).

Method Default Shoppers

SMOTE 91.41%+3.42  96.40%=+4.70
STaSy 50.23%+0.09  51.53%=+o0.16
CoDi 51.82%+0.26  51.06%=+0.18

TabDDPM  52.15%+0.20 63.23%=+0.25
TABSYN 51.20%+0.18  52.90% =+0.22

G DETAILS FOR REPRODUCTION

In this section, we introduce the details of TABSYN, such as the data preprocessing, training, and
hyperparameter details. We also present details of our reproduction for the baseline methods.

G.1 DETAILS OF IMPLEMENTING TABSYN
Data Preprocessing. Real-world tabular data often contain missing values, and each column’s data

may have distinct scales. Therefore, we need to preprocess the data. Following TabDDPM (Kotel-
nikov et al., 2023), missing cells are filled with the column’s average for numerical columns. For
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categorical columns, missing cells are treated as one additional category. Then, each numerical/cate-
gorical column is transformed using the QuantileTransformer''/OneHotEncoder'? from scikit-learn,
respectively.

Hyperparameter settings. TABSYN uses the same set of parameters for different datasets.
(except Bmax for Shoppers). The detailed architectures of the VAE and Diffusion model of TABSYN
have been presented in Appendix D.1 and Appendix D.2, respectively. Below is the detailed
hyperparameter setting.

Hyperparameters of VAE:

* Token dimension d = 4,

* Number of Layers of VAEs’ encoder/decoder: 2,

¢ Hidden dimension of Transformer’s FFN: 4 x 32 = 128,
* Bmax = 0.01 (Bmax = 0.001 for Shoppers),

* Bmin = 1077,

e A=0.7.

Hyperparameters of Diffusion:
¢ MLP’s hidden dimension dy;ggen = 1024.

Unlike the cumbersome hyperparameter search process in some current methods (Kotelnikov et al.,
2023; Kim et al., 2023; Lee et al., 2023) to obtain the optimal hyperparameters, TABSYN consistently
generates high-quality data without the need for meticulous hyperparameter tuning.

G.2 DETAILS OF IMPLEMENTING BASELINES

Since different methods have adopted distinct neural network architectures, it is inappropriate to
compare the performance of different methods using identical networks. For fair comparison, we
adjust the hidden dimensions of different methods, ensuring that the numbers of trainable parameters
are close (around 10 million). Note that enlarging the model size does lead to better performance
for the baseline methods. Under these conditions, we reproduced the baseline methods based on
the official codes, and our reproduced codes are provided in the supplementary. Below are the
detailed implementations of the baselines.

CTGAN and TVAE (Xu et al., 2019): For CTGAN, we follow the implementations in the official
codes'®, where the hyperparameters are well-given. Since the default discriminator/generator MLPs
are small, we enlarge them to be the same size as TABSYN for fair comparison. The interface for
TVAE is not provided, so we simply use the default hyperparameters defined in the TVAE module.
The sizes of TVAE’s encoder/decoder are enlarged as well.

GOGGLE (Liu et al., 2023b): We follow the official implementations'*. In GOGGLE’s official
implementation, each node is a column, and the node feature is the 1-dimensional numerical value of
this column. However, GOGGLE did not illustrate and failed to explain how to handle categorical
columns 3. To extend GOGGLE to mixed-type tabular data, we first transform each categorical
column into its C-dimensional one-hot encoding. Then, each single dimension of 0/1 binary values
becomes the graph node. Consequently, for a mixed-type tabular data of M, numerical columns
and M., categorical columns and the i-th categorical column of C; categories, GOGGLE’s graph
has Myum + Y., C; nodes.

Mhttps://scikit-learn.org/stable/modules/generated/sklearn.
preprocessing.QuantileTransformer.html
Phttps://scikit-learn.org/stable/modules/generated/sklearn.
preprocessing.OneHotEncoder.html
13https://qithub.com/sdvfdev/CTGAN
Yhttps://github.com/vanderschaarlab/GOGGLE
]Shttps://github.com/tennisonliu/GOGGLE/issues/Z
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GReaT: We follow the official implementations'®. During our reproduction, we found that the
training of GReaT is memory and time-consuming (because it is fine-tuning a large language model).
Typically, the batch size is limited to 32 on the Adult dataset, and training for 200 epochs takes over
2 hours. In addition, since GReaT is textual-based, the generated content is not guaranteed to follow
the format of the given table. Therefore, additional post-processing has to be applied.

STaSy (Kim et al., 2023): In STaSy, the categorical columns are encoded with one-hot encoding and
then are put into the continuous diffusion model together with the numerical columns. We follow the
default hyperparameters given by the official codes!” except for the denoising function’s size, which
is enlarged for a fair comparison.

CoDi (Lee et al., 2023): We follow the default hyperparameters given by the official codes'®.
Similarly, the denoising U-Nets used by CoDi are also enlarged to ensure similar model parameters.

TabDDPM (Kotelnikov et al., 2023): The official code of TabDDPM'? is for conditional generation
tasks, where the non-target columns are generated conditioned on the target column(s). We slightly
modify the code to be applied to unconditional generation.

16https ://github.com/kathrinse/be_great/tree/main
Thttps://github.com/JayoungKim408/STaSy/tree/main
Bhttps://github.com/Chaejeonglee/CoDi/tree/main
]ghttps ://github.com/yandex-research/tab-ddpm
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