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Abstract

Reinforcement learning (RL) agent relies on experiential data obtained through
environmental interactions to achieve task objectives, but the efficacy of such learn-
ing paradigms remains fundamentally bounded by the high cost of the interactions.
Current researches advocate for the integration of large language models (LLMs)
to enhance decision making. However, previous methods predominantly require
domain-specific fine-tuning of foundation models, incurring extra computational
costs with limited generalization capabilities. Some others rely on control primi-
tives and often produce rigid plans that fail to adapt to environmental dynamics. To
this end, we introduce LWM-DPO: LLM-Based World Model with Distilled Policy
Optimization in Task Planning, a few-shot framework that uses LLMs’ autoregres-
sive reasoning with lightweight policy distillation. Our method decouples state and
action representations through the separation of planning and execution. LLM is
only used to plan the trajectory of the state, enabling LLMs to generate consistent
trajectories via programmatic feedback. Experiments conducted with challenging
robotics tasks demonstrate superior sample efficiency (11.3× improvement over
baseline RL after 10k steps) and task success rates (91.2% vs. 8.1% in dynamic
environments).

1 Introduction

Deep Reinforcement Learning (DRL) has demonstrated exceptional performance in fields ranging
from robotic manipulation to complex game environments [1, 2]. Apart from these achievements,
this paradigm is well-known to be sample inefficient, with limited real-world applications [3–5].
Recent advances in world models establish a promising framework for addressing this challenge
[6–8], achieving disentanglement of policy learning from environment interactions through internal
simulator construction.

Meanwhile, the integration of large language models (LLMs) into RL algorithms has shown re-
markable potential [9, 10] by leveraging their linguistic priors and semantic reasoning capabilities
[11]. To better increase sampling efficiency, there come works focusing on using LLMs as learned
environment dynamics [12–14]. However, domain-specific finetuning on foundation models (FMs) is
necessitated in most cases [15–17], incurring substantial computational overhead while constraining
generalizability.

Although zero-shot and few-shot algorithms have been explored as alternatives [18–20], predefined
action primitives required by previous approaches severely constrain adaptability to dynamic environ-
ments. This limitation stems primarily from the underdeveloped physics and geometric reasoning
abilities in previous-generation LLMs [13, 21]. As shown in Fig. 1(a), experiments are made in
a maze environment with obstacles positioned at coordinates (1,2), (2,2), etc. An agent initially
located at the starting position (1,1) is required to navigate to the target coordinate (1,8) through
single-cell orthogonal movements per time step. Results show that modern LLMs with enhanced
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Figure 1: Comparative analysis of navigation planning and algorithm performance: (a) Trajectory
visualization generated by different LLMs in maze environments, demonstrating policy evolution.
(b) Success rate comparison on mobile manipulation tasks between LWM-DPO (ours), LLM-based
agent without distilled policy optimization (LWM), and baseline RL approach. (c) Computational
efficiency metrics showing average iteration runtime for the three algorithms in (b).

world knowledge manage to complete the task through optimized prompting strategies, indicating
that they already contain information necessary to accomplish goals without any additional training.
This emergent capability reveals the growing capacity of updated LLMs to generate trajectories that
satisfy both task requirements and physical constraints [22, 23].

Another critical limitation in LLM-based agent systems lies in the inherent rigidity of generating
single static plan from linguistic instructions, which often fails to accommodate diverse environments
[24–26]. While dynamic adjustment mechanisms have been proposed to enhance grounding [27, 28],
this approach remains vulnerable to output inconsistency in multi-turn interactions, significantly
compromising policy reliability [29, 30]. This challenge presents an opportunity to exploit LLMs’
code-writing capabilities for creating stable outputs through executable computational structures and
interactions [31–33].

Moreover, as illustrated in Fig. 1(b), LLMs help to highlight meaningful regions in the state space for
exploration, thereby alleviating the slow convergence issue inherent to RL with large observation
and action spaces. This mechanism enables significant advancement over baseline RL paradigms.
However, policies exclusively derived from LLMs may yield suboptimal solutions [34], as evidenced
by comparison in Fig. 1(b)-(c), necessitating subsequent optimization stages.

Given this, here we propose LWM-DPO: Distilled Policy Optimization for LLM-Based World
Model in Task Planning. This novel framework decouples state and action representations through
code-space encoding and action planning, leveraging LLMs’ inherent code-generation strengths to
maintain consistent environmental modeling while enabling adaptive planning. Besides, our distilled
policy optimization (DPO) introduces additional refinement on LLM-guided exploration. We evaluate
our method on various challenging visual RL domains, including Kitchen [35], Meta-World [36]
and Robosuite [37]. Experimental results demonstrate LWM-DPO’s superiority in sample efficiency
and task success rates compared to existing methods. The main contribution of this paper can be
summarized as follows:

• Our approach leverages LLM as predictive world model, generating physics-compliant
trajectories through autoregressive reasoning. LWM-DPO bypasses the high computational
costs of direct fine-tuning on FMs via lightweight policy distillation.

• By modeling the environmental state independently from action generation, our decoupled
planner avoids the tight coupling seen in end-to-end approaches with task-specific action
outputs. Instead, our design effectively handles variations in action dimensions across
different tasks and promotes robustness in dynamic environments.

• By compiling LLM outputs into low-level code space, we construct consistent trajectory
representations through programmatic feedback. This leverages LLMs’ native proficiency
in textual processing while compensating for their inability to directly generate executable
control strategies, addressing the instability in human-LLM interaction loops.
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2 Related work

Language Model as World Model: The integration of LLMs into RL frameworks has achieved
significant advances in direct policy prediction [9, 10, 15]. KALM introduces a novel approach
via environment-grounded imaginary rollouts, allowing agents to efficiently acquire new skills
through offline learning [17]. By integrating a pretrained multimodal foundation model with an
action tokenizer, GEA achieves cross-domain generalization and enables unified agent operation
across various task environments [14]. However, most methods require finetuning on FMs, which
imposes extra computational costs. LWM-DPO, on the other hand, uses few-shot LLMs as a
world model to generate state trajectories, which are subsequently distilled into lightweight policies
through SAC-based optimization. This dual-stage framework bypasses direct foundation model
fine-tuning while maintaining generalization ability across diverse domains. Besides, there exist
works using the zero/few-shot capabilities of LLMs for policy prediction [18, 38, 34]. While
CaP [31] also benefits from code-writing LLMs, our framework incorporates policy distillation
by generating trajectories instead of policies, thus ensuring enhanced stability without prompt
oversaturation. ExploRLLM enhances FM capabilities through off-policy RL compensation while
accelerating training via observation space reduction [34], whereas LWM-DPO implements online
policy optimization through real-time trajectory generation and distillation.

Another paradigm that has been particularly effective is leveraging FMs as a skill planner [24,
39, 25]. Song et al. propose a framework for few-shot embodied instruction following, enabling
dynamic adaptation to visual environments through physically-grounded plan generation and iterative
refinement [27]. PCBC introduces Language-World, a natural language extension of the Meta-
World robotic benchmark [36] enabling LLM-driven task planning and achieves few-shot task
generalization by fine-tuning high-level plans with demonstration data [40]. PSL bridges abstract
language planning in LLMs with RL to solve long-horizon robotic tasks from scratch, bypassing
pre-defined skills by integrating motion planning and low-level control adaptation [12]. Yet previous
methods require RL training from scratch for sub-goal decomposition, resulting in inefficiency.
Instead, our method directly converts LLM-generated task semantics into executable code space with
fine-grained trajectories and upsampled sub-states. This approach effectively bridges the planning-
execution gap [13] while enhancing operational performance.

Table 1: Comparison between LWM-DPO and recent approaches.

Method Free of
LLM-FT

Policy-
Indep. Iterative Optimal Few/Zero-

Shot Online-RL LLM
Feedback

GEA [14] ✗ ✗ ✓ ✓ ✗ ✓ ✗
KALM [17] ✗ ✗ ✓ ✓ ✗ ✗ ✓

RL-SaLLM-F [41] ✓ ✗ ✓ ✓ ✗ ✓ ✓
PCBC [40] ✓ ✓ ✗ ✗ ✓ ✓ ✗
Cap [31] ✓ ✗ ✗ ✗ ✓ ✗ ✗
PSL [12] ✓ ✓ ✓ ✓ ✗ ✓ ✗

LWM-DPO (Ours) ✓ ✓ ✓ ✓ ✓ ✓ ✓

LLM-Guided Reward Design: Recent researches have also explored using large pretrained models
instead of human supervision for reward design [? 42, 43]. RL-SaLLM-F replaces privileged "scripted
teachers" in online preference-based RL by leveraging LLMs to generate trajectory preferences and
refine feedback through ambiguity-aware discrimination and double-check mechanisms [41]. In order
to improve sampling efficiency, Q-shaping introduces a RL framework that replaces reward shaping
with direct LLM-guided Q-value initialization and adjustment, ensuring theoretical optimality while
accelerating training across tasks [44]. EUREKA translates LLMs’ high-level reasoning into robotic
control via evolutionary reward code optimization, achieving human-exceeding performance across
diverse embodiments [45]. However, existing reward design requires completing entire training
episodes to assess reward efficacy. By contrast, LWM-DPO enables dynamic adjustment during
policy rollouts, achieving higher training efficiency over prior approaches.

We highlight the distinctions between LWM-DPO and recent approaches in the way of leveraging
LLMs in Table 1:
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LLM-Based World Model
I am now a helpful world simulator. 
I can imagine the trajectory auto-
regressively.

Task collapses at {N} step.
Please replan the trajectory.

Ok, the robot arm may get stuck 
somewhere. I will give you a new 
trajectory to bypass the obstacle.

Code Space def plan (inital_state, goal_state):
# Condensed trajectory knowledge
return trajectory

Given {task, state space, initial state}, 
how to plan to the {goal state}?

To reach the {goal state}, I will 
give you a possible trajectory.

⋮

Online Policy

object1
gripper1
goal1
grab1

object2
gripper2
goal2
grab2

object3
gripper3
goal3
grab3

object4
gripper4
goal4
grab4

object5
gripper5
goal5
grab5

⋮
⋮

Planning in State Space

Execution with actions

Figure 2: LWM-DPO overview. Starting with the inputs {task, state space, initial state},
the LLM-based world model generates candidate state trajectories toward the goal state in code
space. These trajectories are refined into fine-grained action sequences through upsampling, action
planning and further optimized to enhance physical feasibility. Upon task collapse at step N, the
system dynamically incorporates feedback, triggers replanning, and generates alternative trajectories
to bypass the obstacle.

3 Method

3.1 Framework

Algorithm 1 LWM-DPO
Require: LLM, task description gl, state space
description space, action planner AP, replay buffer
D, planned trajectory buffer Dp

Initialize actor π and expert actor πE

// LWM construction
1: LWM = LLM( gl,space )

// Generate condensed trajectory
2: CTK = LWM.code
3: for all e = 1, · · · , E do
4: get initial state sinit and final state sfinal

// state trajectory
5: S = CTK (sinit,sfinal)

// Upsample the state trajectory
6: Sup = upsample(S)

// Action planning
7: traj = ActionPlan(AP, Sup)

// Exception handling
8: if spt fails to achive si after n steps then
9: CTK = RePlan(si,s

p
t )

10: go back to step 3
11: end if
12: save trajectory (spt , a

p
t ) in Dp

13: update π, πE

14: end for

In this section, we present LWM-DPO for
robotic task solving (outlined in Fig. 2 and
Alg. 1). The method operates through two se-
quential phases: 1) Language-guided trajectory
generation where an LLM translates textual task
descriptions into state-space trajectories, fol-
lowed by 2) Policy distillation that transforms
these trajectories into executable control policies
through reinforcement learning.

The core challenge lies in developing an ef-
fective interface between high-level language-
based planning and low-level continuous control.
Building upon the initial trajectory generated by
the LLM-guided world model, we implement
online policy optimization using a reward and
termination model. This configuration enables
TD (temporal difference) learning for training
an actor-critic RL agent.

3.2 LLM-Guided World Model

Given task, state space, initial state and the LLM-
based world model is prompted to initiate tra-
jectory prediction (e.g. [[[x1, y1, z1],[xo1, yo1,
zo1],[xg1, yg1, zg1], g1], [[x2, y2, z2], ...]) to
reach the goal state. The proposed trajectory
is then encoded in the code space to establish
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consistent state representations {Si}, which are subsequently upsampled to get sub-states {si} with
linear interpolation. This hierarchical state representation enables multi-granularity reasoning while
preserving geometric consistency. When policy execution fails at N step, an automated recovery
protocol is triggered sending feedback to the world model after the implementation of optimized
policy and require the foundation model to regenerate trajectories through replanning procedures.
The world model will debug in the code space based on the feedback, iteratively refining trajectory
until the agent form a collision-free path that connects a given start and goal configuration. This
closed-loop refinement process demonstrates superior sample efficiency compared to traditional RL
methods.

Prompt: Generate trajectory function for {task_description} with state space: positions of
{obj1_name} (initial: {obj1_position}), {goal_name} (target: {goal_position}), end-effector
(current: {endeff_position}, range: {position_range}), and gripper state (current: {grip-
per_state}, range: (0,1]).

Output format: A list where each element is of the form [[<end-effector position>], [<obj1
position>], [<goal position>], <gripper opening>].

Implement as: def generate_trajectory(init_first_obj: list, goal_position: list, init_endeff: list,
init_gripper: float) -> list

Action Planning. Building upon the dense sub-state representations {si} generated by the up-
sampling module, the action planner formulates precise control sequences {ai} through inverse
kinematics. For each consecutive state pair (si, si+1), we solve the optimal action ai by computing
the kinematic residual. We use Newton-Raphson method [46, 47] to calculate the action:

ai = −J−1 ·∆T, (1)

where ∆T = Td − T represents the difference between the current pose of the end-effector and the
desired target pose. The current pose of the end-effector is T and the desired target pose is Td , the
action variables are updated by computing the error of the pose, where T and Td are components of
si and si+1. J is the Jacobian matrix of the end-effector with respect to the controller variables (i.e.,
joint angles or end-effector velocities).

Overall, our framework employs a hierarchical refinement process for LLM-generated state trajec-
tories. It begins with semantic-aware trajectory synthesis, followed by upsampling and kinematic
constraint resolution. This layered architecture inherently unifies high-level task intentions with
dynamic feasibility, thereby bypassing the dimensional complexity challenges of conventional motion
planning methods.

3.3 Translate trajectory to policy

In the second stage, the agent interacts with the real environment to learn to refine the control of
the robotic arm, performing tasks such as object transportation and manipulation. We propose
DPO, which distills trajectory knowledge into a smaller network, allowing the neural network to be
efficiently fine-tuned, achieving higher success rates and more optimal trajectories.

Policy optimization. We modeled the environment as a Markov decision process defined by
(SA,P, r, γ), with states s ∈ S, actions a ∈ A , transition probabilities P(s′|s, a), reward function
r(s), distribution over initial states µ0, and discount factor γ ∈ [0, 1). At each time step t, the
agent observes the state st ∈ S as described in the “Environment” section. Actions are continuous
and applied to the robot arm controller. The reward varies depending on the test environment
used. A trajectory is defined as ξ = {(st, at, rt+1)}∞t=0. A policy π(a|s), along with the system
dynamics P and initial state distribution µ0, gives rise to a distribution over trajectories: µπ(ξ) =
µ0(s0)

∏∞
t=0 π(at|st)P(st+1|st, at). The aim is to obtain a policy π that maximizes the expected

discounted cumulative reward or return
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Figure 3: Comparative success rates of LWM-DPO and baseline methods after 10k steps across three
robotic manipulation environments: Meta-World, Robosuite, and Kitchen.

J(π)Eξ∼µπ [
T∑

t=0

γtr(st)]. (2)

Behavioral Cloning. An suggested dataset D := {(s,a)} is constructed through LLM-based trajec-
tories by planing and translation. Afterward, a imitation learning (IL) RL policy πE is constructed as
the expert policy, which is trained to mimic the behavior of the LLM planner. In this work, the πE

is trained by minimizing the following loss function on the expert dataset D via behavioral cloning.
The objective is to maximize the likelihood of the demonstrations

max
πE

Eτ∼D

 ∑
(s,a)∈τ

ln(πE(a|s))

 . (3)

Although BC has a strong theoretical foundation, it ignores environmental dynamics and its confine-
ment to offline learning can lead to unstable performance [48].

Policy Distillation To better integrate the two learning processes, behavior cloning and reinforcement
learning, we propose policy distillation. Specifically, let ρπ(a, s) be the occupancy measure of visiting
state s and taking action a, under policy π. Let ρπ

E

the state action distribution given by expert policy
πE . The distribution matching approach proposes to learn π to minimize the discrepancy between ρπ

and ρπ
E

with KL-divergence:

LDP = KL(ρπ||ρπ
E

) = E
(s,a)∼ρπ

[
ln

ρπ
E

(s, a)

ρπ(s, a)

]
. (4)

Policy objective. The policy prior π is a stochastic maximum entropy [49, 50] policy that learns to
maximize the objective

Jπ(θ)
.
= E

(s,a)0:H∼B

[
H∑
t=0

λt [αQ(st, π(st)) + βH(π(·|st))]

]
− γLDP , st+1 = P(st, at), (5)

where H is the entropy of π, which can be computed in closed form. Gradients of Jπ(θ) are taken
wrt. π only. As magnitude of the value estimate Q(st, π(st)) and entropy H can vary greatly between
datasets and different stages of training, it is necessary to balance the two losses to prevent premature
entropy collapse [51]. A common choice for tuning α, β, γ is to keep one of them constant, and
adjusting the other based on an entropy target [50] or moving statistics [52].
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4 Experiments

4.1 Environments

We evaluate our method on three robotic simulation frameworks: Meta-World, Robosuite and Kitchen.
We perform three repeated experiments using different random seeds.

Meta-World [36]: Being a widely used RL benchmark, this platform provides procedurally-
generated tasks with varying dynamics and reward structures. We select several tasks for evaluation:
MW-Assembly (attaching nut to peg), MW-Basketball (shooting ball into hoop), MW-Bin-Picking
(picking and placing a cube), MW-Box-Close (closing container lid), MW-Hammer (hammering a nail),
MW-Button-Press (pressing vertical switches), MW-Button-Down (pressing horizontal switches),
MW-Down-Wall (navigating under barrier), MW-Hand-Insert (inserting object into slot), MW-Push
(pushing object to target).

Basket
Ball

LWM LWM w/o Detail
LWM w/o Fb

SAC
CapLWM-DPO

Box
Cover

z

x

MW-Basketball

z

x

MW-Box-Close

Figure 4: Two examples of 2D projections (onto
the x-z plane) of trajectories generated by the dif-
ferent methods. Fb represents feedback. LWM
complete this task successfully. RL-finetuned tra-
jectories achieve the task goals more quickly and
smoothly.

Robosuite [37]: This physics-accurate simu-
lator enables rigorous testing of robotic manipu-
lators in instrumented environments. Our selec-
tion covers: RS-Lift: cube lifting, RS-Door:
door opening and RS-Bread/Cereal/Can:
pick-place object(s) into appropriate bin(s).

Kitchen [35]: Designed for household au-
tomation research, this environment tests se-
quential task execution in connected appliance
systems. The tasks used in our work include
K-Slide (opening slide cabinet), K-Kettle
(pushing kettle forward), K-Burner (turning
burner), K-Light (flicking light switch), and
K-Microwave (opening microwave).

4.2 Results and Analyses

Fig. 3 shows LWM-DPO’s success rate superiority over baselines across 20 Robosuite/Kitchen/Meta-
World tasks. Fig. 4 comparatively demonstrates its trajectory advantages: our method achieves
goal-directed navigation without deadlock, whereas baseline approaches exhibit failure modes
including premature termination. The observed trajectories further validate its geometric efficiency in
path planning.

Fig. 5 demonstrates the efficiency gains from DPO in MW-Hand-Insert. The DPO-enhanced planner
(blue trajectory) achieves successful insertion in 20 frames through a direct, near-minimal path, whi-

le the baseline without DPO (orange trajectory) requires 50 frames with visible detours. The
quantitative benefits of DPO are further validated in Fig. 6. Across both Meta-World and Robosuite
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Figure 7: In cases where the planned trajectory encounters obstacles, the world model incorporating
feedback mechanisms performs real-time adjustments and replanning to maintain optimal navigation.

benchmarks, LWM-DPO shows significant performance improvements over the non-DPO baseline,
achieving higher task rewards while executing more efficient trajectories (Fig. 6(a)). Moreover, as
depicted in Figure 6(b), DPO notably accelerates policy convergence, demonstrating significantly
enhanced sample efficiency.
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Figure 8: Success rates on both
MW-Basketball and MW-Door-Lock
demonstrate the significance of de-
tailed prompts.

Ablation study on RL method. To evaluate the effective-
ness of DPO, we experimented with directly combining an
expert policy with SAC. The results indicate that while the
DPO does not play a decisive role in performance improve-
ment, it still outperforms pure BC. This may be attributed
to distillation better transferring expert knowledge when
optimizing multiple objectives (RL and BC) [53].

Effectiveness of feedback loop. The critical role of feed-
back loop in dynamic manipulation tasks is demonstrated
through MW-Door-Lock (shown in Fig. 7). The feedback-
enabled LWM-DPO detects handle resistance through joint
torque signatures and adjusts the gripper’s trajectory to
prevent jamming, enabling successful door unlocking. In
contrast, methods without feedback rigidly follow the pre-
planned trajectory, forcing the robotic arm into an in-
escapable mechanical lock with the handle.

Effectiveness of detailed information. In addition, as
shown in Fig. 9, the performance of LLM-guided world
model can be improved when provided with detailed environmental prompts. For instance, in
MW-Basketball, incorporating precise state information such as the hoop diameter (approximately
0.1) enables the robotic arm to avoid potential jamming during execution, thereby enhancing opera-
tional reliability. A quantitative comparison presented in Fig. 8 further demonstrates this advantage,
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Figure 9: With additional prompts, the LLM-guided world model acquires richer state information,
enabling it to generate more rational and optimized trajectories.

where the detailed state description prompt achieves significantly higher success rates than its
non-detailed counterpart across both MW-Door-Lock and MW-Basketball.

Effectiveness of code space integration. The empirical advantages of code space integration are
quantitatively validated in Table 2. When equipped with code space knowledge, all tested LLMs
demonstrate improvement in task success rates while reducing planning trajectory length (measured in
steps). These results confirm that code space serves as an effective abstraction layer for compressing
environmental state trajectory representations while preserving critical task semantics.

Table 2: Impact of Code Space Knowledge on Planning Performance. Gray-shaded rows highlight
configurations utilizing code space.

LLM Task Code Space Length ↓ Success rate ↑

Deepseek-R1 [54]
Reach w/o 52 20/20

w/ 42 20/20

Hand-Insert w/o 78 12/20
w/ 76 15/20

GPT-4o [55]
Reach w/o 47 19/20

w/ 45 20/20

Hand-Insert w/o 87 12/20
w/ 85 16/20

Deepseek-V3 [56]
Reach w/o 64 20/20

w/ 54 20/20

Hand-Insert w/o 92 11/20
w/ 87 13/20

GPT-4o-mini [57]
Reach w/o 51 18/20

w/ 43 20/20

Hand-Insert w/o 89 10/20
w/ 72 11/20

5 Conclusions and limitations

We proposed LWM-DPO, a framework that integrates LLMs with distilled policy optimization to
enhance decision-making efficiency in reinforcement learning. By decoupling state and action repre-
sentations through code-space encoding, our method enables LLMs to generate adaptive trajectories
while avoiding costly fine-tuning. Experiments on robotics tasks demonstrate improved sample
efficiency and policy reliability compared to conventional RL and zero-shot LLM-based approaches.
The limitation lies in restricting inputs to structured state representations, which precludes direct appli-
cation to visual RL scenarios requiring raw pixel processing. Future work will extend the framework
by incorporating visual encoders to bridge textual reasoning with pixel-based observations.

9



References
[1] N. Brown, A. Bakhtin, A. Lerer, and Q. Gong, “Combining deep reinforcement learning and search for

imperfect-information games,” Annual Conference on Neural Information Processing Systems, 2020.

[2] J. Schrittwieser, I. Antonoglou, T. Hubert, K. Simonyan, L. Sifre, S. Schmitt, A. Guez, E. Lockhart,
D. Hassabis, T. Graepel, T. P. Lillicrap, and D. Silver, “Mastering atari, go, chess and shogi by planning with a
learned model,” Nature, vol. 588, pp. 604 – 609, 2019.

[3] M. Hessel, J. Modayil, H. V. Hasselt, T. Schaul, G. Ostrovski, W. Dabney, D. Horgan, B. Piot, M. G. Azar,
and D. Silver, “Rainbow: Combining improvements in deep reinforcement learning,” in Association for the
Advancement of Artificial Intelligence, 2017.

[4] W. Zhang, G. Wang, J. Sun, Y. Yuan, and G. Huang, “Storm: Efficient stochastic transformer based world
models for reinforcement learning,” Annual Conference on Neural Information Processing Systems, 2023.

[5] Y. Zhang, G. Ma, G. Hao, L. Guo, Y. Chen, and S. Yu, “Efficient reinforcement learning through adaptively
pretrained visual encoder,” in Association for the Advancement of Artificial Intelligence, 2025, pp. 22 668–22 676.

[6] D. Hafner, J. Pasukonis, J. Ba, and T. Lillicrap, “Mastering diverse domains through world models,” arXiv
preprint arXiv:2301.04104, 2023.

[7] E. Alonso, A. Jelley, V. Micheli, A. Kanervisto, A. J. Storkey, T. Pearce, and F. Fleuret, “Diffusion for
world modeling: Visual details matter in atari,” Annual Conference on Neural Information Processing Systems,
2024.

[8] G. Ma, Z. Wang, X. Yuan, and F. Zhou, “Improving model-based deep reinforcement learning with learning
degree networks and its application in robot control,” J. Robotics, pp. 7 169 594:1–7 169 594:14, 2022.

[9] J.-C. Pang, X. Yang, S.-H. Yang, X.-H. Chen, and Y. Yu, “Natural language instruction-following with
task-related language development and translation,” in Neural Information Processing Systems, 2023.

[10] A. Szot, M. Schwarzer, H. Agrawal, B. Mazoure, W. Talbott, K. Metcalf, N. Mackraz, D. Hjelm, and
A. Toshev, “Large language models as generalizable policies for embodied tasks,” International Conference on
Learning Representations, 2023.

[11] K. Cobbe, V. Kosaraju, M. Bavarian, M. Chen, H. Jun, L. Kaiser, M. Plappert, J. Tworek, J. Hilton,
R. Nakano, C. Hesse, and J. Schulman, “Training verifiers to solve math word problems,” arXiv preprint
arXiv:2110.14168, 2021.

[12] M. Dalal, T. Chiruvolu, D. S. Chaplot, and R. Salakhutdinov, “Plan-seq-learn: Language model guided rl
for solving long horizon robotics tasks,” International Conference on Learning Representations, 2024.

[13] W. Huang, P. Abbeel, D. Pathak, and I. Mordatch, “Language models as zero-shot planners: Extracting
actionable knowledge for embodied agents,” International Conference on Machine Learning, vol. 162, pp.
9118–9147, 2022.

[14] A. Szot, B. Mazoure, O. Attia, A. Timofeev, H. Agrawal, D. Hjelm, Z. Gan, Z. Kira, and A. Toshev, “From
multimodal llms to generalist embodied agents: Methods and lessons,” IEEE Conference on Computer Vision
and Pattern Recognition, pp. 10 644–10 655, 2025.

[15] A. Brohan, N. Brown, J. Carbajal, Y. Chebotar, K. Choromanski, T. Ding, D. Driess, K. A. Dubey, C. Finn,
P. R. Florence, C. Fu, M. G. Arenas, K. Gopalakrishnan, K. Han, K. Hausman, A. Herzog, J. Hsu, B. Ichter,
A. Irpan, N. J. Joshi, R. C. Julian, D. Kalashnikov, Y. Kuang, I. Leal, S. Levine, H. Michalewski, I. Mordatch,
K. Pertsch, K. Rao, K. Reymann, M. S. Ryoo, G. Salazar, P. R. Sanketi, P. Sermanet, J. Singh, A. Singh,
R. Soricut, H. Tran, V. Vanhoucke, Q. H. Vuong, A. Wahid, S. Welker, P. Wohlhart, T. Xiao, T. Yu, and
B. Zitkovich, “Rt-2: Vision-language-action models transfer web knowledge to robotic control,” Conference on
Robot Learning, vol. 229, pp. 2165–2183, 2023.

[16] D. Driess, F. Xia, M. S. M. Sajjadi, C. Lynch, A. Chowdhery, B. Ichter, A. Wahid, J. Tompson, Q. H.
Vuong, T. Yu, W. Huang, Y. Chebotar, P. Sermanet, D. Duckworth, S. Levine, V. Vanhoucke, K. Hausman,
M. Toussaint, K. Greff, A. Zeng, I. Mordatch, and P. R. Florence, “Palm-e: An embodied multimodal language
model,” in International Conference on Machine Learning, 2023.

[17] J.-C. Pang, S.-H. Yang, K. Li, J. Zhang, X.-H. Chen, N. Tang, and Y. Yu, “Knowledgeable agents by offline
reinforcement learning from large language model rollouts,” Conference on Neural Information Processing
Systems, 2024.

10



[18] Y. Jiang, A. Gupta, Z. Zhang, G. Wang, Y. Dou, Y. Chen, L. Fei-Fei, A. Anandkumar, Y. Zhu, and L. J.
Fan, “Vima: General robot manipulation with multimodal prompts,” arXiv preprint arXiv:2210.03094, 2022.

[19] G. Wang, Y. Xie, Y. Jiang, A. Mandlekar, C. Xiao, Y. Zhu, L. J. Fan, and A. Anandkumar, “Voyager: An
open-ended embodied agent with large language models,” Trans. Mach. Learn. Res., vol. 2024, 2023.

[20] R. Mon-Williams, G. Li, R. Long, W. Du, and C. Lucas, “Embodied large language models enable robots
to complete complex tasks in unpredictable environments,” Nature Machine Intelligence, 2025.

[21] J. Duan, R. Zhang, J. Diffenderfer, B. Kailkhura, L. Sun, E. Stengel-Eskin, M. Bansal, T. Chen, and K. Xu,
“Gtbench: Uncovering the strategic reasoning limitations of llms via game-theoretic evaluations,” arXiv preprint
arXiv:2402.12348, 2024.

[22] S. Jassim, M. S. Holubar, A. Richter, C. Wolff, X. Ohmer, and E. M. B. Bruni, “Grasp: A novel benchmark
for evaluating language grounding and situated physics understanding in multimodal language models,” in
International Joint Conference on Artificial Intelligence, 2023.

[23] G. Polverini and B. Gregorcic, “How understanding large language models can inform the use of chatgpt
in physics education,” European Journal of Physics, vol. 45, 2023.

[24] M. Ahn, A. Brohan, N. Brown, Y. Chebotar, O. Cortes, B. David, C. Finn, K. Gopalakrishnan, K. Hausman,
A. Herzog, D. Ho, J. Hsu, J. Ibarz, B. Ichter, A. Irpan, E. Jang, R. M. J. Ruano, K. Jeffrey, S. Jesmonth, N. J. Joshi,
R. C. Julian, D. Kalashnikov, Y. Kuang, K.-H. Lee, S. Levine, Y. Lu, L. Luu, C. Parada, P. Pastor, J. Quiambao,
K. Rao, J. Rettinghouse, D. M. Reyes, P. Sermanet, N. Sievers, C. Tan, A. Toshev, V. Vanhoucke, F. Xia, T. Xiao,
P. Xu, S. Xu, and M. Yan, “Do as i can, not as i say: Grounding language in robotic affordances,” in Conference
on Robot Learning, 2022.

[25] I. Singh, V. Blukis, A. Mousavian, A. Goyal, D. Xu, J. Tremblay, D. Fox, J. Thomason, and A. Garg,
“Progprompt: Generating situated robot task plans using large language models,” IEEE International Conference
on Robotics and Automation, pp. 11 523–11 530, 2022.

[26] Y. Lu, W. Feng, W. Zhu, W. Xu, X. E. Wang, M. P. Eckstein, and W. Y. Wang, “Neuro-symbolic procedural
planning with commonsense prompting,” in International Conference on Learning Representations, 2022.

[27] C. H. Song, J. Wu, C. Washington, B. M. Sadler, W.-L. Chao, and Y. Su, “Llm-planner: Few-shot grounded
planning for embodied agents with large language models,” IEEE/CVF International Conference on Computer
Vision, pp. 2986–2997, 2022.

[28] T. Carta, C. Romac, T. Wolf, S. Lamprier, O. Sigaud, and P.-Y. Oudeyer, “Grounding large language models
in interactive environments with online reinforcement learning,” International Conference on Machine Learning,
vol. 202, pp. 3676–3713, 2023.

[29] M. Eric, R. Goel, S. Paul, A. Kumar, A. Sethi, A. K. Goyal, P. Ku, S. Agarwal, S. Gao, and D. Z. Hakkani-
Tür, “Multiwoz 2.1: Multi-domain dialogue state corrections and state tracking baselines,” International
Conference on Language Resources and Evaluation, pp. 422–428, 2019.

[30] M. Rohmatillah and J.-T. Chien, “Robust multi-domain multi-turn dialogue policy via student-teacher
offline reinforcement learning,” APSIPA Transactions on Signal and Information Processing, 2024.

[31] J. Liang, W. Huang, F. Xia, P. Xu, K. Hausman, B. Ichter, P. R. Florence, and A. Zeng, “Code as policies:
Language model programs for embodied control,” IEEE International Conference on Robotics and Automation,
pp. 9493–9500, 2022.

[32] A. Chowdhery, S. Narang, J. Devlin, M. Bosma, G. Mishra, A. Roberts, P. Barham, H. W. Chung, C. Sutton,
S. Gehrmann, P. Schuh, K. Shi, S. Tsvyashchenko, J. Maynez, A. Rao, P. Barnes, Y. Tay, N. M. Shazeer,
V. Prabhakaran, E. Reif, N. Du, B. Hutchinson, R. Pope, J. Bradbury, J. Austin, M. Isard, G. Gur-Ari, P. Yin,
T. Duke, A. Levskaya, S. Ghemawat, S. Dev, H. Michalewski, X. García, V. Misra, K. Robinson, L. Fedus,
D. Zhou, D. Ippolito, D. Luan, H. Lim, B. Zoph, A. Spiridonov, R. Sepassi, D. Dohan, S. Agrawal, M. Omernick,
A. M. Dai, T. S. Pillai, M. Pellat, A. Lewkowycz, E. Moreira, R. Child, O. Polozov, K. Lee, Z. Zhou, X. Wang,
B. Saeta, M. Díaz, O. Firat, M. Catasta, J. Wei, K. S. Meier-Hellstern, D. Eck, J. Dean, S. Petrov, and N. Fiedel,
“Palm: Scaling language modeling with pathways,” J. Mach. Learn. Res., vol. 24, pp. 240:1–240:113, 2023.

[33] L. Ouyang, J. Wu, X. Jiang, D. Almeida, C. L. Wainwright, P. Mishkin, C. Zhang, S. Agarwal, K. Slama,
A. Ray, J. Schulman, J. Hilton, F. Kelton, L. E. Miller, M. Simens, A. Askell, P. Welinder, P. F. Christiano,
J. Leike, and R. J. Lowe, “Training language models to follow instructions with human feedback,” Conference
on Neural Information Processing Systems, 2022.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We introduce the contribution in the abstract and the last paragraph of Sec. 1.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We have discussed the limitations of this work in detail in Sec. 5.
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• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.
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judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: This paper does not include theoretical proofs.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We report important details about the experiments in Sec. 3. We also provide
the necessary hyper-parameters for reproducibility: the choice of the pre-trained LLM
(Deepseek-R1-671B [54]).
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• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We have released the code and data based on the submission guidelines.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We selected those hyperparameters for their good performances.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The results reported are averaged over three random runs. We use error bars or
shaded area to present the statistical significance, e.g., Fig. 3.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We illustrate the details about experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research conforms with the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We have discussed the broader impacts in conclusion.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This paper poses no such risks, as it does not release new pre-trained models
or datasets.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The assets/environments used in this paper are properly credited: Deepseek-R1
[54], SAC [50], Meta-World [36], Robosuite [37], Kitchen [35].

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: This paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: We utilize a LLM as a language-based world model for state planning. The
specific methodology is detailed in the main text.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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