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Abstract
Subspace optimization algorithms, such as Ga-
Lore (Zhao et al., 2024), have gained attention
for pre-training and fine-tuning large language
models (LLMs) due to their memory efficiency.
However, their convergence guarantees remain
unclear, particularly in stochastic settings. In
this paper, we reveal that GaLore does not al-
ways converge to the optimal solution and pro-
vide an explicit counterexample to support this
finding. We further explore the conditions un-
der which GaLore achieves convergence, showing
that it does so when either (i) a sufficiently large
mini-batch size is used or (ii) the gradient noise
is isotropic. More significantly, we introduce
GoLore (Gradient random Low-rank projection),
a novel variant of GaLore that provably converges
in typical stochastic settings, even with standard
batch sizes. Our convergence analysis extends
naturally to other subspace optimization algo-
rithms. Finally, we empirically validate our the-
oretical results and thoroughly test the proposed
mechanisms. Codes are available at https:
//github.com/pkumelon/Golore.

1. Introduction
Large Language Models (LLMs) have demonstrated impres-
sive performance across a variety of tasks, including lan-
guage processing, planning, and coding. However, LLMs re-
quire substantial computational resources and memory due
to their large model size and the extensive amounts of train-
ing data. Consequently, recent advancements in stochastic
optimization have focused on developing memory-efficient
strategies to pre-train or fine-tune LLMs with significantly
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reduced computing resources. Most approaches (Vyas et al.,
2024; Ramesh et al., 2024; Luo et al., 2023; Liu et al.,
2024; Bini et al., 2024; Hao et al., 2024; Zhao et al., 2024;
Muhamed et al., 2024; Pan et al., 2024; Loeschcke et al.,
2024; Hayou et al., 2024; Lialin et al., 2023; Han et al., 2024;
Song et al., 2023) concentrate on reducing the memory of
optimizer states, which are critical components of overall
training memory. For instance, Adam (Kingma, 2014) and
AdamW (Loshchilov, 2017) maintain first and second-order
momentum terms for gradients as optimizer states, leading
to significant memory overhead for large models.

Among the most popular memory-efficient fine-tuning algo-
rithms is LoRA (Hu et al., 2021), which decreases the num-
ber of trainable parameters by employing low-rank model
adapters. However, the low-rank constraint on weight up-
dates can result in substantial performance degradation for
tasks that require full-rank updates, particularly in the pre-
training of LLMs. To address this issue, several LoRA
variants have been proposed, including ReLoRA (Lialin
et al., 2023) and SLTrain (Han et al., 2024). Recently, Ga-
Lore (Zhao et al., 2024) has emerged as an effective solu-
tion, significantly reducing optimizer states by projecting
full-parameter gradients into periodically recomputed sub-
spaces. By retaining optimizer states in low-rank subspaces,
GaLore can reduce memory usage by over 60%, enabling
the pre-training of a 7B model on an NVIDIA RTX 4090
with 24GB of memory. In contrast, the vanilla 8-bit Adam
without low-rank projection requires over 40GB of memory.

1.1. Fundamental open questions and main results

While GaLore’s memory efficiency has been well estab-
lished, its convergence guarantees remain unclear. This
raises the following fundamental open question:

Q1. Can GaLore converge to stationary solutions, under
standard and mild assumptions?

By stationary solutions, we refer to first-order stationary
points x ∈ Rd such that ∇f(x) = 0 for f : Rd → R.
By standard and mild assumptions, we refer to common
conditions in non-convex smooth optimization, including
lower boundedness, L-smoothness and unbiased stochastic
gradients with bounded variances, as in Assumptions 1-3.
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Contrary to expectations, our investigation reveals that Ga-
Lore is NOT theoretically guaranteed to converge precisely
with standard and mild assumptions. The intuition behind
this finding is straightforward: GaLore projects the stochas-
tic gradient matrix onto a low-rank subspace spanned by the
top r singular vectors obtained via Singular Value Decom-
position (SVD), effectively capturing the dominant com-
ponents of the stochastic gradient matrix. However, the
stochastic gradient comprises two components: the true gra-
dient and gradient noise. When the true gradient dominates,
the SVD-identified subspace primarily captures the gradi-
ent component. In contrast, as the algorithm approaches a
local minimum so that the true gradient diminishes while
noise persists, the greedy and biased SVD-derived subspace
captures only the noise component, ultimately leading to
non-convergence. To validate this intuition, we construct
a counter-example demonstrating that GaLore fails to con-
verge to stationary solutions, see the illustration in Fig. 1.
This leads us to a subsequent open question:

Q2. Under what additional assumptions can GaLore
converge to stationary solutions?

Based on the preceding discussion, we conclude that the
SVD-identified subspace aligns well with the descent di-
rection when the true gradient component dominates the
gradient noise. This observation naturally leads to several
additional assumptions under which GaLore can converge:

• Noise-Free Assumption. We theoretically establish
that GaLore converges at a rate of O(1/T ) in the deter-
ministic and non-convex setting.

• Large-Batch Assumption. We theoretically demon-
strate that GaLore converges at a rate of O(1/

√
T ) in

the stochastic and non-convex setting, provided that
the batch size is extremely large and increases with the
number of iterations T , e.g., a batch size of Θ(

√
T ).

We further investigate GaLore’s convergence under the
Isotropic-Noise Assumption, wherein the noise is assumed
to be evenly distributed across all directions, mitigating the
bias introduced by the top-K selection.

However, none of the aforementioned assumptions apply to
the practical pre-training and fine-tuning of LLMs, where
gradient noise is not assumed isotropic (Zhu et al., 2018;
HaoChen et al., 2021; Mori et al., 2022; Wu et al., 2022;
Wang & Wu) and fixed batch sizes are commonly employed.
This observation raises a fundamental open question:

Q3. Under what modifications can GaLore provably
converge in LLM settings, where possibly anisotropic
gradient noise presents and the batch size is constant?

It is evident that GaLore’s SVD-based projections cannot
extract meaningful information from noise-dominant ma-
trices. To address this issue, this paper proposes modify-
ing the SVD projection to a Gradient Random Low-Rank
projection, resulting in the GoLore algorithm. This ran-
dom projection can effectively capture gradient information
even when gradient noise predominates, allowing for conver-
gence in the stochastic and non-convex setting with normal
batch sizes. We establish that GoLore converges at a rate of
O(1/

√
T ) under standard assumptions.

In our empirical experiments, we implement GaLore during
the primary phases of pre-training or fine-tuning LLMs due
to its efficacy in capturing the gradient component using
SVD-based projection. In contrast, we employ GoLore in
the final phase, leveraging its ability to extract the gradient
component from noise-dominant stochastic gradients using
random projection. This approach enhances performance
compared to employing GaLore throughout all stages.

While our analysis primarily focuses on GaLore, it also
has significant connections to other memory-efficient algo-
rithms. We demonstrate that a ReLoRA-like implementa-
tion is equivalent to GaLore, which is more computational
efficient with little additional memory overhead. Further-
more, our theoretical results can be easily adapted to sparse
subspace descent algorithms with minimal effort.

Contributions. In summary, our contributions include:

• We find that GaLore is not theoretically guaranteed to
converge to stationary solutions under Assumptions 1-
3. The key insight is that GaLore’s SVD projection is
biased and greedy; it may completely lose the true gra-
dient information when the gradient noise is anisotropic
and dominates the true gradient. We validate the non-
convergence of GaLore by providing an explicit coun-
terexample. This addresses Question Q1.

• Inspired by the aforementioned insight, we propose
different additional assumptions under which GaLore
can provably converge to stationary solutions. Under
the noise-free assumption, we establish that GaLore
converges at a rate of O(1/T ). Under the large-batch
assumption or isotropic noise assumptions, we demon-
strate that GaLore converges at a rate of O(1/

√
T ).

This addresses Question Q2.

• When possibly anisotropic gradient noise persists and
the batch size maintains constant, we modify GaLore’s
SVD projection to a random projection, resulting in
GoLore that provably converges to stationary solutions
at a rate of O(1/

√
T ). This addresses Question Q3.

• We present an equivalent yet more computationally ef-
ficient implementation of GaLore/GoLore, and extend
our analysis to sparse subspace descent algorithms. We
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Figure 1. Loss curves of algorithms using AdamW (left) and Momentum SGD (right) on problem (1), where L.B. GaLore stands for
large-batch GaLore, GoLore@x% applies GaLore for the beginning (100− x)% iterations and GoLore for the last x% iterations.

conduct experiments across various tasks to validate
our theoretical findings. Alternately using GaLore and
GoLore in different phases achieves enhanced empirical
performance in LLMs pre-training and fine-tuning.

1.2. Related work

Memory-efficient training. In LLM training, the primary
memory consumption arises not only from the model param-
eters but also from activation values and optimizer states.
Jiang et al. (2022) and Yu et al. (2024) have proposed meth-
ods to compress activation values into sparse vectors to
alleviate memory usage. Other approaches primarily focus
on reducing optimizer states. A notable work, LoRA (Hu
et al., 2021) reparameterizes the weight matrix W ∈ Rm×n

as W = W0 +BA, where W0 ∈ Rm×n remains frozen
as the pre-trained weights, and B ∈ Rm×r and A ∈ Rr×n

are learnable low-rank adapters. Variants of LoRA, such
as those proposed by Liu et al. (2024) and Hayou et al.
(2024), aim to enhance training performance. However,
constrained to low-rank updates, LoRA and its variants
are primarily effective for fine-tuning tasks and struggle
with pre-training tasks that require high-rank updates. To
address this limitation, ReLoRA (Lialin et al., 2023) en-
ables high-rank updates by accumulating multiple LoRA
updates, while LISA (Pan et al., 2024) learns full-parameter
updates on dynamically selected trainable layers. GaLore
(Zhao et al., 2024) and FLORA (Hao et al., 2024) achieve
high-rank updates by accumulating low-rank updates in pe-
riodically recomputed subspaces, and SLTrain (Han et al.,
2024) employs additional sparse adapters for high-rank up-
dates. SIFT (Song et al., 2023) also utilizes sparse updates.
Although these algorithms have demonstrated comparable
empirical performance to full-parameter training methods,
theoretical guarantees regarding their convergence have not
been established. Recently, Liang et al. (2024) proposes an
online subspace decent algorithm with continuous-time con-
vergence results; LDAdam (Robert et al., 2024) improves

GaLore by incorporating error-feedback; Fira (Chen et al.,
2024a) and APOLLO (Zhu et al., 2024) adapt learning rates
using optimizer states in the subspace.

Convergence for lossy algorithms. Many optimization
algorithms utilize lossy compression on training dynamics,
such as gradients, particularly in the realm of distributed op-
timization with communication compression. Researchers
have established convergence properties for these algorithms
based on either unbiased (Li et al., 2020; Li & Richtárik,
2021; Condat et al., 2024; Huang & Pu, 2023; He et al.,
2024a;b; Mishchenko et al., 2019; Gorbunov et al., 2021; Al-
istarh et al., 2017; He et al., 2023) or contractive (Richtárik
et al., 2021; Xie et al., 2020; Fatkhullin et al., 2024; He
et al., 2023) compressibility. Kozak et al. (2019) provides
a convergence analysis for subspace compression under
Polyak-Lojasiewicz or convex conditions, where the sub-
space compression adheres contractive compressibility at
each iteration. Despite these extensive findings, analyzing
the convergence properties of subspace descent algorithms
like GaLore remains challenging, as illustrated in Sec. 1.3.

1.3. Challenges in theoretical analysis

Neither unbiased nor contractive compression. Gradient
projection onto the subspace can be viewed as gradient com-
pression. Traditional analyses of optimization algorithms
with lossy compression typically rely on either unbiased
compressibility, i.e., the compressor C satisfies

E[C(x)] = x, E[∥C(x)− x∥22] ≤ ω∥x∥22, ∀x ∈ Rd,

for some ω ≥ 0, or contractive compressibility, i.e.,

E[∥C(x)− x∥22] ≤ (1− δ)∥x∥22, ∀x ∈ Rd,

for some δ ∈ (0, 1]. However, GaLore’s subspace com-
pression is neither unbiased nor contractive due to the
reuse of projection matrices. For example, consider a pre-
computed projection matrix P ∈ Rm×r. There exists a
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full-parameter gradient G ∈ Rm×n such that G ̸= 0 and
C(G) := PP⊤G = 0, violating both compressibilities.

Periodically projected optimizer states. When GaLore
changes the subspace, the retained momentum terms must
be adjusted to track the gradients in the new subspace. Since
these momentum terms were initially aligned with the gra-
dients in the original subspace, such adjustments inevitably
introduce additional errors, especially when the two sub-
spaces differ significantly. In the extreme case where the
two subspaces are entirely orthogonal, the momentum from
the previous subspace becomes largely irrelevant for opti-
mization in the new one.

2. Preliminaries and assumptions
Full-parameter training. Neural network training can be
formulated as the following optimization problem:

min
x

f(x) := Eξ∼DF (x; ξ).

Here, x = (vec(X1)
⊤, · · · , vec(XNL

)⊤)⊤ collects all
trainable parameters, NL is the number of layers, Xℓ ∈
Rmℓ×nℓ denotes the weight matrix in the ℓ-th layer. F (x; ξ)
computes the loss with respective to data point ξ, D denotes
the training data distribution. In full-parameter training, we
directly apply the optimizer to the full-parameter x:

G
(t)
ℓ = ∇ℓF (x(t); ξ(t)),

X
(t+1)
ℓ = X

(t)
ℓ + ρ

(t)
ℓ (G

(t)
ℓ ), ℓ = 1, · · · , NL;

where ∇ℓ computes the gradient with respective to the ℓ-th
weight matrix Xℓ, superscript (t) denotes the variable in
the t-th iteration, and ρ

(t)
ℓ is an entry-wise stateful gradi-

ent operator, such as Adam or Momentum SGD (MSGD).
Specifically, using MSGD leads to the following ρ

(t)
ℓ (·):

M
(t)
ℓ = (1− β1)M

(t−1)
ℓ + β1G

(t)
ℓ ;

ρ
(t)
ℓ (G

(t)
ℓ ) = −ηM (t)

ℓ ;

where η is the learning rate, β1 ∈ (0, 1] is the momentum co-
efficient, and M (t)

ℓ is the momentum state. In full-parameter
LLMs pre-training/fine-tuning, the memory requirements
for storing momentum in MSGD and the additional variance
state in Adam are highly demanding. According to Zhao
et al. (2024), pre-training LLaMA 7B with a single batch
size requires 58 GB of memory, with 42 GB allocated to
Adam optimizer states and weight gradients.

GaLore algorithm. To address the memory challenge,
(Zhao et al., 2024) proposes a novel Gradient Low-Rank Pro-
jection (GaLore) approach that allows much more memory-
efficient full-parameter learning. The key idea is to project
each stochastic gradient Gℓ ∈ Rmℓ×nℓ onto a low-rank sub-
space, yielding a low-dimensional gradient approximation.

Specifically, GaLore performs SVD on G
(t)
ℓ = UΣV ⊤

and obtains rank-rℓ projection matrices P (t)
ℓ = U [:, : rℓ] ∈

Rmℓ×rℓ and Q
(t)
ℓ = V [:, : rℓ] ∈ Rnℓ×rℓ , where [:, : r] de-

notes the selection of the matrix’s first r columns. When
mℓ ≤ nℓ, GaLore projects Gℓ onto Pℓ, yielding a low-
rank gradient representation (P

(t)
ℓ )⊤G

(t)
ℓ ∈ Rrℓ×nℓ . Con-

versely, when mℓ > nℓ, GaLore projects Gℓ onto Qℓ, re-
sulting in G

(t)
ℓ Q

(t)
ℓ ∈ Rmℓ×rℓ . In either scenarios, the

memory cost of optimizer states associated with these low-
rank representations can be significantly reduced, leading to
memory-efficient LLMs pre-training or fine-tuning:

X
(t+1)
ℓ =

{
X

(t)
ℓ + P

(t)
ℓ ρ

(t)
ℓ ((P

(t)
ℓ )⊤G

(t)
ℓ ), if mℓ ≤ nℓ;

X
(t)
ℓ + ρ

(t)
ℓ (G

(t)
ℓ Q

(t)
ℓ )(Q

(t)
ℓ )⊤, if mℓ > nℓ.

Typically, GaLore selects ρℓ(·) as the Adam gradient op-
erator, as illustrated in Alg. 1. However, GaLore can also
choose ρℓ(·) to be gradient operators in either vanilla SGD
or MSGD. Since SVD is computationally expensive, Ga-
Lore updates P (t)

ℓ or Q(t)
ℓ periodically. In other words, Ga-

Lore computes P (t)
ℓ or Q(t)

ℓ when iteration step t ≡ 0 (mod
τ ) where τ > 0 is the period, otherwise P

(t)
ℓ = P

(t−1)
ℓ

and Q
(t)
ℓ = Q

(t−1)
ℓ remain unchanged. Both the gradient

subspace projection and periodic switches between differ-
ent low-rank subspaces pose significant challenges to the
convergence analysis for GaLore-like algorithms.

Stiefel manifold. Stiefel manifold is the set of low-rank
projection matrices to use in subspace optimization. An
m× r Stiefel manifold (r ≤ m) is defined as

Stm,r = {P ∈ Rm×r | P⊤P = Ir}.

In GaLore, we have P
(t)
ℓ ∈ Stmℓ,rℓ and Q

(t)
ℓ ∈ Stnℓ,rℓ .

Basic assumptions. We introduce the basic assumptions
used throughout our theoretical analysis. Each of these
assumptions is standard for stochastic optimization.
Assumption 1 (Lower boundedness). The objective func-
tion f : Rd → R satisfies infx∈Rd f(x) > −∞, where
d =

∑Nℓ

ℓ=1 mℓnℓ represents the total number of parameters.

Assumption 2 (L-smoothness). Function f : Rd → R
satisfies ∥∇f(x)−∇f(y)∥2 ≤ L∥x− y∥2, ∀x,y ∈ Rd.

Assumption 3 (Stochastic gradient). It holds that

Eξ∼D[∇ℓF (x; ξ)] = ∇ℓf(x), and

Eξ∼D[∥∇ℓF (x; ξ)−∇ℓf(x)∥2F ] ≤ σ2
ℓ , ∀x ∈ Rd,

where (F,D) represents the gradient oracle, σℓ > 0 is a
scalar. Summing all weight matrices we obtain

Eξ∼D[∇F (x; ξ)] = ∇f(x), and

Eξ∼D[∥∇F (x; ξ)−∇f(x)∥22] ≤ σ2, ∀x ∈ Rd,

where σ =
√∑Nℓ

ℓ=1 σ
2
ℓ .
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Figure 2. Gradient noise dominates when close to local minimum.

3. Non-convergence of GaLore
In this section, we demonstrate why GaLore cannot guar-
antee exact convergence under Assumptions 1-3. We first
illustrate the insight, then present the formal conclusion.

Insight behind non-convergence. As reviewed in Sec. 2,
GaLore performs SVD on stochastic gradient G = UΣV ⊤

and obtains rank-r projection matrices P = U [:, : r] ∈
Rm×r. GaLore projects G onto P , yielding a low-rank
gradient representation P⊤G ∈ Rr×n. In other words, Ga-
Lore projects the stochastic gradient matrix onto a low-rank
subspace spanned by the top r singular vectors, capturing
the dominant components of the stochastic gradient matrix.
However, the stochastic gradient comprises two compo-
nents: the true gradient and gradient noise, as shown in
Fig. 3. When the true gradient significantly exceeds the gra-
dient noise, typically at the start of training (see Fig. 2), the
low-rank subspace obtained via SVD effectively preserves
the true gradient information. As training progresses and
the true gradient diminishes to zero, especially near a local
minimum (see Fig. 2), the subspace may become increas-
ingly influenced by gradient noise. When gradient noise
is not isotropic, the noise-dominated subspace captured by
SVD may become orthogonal to the true gradient subspace
due to its greedy nature, leading to non-convergence.

Counter-Example. We consider the following quadratic
problem with gradient noise:

f(X) =
1

2
∥AX∥2F + ⟨B,X⟩F ,

∇F (X; ξ) = ∇f(X) + ξσC,
(1)

where A =
(
In−r 0

)
∈ R(n−r)×n, B =

(
D 0
0 0

)
∈

Rn×n with D ∈ R(n−r)×(n−r) generated randomly, C =(
0 0
0 Ir

)
∈ Rn×n, ξ is a random variable uniformly sam-

pled from {1,−1} per iteration, and σ is used to control
the gradient noise. It is straightforward to verify that prob-
lem (1) satisfies Assumptions 1-3. Moreover, as X ap-
proaches the global minimum of f(X), the true gradient
∇f(X)→ 0, while the gradient noise persists with a vari-
ance on the order of σ2. Fig. 1 illustrates the performance

of GaLore when solving problem (1). It is observed that
GaLore fails to converge to the optimal solution, regardless
of whether the AdamW or MSGD optimizer is used.

Non-convergence of GaLore. The following theorem de-
picts GaLore’s non-convergence based on the above insight.

Theorem 4 (Non-convergence of GaLore): There exists an
objective function f : Rd → R satisfying Assumptions 1, 2,
a stochastic gradient oracle (F,D) satisfying Assumption 3,
an initial point x(0) ∈ Rd, a constant ϵ0 > 0 such that for
any rank rℓ < min{mℓ, nℓ}, subspace changing frequency
τ , any optimizer ρ that inputs a subspace gradient of shape
rℓ×nℓ and outputs a subspace update direction of the same
shape and any t > 0, it holds that

∥∇f(x(t))∥22 ≥ ϵ0.

4. Conditions for GaLore to converge
GaLore provably converges in the noise-free setting. Ac-
cording to Sec. 2, GaLore fails to converge when gradient
noise dominates the true gradient in magnitudes. This mo-
tivates us to examine the deterministic scenario where true
gradient∇f(x) can be accessed without any gradient noise.
GaLore with noise-free gradients is presented in Alg. 1 (or
Alg. 3 in Appendix B.3), where the true gradient oracle
is highlighted with label (det.) . Without gradient noise,

the projection matrix P
(t)
ℓ obtained by SVD can effectively

capture the true gradient even when approaching a local
minimum. For simplicity, we analyze GaLore with MSGD
and the following momentum updating mechanism:

M
(t)
ℓ =

{
(1−β1)P

(t)⊤
ℓ P

(t−1)
ℓ M

(t−1)
ℓ +β1P

(t)⊤
ℓ G

(t)
ℓ ,mℓ≤nℓ;

(1−β1)M
(t−1)
ℓ Q

(t−1)⊤
ℓ Q

(t)
ℓ +β1G

(t)
ℓ Q

(t)
ℓ , mℓ>nℓ;

(2)

If the subspace does not change at iteration t, it holds that
(P

(t)
ℓ )⊤P

(t−1)
ℓ = (Q

(t−1)
ℓ )⊤Q

(t)
ℓ = Irℓ and (2) reduces

to regular momentum updates. If the subspace changes at
iteration t, we inherit M (t−1)

ℓ by first projecting back to the
original space and then to the new subspace. We use momen-
tum projection (MP) to refer to mechanism (2). When MP
is used in the algorithm, we label the corresponding with
(w/ MP) in Alg. 1 otherwise (w/o MP) . The following

theorem provides convergence guarantees for GaLore using
deterministic gradients and MSGD with MP.
Theorem 5 (Convergence rate of deterministic GaLore):
Under Assumptions 1-2, if the number of iterations T ≥
64/(3δ) and we choose hyperparameters β1, τ , η according
to Appendix B.3, GaLore using deterministic gradient and
momentum gradient descent with MP converges as

1

T

T−1∑
t=0

∥∇f(x(t))∥22 = O
(

L∆

δ5/2T

)
,
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Figure 3. An illustration of the insight on why GaLore fails to converge in small-gradient scenarios. We use color green for true gradient
and red for gradient noise.

where ∆ = f(x(0))−infx f(x) and δ := minℓ
rℓ

min{mℓ,nℓ} .

Remark 1. Theorem 5 demonstrates that GaLore converges
at a rate ofO(1/T ) in the deterministic scenario, which is on
the same order as deterministic full-space gradient descent.
More details are presented in Theorem 10 in Appendix B.3.
However, in deep learning tasks with exceptionally large
training datasets, computing the true gradient becomes im-
practical due to significant computational and memory costs.
Therefore, we will next focus on the stochastic setting.

Remark 2. When rℓ → min{mℓ, nℓ}, δ → 1, and the con-
vergence rate in Theorem 5 reduces to that of full-parameter
gradient descent. This implies the sharpness of our analysis.

GaLore provably converges with large-batch stochas-
tic gradients. Inspired by the insight presented in Sec. 2,
GaLore converges in cases where the true gradient dom-
inates the gradient noise. This convergence can be en-
sured by reducing the gradient noise through an increased
batch size, particularly as the algorithm approaches a lo-
cal minimum. Specifically, we replace the stochastic gra-
dient G

(t)
ℓ = ∇ℓF (x(t); ξ(t)) with large-batch gradient

G
(t)
ℓ = 1

B
∑B

b=1∇ℓF (x(t); ξ(t,b)), which reduces the vari-
ance of gradient noise by B times. The GaLore algorithm
with large-batch stochastic gradients is presented in Alg. 1
(or Alg. 4 in Appendix B.4), where the large-batch stochas-
tic gradient oracle is highlighted with the label (l.b.) . It is
worth noting that the non-convergence of GaLore primarily
stems from the erroneous subspace dominated by gradient
noise. Therefore, we compute a large-batch gradient only
for the SVD step while maintaining a smaller batch size
for other computations, see Alg. 1. As the batch size B
increases with iteration T , GaLore provably converge to sta-
tionary solutions, as established in the following theorem:
Theorem 6 (Convergence rate of large-batch GaLore): Un-
der Assumptions 1-3, if the number of iterations T ≥ 2+
256/(3δ)+(256σ)2/(9

√
δL∆) and we choose hyperparam-

eters τ,B, β1, η according to Appendix B.4,GaLore using

large-batch MSGD with MP converges as

1

T

T−1∑
t=0

E[∥∇f(x(t))∥22] = O

(
L∆

δ5/2T
+

√
L∆σ2

δ7/2T

)
,

where ∆ = f(x(0))−infx f(x) and δ := minℓ
rℓ

min{mℓ,nℓ} .

Remark 3. A more detailed result is presented in Theorem
12 in Appendix B.4. The large batch size B = Θ(

√
T )

grows with iteration T , leading to increased memory over-
head, making it less practical than small batch sizes. With
gradient accumulation, an additional variable is needed to
track the gradient, complicating compatibility with per-layer
weight updates. Otherwise, larger batch sizes raise the mem-
ory for activation values. Therefore, exploring algorithms
that converge with constant batch sizes becomes essential.

GaLore provably converges under isotropic noise as-
sumptions. In Appendix C, we demonstrate that under
specific isotropic noise assumptions, the SVD-induced sub-
space reliably preserves the true gradient information. Con-
sequently, GaLore, even with constant batch sizes, achieves
a guaranteed convergence rate of O(1/

√
T ). However,

isotropic gradient noise is rarely considered in the conver-
gence analysis of machine learning or deep learning algo-
rithms (Zhu et al., 2018; HaoChen et al., 2021; Mori et al.,
2022; Wu et al., 2022; Wang & Wu; Koloskova et al., 2020).

Empirical validation. Fig. 1 illustrates the convergence of
large-batch GaLore (blue curve) in solving problem (1). It
demonstrates that large-batch GaLore effectively corrects
the bias present in small-batch stochastic GaLore (green
curve), achieving convergence to stationary solutions.

5. GoLore: random low-rank projection
GoLore algorithm. The main issue with SVD-based pro-
jection in GaLore is that it aims to capture the dominant
component in the stochastic gradient matrix. Consequently,
when gradient noise overshadows the true gradient as the

6
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Algorithm 1 GaLore / GoLore algorithm framework
using stochastic / deterministic / large-batch gradients

with / without momentum projection

Input: Initial point x(0), data distribution D, learning rate
η, subspace changing frequency τ , rank {rℓ}NL

ℓ=1, opti-
mizer hyperparameters β1, β2, ϵ, large batch size B.

Output: {x(t)}Tt=0.
Initialize optimizer state {M (−1)

ℓ }NL

ℓ=1 and {V (−1)
ℓ }NL

ℓ=1

to zero;
for t = 0, 1, · · · , T − 1 do

for ℓ = 1, 2, · · · , NL do
if t ≡ 0 (mod τ ) then

G
(t)
ℓ ← ∇ℓF (x(t); ξ(t)); (sto.)

G
(t)
ℓ ← ∇ℓf(x

(t)); (det.)

G
(t)
ℓ ←

1
B
∑B

b=1∇ℓF (x(t); ξ(t,b)); (l.b.)

U ,Σ,V ← SVD(G
(t)
ℓ ), P (t)

ℓ ← U [:, : rℓ],

Q
(t)
ℓ ← V [:, : rℓ]; (GaLore)

Sample P
(t)
ℓ ∼ U(Stmℓ,rℓ),

Q
(t)
ℓ ∼ U(Stnℓ,rℓ); (GoLore)

else
G

(t)
ℓ ← ∇ℓF (x(t); ξ(t)); (sto.)

G
(t)
ℓ ← ∇ℓf(x

(t)); (det.)

G
(t)
ℓ ← ∇ℓF (x(t); ξ(t)); (l.b.)

P
(t)
ℓ ← P

(t−1)
ℓ , Q(t)

ℓ ← Q
(t−1)
ℓ ;

end if

R
(t)
ℓ ←

{
(P

(t)
ℓ )⊤G

(t)
ℓ , if mℓ ≤ nℓ;

G
(t)
ℓ Q

(t)
ℓ , if mℓ > nℓ;

Compute M
(t)
ℓ via (2) (w/ MP)

M
(t)
ℓ ← (1− β1)M

(t−1)
ℓ + β1R

(t)
ℓ ; (w/o MP)

V
(t)
ℓ ← (1− β2)V

(t−1)
ℓ + β2R

(t)
ℓ ⊙R

(t)
ℓ ;

if using Adam then
M

(t)
ℓ ←M

(t)
ℓ /(1− (1− β1)

t);
V

(t)
ℓ ← V

(t)
ℓ /(1− (1− β2)

t);

N
(t)
ℓ ←M

(t)
ℓ /(

√
V

(t)
ℓ + ϵ);

else if using MSGD then
N

(t)
ℓ ←M

(t)
ℓ ;

end if

X
(t+1)
ℓ ←

{
X

(t)
ℓ − ηP

(t)
ℓ N

(t)
ℓ , if mℓ ≤ nℓ;

X
(t)
ℓ − ηN

(t)
ℓ (Q

(t)
ℓ )⊤, if mℓ > nℓ;

end for
end for
return {x(t)}Tt=0.

algorithm approaches a local minimum, the SVD-based
projection fails to identify valuable gradient information.

To address this, we propose replacing the SVD-based projec-
tion with a random projection, which captures components
of the stochastic gradient matrix randomly without any pref-
erence. This results in the GoLore algorithm presented in
Alg. 1 (or Alg. 5 in Appendix B.5). In Alg. 1, the GaLore
method highlighted with the label (GaLore) samples the

projection matrix P
(t)
ℓ via SVD. In contrast, the GoLore

method highlighted with the label (GoLore) samples P (t)
ℓ

from U(Stmℓ,rℓ), a uniform distribution on the mℓ × rℓ
Stiefel manifold. The following proposition provides a prac-
tical strategy to sample from distribution U(Stm,r).

Proposition 7 (Chikuse (2012), Theorem 2.2.1). A random
matrix X uniformly distributed on Stm,r is expressed as
X = Z(Z⊤Z)−1/2, where the elements of Z ∈ Rm×r are
independent and identically distributed as normal N (0, 1).

Convergence guarantee. Unlike SVD used in GaLore, the
random sampling strategy in GoLore prevents the subspace
from being dominated by gradient noise. The theorem below
provides convergence guarantees for GoLore when using
small-batch stochastic gradients and MSGD with MP.
Theorem 8 (Convergence rate of GoLore): Under Assump-
tions 1-3, for any T ≥ 2+128/(3δ)+ (128σ)2/(9

√
δL∆),

if we choose hyperparameters β1, τ , η according to Ap-
pendix B.5, GoLore using small-batch stochastic gradients
and MSGD with MP converges as

1

T

T−1∑
t=0

E[∥∇f(x(t))∥22] = O

(
L∆

δ5/2T
+

√
L∆σ2

δ7/2T

)
,

where ∆ = f(x(0))−infx f(x) and δ := minℓ
rℓ

min{mℓ,nℓ} .

Remark 4. Theorem 8 demonstrates that GoLore converges
at a rate of O(1/

√
T ), which is consistent with the con-

vergence rate of full-parameter pre-training using standard
MSGD. A more detailed result is presented in Theorem 14
in Appendix B.5, where we established convergence for
more general hyperparameter choices. Unlike determinis-
tic GaLore and low-rank GaLore discussed in Sec. 2, the
newly proposed GoLore algorithm converges in the non-
convex stochastic setting with constant batch sizes. Fur-
thermore, GoLore converges without assuming isotropic
gradient noise, and it remains effective whether the gradi-
ent noise is anisotropic or not, making it significantly more
suitable for LLM pre-training and fine-tuning.

Remark 5. Notably, this paper presents the first discrete-
time convergence analysis for GaLore-like algorithms under
standard assumptions. Among the few GaLore-like studies
providing convergence guarantees, Liang et al. (2024) es-
tablishes continuous-time convergence, while Robert et al.
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Figure 4. Pre-training curves of various approaches using
AdamW with BF16 precision.
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Figure 5. Fine-tuning curves of various approaches using
MSGD with BF16 precision.

Table 1. Fine-tuning results on GLUE benchmark using pre-trained RoBERTa-Base.

Algorithm CoLA STS-B MRPC RTE SST2 MNLI QNLI QQP Avg

Full Params. 62.07 90.18 92.25 78.34 94.38 87.59 92.46 91.90 86.15

GaLore 61.32 90.24 92.55 77.62 94.61 86.92 92.06 90.84 85.77
FLORA 57.71 89.59 91.96 76.17 94.50 85.42 91.93 90.49 84.72

GoLore@20% 61.66 90.55 92.93 78.34 94.61 87.02 92.20 90.91 86.03

Table 2. Results for fine-tuning pre-trained OPT-13B models on
BoolQ. OOM stands for "out of memory".

Algorithm Memory Accuracy

Full Params. OOM -

GaLore 77.68 GB 79.79
GoLore@30% 77.68 GB 81.96

(2024) demonstrates convergence using a more complex
error feedback technique, relying on a contractive assump-
tion on the projection matrix that becomes stronger as the
subspace recomputing period τ > 1. In contrast, GoLore
guarantees convergence by replacing the SVD projection
with a random projection, without significantly altering the
algorithmic structure or introducing restrictive assumptions.

Practical application of GoLore in LLMs. While GoLore
have theoretical convergence guarantees, directly applying
GoLore in LLM tasks may not be ideal. The advantage
of using randomly sampled projection matrices becomes
evident in the later stages of training, where stochastic gradi-
ents are primarily dominated by gradient noise. However, in
the early stages, projection matrices derived from GaLore’s
SVD retain more gradient information, leading to more ef-
fective subspaces, see Fig. 2. Therefore, we recommend a
hybrid approach: initially using GaLore to converge toward
the neighborhood of the solution, then switching to GoLore
for refinement and achieving more accurate results.

Empirical validation. Fig. 1 shows the convergence of the
hybrid algorithm (red curve) applied to problem (1), which
employs GaLore in the early training phase and switches
to GoLore in the later stage. It is observed that the hybrid
algorithm successfully converges to stationary solutions.

6. Experiments
We evaluate GaLore and GoLore on several different tasks,
including a counter-example problem (1), pre-training and
fine-tuning LLMs with real benchmarks. Throughout our ex-
periments, GoLore@x% uses GaLore in the first (100−x)%
iterations and GoLore in the last x% iterations, L.B. GaLore
denotes large-batch GaLore, and Full Params. denotes full-
parameter training. Further results and detailed experimen-
tal specifications including the hyperparameter choices and
computing resources are deferred to Appendix E and F.

GaLore’s non-convergence. In order to validate the non-
convergence of GaLore and the convergence properties of
GoLore and large-batch GaLore, we compare them with
full-parameter training on the constructed quadratic prob-
lem defined in (1). Fig. 1 shows that, regardless of whether
AdamW or MSGD is employed as the subspace optimizer,
GaLore does not converge to the desired solution. In con-
trast, both GoLore and large-batch GaLore, along with full-
parameter training, achieve exact convergence, thereby vali-
dating our theoretical results.

Pre-training. To validate GoLore in LLM pre-training
tasks, we pre-trained LLaMA-60M on the C4 (Raffel et al.,
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Table 3. Memory and computation comparison between GaLore’s original implementation and our ReLoRA-like version, both utilizing
MSGD with batch size b. We assume the weight W ∈ Rm×n satisfies m ≤ n.

GaLore Implementation Memory Computation

(Zhao et al., 2024) mn+ rm+ rn+ bm 6bmn+ 4rmn+ 2mn+ 3rn

Our ReLoRA-like version mn+ rm+ 2rn+ bm+ br 4bmn+ 4brm+ 6brn+ 5rn

2020) dataset for 30,000 iterations using various algorithms,
including GaLore, GoLore and full-parameter training. All
implementations utilized the AdamW optimizer in BF16
format. As illustrated in Fig. 4, the perplexity dramatically
decreases when shifting from GaLore to GoLore, demon-
strating the effectiveness of our approach.

Fine-tuning. To validate the efficiency of GoLore in LLM
fine-tuning tasks, we fine-tuned pre-trained RoBERTa mod-
els (Liu, 2019) on the GLUE benchmark (Wang, 2018),
LLaMA2-7B models (Touvron et al., 2023) on the Wino-
Grande dataset (Sakaguchi et al., 2021), and OPT-13B mod-
els (Zhang et al., 2022) on the BoolQ dataset (Clark et al.,
2019) Fig. 5 displays the loss curves for fine-tuning on
WinoGrande with rank 1024, while Table 1 and 2 present
the task scores for GaLore/GoLore with rank 4. GoLore
consistently outperforms GaLore in the above experiments.

7. Connections with other algorithms
Connection with ReLoRA. Optimization algorithms like
GaLore/GoLore that optimizes in periodically recomputed
subspaces can be implemented in an equivalent yet poten-
tially more computational efficient, ReLoRA-like way. Con-
sider a linear layer y = Wx with W ∈ Rm×n, where
m ≤ n, GaLore first computes the full-parameter gradient
∇WL = (∇yL)x⊤ via back propagation and update W
in the subspace as W ← W + P ρ(P⊤(∇WL)), where
P ∈ Rm×r is a low-rank projection matrix. If we use LoRA
adaptation W = W0 + BA with B ∈ Rm×r and A ∈
Rr×n, we compute A’s gradient ∇AL = (∇zL)x⊤ =
B⊤(∇yL)x⊤, where z = Bx is the additional activation.
If we fix B = P , update A ← A + ρ(∇AL) is equiva-
lent to W ← W + P ρ(P⊤(∇WL)). The memory and
computational costs of the two implementations are com-
pared in Table 3, showing the potential of our ReLoRA-like
implementation to reduce computation with little memory
overhead. Detailed algorithm descriptions and calculations
are in Appendix A.

Connection with FLORA. Aware of the equivalence of
the two (GaLore/ReLoRA-like) implementations, the main
difference between GoLore and FLORA lies in the choice
of projection matrices. Though both algorithms sample
P ∈ Rm×r randomly, GoLore uses a uniform distribu-
tion on the Stiefel manifold U(Stm,r), while FLORA uses
a random Gaussian distribution where each element in P

is independently sampled from N (0, 1/r), and thus P may
not belongs to Stm,r.

Connection with SIFT. SIFT fine-tunes LLMs with sparsi-
fied gradients, which can also be viewed as subspace descent.
While GaLore projects gradient G to P⊤G via a projection
matrix P , SIFT projects gradient G to S ⊙G via a sparse
mask matrix S. Our theoretical analysis can be directly
transferred to sparse subspace descent with little effort, im-
plying similar results as in low-rank subspace descent, see
Appendix D.

Connection with zero-th order methods. Zero-th order
methods (Malladi et al., 2023; Zhang et al., 2023; Chen
et al., 2024b) are another line of works on memory-efficient
training. While these algorithms randomly select a direction
to estimate the directional derivatives by finite difference,
GoLore computes subspace gradients via back propagation.
The directions used in zero-th order methods change ev-
ery iteration, while GoLore applies a more lazily strategy
changing its subspace every τ iterations.

Connection with gradient sketching methods. Gradient
sketching methods like Hanzely et al. (2018) and Wang et al.
(2024) uses gradient sketches in algorithm iterates. These
methods recover gradient estimates from projected gradi-
ents and retains full-size gradients and optimizer states. In
comparison, GoLore directly updates with projected gradi-
ents and retains compressed gradients and optimizer states,
which is more memory-efficient.

8. Conclusion and Limitations
This paper investigates subspace optimization approaches
for LLM pre-training and fine-tuning. We demonstrate that
GaLore fails to converge to the desired solution under reg-
ular assumptions, as the SVD-based projection often gen-
erates potentially anisotropic noise-dominated subspaces
when the true gradient is relatively small. However, we
establish that GaLore can achieve exact convergence when
using deterministic or large-batch stochastic gradients. We
further introduce GoLore—a variant of GaLore employing
randomly sampled projection matrices—and establish its
convergence rate even with small-batch stochastic gradients.
A limitation of this paper is that our convergence analysis
framework has not readily covered the use of the Adam
optimizer and recent GaLore variants such as Fira.
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A. The ReLoRA-like implementation
An equivalent, ReLoRA-like implementation of Alg. 1 is as illustrated in Alg. 2, where we only present the case with
small-batch stochastic gradients for convenience. In fact, applying ReLoRA with a fixed A or B is not our contribution, as
it has already been used in several previous works(Hao et al., 2024; Loeschcke et al., 2024). While leading to the same
results, this ReLoRA-like implementation (Alg. 2) can potentially save computation as it computes the subspace gradient
directly without computing the full-parameter one. Consider the case where m ≤ n and we use MSGD and a batch size of b.
The computation complexity of GaLore’s original implementation is 2bmn for forward propagation, 4bmn for backward
propagation, 4rmn for projection, 3rn for momentum update and 2mn for weight update. The computational complexity of
our ReLoRA-like implementation is 2bmn+ 2brm+ 2brn for forward propagation, 2bmn+ 2brm+ 2brn for backward
propagation, 3rn for momentum updates and 2rn for weight updates. As illustrated in Table 3, our implementation can
potentially reduce computation with little memory overhead.

B. Theoretical proofs
B.1. Notations and useful lemmas

We assume the model parameters consist of NL weight matrices. We use Xℓ ∈ Rmℓ×nℓ to denote the ℓ-th weight matrix
and x ∈ Rd = (vec(X1)

⊤, · · · , vec(XNL
)⊤)⊤ to denote the vector collecting all the parameters, d =

∑NL

ℓ=1 mℓnℓ. We
assume GaLore/GoLore applies rank-rℓ projection to the ℓ-th weight matrix and denote

δℓ =
rℓ

min{mℓ, nℓ}
, δ = min

1≤ℓ≤NL

δℓ, δ = max
1≤ℓ≤Nl

δℓ.

We define M̃
(t)
ℓ as

M̃
(t)
ℓ =

{
P

(t)
ℓ M

(t)
ℓ , if mℓ ≤ nℓ,

M
(t)
ℓ (Q

(t)
ℓ )⊤, if mℓ > nℓ,

and m̃ = (vec(M̃1)
⊤, · · · , vec(M̃NL

)⊤)⊤. While using Alg. 1 with MSGD and MP, it holds for mℓ ≤ nℓ that

M̃
(t)
ℓ =


β1P

(0)
ℓ (P

(0)
ℓ )⊤G

(0)
ℓ , t = 0;

P
(t)
ℓ (P

(t)
ℓ )⊤

(
(1− β1)M̃

(t−1)
ℓ + β1G

(t)
ℓ

)
, t = kτ, k ∈ N∗;

(1− β1)M̃
(t−1)
ℓ + β1P

(t)
ℓ (P

(t)
ℓ )⊤G

(t)
ℓ , t = kτ + r, k ∈ N, 1 ≤ r < τ ;

for mℓ > nℓ that

M̃
(t)
ℓ =


β1G

(0)
ℓ Q

(0)
ℓ (Q

(0)
ℓ )⊤, t = 0;(

(1− β1)M̃
(t−1)
ℓ + β1G

(t)
ℓ

)
Q

(t)
ℓ (Q

(t)
ℓ )⊤, t = kτ, k ∈ N∗;

(1− β1)M̃
(t−1)
ℓ + β1G

(t)
ℓ Q

(t)
ℓ (Q

(t)
ℓ )⊤, t = kτ + r, k ∈ N, 1 ≤ r < τ ;

and for both cases that

X
(t+1)
ℓ = X

(t)
ℓ − ηM̃

(t)
ℓ .

Lemma 1 (Error of GaLore’s projection): Let G = UΣV ⊤ be the SVD of G ∈ Rm×n, projection matrix P = U [:, : r],
Q = V [:, : r], r < min{m,n}. It holds for m ≤ n that

∥PP⊤G−G∥2F ≤
(
1− r

m

)
∥G∥2F ,

and for m > n that

∥GQQ⊤ −G∥2F ≤
(
1− r

n

)
∥G∥2F .
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Algorithm 2 ReLoRA-like implementation of GaLore / GoLore algorithm using stochastic gradients with / without
momentum projection

Input: Initial point x(0), data distribution D, learning rate η, subspace changing frequency τ , rank {rℓ}NL

ℓ=1, optimizer
hyperparameters β1, β2, ϵ, large batch size B.

Output: {x(t)}Tt=0.
Initialize LoRA adaptation Xℓ = Wℓ +BℓAℓ for ℓ = 1, 2, · · · , NL, where W

(0)
ℓ = X

(0)
ℓ , A(0)

ℓ = 0 and B
(0)
ℓ = 0;

Initialize optimizer state {M (−1)
ℓ }NL

ℓ=1 and {V (−1)
ℓ }NL

ℓ=1 to zero;
for t = 0, 1, · · · , T − 1 do

for ℓ = 1, 2, · · · , NL do
if t ≡ 0 (mod τ ) then
G

(t)
ℓ ← ∇ℓF (x(t); ξ(t));

U ,Σ,V ← SVD(G
(t)
ℓ ), P (t)

ℓ ← U [:, : rℓ], Q
(t)
ℓ ← V [:, : rℓ]; (GaLore)

Sample P
(t)
ℓ ∼ U(Stmℓ,rℓ), Q

(t)
ℓ ∼ U(Stnℓ,rℓ); (GoLore)

R
(t)
ℓ ←

{
(P

(t)
ℓ )⊤G

(t)
ℓ , if mℓ ≤ nℓ;

G
(t)
ℓ Q

(t)
ℓ , if mℓ > nℓ;

else

R
(t)
ℓ ←

{
∇Aℓ

F (x(t); ξ(t)), if mℓ ≤ nℓ;

∇Bℓ
F (x(t); ξ(t)), if mℓ > nℓ;

end if

M
(t)
ℓ ←

{
(1− β1)(P

(t)
ℓ )⊤B

(t)
ℓ M

(t−1)
ℓ + β1R

(t)
ℓ , if mℓ ≤ nℓ;

(1− β1)M
(t−1)
ℓ A

(t)
ℓ Q

(t)
ℓ + β1R

(t)
ℓ , if mℓ > nℓ;

(with MP)

M
(t)
ℓ ← (1− β1)M

(t−1)
ℓ + β1R

(t)
ℓ ; (without MP)

V
(t)
ℓ ← (1− β2)V

(t−1)
ℓ + β2R

(t)
ℓ ⊙R

(t)
ℓ ;

if using Adam then

M
(t)
ℓ ←M

(t)
ℓ /(1− βt

1), V
(t)
ℓ ← V

(t)
ℓ /(1− βt

2), N
(t)
ℓ ←M

(t)
ℓ /(

√
V

(t)
ℓ + ϵ);

else if using MSGD then
N

(t)
ℓ ←M

(t)
ℓ ;

end if
if t ≡ 0 (mod τ ) then

W
(t+1)
ℓ ←W

(t)
ℓ +B

(t)
ℓ A

(t)
ℓ ;

A
(t+1)
ℓ ←

{
−ηN (t)

ℓ , if mℓ ≤ nℓ;

(Q
(t)
ℓ )⊤, if mℓ > nℓ;

B
(t+1)
ℓ ←

{
P

(t)
ℓ , if mℓ ≤ nℓ;

−ηN (t)
ℓ , if mℓ > nℓ;

else
W

(t+1)
ℓ ←W

(t)
ℓ ;

A
(t+1)
ℓ ←

{
A

(t)
ℓ − ηN

(t)
ℓ , if mℓ ≤ nℓ;

A
(t)
ℓ , if mℓ > nℓ;

B
(t+1)
ℓ ←

{
B

(t)
ℓ , if mℓ ≤ nℓ;

B
(t)
ℓ − ηN

(t)
ℓ , if mℓ > nℓ;

end if
end for

end for
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Proof. Without loss of generality assume m ≤ n (the other case can be proved similarly). Let Q = U [:, (r + 1) :], It holds
that I = UU⊤ = PP⊤ +QQ⊤. Thus,

∥PP⊤G−G∥2F =∥(I − PP⊤)UΣV ⊤∥2F
=tr(V Σ⊤U⊤(I − PP⊤)2UΣV ⊤)

=tr(Σ⊤U⊤QQ⊤UΣ), (3)

where the second equation uses ∥X∥2F = tr(X⊤X) and the last equation uses tr(AB) = tr(BA), V ⊤V = I and
Q⊤Q = I . By Q⊤P = 0 and P⊤Q = 0, we have

U⊤QQ⊤U =

(
P⊤

Q⊤

)
QQ⊤ (P Q

)
=

(
0r×r 0r×(m−r)

0(m−r)×r Im−r

)
. (4)

Let σ1 ≥ σ2 ≥ · · · ≥ σm ≥ 0 denote the eigenvalues of G, (4) implies

Σ⊤U⊤QQ⊤UΣ =

 0r×r 0r×(m−r) 0r×(n−m)

0(m−r)×r diag(σr+1, · · · , σm) 0(m−r)×(n−m)

0(n−m)×r 0(n−m)×(m−r) 0(n−m)×(n−m)

 . (5)

Applying (5) to (3) yields

∥PP⊤G−G∥2F =tr(Σ⊤U⊤QQ⊤UΣ) =

m∑
i=r+1

σ2
i ≤

m− r

m
∥G∥2F ,

where the inequality uses ∥G∥2F = tr(G⊤G) = tr(Σ⊤Σ) =
∑m

i=1 σ
2
i .

Lemma 2 (Gradient connections): It holds for any t, τ > 0 that

∥∇ℓf(x
(0))∥2F ≤

2

τ

τ−1∑
r=0

∥∇ℓf(x
(t+r))∥2F + (τ − 1)

τ−2∑
r=0

∥∇ℓf(x
(t+r+1))−∇ℓf(x

(t+r))∥2F . (6)

Proof. For any r = 1, · · · , τ − 1, it holds that

∥∇ℓf(x
(t))∥2F =∥∇ℓf(x

(t+r))− (∇ℓf(x
(t+r))−∇ℓf(x

(t)))∥2F
≤2∥∇ℓf(x

(t+r))∥2F + 2∥∇ℓf(x
(t+r))−∇ℓf(x

(t))∥2F . (7)

For any r = 2, · · · , τ − 1, it holds that

∥∇ℓf(x
(t+r))−∇ℓf(x

(t))∥2F =

∥∥∥∥∥
r∑

i=1

∇ℓf(x
(t+i))−∇ℓf(x

(t+i−1))

∥∥∥∥∥
2

F

≤r
r∑

i=1

∥∇ℓf(x
(t+i))−∇ℓf(x

(t+i−1))∥2F , (8)

where the inequality uses Cauchy’s inequality. Summing (7) from r = 1 to τ − 1 and applying (8) yields

τ∥∇ℓf(x
(t))∥2F ≤2

τ−1∑
r=0

∥∇ℓf(x
(t+r))∥2F + 2

τ−1∑
i=1

i∑
j=1

i∥∇ℓf(x
(t+j))−∇ℓf(x

(t+j−1))∥2F

≤2
τ−1∑
r=0

∥∇ℓf(x
(t+r))∥2F + 2

τ−1∑
j=1

τ−1∑
i=1

i∥∇ℓf(x
(t+j))−∇ℓf(x

(t+j−1))∥2F

=2

τ−1∑
r=0

∥∇ℓf(x
(t+r))∥2F + τ(τ − 1)

τ−1∑
j=1

∥∇ℓf(x
(t+j))−∇ℓf(x

(t+j−1))∥2F ,

which is exactly (6).
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Lemma 3 (Projection orthogonality): If P ∈ Stm,r, it holds for any A,B ∈ Rm×n that

∥PP⊤A+ (I − PP⊤)B∥2F = ∥PP⊤A∥2F + ∥(I − PP⊤)B∥2F . (9)

Proof. By definition we have P⊤P = I . It suffices to note that

⟨PP⊤A, (I − PP⊤)B⟩F = tr(A⊤PP⊤(I − PP⊤)B) = tr(0) = 0.

Lemma 4 (Descent lemma): Under Assumption 2, for update

x(t+1) = x(t) − ηm̃(t),

it holds that

f(x(t+1)) ≤f(x(t))−
(

1

2η
− L

2

)
∥x(t+1) − x(t)∥22 +

η

2
∥m̃(t) −∇f(x(t))∥22

− η

2
∥∇f(x(t))∥22. (10)

Proof. By L-smoothness of f (Assumption 2) we have

f(x(t+1))− f(x(t))

≤⟨∇f(x(t)),x(t+1) − x(t)⟩+ L

2
∥x(t+1) − x(t)∥22

=

〈
m̃(t)

2
,x(t+1) − x(t)

〉
+

〈
∇f(x(t))− m̃(t)

2
,x(t+1) − x(t)

〉
+

L

2
∥x(t+1) − x(t)∥22

=−
(

1

2η
− L

2

)
∥x(t+1) − x(t)∥22 +

η

2
∥∇f(x(t))− m̃(t)∥22 −

η

2
∥∇f(x(t))∥22,

which is exactly (10).

Lemma 5 (Error of GoLore’s projection): Let P ∼ U(Stm,r), Q ∼ U(Stn,r), it holds for all G ∈ Rm×n that

E[PP⊤] =
r

m
· I, E[QQ⊤] =

r

n
· I, (11)

and

E[∥PP⊤G−G∥2F ] =
(
1− r

m

)
∥G∥2F , E[∥GQQ⊤ −G∥2F ] =

(
1− r

n

)
∥G∥2F . (12)

Proof. We refer the proof of (11) to Theorem 2.2.2 in Chikuse (2012). By P⊤P = I , we have

E[∥PP⊤G−G∥2F ] =E[tr(G⊤(I − PP⊤)2G)]

=E[tr(G⊤(I − PP⊤)G)]

=tr(G⊤(I − E[PP⊤])G). (13)

Applying (11) to (13) yields

E[∥PP⊤G−G∥2F ] =tr
(
G⊤

(
I − r

m
I
)
G
)

=
(
1− r

m

)
tr(G⊤G)

=
(
1− r

m

)
∥G∥2F .

The other part of (12) can be proved similarly.
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B.2. Non-convergence of GaLore

In this subsection, we present the proof for Theorem 4. We first restate Theorem 4 as follows:
Theorem 9 (Non-convergence of GaLore): There exists an objective function f : Rd → R satisfying Assumptions 1, 2, a
stochastic gradient oracle (F,D) satisfying Assumption 3, an initial point x(0) ∈ Rd, a constant ϵ0 > 0 such that for GaLore
with any rank rℓ < min{mℓ, nℓ}, subspace changing frequency τ , any subspace optimizer ρ with arbitrary hyperparameters
and any t > 0, it holds that

∥∇f(x(t))∥22 ≥ ϵ0.

Proof. Consider target function f(X) = L
2 tr(X

⊤pp⊤X) where L > 0, X ∈ Rn×n with n > 1 and p = (1, 0, · · · , 0)⊤ ∈
Rn. It holds that

f(X) =
L

2
∥p⊤X∥22 ≥ 0,

thus f satisfies Assumption 1. Since∇f(X) = Lpp⊤X , it holds that

∥∇f(X)−∇f(Y )∥F = L∥pp⊤(X − Y )∥F ≤ L∥pp⊤∥2∥X − Y ∥F = L∥X − Y ∥F ,

thus f satisfies Assumption 2.

Consider the following stochastic gradient oracle:

F (X; ξ) =f(X) + ξσ̃ · tr(QQ⊤X), and Pξ∼D[ξ = 1] = Pξ∼D[ξ = −1] = 0.5,

where σ̃ = σ/
√

(n− 1)n/2 and

Q =

(
0

diag
(
1, 4
√
2, · · · , 4

√
n− 1

)) ∈ Rn×(n−1).

Note that ∇F (X; ξ) = ∇f(X) + ξσ̃QQ⊤, it holds for any X ∈ Rn×n that

Eξ∼D[∇F (X; ξ)] =∇f(X)

Eξ∼D[∥∇F (X; ξ)−∇f(X)∥2F ] =σ̃2∥QQ⊤∥2F =
σ2

(n− 1)n/2
·
n−1∑
i=1

i = σ2,

thus oracle (F,D) satisfies Assumption 3.

Consider the following initial point:

X(0) =

(
λp⊤

Λ

)
,

where 0 < λ < σ̃/L is a scalar and Λ ∈ R(n−1)×n is an arbitrary matrix. We show that GaLore with the above objective
function f , stochastic gradient oracle (F,D), initial point X(0), arbitrary rank 0 < r < n, arbitrary subspace changing
frequency τ and arbitrary subspace optimizer ρ, can only output points X(t) with ∥∇f(X(t))∥2F ≥ ϵ0 for ϵ0 = L2λ2 > 0.

When τ | t, GaLore recomputes the subspace projection matrix at iteration t. If the first row of X(t) equals λp⊤, i.e.,
X(t)[1, :] = λp⊤, the stochastic gradient is given by

G(t) = Lpp⊤X + ξ(t)σ̃QQ⊤ = diag
(
Lλ, ξ(t)σ̃,

√
2ξ(t)σ̃, · · · ,

√
n− 1ξ(t)σ̃

)
.

since Lλ < σ̃, computing SVD yields

G(t) =


Lλ 0 · · · 0
0 ξ(t)σ̃ · · · 0
...

...
. . .

...
0 0 · · ·

√
n− 1ξ(t)σ̃


17



Subspace Optimization for Large Language Models with Convergence Guarantees

=


0 · · · 0 ζ1
0 · · · ζ2 0
... . .

. ...
...

ζn · · · 0 0


︸ ︷︷ ︸

:=U


√
n− 1σ̃ · · · 0 0

...
. . .

...
...

0 · · · σ̃ 0
0 · · · 0 Lλ


︸ ︷︷ ︸

:=Σ


0 0 · · · ζnξ

(t)

...
... . .

. ...
0 ζ2ξ

(t) · · · 0
ζ1 0 · · · 0


︸ ︷︷ ︸

:=V ⊤

,

where ζ1, · · · , ζn ∈ {−1, 1}. For any rank r < n, the projection matrix is thus

P (t) =



0 0 · · · 0
...

... . .
. ...

0 0 · · · 0
0 0 · · · ζn−r+1

...
... . .

. ...
0 ζn−1 · · · 0
ζn 0 · · · 0


∈ Rn×r.

Using this projection matrix, the subspace updates in the following τ iterations is as

X(t+∆t) = X(t) + P (t)
∆t−1∑
s=0

ρ(t+s)((P (t))⊤G(t)) ⇒ X(t+∆t)[1, :] = X(t)[1, :] = λp⊤,

for ∆t = 1, 2, · · · , τ . Since X(0)[1, :] = λp⊤, it holds for all t > 0 that X(t)[1, :] = λp⊤ and thus

∥∇f(X(t))∥2F = L2λ2 = ϵ0.

Remark 6. When setting B = 0 in the quadratic problem setting (Sec. 6), the quadratic problem is equivalent to the
counter-example we construct in the proof of Theorem 9. The illustration in Fig. 6 displays the loss curves for this problem.

B.3. Convergence of deterministic GaLore

In this subsection, we present the proof for Theorem 5. GaLore using deterministic gradients and MSGD with MP is
specified as Alg. 3.

Lemma 6 (Momentum contraction): In deterministic GaLore using MSGD with MP (Alg. 3), if 0 < β1 ≤ 1, term M̃
(t)
ℓ

has the following contraction properties:

• When t = 0, it holds that

∥M̃ (0)
ℓ −∇ℓf(X

(0))∥2F ≤(τ − 1)(1− δℓβ1)

τ−2∑
r=0

∥∇ℓf(x
(r+1))−∇ℓf(x

(r))∥2F

+
2(1− δℓβ1)

τ

τ−1∑
r=0

∥∇ℓf(x
(r))∥2F ; (14)

• When t = kτ , k ∈ N∗, it holds that

∥M̃ (t)
ℓ −∇ℓf(x

(t))∥2F −
(
1−

(
1− δℓ

4

)
β1

)
∥M̃ (t−1)

ℓ −∇ℓf(x
(t−1))∥2F

≤2(1− δℓ)

τ

τ−1∑
r=0

∥∇lf(x
(kτ+r))∥2F +

5(1− β1)

δℓβ1
∥∇ℓf(x

(t))−∇ℓf(x
(t−1))∥2F

+ (τ − 1)(1− δℓ)

τ−2∑
r=0

∥∇ℓf(x
(kτ+r+1))−∇ℓf(x

(kτ+r))∥2F ; (15)
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Figure 6. Loss curves of algorithms using AdamW. GoLore@50% uses GaLore in the first half and shifts to GoLore in the last half, Full
Params. denotes full-parameter training.

• When t = kτ + r, k ∈ N, 1 ≤ r < τ , it holds that

∥M̃ (t)
ℓ −∇ℓf(x

(t))∥2F −
(
1−

(
1− δℓ

4

)
β1

)
∥M̃ (t−1)

ℓ −∇ℓf(x
(t−1))∥2F

≤
(
1− δℓ

2

)
β1∥∇ℓf(x

(t))∥2F +
5(1− β1)

δℓβ1
∥∇ℓf(x

(t))−∇ℓf(x
(t−1))∥2F

+
10rβ1

δℓ

r∑
i=1

∥∇ℓf(x
(kτ+i))−∇ℓf(x

(kτ+i−1))∥2F . (16)

Proof. Without loss of generality assume mℓ ≤ nℓ (the other case can be proved similarly). When t = 0, we have

∥M̃ (0)
ℓ −∇ℓf(x

(0))∥2F =∥β1(P
(0)
ℓ (P

(0)
ℓ )⊤ − I)∇ℓf(x

(0))− (1− β1)∇ℓf(x
(0))∥2F

≤β1(1− δℓ)∥∇ℓf(x
(0))∥2F + (1− β1)∥∇ℓf(x

(0))∥2F
=(1− δℓβ1)∥∇ℓf(x

(0))∥2F , (17)

where the inequality uses Lemma 1 and Jensen’s inequality. Applying Lemma 2 to (17) yields (14).

When t = kτ , k ∈ N∗, we have

∥M̃ (t)
ℓ −∇ℓf(x

(t))∥2F
=∥P (t)

ℓ (P
(t)
ℓ )⊤[(1− β1)M̃

(t−1)
ℓ + β1G

(t)
ℓ −∇ℓf(x

(t))]− (I − P
(t)
ℓ (P

(t)
ℓ )⊤)∇ℓf(x

(t))∥2F
=∥P (t)

ℓ (P
(t)
ℓ )⊤[(1− β1)(M̃

(t−1)
ℓ −∇ℓf(x

(t)))]∥2F + ∥(I − P
(t)
ℓ (P

(t)
ℓ )⊤)∇ℓf(x

(t))∥2F
≤∥(1− β1)(M̃

(t−1)
ℓ −∇ℓf(x

(t)))∥2F + (1− δℓ)∥∇ℓf(x
(t))∥2F , (18)

where the second equality uses Lemma 3 and G
(t)
ℓ = ∇ℓf(x

(t)), the inequality uses Lemma 1 and ∥P (t)
ℓ (P

(t)
ℓ )⊤∥2 = 1.

By Young’s inequality, we have

∥M̃ (t−1)
ℓ −∇ℓf(x

(t))∥2F
=∥(M̃ (t−1)

ℓ −∇ℓf(x
(t−1)))− (∇ℓf(x

(t))−∇ℓf(x
(t−1))∥2F
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Algorithm 3 GaLore using deterministic gradients and MSGD with MP

Input: Initial point x(0), learning rate η, subspace changing frequency τ , rank {rℓ}NL

ℓ=1, momentum parameter β1.
Output: {x(t)}Tt=0.

Initialize optimizer state {M (−1)
ℓ }NL

ℓ=1 to zero;
for t = 0, 1, · · · , T − 1 do

for ℓ = 1, 2, · · · , NL do
G

(t)
ℓ ← ∇ℓf(x

(t));
if t ≡ 0 (mod τ ) then

U ,Σ,V ← SVD(G
(t)
ℓ );

if mℓ ≤ nℓ then
P

(t)
ℓ ← U [:, : rℓ];

M
(t)
ℓ ← (1− β1)(P

(t)
ℓ )⊤P

(t−1)
ℓ M

(t−1)
ℓ + β1(P

(t)
ℓ )⊤G

(t)
ℓ ;

X
(t+1)
ℓ ←X

(t)
ℓ − ηP

(t)
ℓ M

(t)
ℓ ;

else
Q

(t)
ℓ ← V [:, : rℓ];

M
(t)
ℓ ← (1− β1)M

(t−1)
ℓ (Q

(t−1)
ℓ )⊤Q

(t)
ℓ + β1G

(t)
ℓ Q

(t)
ℓ ;

X
(t+1)
ℓ ←X

(t)
ℓ − ηM

(t)
ℓ (Q

(t)
ℓ )⊤;

end if
else

if mℓ ≤ nℓ then
P

(t)
ℓ ← P

(t−1)
ℓ ;

M
(t)
ℓ ← (1− β1)M

(t−1)
ℓ + β1(P

(t)
ℓ )⊤G

(t)
ℓ ;

X
(t+1)
ℓ ←X

(t)
ℓ − ηP

(t)
ℓ M

(t)
ℓ ;

else
Q

(t)
ℓ ← Q

(t−1)
ℓ ;

M
(t)
ℓ ← (1− β1)M

(t−1)
ℓ + β1G

(t)
ℓ Q

(t)
ℓ ;

X
(t+1)
ℓ ←X

(t)
ℓ − ηM

(t)
ℓ (Q

(t)
ℓ )⊤;

end if
end if

end for
end for

≤
(
1 +

δℓβ1

4

)
∥M̃ (t−1)

ℓ −∇ℓf(x
(t−1))∥2F +

(
1 +

4

δℓβ1

)
∥∇ℓf(x

(t))−∇ℓf(x
(t−1))∥2F . (19)

Applying Lemma 2 and (19) to (18) yields (15).

When t = kτ + r, k ∈ N, 1 ≤ r < τ , we have

∥M̃ (t)
ℓ −∇ℓf(x

(t))∥2F
=∥(1− β1)(M̃

(t−1)
ℓ −∇ℓf(x

(t))) + β1(P
(t)
ℓ (P

(t)
ℓ )⊤ − I)∇ℓf(x

(t))∥2F
≤(1− β1)∥M̃ (t−1)

ℓ −∇ℓf(x
(t))∥2F + β1∥(I − P

(kτ)
ℓ (P

(kτ)
ℓ )⊤)∇ℓf(x

(t))∥2F , (20)

where the inequality uses Jensen’s inequality and P
(t)
ℓ = P

(t−1)
ℓ = · · · = P

(kτ)
ℓ . The first term can be similarly upper

bounded as (19). For the second term, we have

(I − P
(kτ)
ℓ (P

(kτ)
ℓ )⊤)∇ℓf(x

(t))∥2F

≤
(
1 +

δℓ
4

)
∥(I − P

(kτ)
ℓ (P

(kτ)
ℓ )⊤)∇ℓf(x

(kτ))∥2F

+

(
1 +

4

δℓ

)
∥(I − P

(kτ)
ℓ (P

(kτ)
ℓ )⊤)(∇ℓf(x

(t))−∇ℓf(x
(kτ))∥2F

≤
(
1 +

δℓ
4

)
(1− δℓ)∥∇ℓf(x

(kτ))∥2F +
5

δℓ
∥∇ℓf(x

(t))−∇ℓf(x
(kτ))∥2F , (21)

20



Subspace Optimization for Large Language Models with Convergence Guarantees

where the first inequality uses Young’s inequality and the second inequality uses Lemma 1. By Young’s inequality, we have

∥∇ℓf(x
(kτ))∥2F ≤

(
1 +

δℓ
4

)
∥∇ℓf(x

(t))∥2F +

(
1 +

4

δℓ

)
∥∇ℓf(x

(t))−∇ℓf(x
(kτ))∥2F . (22)

Note that t = kτ + r, we further have

∥∇ℓf(x
(t))−∇ℓf(x

(kτ))∥2F =

∥∥∥∥∥
r∑

i=1

∇ℓf(x
(kτ+i))−∇ℓf(x

(kτ+i−1))

∥∥∥∥∥
2

F

≤r
r∑

i=1

∥∇ℓf(x
(kτ+i))−∇ℓf(x

(kτ+i−1))∥2F , (23)

where the inequality uses Cauchy’s inequality. Applying (22)(23) to (21) yields

(I − P
(kτ)
ℓ (P

(kτ)
ℓ )⊤)∇ℓf(x

(t))∥2F

≤
(
1− δℓ

2

)
∥∇ℓf(x

(t))∥2F +
10r

δℓ

r∑
i=1

∥∇ℓf(x
(kτ+i))−∇ℓf(x

(kτ+i−1))∥2F . (24)

Applying (19)(24) to (20) yields (16).

Lemma 7 (Momentum error): Under Assumption 2, if 0 < β1 ≤ 1 in deterministic GaLore using MSGD and MP (Alg. 3),
it holds for any K ≥ 1 that

Kτ−1∑
t=0

∥m̃(t) −∇f(x(t))∥22

≤
(

5(1− β1)

(1− δ/4)δβ2
1

+
5τ(τ − 1)

(1− δ/4)δ
+

τ − 1

(1− δ/4)β1

)
L2

Kτ−2∑
t=0

∥x(t+1) − x(t)∥22

+

(
1− δ/2

1− δ/4
+

2

(1− δ/4)τβ1

)Kτ−1∑
t=0

∥∇f(x(t))∥22. (25)

Proof. By Lemma 6 we have

Kτ−1∑
t=0

∥M̃ (t)
ℓ −∇ℓf(x

(t))∥2F −
(
1−

(
1− δℓ

4

)
β1

)Kτ−2∑
t=0

∥M̃ (t)
ℓ −∇ℓf(x

(t))∥2F

≤
(
5(1− β1)

δℓβ1
+

5τ(τ − 1)β1

δℓ
+ (τ − 1)

)Kτ−2∑
t=0

∥∇ℓf(x
(t+1))−∇ℓf(x

(t))∥2F

+

(
2

τ
+

(
1− δℓ

2

)
β1

)Kτ−1∑
t=0

∥∇ℓf(x
(t))∥2F ,

which implies

Kτ−1∑
t=0

∥M̃ (t)
ℓ −∇ℓf(x

(t))∥2F

≤
(

5(1− β1)

(1− δℓ/4)δℓβ2
1

+
5τ(τ − 1)

(1− δℓ/4)δℓ
+

τ − 1

(1− δℓ/4)β1

)Kτ−2∑
t=0

∥∇ℓf(x
(t+1))−∇ℓf(x

(t))∥2F

+

(
1− δℓ/2

1− δℓ/4
+

2

(1− δℓ/4)τβ1

)Kτ−1∑
t=0

∥∇ℓf(x
(t))∥2F . (26)

Summing (26) for ℓ = 1, · · · , NL and applying Assumption 2 yields (25).
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Now we are ready to prove the convergence of Alg. 3.
Theorem 10 (Convergence of deterministic GaLore): Under Assumptions 1-2, if hyperparameters

0 < β1 ≤ 1, τ ≥ 64

3β1δ
, 0 < η ≤ min

{
1

4L
,

√
3δβ2

1

80L2
,

√
3δ

80τ2L2
,

√
3β1

16τL2

}
, (27)

GaLore using deterministic gradients and MSGD with MP (Alg. 3) converges as

1

Kτ

Kτ−1∑
t=0

∥∇f(x(t))∥22 ≤
16∆

δηKτ
(28)

for any K ≥ 1, where ∆ = f(x(0))− infx f(x).

Proof. By Lemma 4 we have

Kτ−1∑
t=0

∥∇f(x(t))∥22 ≤
2[f(x(0))− f(x(Kτ))]

η
+

Kτ−1∑
t=0

∥m̃(t) −∇f(x(t))∥22

−
(

1

η2
− L

η

)Kτ−1∑
t=0

∥x(t+1) − x(t)∥22. (29)

Applying Lemma 7 to (29) and using δ ≤ δ < 1 yields(
δ

4
− 8

3τβ1

)Kτ−1∑
t=0

∥∇f(x(t))∥22

≤2

η
f(x(0))− f(x(Kτ))

−
(

1

η2
− L

η
− 20(1− β1)L

2

3δβ2
1

− 20τ(τ − 1)L2

3δ
− 4(τ − 1)L2

3β1

)Kτ−1∑
t=0

∥x(t+1) − x(t)∥22. (30)

By (27) we have

δ

4
− 8

3τβ1
≥ δ

8
, and

1

4η2
≥ max

{
L

η
,
20(1− β1)L

2

3δβ2
1

,
20τ(τ − 1)L2

3δ
,
4(τ − 1)L2

3β1

}
. (31)

Applying (31) to (30) yields (28).

We now prove Theorem 5, which is restated as follows.

Corollary 11 (Convergence complexity of deterministic GaLore). Under Assumptions 1-2, if T ≥ 64/(3δ) and we choose

β1 =1

τ =

⌈
64

3δβ1

⌉

η =

(
4L+

√
80L2

3δβ2
1

+

√
80τ2L2

3δ
+

√
16τL2

3β1

)−1

,

GaLore using deterministic gradients and MSGD with MP (Alg. 3) converges as

1

T

T−1∑
t=0

∥∇f(x(t))∥22 = O
(

L∆

δ5/2T

)
, (32)

where ∆ = f(x(0))− infx f(x). Consequently, the computation complexity to reach an ε-accurate solution x such that

∥∇f(x)∥22 ≤ ε is O
(

L∆
δ5/2ε

+ 1
δ

)
.

22
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Proof. T ≥ 1 + 64/(3δ) guarantees T ≥ τ . Let T = Kτ + r, where K ∈ N∗ and 0 ≤ r < τ . If r = 0, (32) is a direct
result of Theorem 10. If r > 0, applying Theorem 10 to K̃ := K + 1 yields

1

T

T−1∑
t=0

∥∇f(x(t))∥22 ≤
K̃τ

T
· 1

K̃τ

K̃τ−1∑
t=0

∥∇f(x(t))∥22 = O
(

L∆

δ5/2T

)
.

B.4. Convergence of large-batch GaLore

In this subsection, we present the proof for Theorem 6. GaLore using large-batch stochastic gradients and MSGD with MP
is specified as Alg. 4.
Lemma 8 (Momentum contraction): Under Assumption 3, in large-batch GaLore using MSGD with MP (Alg. 4), if
0 < β1 ≤ 1, term M̃

(t)
ℓ has the following contraction properties:

• When t = 0, it holds that

E[∥M̃ (0)
ℓ −∇ℓf(X

(0))∥2F ] ≤2(τ − 1)(1− δℓβ1)

τ−2∑
r=0

E[∥∇ℓf(x
(r+1))−∇ℓf(x

(r))∥2F ]

+
4(1− δℓβ1)

τ

τ−1∑
r=0

E[∥∇ℓf(x
(r))∥2F ] +

4β1σ
2
ℓ

B
; (33)

• When t = kτ , k ∈ N∗, it holds that

E[∥M̃ (t)
ℓ −∇ℓf(x

(t))∥2F ]−
(
1−

(
1− δℓ

4

)
β1

)
E[∥M̃ (t−1)

ℓ −∇ℓf(x
(t−1))∥2F ]

≤4(1− δℓ)

τ

τ−1∑
r=0

E[∥∇lf(x
(kτ+r))∥2F ] +

5(1− β1)

δℓβ1
E[∥∇ℓf(x

(t))−∇ℓf(x
(t−1))∥2F ]

+ 2(τ − 1)(1− δℓ)

τ−2∑
r=0

E[∥∇ℓf(x
(kτ+r+1))−∇ℓf(x

(kτ+r))∥2F ] +
5σ2

ℓ

B
; (34)

• When t = kτ + r, k ∈ N, 1 ≤ r < τ , it holds that

E[∥M̃ (t)
ℓ −∇ℓf(x

(t))∥2F ]−
(
1−

(
1− δℓ

4

)
β1

)
E[∥M̃ (t−1)

ℓ −∇ℓf(x
(t−1))∥2F ]

≤
(
1− δℓ

2

)
β1E[∥∇ℓf(x

(t))∥2F ] +
5(1− β1)

δℓβ1
E[∥∇ℓf(x

(t))−∇ℓf(x
(t−1))∥2F ]

+
15rβ1

δℓ

r∑
i=1

E[∥∇ℓf(x
(kτ+i))−∇ℓf(x

(kτ+i−1))∥2F ] +
(
11β1

δℓB
+ β2

1

)
σ2
ℓ . (35)

Proof. Without loss of generality assume mℓ ≤ nℓ (the other case can be proved similarly). When t = 0, we have

E[∥M̃ (0)
ℓ −∇ℓf(x

(0))∥2F ]

=E[∥β1P
(0)
ℓ (P

(0)
ℓ )⊤G

(0)
ℓ −∇ℓf(x

(0))∥2F ]

=E[∥β1(P
(0)
ℓ (P

(0)
ℓ )⊤ − I)G

(0)
ℓ + β1(G

(0)
ℓ −∇ℓf(x

(0)))− (1− β1)∇ℓf(x
(0))∥2F ]

≤β1E[∥(P (0)
ℓ (P

(0)
ℓ )⊤ − I)G

(0)
ℓ +G

(0)
ℓ −∇ℓf(x

(0))∥2F ] + (1− β1)∥∇ℓf(x
(0))∥2F , (36)

where the inequality uses Jensen’s inequality. For the first term we have

E[∥(P (0)
ℓ (P

(0)
ℓ )⊤ − I)G

(0)
ℓ +G

(0)
ℓ −∇ℓf(x

(0))∥2F ]
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≤2E[∥(I − P
(0)
ℓ (P

(0)
ℓ )⊤)G

(0)
ℓ ∥

2
F ] + 2E[∥G(0)

ℓ −∇ℓf(x
(0))∥2F ]

≤2(1− δℓ)E[∥Gℓ∥2F ] + 2E[∥G(0)
ℓ −∇ℓf(x

(0))∥2F ]

≤2(1− δℓ)∥∇ℓf(x
(0))∥2F +

(4− 2δℓ)σ
2
ℓ

B
, (37)

where the first inequality uses Cauchy’s inequality, the second inequality uses Lemma 1, the third inequality uses E[∥G(0)
ℓ −

∇ℓf(x
(0))∥2F ] ≤ σ2

ℓ/B (Assumption 3). Applying (37) and Lemma 2 to (36) yields (33).

When t = kτ , k ∈ N∗, we have

E[∥M̃ (t)
ℓ −∇ℓf(x

(t))∥2F ]

=E[∥P (t)
ℓ (P

(t)
ℓ )⊤[(1− β1)M̃

(t−1)
ℓ + β1G

(t)
ℓ −∇ℓf(x

(t))]− (I − P
(t)
ℓ (P

(t)
ℓ )⊤)∇ℓf(x

(t))∥2F ]

=E[∥P (t)
ℓ (P

(t)
ℓ )⊤[(1− β1)M̃

(t−1)
ℓ + β1G

(t)
ℓ −∇ℓf(x

(t))]∥2F ]

+ E[∥(I − P
(t)
ℓ (P

(t)
ℓ )⊤)∇ℓf(x

(t))∥2F ], (38)

where the second equality uses Lemma 3. By ∥P (t)
ℓ (P

(t)
ℓ )⊤∥2 = 1, we have

E[∥P (t)
ℓ (P

(t)
ℓ )⊤[(1− β1)M̃

(t−1)
ℓ + β1G

(t)
ℓ −∇ℓf(x

(t))]∥2F ]

≤E[∥(1− β1)M̃
(t−1)
ℓ + β1G

(t)
ℓ −∇ℓf(x

(t))∥2F ]

=E[∥(1− β1)(M̃
(t−1)
ℓ −∇ℓf(x

(t))) + β1(G
(t)
ℓ −∇ℓf(x

(t)))∥2F ]

≤E[∥(1− β1)(M̃
(t−1)
ℓ −∇ℓf(x

(t)))∥2F ] + β2
1E[∥G

(t)
ℓ −∇ℓf(x

(t))∥2F ], (39)

where the last inequality uses the unbiasedness of G(t)
ℓ (Assumption 3). By Young’s inequality, we have

E[∥M̃ (t−1)
ℓ −∇ℓf(x

(t))∥2F ]

=E[∥(M̃ (t−1)
ℓ −∇ℓf(x

(t−1)))− (∇ℓf(x
(t))−∇ℓf(x

(t−1))∥2F ]

≤
(
1 +

δℓβ1

4

)
E[∥M̃ (t−1)

ℓ −∇ℓf(x
(t−1))∥2F ] +

(
1 +

4

δℓβ1

)
E[∥∇ℓf(x

(t))−∇ℓf(x
(t−1))∥2F ]. (40)

Applying (40) to (39) yields

E[∥P (t)
ℓ (P

(t)
ℓ )⊤[(1− β1)M̃

(t−1)
ℓ + β1G

(t)
ℓ −∇ℓf(x

(t))]∥2F ]

≤
(
1−

(
1− δℓ

4

)
β1

)
E[∥M̃ (t−1)

ℓ −∇ℓf(x
(t−1))∥2F ] +

β2
1σ

2

B

+
5(1− β1)

δℓβ1
E[∥∇ℓf(x

(t))−∇ℓf(x
(t−1))∥2F ]. (41)

For the second term in (38), we have

E[∥(I − P
(t)
ℓ (P

(t)
ℓ )⊤)∇ℓf(x

(t))∥2F ]

≤2E[∥(I − P
(t)
ℓ (P

(t)
ℓ )⊤)G

(t)
ℓ ∥

2
F ] + 2E[∥(I − P

(t)
ℓ (P

(t)
ℓ )⊤)(G

(t)
ℓ −∇ℓf(x

(t)))∥2F ]

≤2(1− δℓ)E[∥G(t)
ℓ ∥

2
F ] + 2E[∥G(t)

ℓ −∇ℓf(x
(t))∥2F ]

≤2(1− δℓ)E[∥∇ℓf(x
(t))∥2F ] +

4σ2
ℓ

B
, (42)

where the first inequality uses Cauchy’s inequality, the second inequality uses Lemma 1 and ∥I − P
(t)
ℓ (P

(t)
ℓ )⊤∥2 = 1, the

third inequality uses Assumption 3. Applying (41)(42) to (38) and using Lemma 2 yields (34).

When t = kτ + r, k ∈ N, 1 ≤ r < τ , we have

E[∥M̃ (t)
ℓ −∇ℓf(x

(t))∥2F ]
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=E[∥(1− β1)(M̃
(t−1)
ℓ −∇ℓf(x

(t))) + β1(P
(t)
ℓ (P

(t)
ℓ )⊤G

(t)
ℓ −∇ℓf(x

(t)))∥2F ]

=E[∥(1− β1)(M̃
(t−1)
ℓ −∇ℓf(x

(t))) + β1(P
(t)
ℓ (P

(t)
ℓ )⊤ − I)∇ℓf(x

(t))∥2F ]

+ β2
1E[P

(t)
ℓ (P

(t)
ℓ )⊤(G

(t)
ℓ −∇ℓf(x

(t)))∥2F ]

≤(1− β1)E[∥M̃ (t−1)
ℓ −∇ℓf(x

(t))∥2F ] + β1E[∥(I − P
(t)
ℓ (P

(t)
ℓ )⊤)∇ℓf(x

(t))∥2F
+ β2

1E[P
(t)
ℓ (P

(t)
ℓ )⊤(G

(t)
ℓ −∇ℓf(x

(t)))∥2F ], (43)

where the second equality uses the unbiasedness of G(t)
ℓ and the independence implied by P

(t)
ℓ = P

(t−1)
ℓ , the inequality

uses Jensen’s inequality. The first term is similarly bounded as (40). For the second term, we have

E[∥(I − P
(kτ)
ℓ (P

(kτ)
ℓ )⊤)∇ℓf(x

(t))∥2F ]

≤
(
1 +

δℓ
4

)
E[∥(I − P

(kτ)
ℓ (P

(kτ)
ℓ )⊤)G

(kτ)
ℓ ∥2F ]

+

(
1 +

4

δℓ

)
E[∥(I − P

(kτ)
ℓ (P

(kτ)
ℓ )⊤)(∇ℓf(x

(t))−G
(kτ)
ℓ )∥2F ]

≤
(
1− 3δℓ

4

)
E[∥G(kτ)

ℓ ∥2F ] + 2

(
1 +

4

δℓ

)
E[∥G(kτ)

ℓ −∇ℓf(x
(kτ))∥2F ]

+ 2

(
1 +

4

δℓ

)
E[∥∇ℓf(x

(t))−∇ℓf(x
(kτ))∥2F ], (44)

where the first inequality uses Young’s inequality, the second inequality uses Lemma 1 and Cauchy’s inequality. We further
have (

1− 3δℓ
4

)
E[∥G(kτ)

ℓ ∥2F ] + 2

(
1 +

4

δℓ

)
E[∥G(kτ)

ℓ −∇ℓf(x
(kτ))∥2F ]

≤
(
1− 3δℓ

4

)
E[∥∇ℓf(x

(kτ))∥2F ] +
11

δℓ
E[∥G(kτ)

ℓ −∇ℓf(x
(kτ))∥2F ]

≤
(
1− 3δℓ

4

)
E[∥∇ℓf(x

(kτ))∥2F ] +
11σ2

ℓ

δℓB

≤
(
1− δℓ

2

)
E[∥∇ℓf(x

(t))∥2F ] +
(
1 +

4

δℓ

)
E[∥∇ℓf(x

(t))−∇ℓf(x
(kτ))∥2F ] +

11σ2
ℓ

δℓB
, (45)

where the first inequality uses unbiasedness of G(kτ)
ℓ , the second inequality uses Assumption 3, the third inequality uses

Young’s inequality.

Applying (45) to (44) and applying Cauchy’s inequality yields

E[∥(I − P
(kτ)
ℓ (P

(kτ)
ℓ )⊤)∇ℓf(x

(t))∥2F ]

≤
(
1− δℓ

2

)
E[∥∇ℓf(x

(t))∥2F ] +
11σ2

ℓ

δℓB
+

15r

δℓ

r∑
i=1

E[∥∇ℓf(x
(kτ+i))−∇ℓf(x

(kτ+i−1))∥2F ]. (46)

For the third term, we have

E[∥P (kτ)
ℓ (P

(kτ)
ℓ )⊤(G

(t)
ℓ −∇ℓf(x

(t)))∥2F ] ≤ E[∥G(t)
ℓ −∇ℓf(x

(t))∥2F ] ≤ σ2
ℓ , (47)

where the first inequality uses ∥P (kτ)
ℓ (P

(kτ)
ℓ )⊤∥2 = 1, the second inequality uses Assumption 3.

Applying (40)(46)(47) to (43) yields (35).

Lemma 9 (Momentum error): Under Assumption 2-3, if 0 < β1 ≤ 1 in large-batch GaLore using MSGD and MP (Alg. 4),
it holds for any K ≥ 1 that

Kτ−1∑
t=0

E[∥m̃(t) −∇f(x(t))∥22]
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≤
(

5(1− β1)

(1− δ/4)δβ2
1

+
15τ(τ − 1)

2(1− δ/4)δ
+

2(τ − 1)

(1− δ/4)β1

)
L2

Kτ−2∑
t=0

E[∥x(t+1) − x(t)∥22]

+

(
1− δ/2

1− δ/4
+

4

(1− δ/4)τβ1

)Kτ−1∑
t=0

E[∥∇f(x(t))∥22]

+

(
5K

(1− δ/4)β1B
+

11Kτ

(1− δ/4)δB
+

Kτβ1

1− δ/4

)
σ2. (48)

Proof. By Lemma 8 we have

Kτ−1∑
t=0

E[∥M̃ (t)
ℓ −∇ℓf(x

(t))∥2F ]−
(
1−

(
1− δℓ

4

)
β1

)Kτ−2∑
t=0

E[∥M̃ (t)
ℓ −∇ℓf(x

(t))∥2F ]

≤
(
5(1− β1)

δℓβ1
+

15τ(τ − 1)β1

2δℓ
+ 2(τ − 1)

)Kτ−2∑
t=0

E[∥∇ℓf(x
(t+1))−∇ℓf(x

(t))∥2F ]

+

(
4

τ
+

(
1− δℓ

2

)
β1

)Kτ−1∑
t=0

E[∥∇ℓf(x
(t))∥2F ] +

(
5K

B
+

11Kτβ1

δℓB
+Kτβ2

1

)
σ2
ℓ ,

which implies

Kτ−1∑
t=0

E[∥M̃ (t)
ℓ −∇ℓf(x

(t))∥2F ]

≤
(

5(1− β1)

(1− δℓ/4)δℓβ2
1

+
15τ(τ − 1)

2(1− δℓ/4)δℓ
+

2(τ − 1)

(1− δℓ/4)β1

)Kτ−2∑
t=0

E[∥∇ℓf(x
(t+1))−∇ℓf(x

(t))∥2F ]

+

(
1− δℓ/2

1− δℓ/4
+

4

(1− δℓ/4)τβ1

)Kτ−1∑
t=0

E[∥∇ℓf(x
(t))∥2F ]

+

(
5K

(1− δℓ/4)β1B
+

11Kτ

(1− δℓ/4)δℓB
+

Kτβ1

1− δℓ/4

)
σ2
ℓ . (49)

Summing (49) for ℓ = 1, · · · , NL and applying Assumption 2-3 yields (48).

Now we are ready to prove the convergence of Alg. 4.
Theorem 12 (Convergence of large-batch GaLore): Under Assumptions 1-3, if hyperparameters

0 < β1 ≤ 1, τ ≥ 128

3β1δ
, 0 < η ≤ min

{
1

4L
,

√
3δβ2

1

80L2
,

√
δ

40τ2L2
,

√
3β1

32τL2

}
, (50)

GaLore using large-batch stochastic gradients and MSGD with MP (Alg. 4) converges as

1

Kτ

Kτ−1∑
t=0

E∥∇f(x(t))∥22] ≤
16∆

δηKτ
+

(
160

3β1δτB
+

352

3δ2B
+

32β1

3δ

)
σ2 (51)

for any K ≥ 1, where ∆ = f(x(0))− infx f(x).

Proof. By Lemma 4 we have

Kτ−1∑
t=0

E[∥∇f(x(t))∥22] ≤
2[f(x(0))− E[f(x(Kτ))]

η
+

Kτ−1∑
t=0

E[∥m̃(t) −∇f(x(t))∥22]
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−
(

1

η2
− L

η

)Kτ−1∑
t=0

E[∥x(t+1) − x(t)∥22]. (52)

Applying Lemma 9 to (52) and using δ ≤ δ < 1 yields(
δ

4
− 16

3τβ1

)Kτ−1∑
t=0

E[∥∇f(x(t))∥22]

≤2

η
E[f(x(0))− f(x(Kτ))] +

(
20K

3β1B
+

44Kτ

3δB
+

4Kτβ1

3

)
σ2

−
(

1

η2
− L

η
− 20(1− β1)L

2

3δβ2
1

− 10τ(τ − 1)L2

δ
− 8(τ − 1)L2

3β1

)Kτ−1∑
t=0

E[∥x(t+1) − x(t)∥22]. (53)

By (50) we have

δ

4
− 16

3τβ1
≥ δ

8
, and

1

4η2
≥ max

{
L

η
,
20(1− β1)L

2

3δβ2
1

,
10τ(τ − 1)L2

δ
,
8(τ − 1)L2

3β1

}
. (54)

Applying (54) to (53) yields (51).

We now prove Theorem 6, which is restated as follows.

Corollary 13 (Convergence complexity of large-batch GaLore). Under Assumptions 1-3, if T ≥ 2 + 256/(3δ) +
(256σ)2/(9

√
δL∆) and we choose

β1 =

1 +

√
δ3/2σ2T

L∆

−1

,

τ =

⌈
128

3δβ1

⌉
,

η =

(
4L+

√
80L2

3δβ2
1

+

√
40τ2L2

δ
+

√
32τL2

3β1

)−1

,

B =

⌈
1

δβ1

⌉
,

GaLore using large-batch stochastic gradients and MSGD with MP (Alg. 4) converges as

1

T

T−1∑
t=0

E[∥∇f(x(t))∥22] = O

(
L∆

δ5/2T
+

√
L∆σ2

δ7/2T

)
, (55)

where ∆ = f(x(0))− infx f(x). Consequently, the computation complexity to reach an ε-accurate solution x such that

∥∇f(x)∥22 ≤ ε is O
(

L∆σ2

δ7/2ε2
+ L∆

δ5/2ε
+ σ2

δ1/2L∆
+ 1

δ

)
.

Proof. T ≥ 2 + 128/(3δ) + (128σ)2/(9
√
δL∆) guarantees T ≥ τ . Let T = Kτ + r, where K ∈ N∗ and 0 ≤ r < τ . If

r = 0, (55) is a direct result of Theorem 12. If r > 0, applying Theorem 12 to K̃ := K + 1 yields

1

T

T−1∑
t=0

E[∥∇f(x(t))∥22] ≤
K̃τ

T
· 1

K̃τ

K̃τ−1∑
t=0

E[∥∇f(x(t))∥22] = O

(
L∆

δ5/2T
+

√
L∆σ2

δ7/2T

)
.
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B.5. Convergence of GoLore

In this subsection, we present the proof for Theorem 8. GoLore using small-batch stochastic gradients and MSGD with MP
is specified as Alg. 5.
Lemma 10 (Momentum contraction): Under Assumption 3, in large-batch GoLore using MSGD with MP (Alg. 5), if
0 < β1 ≤ 1, term M̃

(t)
ℓ has the following contraction properties:

• When t = 0, it holds that

E[∥M̃ (0)
ℓ −∇ℓf(X

(0))∥2F ] ≤(τ − 1)(1− δℓβ1)

τ−2∑
r=0

E[∥∇ℓf(x
(r+1))−∇ℓf(x

(r))∥2F ]

+
2(1− δℓβ1)

τ

τ−1∑
r=0

E[∥∇ℓf(x
(r))∥2F ] + δℓβ

2
1σ

2
ℓ ; (56)

• When t = kτ , k ∈ N∗, it holds that

E[∥M̃ (t)
ℓ −∇ℓf(x

(t))∥2F ]− δℓ

(
1−

(
1− δℓ

4

)
β1

)
E[∥M̃ (t−1)

ℓ −∇ℓf(x
(t−1))∥2F ]

≤2(1− δℓ)

τ

τ−1∑
r=0

E[∥∇lf(x
(kτ+r))∥2F ] +

5(1− β1)

β1
E[∥∇ℓf(x

(t))−∇ℓf(x
(t−1))∥2F ]

+ (τ − 1)(1− δℓ)

τ−2∑
r=0

E[∥∇ℓf(x
(kτ+r+1))−∇ℓf(x

(kτ+r))∥2F ] + δℓβ
2
1σ

2
ℓ ; (57)

• When t = kτ + r, k ∈ N, 1 ≤ r < τ , it holds that

E[∥M̃ (t)
ℓ −∇ℓf(x

(t))∥2F ]−
(
1−

(
1− δℓ

4

)
β1

)
E[∥M̃ (t−1)

ℓ −∇ℓf(x
(t−1))∥2F ]

≤
(
1− δℓ

2

)
β1E[∥∇ℓf(x

(t))∥2F ] +
5(1− β1)

δℓβ1
E[∥∇ℓf(x

(t))−∇ℓf(x
(t−1))∥2F ]

+
10rβ1

δℓ

r∑
i=1

E[∥∇ℓf(x
(kτ+i))−∇ℓf(x

(kτ+i−1))∥2F ] + β2
1σ

2
ℓ . (58)

Proof. Without loss of generality assume mℓ ≤ nℓ (the other case can be proved similarly). When t = 0, we have

E[∥M̃ (0)
ℓ −∇ℓf(x

(0))∥2F ]

=E[∥β1P
(0)
ℓ (P

(0)
ℓ )⊤G

(0)
ℓ −∇ℓf(x

(0))∥2F ]

=E[∥(β1P
(0)
ℓ (P

(0)
ℓ )⊤ − I)∇ℓf(x

(0))∥2F ] + β2
1E[∥P

(0)
ℓ (P

(0)
ℓ )⊤(G

(0)
ℓ −∇ℓf(x

(0)))∥2F ]

=tr((∇ℓf(x
(0)))⊤E[(β1P

(0)
ℓ (P

(0)
ℓ )⊤ − I)2]∇ℓf(x

(0)))

+ β2
1tr(Eξ(0)∼D[(G

(0)
ℓ −∇ℓf(x

(0)))⊤EP∼U(Stmℓ,rℓ
)[(PP⊤)2](G

(0)
ℓ −∇ℓf(x

(0)))]), (59)

where the second equality uses unbiasedness of G(0)
ℓ . By Lemma 5 we have

E[(βP (0)
ℓ (P

(0)
ℓ )⊤ − I)2] =I − (2β1 − β2

1)E[P
(0)
ℓ (P

(0)
ℓ )⊤]

=I − (2β1 − β2
1)δℓI,

thus

tr((∇ℓf(x
(0)))⊤E[(β1P

(0)
ℓ (P

(0)
ℓ )⊤ − I)2]∇ℓf(x

(0))) =(1− δℓ(2β1 − β2
1))∥∇ℓf(x

(0))∥2F
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≤(1− δℓβ1)∥∇ℓf(x
(0))∥2F . (60)

Similarly, by Lemma 5 we have

tr(Eξ(0)∼D[(G
(0)
ℓ −∇ℓf(x

(0)))⊤EP∼U(Stmℓ,rℓ
)[(PP⊤)2](G

(0)
ℓ −∇ℓf(x

(0)))])

=tr

(
E
[
(G

(0)
ℓ −∇ℓf(x

(0)))⊤
(

rℓ
mℓ
· I
)
(G

(0)
ℓ −∇ℓf(x

(0)))

])
=δℓE[∥G(0)

ℓ −∇ℓf(x
(0))∥2F ]

≤δℓσ2
ℓ , (61)

where the inequality uses Assumption 3. Applying (60)(61) and Lemma 2 to (59) yields (56).

When t = kτ , k ∈ N∗, we have

E[∥M̃ (t)
ℓ −∇ℓf(x

(t))∥2F ]

=E[∥P (t)
ℓ (P

(t)
ℓ )⊤[(1− β1)M̃

(t−1)
ℓ + β1G

(t)
ℓ −∇ℓf(x

(t))]− (I − P
(t)
ℓ (P

(t)
ℓ )⊤)∇ℓf(x

(t))∥2F ]

=δℓE[∥(1− β1)M̃
(t−1)
ℓ + β1G

(t)
ℓ −∇ℓf(x

(t))∥2F ] + (1− δℓ)E[∥∇ℓf(x
(t))∥2F ], (62)

where the second equality uses Lemma 3 and Lemma 5. For the first term, we have

E[∥(1− β1)M̃
(t−1)
ℓ + β1G

(t)
ℓ −∇ℓf(x

(t))∥2F ]

=E[∥(1− β1)(M̃
(t−1)
ℓ −∇ℓf(x

(t))) + β1(G
(t)
ℓ −∇ℓf(x

(t)))∥2F ]

≤E[∥(1− β1)(M̃
(t−1)
ℓ −∇ℓf(x

(t)))∥2F ] + β2
1E[∥G

(t)
ℓ −∇ℓf(x

(t))∥2F ]

≤(1− β1)E[∥M̃ (t−1)
ℓ −∇ℓf(x

(t))∥2F ] + β2
1σ

2
ℓ , (63)

where both inequalities use Assumption 3. By Young’s inequality, we have

E[∥M̃ (t−1)
ℓ −∇ℓf(x

(t))∥2F ]

=E[∥(M̃ (t−1)
ℓ −∇ℓf(x

(t−1)))− (∇ℓf(x
(t))−∇ℓf(x

(t−1))∥2F ]

≤
(
1 +

δℓβ1

4

)
E[∥M̃ (t−1)

ℓ −∇ℓf(x
(t−1))∥2F ] +

(
1 +

4

δℓβ1

)
E[∥∇ℓf(x

(t))−∇ℓf(x
(t−1))∥2F ]. (64)

Applying (63)(64) and Lemma 2 to (62) yields (57).

When t = kτ + r, k ∈ N, 1 ≤ r < τ , we have

E[∥M̃ (t)
ℓ −∇ℓf(x

(t))∥2F ]

=E[∥(1− β1)(M̃
(t−1)
ℓ −∇ℓf(x

(t))) + β1(P
(t)
ℓ (P

(t)
ℓ )⊤G

(t)
ℓ −∇ℓf(x

(t)))∥2F ]

=E[∥(1− β1)(M̃
(t−1)
ℓ −∇ℓf(x

(t))) + β1(P
(t)
ℓ (P

(t)
ℓ )⊤ − I)∇ℓf(x

(t))∥2F ]

+ β2
1E[P

(t)
ℓ (P

(t)
ℓ )⊤(G

(t)
ℓ −∇ℓf(x

(t)))∥2F ]

≤(1− β1)E[∥M̃ (t−1)
ℓ −∇ℓf(x

(t))∥2F ] + β1E[∥(I − P
(t)
ℓ (P

(t)
ℓ )⊤)∇ℓf(x

(t))∥2F
+ β2

1E[P
(t)
ℓ (P

(t)
ℓ )⊤(G

(t)
ℓ −∇ℓf(x

(t)))∥2F ], (65)

where the second equality uses the unbiasedness of G(t)
ℓ and the independence implied by P

(t)
ℓ = P

(t−1)
ℓ , the inequality

uses Jensen’s inequality. The first term is similarly bounded as (64). For the second term, we have

E[∥(I − P
(kτ)
ℓ (P

(kτ)
ℓ )⊤)∇ℓf(x

(t))∥2F ]

≤
(
1 +

δℓ
4

)
E[∥(I − P

(kτ)
ℓ (P

(kτ)
ℓ )⊤)∇ℓf(x

(kτ))∥2F ]
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+

(
1 +

4

δℓ

)
E[∥(I − P

(kτ)
ℓ (P

(kτ)
ℓ )⊤)(∇ℓf(x

(t))−∇ℓf(x
(kτ)))∥2F ]

≤
(
1− 3δℓ

4

)
E[∥∇ℓf(x

(kτ))∥2F ] +
(
1 +

4

δℓ

)
E[∥∇ℓf(x

(t))−∇ℓf(x
(kτ))∥2F ], (66)

where the first inequality uses Young’s inequality, the second inequality uses Lemma 5 and ∥I − P
(kτ)
ℓ (P

(kτ)
ℓ )⊤∥2 = 1.

By Young’s inequality, we have

E[∥∇ℓf(x
(kτ))∥2F ] ≤

(
1 +

δℓ
4

)
E[∥∇ℓf(x

(t))∥2F ] +
(
1 +

4

δℓ

)
E[∥∇ℓf(x

(t))−∇ℓf(x
(kτ))∥2F ]. (67)

Applying (67) to (66) and applying Cauchy’s inequality yields

E[∥(I − P
(kτ)
ℓ (P

(kτ)
ℓ )⊤)∇ℓf(x

(t))∥2F ]

≤
(
1− δℓ

2

)
E[∥∇ℓf(x

(t))∥2F ] +
10r

δℓ

r∑
i=1

E[∥∇ℓf(x
(kτ+i))−∇ℓf(x

(kτ+i−1))∥2F ]. (68)

For the third term, we have

E[∥P (kτ)
ℓ (P

(kτ)
ℓ )⊤(G

(t)
ℓ −∇ℓf(x

(t)))∥2F ] ≤ E[∥G(t)
ℓ −∇ℓf(x

(t))∥2F ] ≤ σ2
ℓ , (69)

where the first inequality uses ∥P (kτ)
ℓ (P

(kτ)
ℓ )⊤∥2 = 1, the second inequality uses Assumption 3.

Applying (64)(68)(69) to (65) yields (58).

Lemma 11 (Momentum error): Under Assumption 2-3, if 0 < β1 ≤ 1 in GoLore using MSGD and MP (Alg. 5), it holds
for any K ≥ 1 that

Kτ−1∑
t=0

E[∥m̃(t) −∇f(x(t))∥22]

≤
(

5(1− β1)

(1− δ/4)δβ2
1

+
5τ(τ − 1)

(1− δ/4)δ
+

τ − 1

(1− δ/4)β1

)
L2

Kτ−2∑
t=0

E[∥x(t+1) − x(t)∥22]

+

(
1− δ/2

1− δ/4
+

2

(1− δ/4)τβ1

)Kτ−1∑
t=0

E[∥∇f(x(t))∥22] +
Kτβ1σ

2

1− δ/4
. (70)

Proof. By Lemma 10 we have

Kτ−1∑
t=0

E[∥M̃ (t)
ℓ −∇ℓf(x

(t))∥2F ]−
(
1−

(
1− δℓ

4

)
β1

)Kτ−2∑
t=0

E[∥M̃ (t)
ℓ −∇ℓf(x

(t))∥2F ]

≤
(
5(1− β1)

δℓβ1
+

5τ(τ − 1)β1

δℓ
+ (τ − 1)

)Kτ−2∑
t=0

E[∥∇ℓf(x
(t+1))−∇ℓf(x

(t))∥2F ]

+

(
2

τ
+

(
1− δℓ

2

)
β1

)Kτ−1∑
t=0

E[∥∇ℓf(x
(t))∥2F ] +Kτβ2

1σ
2
ℓ ,

which implies

Kτ−1∑
t=0

E[∥M̃ (t)
ℓ −∇ℓf(x

(t))∥2F ]

≤
(

5(1− β1)

(1− δℓ/4)δℓβ2
1

+
5τ(τ − 1)

(1− δℓ/4)δℓ
+

τ − 1

(1− δℓ/4)β1

)Kτ−2∑
t=0

E[∥∇ℓf(x
(t+1))−∇ℓf(x

(t))∥2F ]
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+

(
1− δℓ/2

1− δℓ/4
+

2

(1− δℓ/4)τβ1

)Kτ−1∑
t=0

E[∥∇ℓf(x
(t))∥2F ] +

Kτβ1σ
2
ℓ

1− δℓ/4
. (71)

Summing (71) for ℓ = 1, · · · , NL and applying Assumption 2-3 yields (70).

Now we are ready to prove the convergence of Alg. 5.
Theorem 14 (Convergence of Golore): Under Assumptions 1-3, if hyperparameters

0 < β1 ≤ 1, τ ≥ 64

3β1δ
, 0 < η ≤ min

{
1

4L
,

√
3δβ2

1

80L2
,

√
3δ

80τ2L2
,

√
3β1

16τL2

}
, (72)

GoLore using small-batch stochastic gradients and MSGD with MP (Alg. 5) converges as

1

Kτ

Kτ−1∑
t=0

E∥∇f(x(t))∥22] ≤
16∆

δηKτ
+

32β1σ
2

3δ
(73)

for any K ≥ 1, where ∆ = f(x(0))− infx f(x).

Proof. By Lemma 4 we have

Kτ−1∑
t=0

E[∥∇f(x(t))∥22] ≤
2[f(x(0))− E[f(x(Kτ))]

η
+

Kτ−1∑
t=0

E[∥m̃(t) −∇f(x(t))∥22]

−
(

1

η2
− L

η

)Kτ−1∑
t=0

E[∥x(t+1) − x(t)∥22]. (74)

Applying Lemma 11 to (74) and using δ ≤ δ < 1 yields(
δ

4
− 8

3τβ1

)Kτ−1∑
t=0

E[∥∇f(x(t))∥22]

≤2

η
E[f(x(0))− f(x(Kτ))] +

4Kτβ1σ
2

3

−
(

1

η2
− L

η
− 20(1− β1)L

2

3δβ2
1

− 20τ(τ − 1)L2

3δ
− 4(τ − 1)L2

3β1

)Kτ−1∑
t=0

E[∥x(t+1) − x(t)∥22]. (75)

By (72) we have

δ

4
− 8

3τβ1
≥ δ

8
, and

1

4η2
≥ max

{
L

η
,
20(1− β1)L

2

3δβ2
1

,
20τ(τ − 1)L2

3δ
,
4(τ − 1)L2

3β1

}
. (76)

Applying (76) to (75) yields (73).

We now prove Theorem 8, which is restated as follows.

Corollary 15 (Convergence complexity of GoLore). Under Assumptions 1-3, if T ≥ 2 + 128/(3δ) + (128σ)2/(9
√
δL∆)

and we choose

β1 =

1 +

√
δ3/2σ2T

L∆

−1

,

τ =

⌈
64

3δβ1

⌉
,
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η =

(
4L+

√
80L2

3δβ2
1

+

√
80τ2L2

3δ
+

√
16τL2

3β1

)−1

,

GoLore using small-batch stochastic gradients and MSGD with MP (Alg. 5) converges as

1

T

T−1∑
t=0

E[∥∇f(x(t))∥22] = O

(
L∆

δ5/2T
+

√
L∆σ2

δ7/2T

)
, (77)

where ∆ = f(x(0))− infx f(x). Consequently, the computation complexity to reach an ε-accurate solution x such that

∥∇f(x)∥22 ≤ ε is O
(

L∆σ2

δ7/2ε2
+ L∆

δ5/2ε
+ σ2

δ1/2L∆
+ 1

δ

)
.

Proof. T ≥ 2 + 128/(3δ) + (128σ)2/(9
√
δL∆) guarantees T ≥ τ . Let T = Kτ + r, where K ∈ N∗ and 0 ≤ r < τ . If

r = 0, (77) is a direct result of Theorem 14. If r > 0, applying Theorem 14 to K̃ := K + 1 yields

1

T

T−1∑
t=0

E[∥∇f(x(t))∥22] ≤
K̃τ

T
· 1

K̃τ

K̃τ−1∑
t=0

E[∥∇f(x(t))∥22] = O

(
L∆

δ5/2T
+

√
L∆σ2

δ7/2T

)
.

C. Convergence of GaLore under isotropic noise assumptions
Based on the anisotropic gradient noise we use to construct the counter-example in the proof of GaLore’s non-convergence
under standard assumptions, an interesting open question is whether GaLore is guaranteed to converge if the noise are
further assumed isotropic. In this section, we consider the following additional assumption:
Assumption 16 (Isotropic noise). The distribution of stochastic noise for each gradient matrix is invariant under orthogonal
transformations, i.e., it holds for any layer ℓ = 1, · · · , NL, parameter x ∈ Rd and orthogonal matrix O1 ∈ Rmℓ×mℓ ,
O2 ∈ Rnℓ×nℓ that

∇ℓF (x; ξ)−∇ℓf(x)
dist
= O1[∇ℓF (x; ξ)−∇ℓf(x)]O2,

where A
dist
= B represents A and B shares the same distribution.

Remark 7. The property in Assumption 16 can be satisfied by multivariate Gaussian distribution, e.g., vec(∇ℓF (x; ξ)−
∇ℓf(x)) ∼ N (0,

σ2
ℓ

mℓnℓ
· Imℓ×nℓ

).

Besides Assumption 16, we consider an additional assumption, which is crucial in analyzing the projection error.
Assumption 17 (Leading property). Let Dℓ(x) denotes the distribution of gradient noise ∇ℓF (x; ξ) − ∇ℓf(x). We
assume Dℓ(x) satisfies the following "leading property": if A ∼ Dℓ(x), B ∈ Rmℓ×nℓ satisfies B11 ≥ B22 ≥ · · · ≥
Bmin{mℓ,nℓ},min{mℓ,nℓ} ≥ 0 and Bij = 0 for i ̸= j, the SVD decomposition UΣV ⊤ = A+B satisfies{

1
r

∑k
i=1

∑r
j=1 E[U2

ij ] ≥ k
mℓ

, ∀1 ≤ k, r ≤ mℓ, if mℓ ≤ nℓ;
1
r

∑k
i=1

∑r
j=1 E[V 2

ij ] ≥ k
nℓ
, ∀1 ≤ k, r ≤ nℓ, if mℓ > nℓ.

Though not fully established in theory, we can empirically validate that multivariate Gaussian distribution may satisfy
Assumption 17.

Specifically, we consider the following experiment setup. Let vec(A) ∼ N (0, σ2 · I32×32) for some noise scale σ > 0 and
select a fixed matrix B with B11 ≥ B22 ≥ · · · ≥ B32,32 ≥ 0. In order to validate the properties in expectation, we sample
matrix A for 200,000 times and uses the empirical expectations Ê[Uij ]’s to estimate the true expectations E[Uij ]’s. Figures
7, 8, 9 represent results under different noise scales σ = 10, 1, 0.1, respectively, where "r = r0" in each figure plots the line
connecting points (k, 1

r0

∑k
i=1

∑r0
j=1 Ê[U2

ij ]) for k = 1, 2, · · · , 32. As presented, all lines "r = r0" with r0 < 32 are above
the line "r = 32", which is guaranteed to pass through the points (k, k

32 ), k = 1, 2, · · · , 32, in theory. Consequently, we
have good reason to believe that multivariate Gaussian distribution can empirically satisfy Assumption 17.

With Assumptions 16 and 17, we can establish new error bounds for GaLore’s SVD projection.
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Figure 7. Observations with a small noise scale σ = 0.1.
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Figure 8. Observations with a medium noise scale σ = 1.
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Figure 9. Observations with a large noise scale σ = 10.
Lemma 12 (Error of GaLore’s projection under isotropic noise): Let G = ∇ℓf(x) and E = ∇ℓF (x; ξ) − ∇ℓf(x),
projection matrix P = U [:, : rℓ], Q = V [:, : rℓ] where UΣV ⊤ = G+E is the SVD of stochastic gradient∇ℓF (x; ξ), it
holds under Assumptions 16 and 17 for mℓ ≤ nℓ that

E[∥PP⊤G−G∥2F ] ≤
(
1− rℓ

mℓ

)
∥G∥2F ,

and for mℓ > nℓ that

E[∥GQQ⊤ −G∥2F ] ≤
(
1− rℓ

nℓ

)
∥G∥2F .

Proof. We only consider the case where mℓ < nℓ, as the proof for the other case is similar. We first conduct SVD of G and
get G = U0Σ0V

⊤
0 . It holds that

∥PP⊤G∥2F =tr(G⊤PP⊤G)

=tr(V0Σ
⊤
0 U

⊤
0 PP⊤U0Σ0V

⊤
0 )

=tr(Σ0Σ
⊤
0 U

⊤
0 PP⊤U0). (78)

Denote Ũ = U⊤
0 U and Ṽ = V ⊤

0 V , it holds that ŨΣ0Ṽ
⊤ = (U⊤

0 U)Σ0(V
⊤
0 V )⊤ is SVD of U⊤

0 (G + E)V0 =

U⊤
0 EV0 +Σ0

dist
= E +Σ0. By Assumption 17 we have

1

rℓ

k∑
i=1

rℓ∑
j=1

E[Ũ2
ij ] ≥

k

mℓ
, k = 1, 2, · · · ,mℓ. (79)

Let σ1 ≥ σ2 ≥ · · ·σmℓ
≥ 0 represent the singular values of G, taking expectations of (78) yields

E[∥PP⊤G∥2F ] =tr(Σ0Σ
⊤
0 E[U⊤

0 PP⊤U0])
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=

mℓ∑
i=1

σ2
i

rℓ∑
j=1

E[Ũ2
ij ]

≥
mℓ∑
i=1

σ2
i ·

rℓ
mℓ

=
rℓ
mℓ
· ∥G∥2F , (80)

where the inequality applies σ2
1 ≥ σ2

2 ≥ · · ·σ2
mℓ

and (79). Based on (80), we have

E[∥PP⊤G−G∥2F ] = ∥G∥2F − E[∥PP⊤G∥2F ] ≤
(
1− rℓ

mℓ

)
∥G∥2F ,

which completes the proof.

Lemma 13 (Momentum contraction): Under Assumptions 3,16-17, in GaLore using MSGD with MP, if 0 < β1 ≤ 1, term
M̃

(t)
ℓ has the following contraction properties:

• When t = 0, it holds that

E[∥M̃ (0)
ℓ −∇ℓf(X

(0))∥2F ] ≤(τ − 1)(2− δℓ)
τ−2∑
r=0

E[∥∇ℓf(x
(r+1))−∇ℓf(x

(r))∥2F ]

+
2(2− δℓ)

τ

τ−1∑
r=0

E[∥∇ℓf(x
(r))∥2F ] + β2

1σ
2
ℓ ; (81)

• When t = kτ , k ∈ N∗, it holds that

E[∥M̃ (t)
ℓ −∇ℓf(x

(t))∥2F ]−
(
1−

(
1− δℓ

4

)
β1

)
E[∥M̃ (t−1)

ℓ −∇ℓf(x
(t−1))∥2F ]

≤2(1− δℓ)

τ

τ−1∑
r=0

E[∥∇lf(x
(kτ+r))∥2F ] +

5(1− β1)

δℓβ1
E[∥∇ℓf(x

(t))−∇ℓf(x
(t−1))∥2F ]

+ (τ − 1)(1− δℓ)

τ−2∑
r=0

E[∥∇ℓf(x
(kτ+r+1))−∇ℓf(x

(kτ+r))∥2F ] + β2
1σ

2
ℓ ; (82)

• When t = kτ + r, k ∈ N, 1 ≤ r < τ , it holds that

E[∥M̃ (t)
ℓ −∇ℓf(x

(t))∥2F ]−
(
1−

(
1− δℓ

4

)
β1

)
E[∥M̃ (t−1)

ℓ −∇ℓf(x
(t−1))∥2F ]

≤
(
1− δℓ

2

)
β1E[∥∇ℓf(x

(t))∥2F ] +
5(1− β1)

δℓβ1
E[∥∇ℓf(x

(t))−∇ℓf(x
(t−1))∥2F ]

+
10rβ1

δℓ

r∑
i=1

E[∥∇ℓf(x
(kτ+i))−∇ℓf(x

(kτ+i−1))∥2F ] + β2
1σ

2
ℓ . (83)

Proof. Without loss of generality assume mℓ ≤ nℓ (the other case can be proved similarly). When t = 0, (81) is direct
result of Lemma 8 by letting B = 1. When t = 0, we have

E[∥M̃ (0)
ℓ −∇ℓf(x

(0))∥2F ]

=E[∥β1P
(0)
ℓ (P

(0)
ℓ )⊤G

(0)
ℓ −∇ℓf(x

(0))∥2F ]

=E[∥(β1P
(0)
ℓ (P

(0)
ℓ )⊤ − I)∇ℓf(x

(0))∥2F ] + β2
1E[∥P

(0)
ℓ (P

(0)
ℓ )⊤(G

(0)
ℓ −∇ℓf(x

(0)))∥2F ], (84)

For the first term, we have

E[∥(β1P
(0)
ℓ (P

(0)
ℓ )⊤ − I)∇ℓf(x

(0))∥2F ]
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=(1− β1)
2E[∥P (0)

ℓ (P
(0)
ℓ )⊤∇ℓf(x

(0))∥2F ] + E[∥(I − P
(0)
ℓ (P

(0)
ℓ )⊤)∇ℓf(x

(0))∥2F ]
≤
(
(1− β1)

2 + (1− δℓ)
)
∥∇ℓf(x

(0))∥2F ≤ (2− δℓ)∥∇ℓf(x
(0))∥2F , (85)

where the first inequality uses Lemma 12. For the second term, we have

E[∥P (0)
ℓ (P

(0)
ℓ )⊤(G

(0)
ℓ −∇ℓf(x

(0)))∥2F ] ≤ E[∥G(0)
ℓ −∇ℓf(x

(0))∥2F ] ≤ σ2
ℓ . (86)

Applying (85)(86) to (84) and using Lemma 2 yields (81).

When t = kτ , k ∈ N∗, according to the proof of Lemma 8, we have

E[∥M̃ (t−1)
ℓ −∇ℓf(x

(t))∥2F ]

≤
(
1 +

δℓβ1

4

)
E[∥M̃ (t−1)

ℓ −∇ℓf(x
(t−1))∥2F ] +

(
1 +

4

δℓβ1

)
E[∥∇ℓf(x

(t))−∇ℓf(x
(t−1))∥2F ], (87)

and

E[∥M̃ (t)
ℓ −∇ℓf(x

(t))∥2F ]

=E[∥P (t)
ℓ (P

(t)
ℓ )⊤[(1− β1)M̃

(t−1)
ℓ + β1G

(t)
ℓ −∇ℓf(x

(t))]∥2F ]

+ E[∥(I − P
(t)
ℓ (P

(t)
ℓ )⊤)∇ℓf(x

(t))∥2F ]

≤E[∥(1− β1)(M̃
(t−1)
ℓ −∇ℓf(x

(t)))∥2F ] + β2
1σ

2
ℓ + (1− δℓ)E[∥∇ℓf(x

(t))∥2F ], (88)

where the last inequality applies Lemma 12. Applying (87) to (88) and using Lemma 2 yields (82).

When t = kτ + r, k ∈ N, 1 ≤ r < τ , we have the following results according to the proof of Lemma 8:

E[∥M̃ (t)
ℓ −∇ℓf(x

(t))∥2F ]

≤(1− β1)E[∥M̃ (t−1)
ℓ −∇ℓf(x

(t))∥2F ] + β1E[∥(I − P
(t)
ℓ (P

(t)
ℓ )⊤)∇ℓf(x

(t))∥2F
+ β2

1E[P
(t)
ℓ (P

(t)
ℓ )⊤(G

(t)
ℓ −∇ℓf(x

(t)))∥2F ]

≤(1− β1)E[∥M̃ (t−1)
ℓ −∇ℓf(x

(t))∥2F ] + β1E[∥(I − P
(t)
ℓ (P

(t)
ℓ )⊤)∇ℓf(x

(t))∥2F + β2
1σ

2
ℓ , (89)

For the second term, we have

E[∥(I − P
(kτ)
ℓ (P

(kτ)
ℓ )⊤)∇ℓf(x

(t))∥2F ]

≤
(
1 +

δℓ
4

)
E[∥(I − P

(kτ)
ℓ (P

(kτ)
ℓ )⊤)∇ℓf(x

(kτ))∥2F ]

+

(
1 +

4

δℓ

)
E[∥(I − P

(kτ)
ℓ (P

(kτ)
ℓ )⊤)(∇ℓf(x

(t))−∇ℓf(x
(kτ))∥2F ]

≤
(
1− 3δℓ

4

)
E[∥∇ℓf(x

(kτ))∥2F ] +
(
1 +

4

δℓ

)
E[∥∇ℓf(x

(t))−∇ℓf(x
(kτ))∥2F ]

≤
(
1− δℓ

2

)
E[∥∇ℓf(x

(t))∥2F ] + 2

(
1 +

4

δℓ

)
E[∥∇ℓf(x

(t))−∇ℓf(x
(kτ))∥2F ]

≤
(
1− δℓ

2

)
E[∥∇ℓf(x

(t))∥2F ] +
10r

δℓ

r∑
i=1

E[∥∇ℓf(x
(kτ+i))−∇ℓf(x

(kτ+i−1))∥2F ], (90)

where the first inequality applies Young’s inequality, the second inequality applies Lemma 12, the third inequality applies
Young’s inequality, the last inequality applies Cauchy’s inequality. Applying (87)(90) to (89) yields (83).

Lemma 14 (Momentum error): Under Assumptions 2-3,16-17, if 0 < β1 ≤ 1 in GaLore using MSGD and MP, it holds for
any K ≥ 1 that

Kτ−1∑
t=0

E[∥m̃(t) −∇f(x(t))∥22]
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≤
(

5(1− β1)

(1− δ/4)δβ2
1

+
5τ(τ − 1)

(1− δ/4)δ
+

2(τ − 1)

(1− δ/4)β1

)
L2

Kτ−2∑
t=0

E[∥x(t+1) − x(t)∥22]

+

(
1− δ/2

1− δ/4
+

4

(1− δ/4)τβ1

)Kτ−1∑
t=0

E[∥∇f(x(t))∥22] +
Kτβ1σ

2

1− δ/4
. (91)

Proof. By Lemma 13 we have

Kτ−1∑
t=0

E[∥M̃ (t)
ℓ −∇ℓf(x

(t))∥2F ]−
(
1−

(
1− δℓ

4

)
β1

)Kτ−2∑
t=0

E[∥M̃ (t)
ℓ −∇ℓf(x

(t))∥2F ]

≤
(
5(1− β1)

δℓβ1
+

5τ(τ − 1)β1

δℓ
+ 2(τ − 1)

)Kτ−2∑
t=0

E[∥∇ℓf(x
(t+1))−∇ℓf(x

(t))∥2F ]

+

(
4

τ
+

(
1− δℓ

2

)
β1

)Kτ−1∑
t=0

E[∥∇ℓf(x
(t))∥2F ] +Kτβ2

1σ
2
ℓ ,

which implies

Kτ−1∑
t=0

E[∥M̃ (t)
ℓ −∇ℓf(x

(t))∥2F ]

≤
(

5(1− β1)

(1− δℓ/4)δℓβ2
1

+
5τ(τ − 1)

(1− δℓ/4)δℓ
+

2(τ − 1)

(1− δℓ/4)β1

)Kτ−2∑
t=0

E[∥∇ℓf(x
(t+1))−∇ℓf(x

(t))∥2F ]

+

(
1− δℓ/2

1− δℓ/4
+

4

(1− δℓ/4)τβ1

)Kτ−1∑
t=0

E[∥∇ℓf(x
(t))∥2F ] +

Kτβ1σ
2
ℓ

1− δℓ/4
. (92)

Summing (92) for ℓ = 1, · · · , NL and applying Assumptions 2-3 yields (91).

Now we are ready to prove the convergence of GaLore with small-batch stochastic gradients under isotropic noise
assumptions.
Theorem 18 (Convergence of Galore under isotropic noise assumptions): Under Assumptions 1-3,16-17, if hyperparameters

0 < β1 ≤ 1, τ ≥ 128

3β1δ
, 0 < η ≤ min

{
1

4L
,

√
3δβ2

1

80L2
,

√
3δ

80τ2L2
,

√
3β1

32τL2

}
, (93)

GaLore using small-batch stochastic gradients and MSGD with MP converges as

1

Kτ

Kτ−1∑
t=0

E∥∇f(x(t))∥22] ≤
16∆

δηKτ
+

32β1σ
2

3δ
(94)

for any K ≥ 1, where ∆ = f(x(0))− infx f(x).

Proof. By Lemma 4 we have

Kτ−1∑
t=0

E[∥∇f(x(t))∥22] ≤
2[f(x(0))− E[f(x(Kτ))]

η
+

Kτ−1∑
t=0

E[∥m̃(t) −∇f(x(t))∥22]

−
(

1

η2
− L

η

)Kτ−1∑
t=0

E[∥x(t+1) − x(t)∥22]. (95)
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Applying Lemma 14 to (95) and using δ ≤ δ < 1 yields(
δ

4
− 16

3τβ1

)Kτ−1∑
t=0

E[∥∇f(x(t))∥22]

≤2

η
E[f(x(0))− f(x(Kτ))] +

4Kτβ1σ
2

3

−
(

1

η2
− L

η
− 20(1− β1)L

2

3δβ2
1

− 20τ(τ − 1)L2

3δ
− 8(τ − 1)L2

3β1

)Kτ−1∑
t=0

E[∥x(t+1) − x(t)∥22]. (96)

By (93) we have

δ

4
− 16

3τβ1
≥ δ

8
, and

1

4η2
≥ max

{
L

η
,
20(1− β1)L

2

3δβ2
1

,
20τ(τ − 1)L2

3δ
,
8(τ − 1)L2

3β1

}
. (97)

Applying (97) to (96) yields (94).

Corollary 19 (Convergence complexity of GaLore under isotropic noise assumptions). Under Assumptions 1-17, if
T ≥ 2 + 256/(3δ) + (256σ)2/(9

√
δL∆) and we choose

β1 =

1 +

√
δ3/2σ2T

L∆

−1

,

τ =

⌈
128

3δβ1

⌉
,

η =

(
4L+

√
80L2

3δβ2
1

+

√
80τ2L2

3δ
+

√
32τL2

3β1

)−1

,

GaLore using small-batch stochastic gradients and MSGD with MP converges as

1

T

T−1∑
t=0

E[∥∇f(x(t))∥22] = O

(
L∆

δ5/2T
+

√
L∆σ2

δ7/2T

)
, (98)

where ∆ = f(x(0))− infx f(x). Consequently, the computation complexity to reach an ε-accurate solution x such that

∥∇f(x)∥22 ≤ ε is O
(

L∆σ2

δ7/2ε2
+ L∆

δ5/2ε
+ σ2

δ1/2L∆
+ 1

δ

)
.

Proof. T ≥ 2 + 256/(3δ) + (256σ)2/(9
√
δL∆) guarantees T ≥ τ . Let T = Kτ + r, where K ∈ N∗ and 0 ≤ r < τ . If

r = 0, (98) is a direct result of Theorem 18. If r > 0, applying Theorem 18 to K̃ := K + 1 yields

1

T

T−1∑
t=0

E[∥∇f(x(t))∥22] ≤
K̃τ

T
· 1

K̃τ

K̃τ−1∑
t=0

E[∥∇f(x(t))∥22] = O

(
L∆

δ5/2T
+

√
L∆σ2

δ7/2T

)
.

D. Results for sparse subspace optimization
In this section, we illustrate how to transfer the main results of this paper to sparse subspace optimization algorithms.
We first present the detailed algorithm formulation, then present the theoretical results corresponding to GaLore/GoLore.
Although it only requires little effort to transfer results in GaLore/GoLore to sparse subspace optimization, we still include
proofs for completeness.
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D.1. Algorithm design

While low-rank subspace optimization algorithms like GaLore/GoLore project full-parameter gradient G ∈ R(m×n) into
low-rank subspaces via projection like P⊤G, sparse subspace optimization algorithms use a sparse mask S to get S ⊙G.
Specifically, consider the following set

Spkm,n = {S ∈ {0, 1}m×n | ∥S∥2F = k},

i.e., a set of m × n matrices contains k ones and (mn − k) zeros. Corresponding to the subspace selecting strategy in
GaLore, we consider a Top-k strategy which places the k ones at indices corresponding to G’s elements with the k largest
absolute values. We also consider a Rand-k strategy which samples the sparse mask matrix S from the uniform distribution
on SPk

m,n corresponding to GoLore. For convenience, we name the algorithm using Top-k strategy as GaSare (Gradient
Sparse projection), and the one using Rand-k strategy as GoSare (Gradient random Sparse projection). The concerned
sparse subspace descent algorithms are described as in Alg. 6

D.2. Notations and useful lemmas

We assume the model parameters consist of NL weight matrices. We use Xℓ ∈ Rmℓ×nℓ to denote the ℓ-th weight matrix
and x ∈ Rd = (vec(X1)

⊤, · · · , vec(XNL
)⊤)⊤ to denote the vector collecting all the parameters, d =

∑NL

ℓ=1 mℓnℓ. We
assume GaSare/GoSare applies sparse mask in Spkℓ

mℓ,nℓ
to the ℓ-th weight matrix and denote

δℓ =
kℓ

mℓnℓ
, δ = min

1≤ℓ≤NL

δℓ, δ = max
1≤ℓ≤Nl

δℓ.

We define M̃ (t)
ℓ = S

(t)
ℓ ⊙M

(t)
ℓ and m̃ = (vec(M̃1)

⊤, · · · , vec(M̃NL
)⊤)⊤. While using Alg. 6 with MSGD, it holds that

M̃
(t)
ℓ =


β1S

(0)
ℓ ⊙G

(0)
ℓ , t = 0;

S
(t)
ℓ ⊙

(
(1− β1)M̃

(t−1)
ℓ + β1G

(t)
ℓ

)
, t = kτ, k ∈ N∗;

(1− β1)M̃
(t−1)
ℓ + β1S

(t)
ℓ ⊙G

(t)
ℓ , t = kτ + r, k ∈ N, 1 ≤ r < τ ;

and that

X
(t+1)
ℓ = X

(t)
ℓ − ηM̃

(t)
ℓ .

We use Em,n to denote the all-one m× n matrix, i.e.,

Em,n =


1 1 · · · 1
1 1 · · · 1
...

...
. . .

...
1 1 · · · 1

 ∈ Rm×n.

Lemma 15 (Error of GaSare’s projection): Let S be the Top-k mask of G ∈ Rm×n, it holds that

∥S ⊙G−G∥2F ≤
(
1− k

mn

)
∥G∥2F .

Proof. Let g1, g2, · · · , gmn be elements of G such that |g1| ≥ |g2| ≥ · · · ≥ |gmn|. It holds that

∥S ⊙G−G∥2F =

k∑
i=1

(gk − gk)
2 +

mn∑
i=k+1

(0− gk)
2

=

mn∑
i=k+1

g2k

≤
(
1− k

mn

) mn∑
i=1

g2k
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=

(
1− k

mn

)
∥G∥2F ,

where the inequality uses 1
mn−k

∑mn
i=k+1 g

2
i ≤ 1

k

∑k
i=1 g

2
i .

Lemma 16 (Error of GoSare’s projection): Let S ∼ U(Spkm,n), it holds for all G ∈ Rm×n that

E[S] =
k

mn
·Em,n, (99)

and

E[∥S ⊙G−G∥2F ] =
(
1− k

mn

)
∥G∥2F . (100)

Proof. To prove (99), it suffices to note that for any element Si,j in S, it holds that

E[Si,j ] = P[Si,j = 1] =
(mn− 1)!/[(mn− k)!(k − 1)!]

(mn)!/[(mn− k)!k!]
=

k

mn
.

To prove (100), we have

E[∥S ⊙G−G∥2F ] =
∑

1≤i≤m,1≤j≤n

P[Si,j = 0]G2
i,j =

(
1− k

mn

)
∥G∥2F .

D.3. Non-convergence of GaSare

In this subsection, we present the non-convergence result of GaSare, similar to that of GaLore.
Theorem 20 (Non-convergence of GaSare): There exists an objective function f : Rd → R satisfying Assumptions 1, 2, a
stochastic gradient oracle (F,D) satisfying Assumption 3, an initial point x(0), a constant ϵ0 > 0 such that for GaSare with
any sparsity level kℓ < mℓnℓ, subspace changing frequency τ and any subspace optimizer ρ with arbitrary hyperparameters
and any t > 0, it holds that

∥∇f(x(t))∥22 ≥ ϵ0.

Proof. Consider target function f(X) = L
2 ∥(pp

⊤)⊙X∥2F where L > 0, X ∈ Rn×n with n > 1 and p = (1, 0, · · · , 0)⊤ ∈
Rn. It holds that

f(X) =
LX2

1,1

2
≥ 0,

thus f satisfies Assumption 1. Since∇f(X) = L(pp⊤)⊙X , it holds that

∥∇f(X)−∇f(Y )∥F = L∥(pp⊤)⊙ (X − Y )∥F ≤ L∥X − Y ∥F ,

thus f satisfies Assumption 2.

Consider the following stochastic gradient oracle:

F (X; ξ) =f(X) + ξσ̃ · tr(QX), and Pξ∼D[ξ = 1] = Pξ∼D[ξ = −1] = 0.5,

where σ̃ = σ/
√

n2(n2 − 1)/2 and

Q =


0

√
n · · ·

√
n2 − n√

1
√
n+ 1 · · ·

√
n2 − n+ 1

...
...

. . .
...√

n− 1
√
2n− 1 · · ·

√
n2 − 1

 ∈ Rn×n.
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Note that∇F (X; ξ) = ∇f(X) + ξσ̃Q, it holds for any X ∈ Rn×n that

Eξ∼D[∇F (X; ξ)] =∇f(X)

Eξ∼D[∥∇F (X; ξ)−∇f(X)∥2F ] =σ̃2∥Q∥2F =
σ2

n2(n2 − 1)/2
·
n2−1∑
i=1

i = σ2,

thus oracle (F,D) satisfies Assumption 3.

Consider the initial point X(0) with X
(0)
1,1 = λ, where 0 < λ < σ̃/L is a scalar. We show that GaSare with the above

objective function f , stochastic gradient oracle (F,D), initial point X(0), arbitrary sparsity level 0 < k < n2, arbitrary
subspace changing frequency τ and arbitrary subspace optimizer ρ, can only output points X(t) with ∥∇f(X(t))∥2F ≥ ϵ0
for ϵ0 = L2λ2 > 0.

When τ | t, GaSare recomputes the sparse mask matrix at iteration t. If X(t)
1,1 = λ, the stochastic gradient is given by

G(t) = L(pp⊤)⊙X + ξ(t)σ̃Q.

since Lλ < σ̃, the Top-k mask S ∈ Rn×n satisfies

vec(S) = (0, 0, · · · , 0︸ ︷︷ ︸
(n2−k)×

, 1, 1, · · · , 1︸ ︷︷ ︸
k×

)⊤ ∈ Rn2

,

Using this mask matrix, the subspace updates in the following τ iterations is as

X(t+∆t) = X(t) + S(t) ⊙

(
∆t−1∑
s=0

ρ(t+s)(S(t) ⊙G(t))

)
⇒ X

(t+∆t)
1,1 = X

(t)
1,1 = λ,

for ∆t = 1, 2, · · · , τ . Since X
(0)
1,1 = λ, it holds for all t > 0 that X(t)

1,1 = λ and thus

∥∇f(X(t))∥2F = L2λ2 = ϵ0.

D.4. Convergence of deterministic GaSare

In this subsection, we prove the convergence properties of GaSare with deterministic gradients. The results and proofs are
similar to those of deterministic GaLore in Appendix B.3.

Lemma 17 (Momentum contraction): In deterministic GaSare using MSGD (Alg. 6), if 0 < β1 ≤ 1, term M̃
(t)
ℓ has the

following contraction properties:

• When t = 0, it holds that

∥M̃ (0)
ℓ −∇ℓf(X

(0))∥2F ≤(τ − 1)(1− δℓβ1)

τ−2∑
r=0

∥∇ℓf(x
(r+1))−∇ℓf(x

(r))∥2F

+
2(1− δℓβ1)

τ

τ−1∑
r=0

∥∇ℓf(x
(r))∥2F ; (101)

• When t = kτ , k ∈ N∗, it holds that

∥M̃ (t)
ℓ −∇ℓf(x

(t))∥2F −
(
1−

(
1− δℓ

4

)
β1

)
∥M̃ (t−1)

ℓ −∇ℓf(x
(t−1))∥2F

≤2(1− δℓ)

τ

τ−1∑
r=0

∥∇lf(x
(kτ+r))∥2F +

5(1− β1)

δℓβ1
∥∇ℓf(x

(t))−∇ℓf(x
(t−1))∥2F

+ (τ − 1)(1− δℓ)

τ−2∑
r=0

∥∇ℓf(x
(kτ+r+1))−∇ℓf(x

(kτ+r))∥2F ; (102)
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• When t = kτ + r, k ∈ N, 1 ≤ r < τ , it holds that

E[∥M̃ (t)
ℓ −∇ℓf(x

(t))∥2F ]−
(
1−

(
1− δℓ

4

)
β1

)
E[∥M̃ (t−1)

ℓ −∇ℓf(x
(t−1))∥2F ]

≤
(
1− δℓ

2

)
β1E[∥∇ℓf(x

(t))∥2F ] +
5(1− β1)

δℓβ1
E[∥∇ℓf(x

(t))−∇ℓf(x
(t−1))∥2F ]

+
10rβ1

δℓ

r∑
i=1

E[∥∇ℓf(x
(kτ+i))−∇ℓf(x

(kτ+i−1))∥2F ]. (103)

Proof. For convenience we use E to denote Emℓ,nℓ
. When t = 0, we have

∥M̃ (0)
ℓ −∇ℓf(x

(0))∥2F =∥β1(S
(0)
ℓ −E)⊙∇ℓf(x

(0))− (1− β1)∇ℓf(x
(0))∥2F

≤β1(1− δℓ)∥∇ℓf(x
(0))∥2F + (1− β1)∥∇ℓf(x

(0))∥2F
=(1− δℓβ1)∥∇ℓf(x

(0))∥2F , (104)

where the inequality uses Lemma 15 and Jensen’s inequality. Applying Lemma 2 to (104) yields (101).

When t = kτ , k ∈ N∗, we have

∥M̃ (t)
ℓ −∇ℓf(x

(t))∥2F
=∥S(t)

ℓ ⊙ [(1− β1)M̃
(t−1)
ℓ + β1G

(t)
ℓ −∇ℓf(x

(t))]− (E − S
(t)
ℓ )⊙∇ℓf(x

(t))∥2F
=∥S(t)

ℓ ⊙ [(1− β1)(M̃
(t−1)
ℓ −∇ℓf(x

(t)))]∥2F + ∥(E − S
(t)
ℓ )⊙∇ℓf(x

(t))∥2F
≤∥(1− β1)(M̃

(t−1)
ℓ −∇ℓf(x

(t)))∥2F + (1− δℓ)∥∇ℓf(x
(t))∥2F , (105)

where the inequality uses Lemma 15. By Young’s inequality, we have

∥M̃ (t−1)
ℓ −∇ℓf(x

(t))∥2F
=∥(M̃ (t−1)

ℓ −∇ℓf(x
(t−1)))− (∇ℓf(x

(t))−∇ℓf(x
(t−1))∥2F

≤
(
1 +

δℓβ1

4

)
∥M̃ (t−1)

ℓ −∇ℓf(x
(t−1))∥2F +

(
1 +

4

δℓβ1

)
∥∇ℓf(x

(t))−∇ℓf(x
(t−1))∥2F . (106)

Applying Lemma 2 and (106) to (105) yields (102).

When t = kτ + r, k ∈ N, 1 ≤ r < τ , we have

∥M̃ (t)
ℓ −∇ℓf(x

(t))∥2F
=∥(1− β1)(M̃

(t−1)
ℓ −∇ℓf(x

(t))) + β1(S
(t)
ℓ −E)⊙∇ℓf(x

(t))∥2F
≤(1− β1)∥M̃ (t−1)

ℓ −∇ℓf(x
(t))∥2F + β1∥(E − S

(kτ)
ℓ )⊙∇ℓf(x

(t))∥2F , (107)

where the inequality uses Jensen’s inequality and S
(t)
ℓ = S

(t−1)
ℓ = · · · = S

(kτ)
ℓ . The first term can be similarly upper

bounded as (106). For the second term, we have

(E − S
(kτ)
ℓ )⊙∇ℓf(x

(t))∥2F

≤
(
1 +

δℓ
4

)
∥(E − S

(kτ)
ℓ )⊙∇ℓf(x

(kτ))∥2F

+

(
1 +

4

δℓ

)
∥(E − S

(kτ)
ℓ )⊙ (∇ℓf(x

(t))−∇ℓf(x
(kτ))∥2F

≤
(
1 +

δℓ
4

)
(1− δℓ)∥∇ℓf(x

(kτ))∥2F +
5

δℓ
∥∇ℓf(x

(t))−∇ℓf(x
(kτ))∥2F , (108)
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where the first inequality uses Young’s inequality and the second inequality uses Lemma 15. By Young’s inequality, we have

∥∇ℓf(x
(kτ))∥2F ≤

(
1 +

δℓ
4

)
∥∇ℓf(x

(t))∥2F +

(
1 +

4

δℓ

)
∥∇ℓf(x

(t))−∇ℓf(x
(kτ))∥2F . (109)

Note that t = kτ + r, we further have

∥∇ℓf(x
(t))−∇ℓf(x

(kτ))∥2F =

∥∥∥∥∥
r∑

i=1

∇ℓf(x
(kτ+i))−∇ℓf(x

(kτ+i−1))

∥∥∥∥∥
2

F

≤r
r∑

i=1

∥∇ℓf(x
(kτ+i))−∇ℓf(x

(kτ+i−1))∥2F , (110)

where the inequality uses Cauchy’s inequality. Applying (109)(110) to (108) yields

(E − S
(kτ)
ℓ )⊙∇ℓf(x

(t))∥2F

≤
(
1− δℓ

2

)
∥∇ℓf(x

(t))∥2F +
10r

δℓ

r∑
i=1

∥∇ℓf(x
(kτ+i))−∇ℓf(x

(kτ+i−1))∥2F . (111)

Applying (106)(111) to (107) yields (103).

Based on Lemma 17, we can prove the convergence properties of deterministic GaSare similarly as the proofs of Lemma 7,
Theorem 10 and Corollary 11. Below we directly present the final convergence results.
Theorem 21 (Convergence of deterministic GaSare): Under Assumptions 1-2, if hyperparameters

0 < β1 ≤ 1, τ ≥ 64

3β1δ
, 0 < η ≤ min

{
1

4L
,

√
3δβ2

1

80L2
,

√
3δ

80τ2L2
,

√
3β1

16τL2

}
,

GaSare using deterministic gradients and MSGD (Alg. 6) converges as

1

Kτ

Kτ−1∑
t=0

∥∇f(x(t))∥22 ≤
16∆

δηKτ

for any K ≥ 1, where ∆ = f(x(0))− infx f(x). If T ≥ 64/(3δ) and we further choose

β1 =1

τ =

⌈
64

3δβ1

⌉

η =

(
4L+

√
80L2

3δβ2
1

+

√
80τ2L2

3δ
+

√
16τL2

3β1

)−1

,

GaSare using deterministic gradients and MSGD (Alg. 6) converges as

1

T

T−1∑
t=0

∥∇f(x(t))∥22 = O
(

L∆

δ5/2T

)
.

Consequently, the computation complexity to reach an ε-accurate solution x such that ∥∇f(x)∥22 ≤ ε is O
(

L∆
δ5/2ε

+ 1
δ

)
.

D.5. Convergence of large-batch GaSare

In this subsection, we present the convergence properties of GaSare with large-batch stochastic gradients. The results and
proofs are similar to those of large-batch GaLore in Appendix B.4.
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Lemma 18 (Momentum contraction): Under Assumption 3, in large-batch GaSare using MSGD (Alg. 6), if 0 < β1 ≤ 1,
term M̃

(t)
ℓ has the following contraction properties:

• When t = 0, it holds that

E[∥M̃ (0)
ℓ −∇ℓf(X

(0))∥2F ] ≤2(τ − 1)(1− δℓβ1)

τ−2∑
r=0

E[∥∇ℓf(x
(r+1))−∇ℓf(x

(r))∥2F ]

+
4(1− δℓβ1)

τ

τ−1∑
r=0

E[∥∇ℓf(x
(r))∥2F ] +

4β1σ
2
ℓ

B
; (112)

• When t = kτ , k ∈ N∗, it holds that

E[∥M̃ (t)
ℓ −∇ℓf(x

(t))∥2F ]−
(
1−

(
1− δℓ

4

)
β1

)
E[∥M̃ (t−1)

ℓ −∇ℓf(x
(t−1))∥2F ]

≤4(1− δℓ)

τ

τ−1∑
r=0

E[∥∇lf(x
(kτ+r))∥2F ] +

5(1− β1)

δℓβ1
E[∥∇ℓf(x

(t))−∇ℓf(x
(t−1))∥2F ]

+ 2(τ − 1)(1− δℓ)

τ−2∑
r=0

E[∥∇ℓf(x
(kτ+r+1))−∇ℓf(x

(kτ+r))∥2F ] +
5σ2

ℓ

B
; (113)

• When t = kτ + r, k ∈ N, 1 ≤ r < τ , it holds that

E[∥M̃ (t)
ℓ −∇ℓf(x

(t))∥2F ]−
(
1−

(
1− δℓ

4

)
β1

)
E[∥M̃ (t−1)

ℓ −∇ℓf(x
(t−1))∥2F ]

≤
(
1− δℓ

2

)
β1E[∥∇ℓf(x

(t))∥2F ] +
5(1− β1)

δℓβ1
E[∥∇ℓf(x

(t))−∇ℓf(x
(t−1))∥2F ]

+
15rβ1

δℓ

r∑
i=1

E[∥∇ℓf(x
(kτ+i))−∇ℓf(x

(kτ+i−1))∥2F ] +
(
11β1

δℓB
+ β2

1

)
σ2
ℓ . (114)

Proof. For convenience we use E to denote Emℓ,nℓ
. When t = 0, we have

E[∥M̃ (0)
ℓ −∇ℓf(x

(0))∥2F ]

=E[∥β1S
(0)
ℓ ⊙G

(0)
ℓ −∇ℓf(x

(0))∥2F ]

=E[∥β1(S
(0)
ℓ −E)⊙G

(0)
ℓ + β1(G

(0)
ℓ −∇ℓf(x

(0)))− (1− β1)∇ℓf(x
(0))∥2F ]

≤β1E[∥(S(0)
ℓ −E)⊙G

(0)
ℓ +G

(0)
ℓ −∇ℓf(x

(0))∥2F ] + (1− β1)∥∇ℓf(x
(0))∥2F , (115)

where the inequality uses Jensen’s inequality. For the first term we have

E[∥(S(0)
ℓ −E)⊙G

(0)
ℓ +G

(0)
ℓ −∇ℓf(x

(0))∥2F ]

≤2E[∥(E − S
(0)
ℓ )⊙G

(0)
ℓ ∥

2
F ] + 2E[∥G(0)

ℓ −∇ℓf(x
(0))∥2F ]

≤2(1− δℓ)E[∥Gℓ∥2F ] + 2E[∥G(0)
ℓ −∇ℓf(x

(0))∥2F ]

≤2(1− δℓ)∥∇ℓf(x
(0))∥2F +

(4− 2δℓ)σ
2
ℓ

B
, (116)

where the first inequality uses Cauchy’s inequality, the second inequality uses Lemma 15, the third inequality uses
E[∥G(0)

ℓ −∇ℓf(x
(0))∥2F ] ≤ σ2

ℓ/B (Assumption 3). Applying (116) and Lemma 2 to (115) yields (112).

When t = kτ , k ∈ N∗, we have

E[∥M̃ (t)
ℓ −∇ℓf(x

(t))∥2F ]
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=E[∥S(t)
ℓ ⊙ [(1− β1)M̃

(t−1)
ℓ + β1G

(t)
ℓ −∇ℓf(x

(t))]− (E − S
(t)
ℓ )⊙∇ℓf(x

(t))∥2F ]

=E[∥S(t)
ℓ ⊙ [(1− β1)M̃

(t−1)
ℓ + β1G

(t)
ℓ −∇ℓf(x

(t))]∥2F ] + E[∥(E − S
(t)
ℓ )⊙∇ℓf(x

(t))∥2F ]. (117)

We further have

E[∥S(t)
ℓ ⊙ [(1− β1)M̃

(t−1)
ℓ + β1G

(t)
ℓ −∇ℓf(x

(t))]∥2F ]

≤E[∥(1− β1)M̃
(t−1)
ℓ + β1G

(t)
ℓ −∇ℓf(x

(t))∥2F ]

=E[∥(1− β1)(M̃
(t−1)
ℓ −∇ℓf(x

(t))) + β1(G
(t)
ℓ −∇ℓf(x

(t)))∥2F ]

≤E[∥(1− β1)(M̃
(t−1)
ℓ −∇ℓf(x

(t)))∥2F ] + β2
1E[∥G

(t)
ℓ −∇ℓf(x

(t))∥2F ], (118)

where the last inequality uses the unbiasedness of G(t)
ℓ (Assumption 3). By Young’s inequality, we have

E[∥M̃ (t−1)
ℓ −∇ℓf(x

(t))∥2F ]

=E[∥(M̃ (t−1)
ℓ −∇ℓf(x

(t−1)))− (∇ℓf(x
(t))−∇ℓf(x

(t−1))∥2F ]

≤
(
1 +

δℓβ1

4

)
E[∥M̃ (t−1)

ℓ −∇ℓf(x
(t−1))∥2F ] +

(
1 +

4

δℓβ1

)
E[∥∇ℓf(x

(t))−∇ℓf(x
(t−1))∥2F ]. (119)

Applying (119) to (118) yields

E[∥S(t)
ℓ ⊙ [(1− β1)M̃

(t−1)
ℓ + β1G

(t)
ℓ −∇ℓf(x

(t))]∥2F ]

≤
(
1−

(
1− δℓ

4

)
β1

)
E[∥M̃ (t−1)

ℓ −∇ℓf(x
(t−1))∥2F ] +

β2
1σ

2

B

+
5(1− β1)

δℓβ1
E[∥∇ℓf(x

(t))−∇ℓf(x
(t−1))∥2F ]. (120)

For the second term in (117), we have

E[∥(E − S
(t)
ℓ )⊙∇ℓf(x

(t))∥2F ]

≤2E[∥(E − S
(t)
ℓ )⊙G

(t)
ℓ ∥

2
F ] + 2E[∥(E − S

(t)
ℓ )⊙ (G

(t)
ℓ −∇ℓf(x

(t)))∥2F ]

≤2(1− δℓ)E[∥G(t)
ℓ ∥

2
F ] + 2E[∥G(t)

ℓ −∇ℓf(x
(t))∥2F ]

≤2(1− δℓ)E[∥∇ℓf(x
(t))∥2F ] +

4σ2
ℓ

B
, (121)

where the first inequality uses Cauchy’s inequality, the second inequality uses Lemma 15, the third inequality uses
Assumption 3. Applying (120)(121) to (117) and using Lemma 2 yields (113).

When t = kτ + r, k ∈ N, 1 ≤ r < τ , we have

E[∥M̃ (t)
ℓ −∇ℓf(x

(t))∥2F ]

=E[∥(1− β1)(M̃
(t−1)
ℓ −∇ℓf(x

(t))) + β1(S
(t)
ℓ ⊙G

(t)
ℓ −∇ℓf(x

(t)))∥2F ]

=E[∥(1− β1)(M̃
(t−1)
ℓ −∇ℓf(x

(t))) + β1(S
(t)
ℓ −E)⊙∇ℓf(x

(t))∥2F ]

+ β2
1E[S

(t)
ℓ ⊙ (G

(t)
ℓ −∇ℓf(x

(t)))∥2F ]

≤(1− β1)E[∥M̃ (t−1)
ℓ −∇ℓf(x

(t))∥2F ] + β1E[∥(E − S
(t)
ℓ )⊙∇ℓf(x

(t))∥2F
+ β2

1E[S
(t)
ℓ ⊙ (G

(t)
ℓ −∇ℓf(x

(t)))∥2F ], (122)

where the second equality uses the unbiasedness of G(t)
ℓ and the independence implied by S

(t)
ℓ = S

(t−1)
ℓ , the inequality

uses Jensen’s inequality. The first term is similarly bounded as (119). For the second term, we have

E[∥(E − S
(kτ)
ℓ )⊙∇ℓf(x

(t))∥2F ]
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≤
(
1 +

δℓ
4

)
E[∥(E − S

(kτ)
ℓ )⊙G

(kτ)
ℓ ∥2F ]

+

(
1 +

4

δℓ

)
E[∥(E − S

(kτ)
ℓ )⊙ (∇ℓf(x

(t))−G
(kτ)
ℓ )∥2F ]

≤
(
1− 3δℓ

4

)
E[∥G(kτ)

ℓ ∥2F ] + 2

(
1 +

4

δℓ

)
E[∥G(kτ)

ℓ −∇ℓf(x
(kτ))∥2F ]

+ 2

(
1 +

4

δℓ

)
E[∥∇ℓf(x

(t))−∇ℓf(x
(kτ))∥2F ], (123)

where the first inequality uses Young’s inequality, the second inequality uses Lemma 15 and Cauchy’s inequality. We further
have (

1− 3δℓ
4

)
E[∥G(kτ)

ℓ ∥2F ] + 2

(
1 +

4

δℓ

)
E[∥G(kτ)

ℓ −∇ℓf(x
(kτ))∥2F ]

≤
(
1− 3δℓ

4

)
E[∥∇ℓf(x

(kτ))∥2F ] +
11

δℓ
E[∥G(kτ)

ℓ −∇ℓf(x
(kτ))∥2F ]

≤
(
1− 3δℓ

4

)
E[∥∇ℓf(x

(kτ))∥2F ] +
11σ2

ℓ

δℓB

≤
(
1− δℓ

2

)
E[∥∇ℓf(x

(t))∥2F ] +
(
1 +

4

δℓ

)
E[∥∇ℓf(x

(t))−∇ℓf(x
(kτ))∥2F ] +

11σ2
ℓ

δℓB
, (124)

where the first inequality uses unbiasedness of G(kτ)
ℓ , the second inequality uses Assumption 3, the third inequality uses

Young’s inequality.

Applying (124) to (123) and applying Cauchy’s inequality yields

E[∥(E − S
(kτ)
ℓ )⊙∇ℓf(x

(t))∥2F ]

≤
(
1− δℓ

2

)
E[∥∇ℓf(x

(t))∥2F ] +
11σ2

ℓ

δℓB
+

15r

δℓ

r∑
i=1

E[∥∇ℓf(x
(kτ+i))−∇ℓf(x

(kτ+i−1))∥2F ]. (125)

For the third term, we have

E[∥S(kτ)
ℓ ⊙ (G

(t)
ℓ −∇ℓf(x

(t)))∥2F ] ≤ E[∥G(t)
ℓ −∇ℓf(x

(t))∥2F ] ≤ σ2
ℓ , (126)

where the second inequality uses Assumption 3.

Applying (119)(125)(126) to (122) yields (114).

Based on Lemma 18, we can prove the convergence properties of large-batch GaSare similarly as the proofs of Lemma 9,
Theorem 12 and Corollary 13. Below we directly present the final convergence results.
Theorem 22 (Convergence of large-batch GaSare): Under Assumptions 1-3, if hyperparameters

0 < β1 ≤ 1, τ ≥ 128

3β1δ
, 0 < η ≤ min

{
1

4L
,

√
3δβ2

1

80L2
,

√
δ

40τ2L2
,

√
3β1

32τL2

}
,

GaSare using large-batch stochastic gradients and MSGD (Alg. 6) converges as

1

Kτ

Kτ−1∑
t=0

E∥∇f(x(t))∥22] ≤
16∆

δηKτ
+

(
160

3β1δτB
+

352

3δ2B
+

32β1

3δ

)
σ2

for any K ≥ 1, where ∆ = f(x(0))− infx f(x). If T ≥ 2 + 256/(3δ) + (256σ)2/(9
√
δL∆) and we further choose

β1 =

1 +

√
δ3/2σ2T

L∆

−1

,
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τ =

⌈
128

3δβ1

⌉
,

η =

(
4L+

√
80L2

3δβ2
1

+

√
40τ2L2

δ
+

√
32τL2

3β1

)−1

,

B =

⌈
1

δβ1

⌉
,

GaSare using large-batch stochastic gradients and MSGD (Alg. 6) converges as

1

T

T−1∑
t=0

E[∥∇f(x(t))∥22] = O

(
L∆

δ5/2T
+

√
L∆σ2

δ7/2T

)
.

Consequently, the computation complexity to reach an ε-accurate solution x such that ∥∇f(x)∥22 ≤ ε is given by
O
(

L∆σ2

δ7/2ε2
+ L∆

δ5/2ε
+ σ2

δ1/2L∆
+ 1

δ

)
.

D.6. Convergence of GoSare

In this subsection, we present the convergence properties of GoSare with small-batch stochastic gradients. The results and
proofs are similar to those of GoLore in Appendix B.5.

Lemma 19 (Momentum contraction): Under Assumption 3, in GoSare using MSGD (Alg. 6), if 0 < β1 ≤ 1, term M̃
(t)
ℓ

has the following contraction properties:

• When t = 0, it holds that

E[∥M̃ (0)
ℓ −∇ℓf(X

(0))∥2F ] ≤(τ − 1)(1− δℓβ1)

τ−2∑
r=0

E[∥∇ℓf(x
(r+1))−∇ℓf(x

(r))∥2F ]

+
2(1− δℓβ1)

τ

τ−1∑
r=0

E[∥∇ℓf(x
(r))∥2F ] + δℓβ

2
1σ

2
ℓ ; (127)

• When t = kτ , k ∈ N∗, it holds that

E[∥M̃ (t)
ℓ −∇ℓf(x

(t))∥2F ]− δℓ

(
1−

(
1− δℓ

4

)
β1

)
E[∥M̃ (t−1)

ℓ −∇ℓf(x
(t−1))∥2F ]

≤2(1− δℓ)

τ

τ−1∑
r=0

E[∥∇lf(x
(kτ+r))∥2F ] +

5(1− β1)

β1
E[∥∇ℓf(x

(t))−∇ℓf(x
(t−1))∥2F ]

+ (τ − 1)(1− δℓ)

τ−2∑
r=0

E[∥∇ℓf(x
(kτ+r+1))−∇ℓf(x

(kτ+r))∥2F ] + δℓβ
2
1σ

2
ℓ ; (128)

• When t = kτ + r, k ∈ N, 1 ≤ r < τ , it holds that

E[∥M̃ (t)
ℓ −∇ℓf(x

(t))∥2F ]−
(
1−

(
1− δℓ

4

)
β1

)
E[∥M̃ (t−1)

ℓ −∇ℓf(x
(t−1))∥2F ]

≤
(
1− δℓ

2

)
β1E[∥∇ℓf(x

(t))∥2F ] +
5(1− β1)

δℓβ1
E[∥∇ℓf(x

(t))−∇ℓf(x
(t−1))∥2F ]

+
10rβ1

δℓ

r∑
i=1

E[∥∇ℓf(x
(kτ+i))−∇ℓf(x

(kτ+i−1))∥2F ] + β2
1σ

2
ℓ . (129)

Proof. For convenience we use E to denote Emℓ,nℓ
. When t = 0, we have

E[∥M̃ (0)
ℓ −∇ℓf(x

(0))∥2F ]
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=E[∥β1S
(0)
ℓ ⊙G

(0)
ℓ −∇ℓf(x

(0))∥2F ]

=E[∥(β1S
(0)
ℓ −E)⊙∇ℓf(x

(0))∥2F ] + β2
1E[∥S

(0)
ℓ ⊙ (G

(0)
ℓ −∇ℓf(x

(0)))∥2F ], (130)

where the second equality uses unbiasedness of G(0)
ℓ . By Lemma 5 we have

E[∥(β1S
(0)
ℓ −E)⊙∇ℓf(x

(0))∥2F
=

∑
1≤i≤mℓ,1≤j≤nℓ

E[(β1[S
(0)
ℓ ]i,j − 1)2][∇ℓf(x

(0))]2i,j

=
∑

1≤i≤mℓ,1≤j≤nℓ

(1− 2β1δℓ + β2
1δℓ)[∇ℓf(x

(0))]2i,j

≤(1− δℓβ1)∥∇ℓf(x
(0))∥2F . (131)

Similarly, by Lemma 5 we have

E[∥S(0)
ℓ ⊙ (G

(0)
ℓ −∇ℓf(x

(0)))∥2F ]

=
∑

1≤i≤mℓ,1≤j≤nℓ

E[[S(0)
ℓ ]2i,j ][G

(0)
ℓ −∇ℓf(x

(0))]2i,j

=δℓE[∥G(0)
ℓ −∇ℓf(x

(0))∥2F ]
≤δℓσ2

ℓ , (132)

where the inequality uses Assumption 3. Applying (131)(132) and Lemma 2 to (130) yields (127).

When t = kτ , k ∈ N∗, we have

E[∥M̃ (t)
ℓ −∇ℓf(x

(t))∥2F ]

=E[∥S(t)
ℓ ⊙ [(1− β1)M̃

(t−1)
ℓ + β1G

(t)
ℓ −∇ℓf(x

(t))]− (E − S
(t)
ℓ )⊙∇ℓf(x

(t))∥2F ]

=δℓE[∥(1− β1)M̃
(t−1)
ℓ + β1G

(t)
ℓ −∇ℓf(x

(t))∥2F ] + (1− δℓ)E[∥∇ℓf(x
(t))∥2F ], (133)

where the second equality uses Lemma 16. For the first term, we have

E[∥(1− β1)M̃
(t−1)
ℓ + β1G

(t)
ℓ −∇ℓf(x

(t))∥2F ]

=E[∥(1− β1)(M̃
(t−1)
ℓ −∇ℓf(x

(t))) + β1(G
(t)
ℓ −∇ℓf(x

(t)))∥2F ]

≤E[∥(1− β1)(M̃
(t−1)
ℓ −∇ℓf(x

(t)))∥2F ] + β2
1E[∥G

(t)
ℓ −∇ℓf(x

(t))∥2F ]

≤(1− β1)E[∥M̃ (t−1)
ℓ −∇ℓf(x

(t))∥2F ] + β2
1σ

2
ℓ , (134)

where both inequalities use Assumption 3. By Young’s inequality, we have

E[∥M̃ (t−1)
ℓ −∇ℓf(x

(t))∥2F ]

=E[∥(M̃ (t−1)
ℓ −∇ℓf(x

(t−1)))− (∇ℓf(x
(t))−∇ℓf(x

(t−1))∥2F ]

≤
(
1 +

δℓβ1

4

)
E[∥M̃ (t−1)

ℓ −∇ℓf(x
(t−1))∥2F ] +

(
1 +

4

δℓβ1

)
E[∥∇ℓf(x

(t))−∇ℓf(x
(t−1))∥2F ]. (135)

Applying (134)(135) and Lemma 2 to (133) yields (128).

When t = kτ + r, k ∈ N, 1 ≤ r < τ , we have

E[∥M̃ (t)
ℓ −∇ℓf(x

(t))∥2F ]

=E[∥(1− β1)(M̃
(t−1)
ℓ −∇ℓf(x

(t))) + β1(S
(t)
ℓ ⊙G

(t)
ℓ −∇ℓf(x

(t)))∥2F ]

=E[∥(1− β1)(M̃
(t−1)
ℓ −∇ℓf(x

(t))) + β1(S
(t)
ℓ −E)⊙∇ℓf(x

(t))∥2F ]
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+ β2
1E[S

(t)
ℓ ⊙ (G

(t)
ℓ −∇ℓf(x

(t)))∥2F ]

≤(1− β1)E[∥M̃ (t−1)
ℓ −∇ℓf(x

(t))∥2F ] + β1E[∥(E − S
(t)
ℓ )⊙∇ℓf(x

(t))∥2F
+ β2

1E[S
(t)
ℓ ⊙ (G

(t)
ℓ −∇ℓf(x

(t)))∥2F ], (136)

where the second equality uses the unbiasedness of G(t)
ℓ and the independence implied by S

(t)
ℓ = S

(t−1)
ℓ , the inequality

uses Jensen’s inequality. The first term is similarly bounded as (135). For the second term, we have

E[∥(E − S
(kτ)
ℓ )⊙∇ℓf(x

(t))∥2F ]

≤
(
1 +

δℓ
4

)
E[∥(E − S

(kτ)
ℓ )⊙∇ℓf(x

(kτ))∥2F ]

+

(
1 +

4

δℓ

)
E[∥(E − S

(kτ)
ℓ )⊙ (∇ℓf(x

(t))−∇ℓf(x
(kτ)))∥2F ]

≤
(
1− 3δℓ

4

)
E[∥∇ℓf(x

(kτ))∥2F ] +
(
1 +

4

δℓ

)
E[∥∇ℓf(x

(t))−∇ℓf(x
(kτ))∥2F ], (137)

where the first inequality uses Young’s inequality, the second inequality uses Lemma 16. By Young’s inequality, we have

E[∥∇ℓf(x
(kτ))∥2F ] ≤

(
1 +

δℓ
4

)
E[∥∇ℓf(x

(t))∥2F ] +
(
1 +

4

δℓ

)
E[∥∇ℓf(x

(t))−∇ℓf(x
(kτ))∥2F ]. (138)

Applying (138) to (137) and applying Cauchy’s inequality yields

E[∥(E − S
(kτ)
ℓ )⊙∇ℓf(x

(t))∥2F ]

≤
(
1− δℓ

2

)
E[∥∇ℓf(x

(t))∥2F ] +
10r

δℓ

r∑
i=1

E[∥∇ℓf(x
(kτ+i))−∇ℓf(x

(kτ+i−1))∥2F ]. (139)

For the third term, we have

E[∥S(kτ)
ℓ ⊙ (G

(t)
ℓ −∇ℓf(x

(t)))∥2F ] ≤ E[∥G(t)
ℓ −∇ℓf(x

(t))∥2F ] ≤ σ2
ℓ , (140)

where the second inequality uses Assumption 3.

Applying (135)(139)(140) to (136) yields (129).

Based on Lemma 19, we can prove the convergence properties of GoSare similarly as the proofs of Lemma 11, Theorem 14
and Corollary 15. Below we directly present the final convergence results.
Theorem 23 (Convergence of GoSare): Under Assumptions 1-3, if hyperparameters

0 < β1 ≤ 1, τ ≥ 64

3β1δ
, 0 < η ≤ min

{
1

4L
,

√
3δβ2

1

80L2
,

√
3δ

80τ2L2
,

√
3β1

16τL2

}
,

GoSare using small-batch stochastic gradients and MSGD (Alg. 6) converges as

1

Kτ

Kτ−1∑
t=0

E∥∇f(x(t))∥22] ≤
16∆

δηKτ
+

32β1σ
2

3δ

for any K ≥ 1, where ∆ = f(x(0))− infx f(x). If T ≥ 2 + 128/(3δ) + (128σ)2/(9
√
δL∆) and we further choose

β1 =

1 +

√
δ3/2σ2T

L∆

−1

,

τ =

⌈
64

3δβ1

⌉
,
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η =

(
4L+

√
80L2

3δβ2
1

+

√
80τ2L2

3δ
+

√
16τL2

3β1

)−1

,

GoSare using small-batch stochastic gradients and MSGD (Alg. 6) converges as

1

T

T−1∑
t=0

E[∥∇f(x(t))∥22] = O

(
L∆

δ5/2T
+

√
L∆σ2

δ7/2T

)
.

Consequently, the computation complexity to reach an ε-accurate solution x such that ∥∇f(x)∥22 ≤ ε is given by
O
(

L∆σ2

δ7/2ε2
+ L∆

δ5/2ε
+ σ2

δ1/2L∆
+ 1

δ

)
.

E. Experimental specifications
In this section, we elaborate on the missing details concerned with the experiments we present in Sec. 6.

GaLore’s non-convergence. We compared Galore, large-batch GaLore, GoLore and full-parameter training on the
constructed quadratic problem defined in (1). We used a batch size of 128 for large-batch GaLore and a batch size of 1 for
the others.

Pre-training tasks on C4 dataset. We pre-trained LLaMA-60M on C4 dataset for 30,000 iterations on 4 NVIDIA A100
40G GPUs. We use batch size 128, learning rate 1.0e-3, rank 128, scaling factor α = 1, subspace changing frequency
τ = 200, and a max sequence length of 256.

Fine-tuning tasks on WinoGrande dataset. We fine-tune pre-trained LLaMA2-7B model on the WinoGrande dataset
for 30 epochs on 4 NVIDIA A100 80G GPUs. We use batch size 1, rank 1024, subspaces changing frequency τ = 500
and a max sequence length of 2048. The learning rate and scaling factor are set as 1.0e-4 and α = 4 for GaLore/GoLore,
thus corresponds to a learning rate of 4.0e-4 in full-parameter fine-tuning. The test accuracy is presented in Table 4, where
GoLore performs similarly to GaLore due to overfitting.

Fine-tuning tasks on BoolQ dataset. We fine-tune pre-trained LLaMA2-7B model on the BoolQ dataset on 4 NVIDIA
A100 80G GPUs. We use batch size 1, rank 1024, subspaces changing frequency τ = 500 and a max sequence length of
2048. We use MSGD as the subspace optimizer, where the learning rate and scaling factor are set as 1.0e-4 and α = 4 for
GaLore/GoLore, corresponding to a learning rate of 4.0e-4 in full-parameter fine-tuning. Table 4 presents the test accuracy
of different algorithms, where GoLore outperforms GaLore. We further fine-tune pre-trained OPT-13B for 1 epoch using the
same experimental setup, whose results are shown in Table 2.

Table 4. Evaluating GaLore/GoLore for fine-tuning on WinoGrande and BoolQ using pre-trained LLaMA2-7B.

Algorithm BoolQ (1 epoch) BoolQ (3 epochs) WinoGrande (80 epochs)

Full Params. 86.48 87.43 69.85

GaLore 84.89 86.79 68.51
GoLore@20% 85.81 86.88 68.51

Fine-tuning tasks on GLUE benchmark. We fine-tune pre-trained RoBERTa-Base model on the GLUE benchmark for 30
epochs on a single GeForce RTX 4090. Training details including batch size, learning rate, rank, scaling factor α and max
sequence length are illustrated in Table 5.

F. Ablation studies
In this section, we conduct several ablation studies to provide a deeper understanding of the proposed GoLore algorithm.

Ablation on the switching point. By switching point, we mean the ratio of GaLore to GoLore during training; for instance,
GoLore@50% indicates a switching point of 0.5. In our experiments, we choose an earlier switching point if we expect the
algorithm to converge more quickly to the solution’s neighborhood and a later one if we anticipate slower convergence. To
provide a broader guideline, we offer the following insights:
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Table 5. Hyperparameters used in fine-tuning pre-trained RoBERTa-Base model on the GLUE benchmark.

Hyperparameter CoLA STS-B MRPC RTE SST2 MNLI QNLI QQP

batch size 32 16 16 16 16 16 16 16
Learning Rate 2.5e-5 2.0e-5 3.5e-5 7.0e-6 1.0e-5 1.0e-5 1.0e-5 1.0e-5

Rank 4 4 4 4 4 4 4 4
GaLore’s α 4 4 4 4 4 4 4 4
FLORA’S α 4 4 4 4 4 4 4 4
GoLore’s α 4 4 4 4 4 4 4 4
Frequency τ 500 500 500 500 500 500 500 500

Max Seq. Len. 512 512 512 512 512 512 512 512

0.0 0.2 0.4 0.6 0.8
GoLore ratio

92.0

92.2

92.4

92.6

92.8

93.0

F1
-S

co
re

Ablation on Switching point

Figure 10. Ablation results on the switching point. We report
the F1-scores of fine-tuning on the MRPC task in the GLUE
benchmark with different GoLore ratios. A GoLore ratio of 0
represents GaLore.
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Figure 11. Ablation results on the subspace update frequency.
We report the F1-scores of fine-tuning on the MRPC task in
GLUE benchmark with GoLore@20% with different subspace
update frequency τ ’s.

• If access to the true gradient is available, a reasonable switching point would be when gradient noise begins to dominate
the true gradient.

• If only stochastic gradients are available, and assuming the gradient noise has a roughly constant scale, this dominance
can be estimated by monitoring whether the norm of the stochastic gradients falls below a certain threshold. This
threshold serves as a hyperparameter that depends on both the training task and the batch size used in the algorithm.

• The optimal switching point is task-dependent. Empirically, it is recommended to switch when the rate of decrease in
the loss curve starts to slow down.

Fig. 10 shows model performance across different switching points. Except for pure GaLore (switching point 0),
GoLore achieves comparable performance at all other points.

Ablation on subspace update frequency. Consistent with Zhao et al. (2024), which reports stable performance for GaLore
across τ ∈ [50, 1000], Fig. 11 shows that GoLore@20% exhibits similar robustness to different τ values in the same range.

Ablation on subspace sampling strategy. An important question is whether alternative non-greedy sampling strategies
can outperform GoLore. To explore this, we evaluate an importance sampling-based method. Given a stochastic gradient
matrix G ∈ Rm×n (m ≤ n), we first perform SVD to obtain G = UΣV ⊤, following the procedure used in GaLore.
However, instead of selecting the top-r columns of U as in GaLore, we sample r columns with probabilities proportional to
the corresponding singular values σi. As shown in Fig. 12, this sampling-based strategy achieves performance similar to
GaLore, but is consistently outperformed by GoLore. This may be attributed to the fact that importance sampling does not
yield unbiased projection matrices and remains susceptible to the bias introduced by stochastic gradient noise.
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Figure 12. Additional results of pre-training LLaMA-350M on C4 dataset. "I.S." represents the alternative importance sampling strategy.
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Figure 13. Illustration of gradient error norms when training
the quadratic target problem with GaLore and GoLore@75%
corresponding to Fig. 1 (right).
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Figure 14. Illustration of gradient error norms when fine-
tuning with GaLore and GoLore@50% on the MRPC task.
Only 32 sequences are used for cheap true-gradient evaluation.

Does GoLore’s projection truly result in smaller compression errors? To assess whether GoLore achieves lower
compression error than GaLore due to its randomized projection strategy, we report the gradient approximation error
∥∇f(x(t))− ∇̂f(x(t))∥2 in Fig.13 and Fig.14, where ∇̂f(x(t)) denotes the approximated stochastic gradient computed
using GaLore or GoLore. As shown, GoLore consistently produces more accurate gradient approximations than GaLore
across training steps.
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Algorithm 4 GaLore using large-batch stochastic gradients and MSGD with MP

Input: Initial point x(0), data distribution D, learning rate η, subspace changing frequency τ , rank {rℓ}NL

ℓ=1, momentum
parameter β1, large batch size B.

Output: {x(t)}Tt=0.
Initialize optimizer state {M (−1)

ℓ }NL

ℓ=1 to zero;
for t = 0, 1, · · · , T − 1 do

if t ≡ 0 (mod τ ) then
Sample {ξ(t,b)}Bb=1

i.i.d.∼ D;
else

Sample ξ(t) ∼ D;
end if
for ℓ = 1, 2, · · · , NL do

if t ≡ 0 (mod τ ) then
G

(t)
ℓ = 1

B
∑B

b=1∇ℓF (x(t); ξ(t,b));
U ,Σ,V ← SVD(G

(t)
ℓ );

if mℓ ≤ nℓ then
P

(t)
ℓ ← U [:, : rℓ];

M
(t)
ℓ ← (1− β1)(P

(t)
ℓ )⊤P

(t−1)
ℓ M

(t−1)
ℓ + β1(P

(t)
ℓ )⊤G

(t)
ℓ ;

X
(t+1)
ℓ ←X

(t)
ℓ − ηP

(t)
ℓ M

(t)
ℓ ;

else
Q

(t)
ℓ ← V [:, : rℓ];

M
(t)
ℓ ← (1− β1)M

(t−1)
ℓ (Q

(t−1)
ℓ )⊤Q

(t)
ℓ + β1G

(t)
ℓ Q

(t)
ℓ ;

X
(t+1)
ℓ ←X

(t)
ℓ − ηM

(t)
ℓ (Q

(t)
ℓ )⊤;

end if
else
G

(t)
ℓ = ∇ℓF (x(t); ξ(t));

if mℓ ≤ nℓ then
P

(t)
ℓ ← P

(t−1)
ℓ ;

M
(t)
ℓ ← (1− β1)M

(t−1)
ℓ + β1(P

(t)
ℓ )⊤G

(t)
ℓ ;

X
(t+1)
ℓ ←X

(t)
ℓ − ηP

(t)
ℓ M

(t)
ℓ ;

else
Q

(t)
ℓ ← Q

(t−1)
ℓ ;

M
(t)
ℓ ← (1− β1)M

(t−1)
ℓ + β1G

(t)
ℓ Q

(t)
ℓ ;

X
(t+1)
ℓ ←X

(t)
ℓ − ηM

(t)
ℓ (Q

(t)
ℓ )⊤;

end if
end if

end for
end for
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Algorithm 5 GoLore using small-batch stochastic gradients and MSGD with MP

Input: Initial point x(0), data distribution D, learning rate η, subspace changing frequency τ , rank {rℓ}NL

ℓ=1, momentum
parameter β1.

Output: {x(t)}Tt=0.
Initialize optimizer state {M (−1)

ℓ }NL

ℓ=1 to zero;
for t = 0, 1, · · · , T − 1 do

Sample ξ(t) ∼ D;
G

(t)
ℓ = ∇ℓF (x(t); ξ(t));

for ℓ = 1, 2, · · · , NL do
if t ≡ 0 (mod τ ) then

if mℓ ≤ nℓ then
Sample P

(t)
ℓ ∼ U(Stmℓ,rℓ);

M
(t)
ℓ ← (1− β1)(P

(t)
ℓ )⊤P

(t−1)
ℓ M

(t−1)
ℓ + β1(P

(t)
ℓ )⊤G

(t)
ℓ ;

X
(t+1)
ℓ ←X

(t)
ℓ − ηP

(t)
ℓ M

(t)
ℓ ;

else
Sample Q

(t)
ℓ ∼ U(Stnℓ,rℓ);

M
(t)
ℓ ← (1− β1)M

(t−1)
ℓ (Q

(t−1)
ℓ )⊤Q

(t)
ℓ + β1G

(t)
ℓ Q

(t)
ℓ ;

X
(t+1)
ℓ ←X

(t)
ℓ − ηM

(t)
ℓ (Q

(t)
ℓ )⊤;

end if
else

if mℓ ≤ nℓ then
P

(t)
ℓ ← P

(t−1)
ℓ ;

M
(t)
ℓ ← (1− β1)M

(t−1)
ℓ + β1(P

(t)
ℓ )⊤G

(t)
ℓ ;

X
(t+1)
ℓ ←X

(t)
ℓ − ηP

(t)
ℓ M

(t)
ℓ ;

else
Q

(t)
ℓ ← Q

(t−1)
ℓ ;

M
(t)
ℓ ← (1− β1)M

(t−1)
ℓ + β1G

(t)
ℓ Q

(t)
ℓ ;

X
(t+1)
ℓ ←X

(t)
ℓ − ηM

(t)
ℓ (Q

(t)
ℓ )⊤;

end if
end if

end for
end for
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Algorithm 6 GaSare / GoSare algorithms using stochastic / deterministic / large-batch gradients

Input: Initial point x(0), data distribution D, learning rate η, subspace changing frequency τ , rank {rℓ}NL

ℓ=1, optimizer
hyperparameters β1, β2, ϵ, large batch size B.

Output: {x(t)}Tt=0.
Initialize optimizer state {M (−1)

ℓ }NL

ℓ=1 and {V (−1)
ℓ }NL

ℓ=1 to zero;
for t = 0, 1, · · · , T − 1 do

for ℓ = 1, 2, · · · , NL do
if t ≡ 0 (mod τ ) then

G
(t)
ℓ ← ∇ℓF (x(t); ξ(t)); (stochastic)

G
(t)
ℓ ← ∇ℓf(x

(t)); (deterministic)

G
(t)
ℓ ←

1
B
∑B

b=1∇ℓF (x(t); ξ(t,b)); (large-batch)

S
(t)
ℓ ← Topk(G

(t)
ℓ ); (GaSare)

Sample S
(t)
ℓ ∼ U(Sp

kℓ
mℓ,nℓ

); (GoSare)
else

G
(t)
ℓ ← ∇ℓF (x(t); ξ(t)); (stochastic)

G
(t)
ℓ ← ∇ℓf(x

(t)); (deterministic)

G
(t)
ℓ ← ∇ℓF (x(t); ξ(t)); (large-batch)

S
(t)
ℓ ← S

(t−1)
ℓ ;

end if
R

(t)
ℓ ← S

(t)
ℓ ⊙G

(t)
ℓ ;

M
(t)
ℓ ← (1− β1)S

(t)
ℓ ⊙M

(t−1)
ℓ + β1R

(t)
ℓ ;

V
(t)
ℓ ← (1− β2)S

(t)
ℓ ⊙ V

(t−1)
ℓ + β2R

(t)
ℓ ⊙R

(t)
ℓ ;

if using Adam then

M
(t)
ℓ ←M

(t)
ℓ /(1− βt

1), V
(t)
ℓ ← V

(t)
ℓ /(1− βt

2), N
(t)
ℓ ←M

(t)
ℓ /(

√
V

(t)
ℓ + ϵ);

else if using MSGD then
N

(t)
ℓ ←M

(t)
ℓ ;

end if
X

(t+1)
ℓ ←X

(t)
ℓ − ηS

(t)
ℓ ⊙N

(t)
ℓ ;

end for
end for
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