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Abstract

Open-ended learning, also called ‘life-long learning’ or ‘autonomous curriculum learning’,
aims to program machines and robots that autonomously acquire knowledge and skills in a
cumulative fashion. We illustrate the first edition of the REAL-2019 – Robot open-Ended
Autonomous Learning competition, prompted by the EU project GOAL-Robots – Goal-
based Open-ended Autonomous Learning Robots. The competition was based on a simulated
robot that: (a) acquires sensorimotor competence to interact with objects on a table; (b)
learns autonomously based on mechanisms such as curiosity, intrinsic motivations, and
self-generated goals. The competition featured a first ‘intrinsic phase’, where the robots
learned to interact with the objects in a fully autonomous way (no rewards, predefined
tasks or human guidance), and a second ‘extrinsic phase’, where the acquired knowledge
was evaluated with tasks unknown during the first phase. The competition ran online
on AIcrowd for six months, involved 75 subscribers and 6 finalists, and was presented at
NeurIPS-2019. The competition revealed very hard as it involved difficult machine learning
challenges usually tackled in isolation, such as exploration, sparse rewards, object learning,
generalisation, catastrophic interference, and autonomous skill learning. Following the
participant’s positive feedback, the preparation of a second REAL-2020 competition is
underway, improving on the formulation of a relevant benchmark for open-ended learning.
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1. Introduction

Background and impact. Evolution selected mechanisms that allow mammals to grad-
ually acquire knowledge and skills during life to behave adaptively in environments having
a great complexity. While the satisfaction of biological and social needs are major drives for
learning, in more sophisticated animals curiosity and intrinsic motivations represent funda-
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mental means for learning as they can guide the acquisition of knowledge and skills when
these are not immediately needed (Berlyne, 1960; Baldassarre, 2011; Gottlieb et al., 2013).

Increasingly sophisticated learning algorithms and robots have been recently developed,
but their autonomy and versatility are still limited in comparison to those of animals.
While this is not a problem when solving specific predefined tasks, the lack of autonomy
of present robots prevents them from successfully acting in unstructured/non-engineered
environments where they face situations requiring sensorimotor skills unknown at design-
time. As summarised by some industrial stakeholders1: “Present-day robots are made for
the purpose of repeating several tasks thousands of times. Future robots, on the other
hand, will have to perform thousands of tasks several times”. It is impossible to directly
program robots to solve those tasks because they are both many and unknown beforehand.
A solution to this problem is that robots autonomously generate those tasks and learn
to solve them. The major objective of the REAL-2019 competition is the creation of an
open-ended learning benchmark to attract work of the community on this great challenge,
to isolate its key underlying problems, and to compare alternative solutions.

In the last decades, the autonomous learning of multiple tasks has been tackled un-
der different headings providing results relevant for open-ended learning. In the field of
developmental robotics (Lungarella et al., 2003; Cangelosi and Schlesinger, 2015), task-
agnostic signals produced by algorithms implementing different mechanisms for intrin-
sic motivations (Barto et al., 2004; Oudeyer et al., 2007; Baldassarre and Mirolli, 2013;
Baldassarre, 2011) have been proposed to drive autonomous exploration and skill learn-
ing (Santucci et al., 2014a; Schembri et al., 2007; Schmidhuber, 2010; Tanneberg et al.,
2019). Hierarchical reinforcement learning (Barto and Mahadevan, 2003) has been combined
with IMs, and with deep learning techniques (Kulkarni et al., 2016), for the autonomous
learning of skills sequences. Other works employ IMs to support the autonomous sam-
pling/discovery/generation of goals, intended as representations of states or sets of states
that the agent can pursue with its action (e.g., Santucci et al., 2013; Forestier et al., 2017;
Nair et al., 2018). The autonomous identification of goals can support open-ended leaning
as it allows the autonomous generation of tasks to acquire the skills directed to pursue the
goals (Santucci et al., 2014b). An increasing number of works thus focuses on the devel-
opment of agents able to autonomously form new goals and learn the related skills (Held
et al., 2017; Meeden and Blank, 2017; Nair et al., 2018; Rolf and Asada, 2014; Santucci et al.,
2016; Seepanomwan et al., 2017) based on the saliency of world states (Barto et al., 2004),
the change of states (Santucci et al., 2016; Sperati and Baldassarre, 2018), eigenoptions
(Machado et al., 2017), density models (Bellemare et al., 2016), entropy (Eysenbach et al.,
2018), and variational inference (Achiam et al., 2018). All these approaches are relevant for
the open-ended learning challenge operationalised in the REAL competition benchmark.

Novelty of the competition. While autonomous open-ended learning has been studied
for several years within the developmental robotics community and is now getting increasing
attention in the machine learning and robotic communities, we still do not have a standard
test to compare different systems. Video games, such as Atari’s, have been profitably used
in AI research, but they involve simplified actuators with respect to robotic setups and they
are usually used to accomplish externally defined tasks. Some existing competitions share

1. Manfred Gundel, CEO KUKA Robotics, World Robotics, 2011, http://www.worldrobotics.org
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similarities with REAL but also have relevant differences. As REAL, the AutoML for Life-
long Machine Learning2 competition aims to develop systems able to acquire an increasing
amount of knowledge. However, contrary to REAL it focuses on learning increasing amounts
of input-output data furnished externally, rather than on embodied systems interacting with
a physical world to actively generate new experience. Animal-AI Olympics3 are focused on
simulated animal-like robots interacting with physical environments. However, it differs
from REAL because robots are tested with a set of specific tasks defined through reward
functions, rather than requiring the autonomous creation of tasks. As REAL, the ICDL
MODELbot Challenge4 is focused on developmental processes. However, it also involve so-
cial tasks (e.g., imitation, social learning), and is not focused on a specific benchmark but
rather on an article-based jury’s evaluation of the scientific quality of the reproduction of a
target empirical database chosen from three possible experiments.

2. The REAL challenge

Setup. REAL involves a simulated robot that has to autonomously learn how to act in a
‘kitchen-like’ environment to later solve some tasks unknown while learning (Fig. 1). The
robot is formed by: a Kuka robotic arm with 7 degrees of freedom; a gripper with 2 degrees
of freedom; and a camera viewing the scene from the top. The environment is a simplified
kitchen scenario formed by: a table; a shelf on the table; a cube and two kitchen objects –
a mustard bottle and a tomato can – derived from the YCB standard object set5.

Structure of the competition. Each competing system undergoes two phases: an in-
trinsic phase of learning and an extrinsic phase of testing. In the intrinsic phase, the robot
autonomously interacts with the environment for 10,000,000 simulation steps and should
acquire as much knowledge and skills as possible to best solve the tasks in the extrinsic
phase. During the extrinsic phase, the knowledge acquired during the intrinsic phase is
evaluated with tasks unknown during the intrinsic phase. The robot can also learn in the
extrinsic phase, but this is of little help for the limited time available to solve each task.

During the extrinsic phase, the robot has to solve 3 types of tasks (‘challenges’; Fig. 1).
For each task: (1) the robot is shown a certain configuration of the 3 objects in the envi-
ronment (‘overall goal’); (2) the objects are set in a different position and orientation in
the environment; (3) the robot is given some time to bring the objects to the overall-goal
configuration. The three challenges involve tasks with different types of object configura-
tions: (1) 2D challenge: the overall goal is a configuration of the 3 objects placed on the
table plane; compared to the initial configuration, 1, 2, or 3 objects have to be moved on
the table plane; the orientation of the objects in the initial and final configurations is the
same, and the objects are separated from each other. (2) 2.5D challenge: the overall goal is
a configuration of the 3 objects placed either on the table plane or on the shelf; compared
to the initial configuration, 1, 2, or 3 objects have to be moved from the plane to shelf or
vice-versa; the orientation of the objects in the initial and final configurations is the same,

2. http://automl.chalearn.org/life-long-learning
3. http://animalaiolympics.com
4. https://icdl-epirob2019.org/modelbot-challenge
5. https://arxiv.org/pdf/1502.03143.pdf
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(a) (b)

Figure 1: (a) The environment with the robot, the table, the three objects, and the shelf.
The inset shows the environment as seen from the robot top view camera. (b)
Initial (left) and overall-goal (right) configurations of three types of goals of the
extrinsic phase. From top to bottom: 2D goal; 2.5D goal; 3D goal.

and the objects are separated from each other. (3) 3D challenge: the overall goal is a con-
figuration of the 3 objects placed anywhere on the table plane or on the shelf; the objects
can have any initial/final orientation and may touch/overlap. The extrinsic phase involved
350 different overall goals each to be solved in 2,000 simulation steps: 150 goals for the 2D
challenge (50 for each of the 1/2/3-object tasks); 150 goals for the 2.5D challenge (50 for
each of the 1/2/3-object tasks); 50 goals for the 3D challenge (3-object tasks).

Note how the only regularities (‘structure’) shared between the intrinsic and extrinsic
phases involve the environment and objects: in the intrinsic phase the robot has no knowl-
edge about which tasks it will have to solve in the extrinsic phase. Therefore, in the intrinsic
phase the robot should undergo an autonomous open-ended learning process to acquire, in
the available time, as much knowledge and as many skills as possible.

Metrics. The performance of the extrinsic phase for an overall goal g was scored according
to the following metrics Mg:

Mg =
1

3

3∑
o

[
w · e−p||p∗

o−po|| + (1− w) · e−a||a∗
o−ao||

]
(1)

where p∗ is the goal position (x,y,z) vector of the mass center of the object indexed by
o = {1, 2, 3} in the overall goal, p is the position of the object at the end of the task after
the robot attempts to bring it to the goal position, p is a constant ensuring that this part
of the score will be 0.25 if the distance to the goal position is 0.05 (5 cm); a∗, a, and a,
are the analogous variables for the object orientation, with a set so that the orientation
component of the score will be 0.05 if the difference between the desired and the obtained
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orientation, expressed as quaternions, is 0.30; w = 0.75 for 3D tasks and 1 otherwise. Note
that the metric ranges in (0, 1], and the two weighted components (position and orientation)
also range in (0, 1] with 1 being assigned if the objects are exactly in the goal position and
orientation, and the score decaying exponentially the further they are from them. All
objects in the final configuration were scored, regardless if they had to be moved compared
to the initial configuration or not. The score for each challenge was calculated by averaging
the score of all goals of that challenge, and a final score was obtained by averaging the
scores of all challenges.

Human check for compliance with the rules. Organisers inspected the code of sam-
pled systems submitted during Round 1, and the code of all Round 2 final submissions, to
ensure the compliance with the rules and the competition ‘spirit’ (see Rules below).

Software and material. We provided an environment6 and a software kit7 through
GitHub repositories. These repositories included the instructions to use the software kit; the
software to run the simulation of the robot and environment; the interface to run the intrinsic
phase learning and the extrinsic phase scoring. The environment was simulated using
PyBullet and was created as an OpenAI Gym environment. OpenAI Gym environments
are a standard in the machine learning community thus making easy to reuse existing
algorithm implementations in the competition. The software kit provided an example of
how to run the environment and evaluate a system. The environment could be run with
the GUI on, showing the environment as in Fig. 1, or with the GUI off, for faster execution.
When running the tests in local machines, the participants could also freely set the duration
of the intrinsic and the extrinsic phases.

3. Organization of the competition

Protocol and schedule. The participants registered in AIcrowd web-site 8 , downloaded
the competition software kit, and installed the robot and environment simulator in their
machines. The participants managed their submission code as a private Git repository in
AIcrowd. The repository had to contain the code of the systems to submit for the official
evaluation. To make a submission, the participants created a new Git tag and pushed it to
the system repository. The automatic evaluator picked up the code, built a docker image
of it, and computed the performance score by running the simulation using cloud servers
on Google Cloud Platform.

The competition was divided into two rounds: (1) Round 1 : submissions were evaluated
by running only the extrinsic phase while participants run the intrinsic phase on their
machines; the top 20 ranking participants could participate to Round 2; (2) Round 2 :
submissions were evaluated by running both the intrinsic and extrinsic phase in AIcrowd;
all final submissions were checked for coherence with the competition rules and ‘spirit’. The
winners were publicly declared during the NeurIPS-2019 conference.

6. https://github.com/AIcrowd/real_robots
7. https://github.com/AIcrowd/neurips_goal_real_robots_starter_kit
8. https://www.aicrowd.com
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Beta testing at IMOL-2019 conference. The software kit of the competition was beta
tested during a Summer School on Open-Ended Learning Robots9 linked to the International
Conference on Open-Ended Learning (IMOL-2019)10.

Rules. The rules explained the competition software kit, phases, Rounds, etc. Rules also
contained the ‘spirit’ of the competition: that is, that the competition is directed to develop
systems that have close to zero knowledge on the world when they start the intrinsic phase
and so they should autonomously acquire all the knowledge they need to solve the tasks in
the extrinsic phase. In line with this ‘spirit’, a Golden Rule was estabilished that forbid the
use of the extrinsic-phase scoring function, or variants of it, as a reward function during
the intrinsic phase. However, given the difficulty of the competition, in Round 1 we allowed
participants to violate in part the competition spirit, except the Golden Rule above, by
using hardwired or pre-trained models for recognising the identity and position of objects.
Round 2 allowed no exception instead, so the systems had to learn everything from scratch
during the intrinsic phase.

4. Results

Final ranking. During the competition, 171 users subscribed to REAL on AICrowd,
with 78 submissions in Round 1 and 46 submissions in Round 2. The submissions in Round
2 were from 6 participants involving both individual researchers and research groups. The
final top scores were all very similar (Table 1).

Table 1: The participants of the competition and their final scores.

Final Submissions Score 2D 2.5D 3D

mrrobot 0.235 0.352 0.330 0.021

tky 0.235 0.352 0.330 0.021

CIIRC-Incognite 0.235 0.352 0.330 0.021

isi 0.220 0.330 0.307 0.024

AutoLearningMPI 0.219 0.329 0.307 0.021

bryan lincoln 0.208 0.310 0.287 0.025

With a maximum score of 1.0, the score of 0.235 (3 top ranking teams) was quite low and
could be achieved by not moving any object. Indeed, many of the overall goals had 1 or 2
objects already in the desired place, so trying to adjust the remaining ones risked to impair
their correct position by accidentally hitting them. As a result, the submissions where
the robot moved the objects achieved a lower score. Achieving a score higher than 0.235
required to consistently improve the position of objects out of place while not deteriorating
the position of objects already in place, a result not achieved by any submission of any
team.

9. http://www.goal-robots.eu/announcements/events/summer-school-2019-2
10. http://www.imol-conf.org
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What we learned. The major thing we learned from the competition is that it involves
many challenges at the core of machine learning, and that facing them at the same time
made the competition very hard. Here we illustrate a few of those challenges, some solu-
tions that were attempted by participants, and other solutions that could be explored in
the future. Exploration: touching the objects. A major challenge is that random explo-
ration rarely leads to touch objects as most of the time the robot arm moves far from the
table and objects. So, some sort of intrinsic motivation is needed to guide exploration to-
wards the interesting parts of the environment. Some groups developed their own intrinsic
motivation mechanism, e.g. the Incognite Group crafted a ‘Reward Mixer’ that combined
motorics, touch, and latent distance to self-generate a reward signal. Another possibility
could be to use ‘curiosity-driven exploration by self-supervised prediction’ (Pathak et al.,
2017), where the robot is attracted to things that it cannot initially predict. Abstraction:
object recognition. To successfully interact with the environment the robot needs a suitable
abstraction, here of objects. This can be explicit, based on a separate abstraction module,
or implicit, based on end-to-end approaches. In Round 2, we did not allow models where
object recognition/localisation was pre-trained, so the robot had to face the intrinsic phase
without even knowing that objects existed. One natural solution for explicit abstraction
would be to employ approaches, such as ‘variational autoencoders’ (Kingma and Welling,
2013), allowing the abstraction of objects as latent variables. However, to be trained such
approaches need a variety of images of the object in different positions, but to generate this
variety the robot needs to be able to move the objects, which in turn needs to abstract them.
This boot-strapping problem is one of the major challenges of the competition. Also, when
the arm moves an object it covers a large part of the image, thus impairing the abstraction
of objects. Training control: no rewards, no goals. A core feature of the challenge is that
in the intrinsic phase the agent is not given any reward or goal, thus it has to self-generate
tasks autonomously. Some approaches that could be used to this purpose are as follows:
‘GRAIL – Goal-discovering Robotic Architecture for Intrinsically-motivated Learning’ (San-
tucci et al., 2016), that self-generates goals/tasks when it succeeds to cause a novel change in
the environment; ‘Visual Reinforcement Learning with Imagined Goals’ (Nair et al., 2018),
that generates goals with an autoencoder; ’AGME - Autonomous Goal Manifold Explo-
ration’ (Cartoni and Baldassarre, 2018), using a non-parametric method to progressively
discover the goal sub-space, and ‘Automatic Goal Generation for Reinforcement Learning
Agents’ (Florensa et al., 2018), using a notion of ‘Goal of Intermediate Difficulty’, i.e. goals
that are not too hard or too easy to learn. Interdependent challenges. All these challenges,
plus others not reported here for brevity, are interdependent. For example, learning to
move an object requires to know where it is, but learning to know where it is requires to
move it. More in general, exploration, abstraction, and control have to be acquired at the
same time as any of them cannot succeed without the others. A related issue is that control
might take as input the abstract representations and these change with the progression of
learning: this creates a non-stationary problem for control. Architectures. Facing the above
problems possibly requires rather complex architectures formed by multiple modules, and
coordinating these modules is in itself a difficult engineering challenge. These challenges
were also exacerbated by the lack of a baseline model to start from, and by the score that,
as we saw above, punished initial success. This impaired the participant’s motivation and
decreased the number of entrants that participated to Round 2.
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5. Next steps: REAL-2020

We are now preparing the second edition of REAL. Based on what we learned from the first
edition, we will lower the competition difficulty in multiple ways by: (a) introducing easier
classes of goals, e.g. involving single objects; (b) furnishing parameterised motor actions to
facilitate the contact with objects; (c) elaborating a metric rewarding initial performance;
(d) furnishing an architecture blueprint to organise the multiple components needed to
solve the challenge; (e) allowing the robot controller to decide online when to acquire the
visual input, thus having much faster simulations. We will also furnish a baseline model
based on which the participants could develop their own systems. These new features will
allow an easier ‘take-off’ for the participants, even the less skilled ones, and so will allow the
community to fully appreciate the fascination and challenges posed by open-ended learning.

6. Conclusions

The first edition of the REAL competition, REAL-2019, demonstrated that autonomous
open-ended learning in machines and robots is still unsolved. It is a fundamental research
area that it involves central challenges for artificial intelligence, such as exploration, sparse
rewards, object learning, generalisation, catastrophic interference, and autonomous skill
learning. Open-ended learning has also a great potential for applications involving unstruc-
tured environments posing problems unforeseeable at design time.

The competition is creating a standard benchmark for open-ended learning, useful to
foster the production and comparison of new algorithms and architectures. In this respect,
the core of the proposed benchmark is its structure based on the intrinsic and extrinsic
phases. Indeed, while in real organisms and future robots intrinsic and extrinsic learning
are and should be intermixed, the two-fold structure of the competition allows the use of
the extrinsic phase to rigorously measure the knowledge acquired in the intrinsic phase on
the basis of autonomous intrinsically-motivated open-ended learning.

REAL-2019 proved to be very hard, beyond the state of the art. The reason is that open-
ended learning requires robots to face a number of key machine learning challenges at the
same time – a difficult bootstrapping problem. Despite, but also for, these challenges, the
competition received a lot of positive comments during its implementation and the NeurIPS-
2019 conference. One of the NeurIPS reviewers of the competition proposal observed: “It
may take an initial year of the competition for both the organizers and participants to hone
this competition into a truly exciting second competition. And that is OK.” Encouraged
by this interest, and motivated by the fascinating challenges posed by open-ended learning,
we are thus working to prepare an exciting, enhanced Second REAL-2020 Competition.
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