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Abstract

Fair decision making has largely been studied
with respect to a single decision. Here we investi-
gate the notion of fairness in the context of sequen-
tial decision making where multiple stakeholders
can be affected by the outcomes of decisions. We
observe that fairness often depends on the history
of the sequential decision-making process, and
in this sense that it is inherently non-Markovian.
We further observe that fairness often needs to
be assessed at time points within the process, not
just at the end of the process. To advance our
understanding of this class of fairness problems,
we explore the notion of non-Markovian fairness
in the context of sequential decision making. We
identify properties of non-Markovian fairness, in-
cluding notions of long-term, anytime, periodic,
and bounded fairness. We explore the interplay
between non-Markovian fairness and memory and
how memory can support construction of fair poli-
cies. Finally, we introduce the FairQCM algo-
rithm, which can automatically augment its train-
ing data to improve sample efficiency in the syn-
thesis of fair policies via reinforcement learning.

1. Introduction
In many real-world decision-making settings, decisions are
of consequence to a diversity of entities—the stakehold-
ers of the decision-making process. Furthermore, decision
making is often sequential, involving multiple decisions ex-
ecuted over time in support of realizing near- and/or longer-
term objectives. Here we study fairness in the context of
sequential decision making, where multiple stakeholders
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Figure 1. Two processes for distributing vaccines to countries A
and B. Both result in an equal distribution of vaccine at the end.
Monthly evaluation shows that the first process favors A for a time.

can be affected by the outcomes of decisions.

To ground this discussion, consider the problem of distribut-
ing vaccines to countries around the world, and our aspi-
ration that the allocation to different countries be “fair” in
some manner. Much of the decision making required to
distribute vaccines is in service of getting vaccine safely
from origin to destination. Delivery can be complex and
costly, restricting the set of feasible plans. Indeed many
such decisions will not immediately affect the fairness of
the vaccine distribution. Does it even make sense to ask
whether these intermediate decisions are “fair?” Perhaps
what we need to aspire to is long-term fairness of the entire
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decision-making process, in the limit when all the vaccines
have been delivered. Unfortunately, this has its problems.

To illustrate, consider two greatly simplified processes to
distribute 80,000 vaccines to countries A and B, as depicted
in Figure 1; the first process reflects an economical plan that
delivers 40,000 vaccines to country A in two consecutive
monthly shipments of 20,000 each, followed by two consec-
utive monthly shipments of the same size to country B. In
the second process, A and B each receive 10,000 vaccines
each month for four months. Each process results in the
delivery of 40,000 vaccines to each of A and B. However
the latter process may seem “more fair,” particularly when
we treat early vaccine access as a proxy for reduced negative
health outcomes (e.g., Du et al., 2024).

This simple example suggests the need to measure and
enforce fairness at significant timepoints throughout the
process—a notion of periodic fairness, perhaps monthly,
quarterly, or at year’s end. In the extreme we might aspire to
a notion of anytime fairness, or perhaps a notion of bounded
fairness where the fairness of the allocation of vaccines is
judged at a time point that is determined by some property
of the system, such as after delivering each million vaccines.

This example also exposes an important property of fair-
ness in sequential decision making, that it can be inherently
non-Markovian. That is, the assessment of fairness of a
sequential decision-making process does not just rely on the
current state, or more generally (s, a, s′), the state s′ result-
ing from deciding to perform action a in state s. Rather, it
is a function of the history of the decision-making process,
the history of state-action pairs. This has implications not
only for how we define various notions of fairness but also
how we compute fair policies, and the role of memory.

To the best of our knowledge, this is the first work to explore
these important concepts. Our contributions include:

1. We introduce the notion that multi-stakeholder fairness
can be non-Markovian in sequential decision making
and define formative concepts relating to the assess-
ment of fairness at varying time intervals including
long-term, periodic, anytime, and bounded fairness.

2. We study the role of memory in converting non-
Markovian problems into Markovian problems so
that the generation of fair policies, which are inher-
ently non-Markovian, can be addressed using standard
Markovian as well as non-Markovian methods.

3. We propose FairQCM, an algorithm that encourages
sample-efficient fair policy learning by generating
counterfactual experiences during the learning pro-
cess. We demonstrate that FairQCM promotes sample-
efficient fair learning compared with baseline methods
that learn explicitly from the entire history, or use a
neural memory module.

These contributions are relevant both to the synthesis of
fair sequential decision making, and to the assessment of
fairness with respect to historical traces of human- and/or
machine-generated decision making.

There are many practical instances of sequential decision
making problems where the assessment of fairness is po-
tentially non-Markovian in nature and where some form of
intermittent fairness assessment and enforcement may be
necessary. There is a rich literature on vaccine allocation
(Erdoğan et al., 2024). Interestingly, the COVID vaccine
allocation program COVAX had the explicitly temporal ob-
jective of participating countries progressing at the same
rate, and they developed an allocation algorithm (World
Health Organization, 2021) whose inputs included the his-
torical allocation of vaccines from the program.1 Another
practical example of sequential decision making, where the
assessment and optimization of fairness can require consid-
eration of history, is in establishing fair waiting times in
healthcare, such as for hospital admissions or surgeries (e.g.,
Qi, 2017; Ala et al., 2021).

We mention these applications to reinforce the practical
import and potential impact of the framing and foundational
ideas presented in this paper. To simplify our discussion
going forward, we will migrate from our vaccine example
to an even simpler example involving the distribution of
indivisible goods—in this case doughnuts.

Running Example – Doughnut Allocation: Given n peo-
ple, and m doughnuts for distribution, define a policy to
distribute these doughnuts in a fair manner over time. This
problem presents at least two challenges: (i) defining what
constitutes a fair allocation of these goods, and (ii) prescrib-
ing, or learning a policy to realize a fair distribution. We
will use variants of this problem to illustrate our framework.

2. Related Work
We are not the first to study fairness over time. Indeed, a
flurry of research activity has followed from the observation
that intervening to promote fairness in the short-term can
lead to distinct and sometimes unexpected results in the long
run (Liu et al., 2018; Hashimoto et al., 2018; Hu & Chen,
2018; D’Amour et al., 2020).

Zhang & Shah (2014) introduced a method to maximize
returns for the worst-off agent in a setting where agents
have local interests. Jabbari et al. (2017) explored a more
conservative notion of fairness, where a reinforcement learn-
ing (RL) agent was tasked with considering long-term dis-
counted rewards when comparing two actions, reminiscent
of a dynamic take on the individual fairness principle of

1We note that COVAX has been subject to various criticisms
(see, e.g., Usher, 2021).
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“treating likes alike” (Dwork et al., 2012). Group notions of
fairness have also been explored and theoretically analyzed
within RL. Wen et al. (2021) offer practical approaches to
encourage parity in rewards between a majority and minority
group, as well as characterizations of the sample complexity
involved. Deng et al. (2022) consider group fairness con-
straints at each step and provide theoretical guarantees for
fairness violations.

Defining what constitutes fairness is an open-ended
design choice with normative and political implica-
tions (Narayanan, 2018; Binns, 2018; Xinying Chen &
Hooker, 2023). Given the importance of the scalar re-
ward signal in RL, one key question is how to aggregate
rewards across stakeholders and time to measure the overall
fairness of a policy.

A (cardinal) social welfare function aggregates individ-
ual utilities together into one number. Suppose we have
a sequence of utilities u⃗ = u1, . . . , un. Some well-
known social welfare functions are the utilitarian wel-
fare Util(u⃗) =

∑
i ui, the Rawlsian welfare Rawls(u⃗) =

min(u1, . . . , un), and the Nash welfare Nash(u⃗) =
∏

i ui

(see, e.g., Caragiannis et al., 2019). Some of these can be
viewed, in part, as measuring fairness. Recent work has
proposed optimizing Nash welfare, Gini social welfare, and
utilitarian objectives (Mandal & Gan, 2022; Siddique et al.,
2020; Fan et al., 2023). Our contributions are distinct in our
focus on measuring fairness over a history of decisions—as
opposed to immediate choices or long-term aggregated dis-
counted rewards—and the special role of memory that this
non-Markovian perspective on fairness entails.

Our motivating sequential doughnut allocation example
is related to an established literature on allocation prob-
lems (Ibaraki & Katoh, 1988), where fairness concerns have
also been explored (Kash et al., 2014; Bouveret & Lemaître,
2016; Caragiannis et al., 2019). Our focus on formal frame-
works for sequential decision making differentiates us in this
regard; although temporally-extended notions of fairness
have also been suggested in the context of computational
social choice (Boehmer & Niedermeier, 2021), they are
underexplored, even in this context.

3. Preliminaries
We consider an environment that is fully observable with
dynamics that are governed by a Markov Decision Pro-
cess (MDP) (Puterman, 2014). We utilize an MDP variant
that makes explicit the stakeholders that are affected by the
sequential decision-making process and their individual re-
ward functions. Our definition is functionally equivalent to
that of a multi-objective MDP (Roijers et al., 2013).

Definition 3.1 (Multi-stakeholder Markov Decision Pro-
cess). A multi-stakeholder MDP is a tuple ⟨S, sinit,

A, P,R1, . . . , Rn, γ⟩ where S is a finite set of states, sinit ∈
S is the initial state, A is a finite set of actions, and
P (st+1 | st, at) is the transition probability distribution,
giving the probability of transitioning to state st+1 by tak-
ing action at in st. For i = 1, . . . , n, Ri : S ×A× S → R
is the reward function of the ith stakeholder, and γ ∈ (0, 1]
is the discount factor.

In such an environment, if executing action at in state st
results in state st+1, each stakeholder i receives the reward
Ri(st, at, st+1). The formalism is agnostic with respect to
who—stakeholders or others—actually executes the actions.

A (Markovian) policy π(a | s) is a probability distribution
over the actions a ∈ A, given a state s ∈ S. We can also
define a non-Markovian policy as a mapping from histories
to distributions over actions: π(at | s1, a1, . . . , at−1, st).

A trace τ of a multi-stakeholder MDP is a (possi-
bly infinite) sequence of alternating states and actions:
s1, a1, s2, a2, s3, a3, . . . (where s1 = sinit). A finite trace
always ends with a state. Following in the spirit of Sut-
ton & Barto (2018), given a trace τ we can define the
discounted return for stakeholder i as the discounted sum
of that stakeholder’s rewards accumulated over the trace:
Gi(τ)

def
=

∑
t γ

t−1Ri(st, at, st+1) (t ranges over the time-
points in the trace, whether there are finitely or infinitely
many.) A policy may generate various traces (i.e., when
actions are selected by it) and could be evaluated in terms
of expected discounted returns.

For an MDP, which can be thought of as a multi-stakeholder
MDP where n = 1, it is standard to try to find a policy that
maximizes the expected discounted return. It is well-known
that (for infinite traces) there always exists a Markovian
policy that does so (Watkins & Dayan, 1992).

Which policies are to be preferred when there are more
stakeholders? Each stakeholder might prefer a policy that
gives itself higher expected discounted return. We consider
a number of ways to assess a policy’s fairness in Section 4.

Finally, here is some further notation we use:
• For a finite trace τT = s1, a1, s2, . . . , sT , aT , sT+1 we

may use a subscript T to indicate the length (number
of actions) as just shown.

• Given a trace τ = s1, a1, . . . , st+1, at+1, st+2, . . .
of length > t, we can write τt for the prefix s1, a1,
. . . , st+1. Recall that a finite trace ends with a state.

• For n ∈ N, we define the set [n] def
= {1, 2, ..., n}.

4. Fairness over Time
In Section 1 we observed that the assessment of fairness
depends on some function of the history of states and actions
and consequently is non-Markovian. In this section we argue
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for the importance of non-Markovian fairness and propose
(Section 4.1) a formalism that allows for expressing many
different forms of fairness over time.

Example: Returning to our simple doughnut example, con-
sider the case where we have 3 children (stakeholders) A, B,
C, and 24 doughnuts to distribute. There are three actions
giveA, giveB, giveC that, in the deterministic case, make
the propositional variables gotA, gotB, and gotC true, re-
spectively. Not surprisingly received doughnuts disappear
near instantaneously! This is a simple allocation problem
and there are many ways of characterizing fairness, but for
ease of explication, a simple strategy to assess whether, at
the end of the process, the 24 doughnuts were allocated
fairly is to inspect the history, count the number of times
each child received a doughnut and if the sums for each
child agree, we can proclaim fairness of the process. ■

To formalize this intuition, suppose that we have a function
U : (S × A)∗ × S → Rn that tells us how well each
stakeholder is doing at the endpoint of the given trace. The
idea is that U(τT )’s ith entry, U(τT )i, is some measure of
how good τT has been to stakeholder i. We will call U
the stakeholder status function, and the value it returns the
stakeholder status vector.

In our doughnut example, the stakeholder status function
would be a function over the entire history, resulting in a
vector of size n = 3 denoting the number of doughnuts
distributed to each of A, B, and C. For other applications,
possible stakeholder status functions could be stakeholder
returns or some measure of how much envy stakeholder i
feels on τ (see Shams et al., 2021).

Suppose also for now that we have some aggregation func-
tion W : Rn → R that we can use to aggregate stakeholder
scores to determine how fair things are. W could for in-
stance be a standard social welfare function like Nash wel-
fare (Section 2), or a boolean-valued function which outputs
1 just in case all stakeholder scores are equal. This is indeed
what is required for our doughnut example.

Given U and W , when can we say that a trace τ was fair? It
might seem that we have an obvious answer: to equate the
fairness of the trace with fairness at the end.
Definition 4.1 (Long-term fairness). Given a status function
U and an aggregation function W , the long-term fairness of
a finite trace τT is W (U(τT )).

As argued in Section 1, in many cases, we wish to assess
the fairness of a process more frequently, perhaps weekly or
monthly, rather than just at the end. To do so, we define a
notion of periodic fairness. There is a variety of options for
aggregating periodic assessments. One simple option would
be to take the status vector at the end of each week, apply
the aggregation function, and then sum the results. In such
a case, if comparing traces of equal length, the greater the

sum, the more fair the trace. For now let us just say that we
have some function Wex : (Rn)∗ → R that lets us aggregate
a sequence of stakeholder status vectors. We will call Wex
the extended aggregation function (higher scores are better).
Definition 4.2 (Periodic fairness). Given a status func-
tion U and extended aggregation function Wex, the pe-
riodic fairness (with period p) of a finite trace τT is
Wex

(
U(τp), U(τ2p), . . . , U(τ⌊T/p⌋p)

)
.

A special case is to assess the trace at every time point:
Definition 4.3 (Anytime fairness). Given a status function
U and extended aggregation function Wex, the anytime fair-
ness of a trace τT is its periodic fairness with period 1.

Long-term fairness could be thought of as a special case of
anytime fairness – the case in which the extended aggrega-
tion function Wex ignores all but the last of its inputs.

A generalization of periodic fairness is bounded fairness,
where we have some “filter” function B(τt) to indicate at
which points fairness should be assessed (for example, after
a dozen doughnuts has been distributed):
Definition 4.4 (Bounded fairness). Given a status func-
tion U , an extended aggregation function Wex, and a
binary-valued function B(τt), the bounded fairness of a
finite trace τT is Wex (U(τt1), U(τt2), . . . , U(τtk)) where
(t1, t2, . . . , tk) is the subsequence of (1, 2 . . . , T ) for which
B(τti) = 1 for each ti.

In Section 4.1, we bring these notions together into a for-
malism that can express many conceptions of fairness for
traces and also for policies.

4.1. Fairness Schemes

To compare traces (and later policies) in a general way, we
introduce fairness schemes, which include as elements the
status, extended aggregation, and filter functions.
Definition 4.5 (Fairness scheme). Given a multi-stakeholder
MDP with state space S and action space A, a fairness
scheme is a tuple F = ⟨U,Wex, B⟩ where
• U : (S×A)∗×S → Rn is the stakeholder status function.
• Wex : (Rn)∗ → R is the extended aggregation function.
• B : (S ×A)∗ × S → {0, 1} is the filter function.
In some cases we may not specify a filter function and just
write F = ⟨U,Wex⟩, which means that we assume that B
is the constant function B(τ) = 1 (indicating that fairness
should be assessed at all time points.)

We typically pair a fairness scheme with a multi-stakeholder
MDP, so for convenience we have the following definition:
Definition 4.6 (Non-Markovian Fair Decision Process
(NMFDP)). A Non-Markovian Fair Decision Process is
a tuple ⟨M,F⟩ whereM is a multi-stakeholder MDP and
F is a fairness scheme defined w.r.t.M.
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Now, we can define the fairness score of a trace.
Definition 4.7 (Fairness score of a trace). Given an NMFDP
⟨M,F⟩ where F = ⟨U,Wex, B⟩, the fairness score of a
finite trace τT , which with a slight abuse of notation we will
write as F(τT ), is

F(τT )
def
= Wex(U(τt1), U(τt2), . . . , U(τtk))

where (t1, t2, . . . , tk) is the subsequence of (1, 2 . . . , T ) for
which B(τti) = 1 for each ti.

That is, the fairness score is the extended aggregation of the
status vectors that pass the filter (note that this definition
coincides with bounded fairness).

In the doughnut example, ti could, for example, denote
each time at which another dozen doughnuts have been
distributed and U(τti) could be a vector corresponding to
the number of doughnuts distributed to each of A, B, and C
at that time. Wex then corresponds to a function over that
sequence of vectors that measures their fairness.

In the case where we are considering policies rather than
historical traces, we can similarly use a fairness scheme F
to score a policy by taking an expectation:
Definition 4.8 (Fairness score of a policy). Given an
NMFDP ⟨M,F⟩ and a time horizon T , the fairness score
of a policy π according to fairness scheme ⟨U,Wex, B⟩ is

FT (π)
def
= E

τT∼π,M
[F(τT )]

where F(τT ) is the fairness score of the trace per Defi-
nition 4.7. To evaluate fairness over infinite traces, we
can consider the limit (if it exists) as T → ∞; i.e.,
F∞(π)

def
= Eτ∼π,M [limT→∞ F(τT )] .

For a given choice of fairness scheme, an optimal policy
would be the one that maximizes the fairness score, either
for some given time horizon or in the limit. Finding such a
policy can be considered in different settings with or without
access to the dynamics model (if we do have access, then
a form of planning might be used; otherwise, we might
use RL). Furthermore, we might or might not have access
to the fairness scheme itself (perhaps fairness scores just
come as feedback from the environment). We will consider
computing policies in Section 5.

4.2. More on the extended aggregation function

For the extended aggregation function Wex, one option
would be to define it to first aggregate stakeholders statuses
at each time point, and then aggregate across time.
Definition 4.9 (Timepoint-first). Given a fairness scheme
⟨U,Wex, B⟩, we will say the extended aggregation function
is timepoint-first if it can be written as

Wex(u1, . . . , uk) = Wtemporal(W (u1), . . . ,W (uk))

in terms of two aggregation functions: an aggregation func-
tion W : Rn → R that is applied to the stakeholder status
vector at each time point, and a temporal aggregation func-
tion Wtemporal : R∗ → R that combines the results.

Here are some example temporal aggregation functions:
• Long-term fairness: Wtemporal(w1, . . . , wk) = wk

• Average: Wtemporal(w1, ..., wk) = mean(w1, ..., wk)
• The discounted sum of the aggregated values for each time
point (treating them like rewards):

Wtemporal(w1, . . . , wk) =
∑k

t=1 γ
t−1wt

Furthermore, Wtemporal could be a standard social wel-
fare function, where we treat the aggregations from dif-
ferent time points as the individual utilities to be aggre-
gated. For example, we could be “Rawlsian with re-
spect to time” and only care about the worst-off timepoint:
Wtemporal(w1, . . . , wk) = min(w1, . . . , wk).

However, not all desirable extended aggregation functions
are naturally expressible in a timepoint-first way. What
if a trace is unfair to a particular stakeholder at one time,
and unfair in their favor at another? We might want to say
that those events balance out. However, from a single real
number W (U(τt)), it is awkward to extract who is being
(un)fairly treated at t. That information would be easier to
define in terms of U(τt) itself. We consider this next.

4.2.1. UNFAIRNESS FOR INDIVIDUAL STAKEHOLDERS

We can use the status function U to define when a specific
stakeholder is being unfairly treated. In the doughnut exam-
ple where 24 doughnuts were being distributed, a distribu-
tion of 8 doughnuts to each of A, B, and C would constitute
a fair distribution, whereas a distribution of 6, 8, and 10,
respectively, would correspond to a distribution that was
unfair to A in favor of C.
Definition 4.10 (Unfair to / unfair in favor of). Given an
NMFDP ⟨M,F⟩ with status function U , a trace τ is un-
fair to stakeholder i at time t on the trace if U(τt)i <
mean(U(τt)), and is unfair in favor of stakeholder i at time
t on the trace if U(τt)i > mean(U(τt)).

We can also make a quantified version of unfairness:
Definition 4.11 (Unfairness to / overall unfairness to).
Given an NMFDP ⟨M,F⟩ with status function U , the un-
fairness of trace τ to stakeholder i at time t on the trace
is unfairnessi(τ, t)

def
= U(τt)i −mean(U(τt)). The overall

unfairness of a finite trace τT to i is unfairnessi(τT )
def
=∑

t∈[T ] unfairnessi(τT , t).

An extended aggregation function could take unfairness
to individuals into account in various ways; for example,
we could set Wex to be the negative of the sum of squared
overall unfairness values: −

∑
i∈[n](unfairnessi(τT ))2.
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5. Computing Fair Policies
In this section we consider approaches to computing policies
for NMFDPs in certain cases—for fairness schemes that can
be made to behave like reward functions.

5.1. The Role of Memory

How should actions be selected in a NMFDP? In general, an
optimal policy may need to consider the whole trace τ that
has occurred so far, even just to determine what the current
stakeholder status vector is. In this section, we will focus
on how to transform the NMFDP to make the stakeholder
status function Markovian, in the following sense:

Definition 5.1 (Markovian function). Given an NMFDP
⟨⟨S, sinit, A, P,R1, . . . , Rn, γ⟩, ⟨U,Wex, B⟩⟩, we will say a
function f : (S×A)∗×S → codomain(f) is Markovian if

f(s1, a1, . . . , st, at+1, st+1) = fM (st+1)

for some function fM ; i.e., f only varies with the last state.

Having a Markovian status function U does not guaran-
tee the existence of an optimal policy that is Markovian—
that still depends on the rest of the fairness scheme F =
⟨U,Wex, B⟩. (Also, in the finite horizon case the policy
might have to be non-stationary.) However, there exist
choices of the extended aggregation function Wex and fil-
ter function B that ensure there will be optimal Markovian
policies.

Suppose B(τ) = 1 (which we will be assuming until Sec-
tion 5.3). Suppose also that Wex is timepoint-first (Defini-
tion 4.9) and so we have that Wex(U(τ1), . . . , U(τT )) =
Wtemporal(W (U(τ1)), . . . ,W (U(τT ))), and further that
Wtemporal treats its inputs like rewards (e.g., by returning
their discounted sum). Then if U is Markovian we can
apply standard MDP techniques – treating the composite
function W ◦ U as a reward function – to find a Markovian
policy. Indeed, to do so we would only need the weaker
condition that W ◦ U is Markovian.

Therefore, it is of interest to consider how to make the status
function Markovian. In some cases this can be done by aug-
menting the state space S to remember past information.2

Definition 5.2 (Memory augmentation/augmented). Given
an NMFDP ⟨⟨S, sinit, A, P,R1, . . . , Rn, γ⟩, ⟨U,Wex⟩⟩, a
memory augmentation is a tuple ⟨M,minit, µ⟩ where M
is the finite set of memory states, minit ∈ M is the initial
memory state, and µ : M × A × S → M is the memory
update function. The resulting memory-augmented NMFDP
is an NMFDP ⟨⟨S×M, ⟨sinit,minit⟩, A, P ′, R′

1, . . . , R
′
n, γ⟩,

⟨U ′,Wex⟩⟩ where

2To augment states with some form of memory is an idea with
a long history (e.g., Bacchus et al., 1996; Peshkin et al., 1999;
Thiébaux et al., 2006; Toro Icarte et al., 2020).

• P ′(⟨st+1,mt+1⟩ | ⟨st,mt⟩, at) = P (st+1 | st, at) if
mt+1 = µ(mt, at, st+1) and otherwise 0.

• R′
i(⟨st,mt⟩, at, ⟨st+1,mt+1⟩) = Ri(st, at, st+1) for

each i
• U ′(⟨s1,m1⟩, a1, . . . , ⟨st,mt⟩, at, ⟨st+1,mt+1⟩) =
U(s1, a1, . . . , st, at+1, st+1)

The idea is that the memory starts storing the value minit,
and given a trace s1, a1, . . . , st, at, st+1, . . . the value of
the memory at time t+1 would be mt+1 = µ(mt, at, st+1)
where mt is the value of the memory at time t. The original
environment’s dynamics are preserved, meanwhile.

While we wrote U ′ as not depending on the memory, the
cases we are interested in are those in which it is Markovian
in the memory-augmented NMFDP, and so is equivalent
to a function U ′

M (⟨st+1,mt+1⟩). There is a whole class
of status functions, which we will call value-regular, for
which we will show that there is a memory augmentation
that makes them Markovian.

Definition 5.3 (value-regular). Given an NMFDP ⟨⟨S, sinit,
A, P,R1, . . . , Rn, γ⟩, ⟨U,Wex⟩⟩, the stakeholder status
function U is value-regular if there is some finite set
V ⊆ Rn such that for any finite trace τ we have that
U(τ) ∈ V , and for each v ∈ V the set of traces that U
maps to v is regular in the following sense: the set of strings
{σ ∈ (A × S)∗ : U(sinit, σ) = v} is a regular language
(e.g., could be described with a regular expression) (see,
e.g., Sipser, 1997).

Theorem 5.4. Let ⟨⟨S, sinit, A, P,R1, . . . , Rn, γ⟩, ⟨U,
Wex⟩⟩ be an NMFDP where U is value-regular. Then there
exists a memory augmentation ⟨M,minit, µ⟩ so that, in the
resulting memory-augmented NMFDP, U ′ is Markovian.

For the proof, see Appendix A.1. It turns out that value-
regular stakeholder status functions are the only ones which
we can make Markovian through memory augmentation, per
the following theorem (again, the proof is in Appendix A.1).

Theorem 5.5. Let ⟨⟨S, sinit, A, P,R1, . . . , Rn, γ⟩, ⟨U,
Wex⟩⟩ be an NMFDP and ⟨M,minit, µ⟩ be a memory
augmentation such that, in the resulting memory-augmented
NMFDP, U ′ is Markovian. Then U is value-regular.

Some obvious choices of the stakeholder status function
are not value-regular in general—in particular any function
that can take an unbounded number of values, for instance
where U gives the (possibly discounted) return for each
stakeholder. In practice, however, policies may not be run
long enough for memory limitations to come into play, and
so we could still store the stakeholders’ returns in memory.

5.2. Counterfactual Memories for RL

In this section we consider applying RL to learn policies for
(certain) memory-augmented NMFDPs, and present an RL

6



Remembering to Be Fair: Non-Markovian Fairness in Sequential Decision Making

algorithm that takes advantage of the memory structure.

The idea of a reward-like fairness scheme (defined below)
is that we can treat a NMFDP with one like an MDP with a
single (Markovian) reward function.

Definition 5.6 (Reward-like). Given an NMFDP ⟨⟨S, sinit,
A, P,R1, . . . , Rn, γ⟩, ⟨U,Wex⟩⟩, we will say that the fair-
ness scheme ⟨U,Wex⟩ is reward-like if

• Wex is timepoint-first, so Wex(u1, . . . , uT ) =
Wtemporal(W (u1), . . . ,W (uT )),

• Wtemporal(w1, . . . , wT ) =
∑T

t=1 γ
t−1wt,

• and W ◦U is Markovian (in the sense of Definition 5.1)
(this will always be the case if U is Markovian).

If we define the (Markovian) reward function as
R(st, at, st+1) = R(st+1) = W (U(st+1)), the objective
of a policy is to maximize the expected discounted sum
of rewards (here, we will assume an infinite time horizon).
For a NMFDP with a reward-like fairness scheme, we can
therefore apply standard RL algorithms. When the NMFDP
is memory-augmented, we can also do a bit more.

A standard reinforcement learner in an MDP collects experi-
ences of the form (st, at, st+1, R(st, at, st+1)), where st is
the state at time t and R is the reward function, with which
to learn a policy. In a memory-augmented NMFDP where
the fairness scheme is reward-like, the learner can do the
same, and we can write an experience as(

⟨st,mt⟩, at, ⟨st+1,mt+1⟩, R(⟨st+1,mt+1⟩)
)

(1)
where ⟨st,mt⟩ is the memory-augmented state at time t.
However, whenever the learner has an experience as in
Equation (1), we can use our knowledge of the memory
augmentation ⟨M,minit, µ⟩ (and of R) to generate additional
experiences of the form(

⟨st,m′
t⟩, at, ⟨st+1,m

′
t+1⟩, R(⟨st+1,m

′
t+1⟩)

)
(2)

where m′
t ∈ M is any memory state and m′

t+1 =
µ(m′

t, at, st+1). That is, we generate the experience the
learner would have had, had it been in the counterfactual
memory state m′

t instead of mt. Generating this requires
only the ability to pick m′

t ∈M and query µ and R.

Such counterfactual experiences can then be used in train-
ing, at least for off-policy RL methods that do not have to
learn from experience collected using the current policy. For
instance, tabular Q-learning (Watkins & Dayan, 1992) could
be modified to, after each real experience in the environment,
generate (some subset of) the possible counterfactual expe-
riences as in Equation (2), and use all of the experiences to
update the Q-function. We call the resulting algorithm Fair
Q-Learning with Counterfactual Memories (FairQCM)
(see Algorithm 1). For methods like DQN (Mnih et al.,
2015) that use a replay buffer, counterfactual experiences
could be added to the buffer. Action selection, similar to
classic Q-learning, can work with a variety of choices. A

commonly adopted strategy is epsilon-greedy.

Algorithm 1 Tabular FairQCM
Input: A memory-augmented NMFDP ⟨⟨S ×
M, ⟨sinit,minit⟩, A, P ′, R′

1, . . . , R
′
n, γ⟩, ⟨U ′,Wex⟩⟩ with

reward-like fairness scheme and γ < 1, and learning
rates (α1, α2, . . . ).
Let R = W ◦ U ′

Initialize the Q-function
Let ⟨s1,m1⟩ = ⟨sinit,minit⟩
for each time t = 1, 2, 3, . . . do

Select some subset M ′
t ⊆M \ {mt}.

Select some action at, and execute at in the current
state ⟨st,mt⟩ to acquire the experience(
⟨st,mt⟩, at, ⟨st+1,mt+1⟩, R(⟨st+1,mt+1⟩)

)
for each m′

t ∈M ′
t do

Construct the counterfactual experience(
⟨st,m′

t⟩, at, ⟨st+1,m
′
t+1⟩, R(⟨st+1,m

′
t+1⟩)

)
where m′

t+1 = µ(m′
t, at, st+1).

end for
for each (real or counterfactual) experience ⟨xt, at,
xt+1, rt+1⟩ do

/* a Q-learning update with learning rate αt */
Q(xt, at)

αt←− rt+1 + γmaxa∈A Q(xt+1, a)
end for

end for

This approach of generating counterfactual experiences is
adapted from the CRM algorithm from Toro Icarte et al.
(2022). There, instead of memory states, they were dealing
with states of a “reward machine”, an automaton used to
define a non-Markovian reward function.

For tabular FairQCM, we prove that (under some condi-
tions) given a memory-augmented NMFDP with reward-
like fairness scheme, it converges to the optimal Q-function,
yielding the optimal policy3 (proof in Appendix A.1).

Theorem 5.7 (Convergence of tabular FairQCM). Let
ni(x, a) be the time at which action a is executed in state x
for the ith time (including “executions” in counterfactual
experiences) in a run of FairQCM. If the selection of ac-
tions and counterfactual experiences and of the learning
rates (α1, α2, . . . ) are such as to satisfy the conditions from
Watkins & Dayan (1992, p. 282) that

0 ≤ αn < 1,

∞∑
i=1

αni(x,a) =∞,

∞∑
i=1

[αni(x,a)]
2 <∞

for all x and a, then the Q-function computed by FairQCM
will converge (as t→∞) to the optimal with probability 1.

3The optimal Q-function is a function Q∗(x, a) which gives the
expected discounted return in state x if action a is taken and after-
wards the best possible action is taken in all future time steps. For
an optimal policy π∗, π∗(a | x) = 0 if a /∈ argmaxa′ Q∗(x, a′).
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5.3. Computations with Filter Functions

Recall that, in general, a fairness scheme (Definition 4.5)
includes a filter function B that selects which points should
be assessed for fairness. We can generalize the notion of
a reward-like fairness scheme (Definition 5.6) to allow for
non-trivial filter functions.

Definition 5.8 (Bounded reward-like). Given an NMFDP
⟨M, ⟨U,Wex, B⟩⟩, we will call the fairness scheme
⟨U,Wex, B⟩ bounded reward-like if

• Wex is timepoint-first, so Wex(u1, . . . , uk) =
Wtemporal(W (u1), . . . ,W (uk)),

• Wtemporal(w1, . . . , wk) =
∑k

t=1 wt,
• W ◦ U is Markovian (this will always be the case if U

is Markovian),
• and B is also Markovian.

Importantly, B could be Markovian as a result of memory
augmentation, in much the same way as we considered
making U Markovian in Section 5.1. For example, consider
periodic fairness with period p, which corresponds to having
B(s1, a1, . . . , ak, sk) = 1 iff k ≡ 0 (mod p). That could
be made Markovian by having a mod p counter as memory.

In contrast to Definition 5.6, we assume a finite horizon,
and set γ = 1. Therefore, there is no discounting in the sum
computed by Wtemporal. For a bounded reward-like fairness
scheme, it can be seen that the fairness score of a finite trace
is the same as its undiscounted return using the following
reward function R, allowing for standard algorithms for
finite horizon MDPs:

R(st, at, st+1) = R(st+1) = W (U(st+1)) ·B(st+1)

6. Experiments
In this section we compare different methods for designing
the augmented memory via two simulation studies. Experi-
ments show how generating counterfactual memories during
RL can improve the overall fairness and sample efficiency
of training in dynamic settings with multiple stakeholders.
In each experiment, let ⟨M,F⟩ be an NMFDP whereM is
a multi-stakeholder MDP and F = ⟨U,Wex, B⟩ is a fairness
scheme defined w.r.t.M, where Wex is timepoint-first, and
B(τ) = 1. Given the NMFDP, we implement FairQCM
and several baseline memory-augmented agents within a
Deep RL framework. Analogous tabular results are in Ap-
pendix A.2, a continuous experiment is in Appendix A.3,
and technical details of experiments are in Appendix A.4.

Baselines. To evaluate how memory affects the abil-
ity to learn a fair policy, we evaluate several baselines
based on Deep Q Networks (DQN) (Mnih et al., 2015)
with different types of augmented memory units M : Full
stores the entire stakeholder status U(τt) while Min stores
U(τt) − mini U(τt)i; and RNN does not have a separate

memory, instead it has an extra layer of GRU (Cho et al.,
2014) to remember the past. FairQCM is a deep, DQN-
based, version of our proposed method from Section 5.2,
which we use with different types of memory.

6.1. Resource Allocation

We modeled our running example of doughnut allocation
as a stochastic environment, featuring a doughnut shop that
bakes one doughnut in each step. There are n = 5 cus-
tomers, with customer i being in front of the counter with
probability pi in each step. The decision to allocate the
freshly baked doughnut is made by the server, who selects
one customer for the allocation. If the chosen customer is
not at the counter, the doughnut goes to waste. A state encap-
sulates the presence of individuals at the counter, and there
are n associated actions, each corresponding to the alloca-
tion of a doughnut to a specific customer. At step t, U(τt)i
is the number of doughnuts allocated to customer i so far.
We use Nash welfare to define the aggregation function for
each time point as W (U(τt)) = log(Nash(U(τt) + 1)) =∑

i∈[n] log(U(τt)i + 1). The server’s goal is to maximize
the discounted sum of W ◦ U , treating it as the reward (ex-
cept that on steps where the server wastes a doughnut, the
reward is considered to be 0). The episode length is 100.

In this setting FairQCM stores U(τt) in the memory (like
the Full baseline) and generates counterfactual experiences
based on it. For this environment we have some extra
memory-augmented baselines. Reset stores U(τt) but if
in a time t all U(τt)i are equal, it sets them to zero and
counts from there for the next steps. Oracle and Random
are hard-coded solutions, with Oracle realizing the optimal
turn taking algorithm, and Random taking random actions.

Figure 2 illustrates the accumulated Nash welfare scores
at the end of the episode in different phases of training
across five approaches with different types of augmented
memory. FairQCM outperforms other algorithms. The RNN
baseline learns an approximation of the history and achieves
higher accumulated Nash welfare scores compared to some
of the other baselines. The RNN also demonstrates faster
adaptation to avoid wasting doughnuts, as it focuses on the
recent past rather than the entire history.

6.2. Simulated Lending

Consumer lending is an established test bed for fair ma-
chine learning algorithms (Dwork et al., 2012; Hardt et al.,
2016), owing in part to US regulations on credit scoring
and banking practices (Barocas & Selbst, 2016). As we
are interested in fairness over time, we adapt the dynamic
lending environment of Liu et al. (2018). We consider a
finite pool of loan applicants. Each applicant is character-
ized by their credit score C, representing the probability of
loan repayment, and belongs to a protected group within the
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Figure 2. Resource Allocation: In simulations of our doughnut
allocation task, (deep) FairQCM achieves higher Nash welfare than
competing memory-augmented RL agents (left), while learning to
allocate doughnuts effectively near the end of training (right).

population (two groups in total: A and B). The credit score
distribution differs between the two groups. In each step, a
subset of applicants applies for a loan, and the bank must
decide which applicant to grant the loan. Each applicant i
applies for a loan in each step with a probability of pi. Suc-
cessful loan repayment increases the bank’s utility by r and
the applicant’s credit score by c, while defaulting decreases
the bank’s utility by r and the applicant’s credit score by c.
In our experiments, we set r = 1 and c = 0.1. The states
encode the subset of applicants applying for a loan, their
credit score, and profit margin so far. To assess the fairness
of the loan granting process, we calculate the difference in
the number of loans allocated to each protected subgroup.
At step t, U(τt)i is the number of loans allocated to person i
so far. The aggregation function for each time point, which
is inspired by demographic parity (Dwork et al., 2012), we
call the Relaxed Demographic Parity (DP) Score and is set
to W (U(τt)) = −|

∑
i∈A U(τt)i −

∑
i∈B U(τt)i|. To en-

sure fairness, the bank’s goal is to maximize the discounted
sum of W ◦ U , treating that as the reward function – with a
couple exceptions. The bank aims to achieve a profit margin
of at least 10 percent. If at the end of the episode it does
not make the targeted profit, it incurs a substantial negative
reward; furthermore, there is a negative reward for grant-
ing a loan to someone who didn’t apply. In the simulated
lending environment, for the Full baseline in this experi-
ment, instead of storing each stakeholder status, we store
U(τt)X =

∑
i∈X U(τt)i in the memory for each protected

subgroup X ∈ {A,B}. Similarly, the Min baseline’s mem-
ory stores ⟨U(τt)A, U(τt)B⟩−mini∈{A,B} U(τt)i. We use
FairQCM with the same memory as the Min baseline.

Figure 3 illustrates the accumulated relaxed DP scores at
the end of the episode in different phases of training across
four approaches with different types of augmented mem-
ory. Similar to resource allocation, FairQCM outperforms
the other approaches. The RNN baseline still learns an ap-
proximation of history through 40 steps of an episode and
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Figure 3. Simulated Lending: Accumulated Relaxed Demo-
graphic Parity scores for different approaches of augmenting mem-
ory during different phases of training.

achieves higher accumulated relaxed DP scores compared
to some of the other baselines. All approaches learn policies
that achieve the desired profit margin of 10 percent.

The outcomes from experiments in distinct environments
emphasize the complexity of selecting and engineering an
appropriate memory solution. Algorithmically, FairQCM
emerges as a standout performer with superior results, while
RNN-based methods provide viable solutions, particularly
where engineering a memory proves to be challenging.

7. Conclusion
We have explored the notion of multi-stakeholder fairness in
the context of sequential decision making. We have argued
that the fairness of sequential decision making is inherently
non-Markovian since the assessment of fair traces relies on
the history of states and actions. We have also argued that
fairness of processes is naturally assessed at significant time
points, defining long-term, periodic, anytime, and bounded
fairness. We have observed that in a number of circum-
stances, memory can be used to convert a non-Markovian
fairness problem into a Markovian one, making it amenable
to standard Markovian solutions—useful in the context of
policy generation. We have studied the performance of
various methods (Markovian and non-Markovian) and var-
ious memory models. We also proposed a method called
FairQCM to generate counterfactual experience that expe-
dite learning a fair policy, proved convergence properties in
the tabular case, and demonstrated its effectiveness.

We hope the contributions of this paper will provide the
rich foundations for future work on fairness in sequential
decision making—both in the area of policy generation and
in auditing. A limitation of this work is that we have only
scratched the surface in terms of exploring different fairness
scoring functions and how to compute policies for them, and
much work is left to do to formulate and assess our regime
in practical settings in collaboration with domain experts.
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Impact Statement
Automated sequential decision making systems can affect
many stakeholders, and thus have the potential to induce a
variety of complex societal impacts. In this paper we focus
on how the fairness and overall social welfare of these sys-
tems evolves over time. While our approach emphasizes the
importance of historical decisions on near- and long-term
fairness, we ultimately propose a flexible framework that is
compatible with many existing fairness criteria. For the pro-
posed research to be socially beneficial, our methodological
approach underscores the importance of a trained domain
expert who can act in good faith to design appropriate fair-
ness criteria that reflect normative commitments appropriate
to the problem at hand.
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A. Appendix
A.1. Proofs

Proof of Theorem 5.4. Let us say that the set of possible output values of U is V = {v1, . . . , vk}. Since U is value-regular,
for each value vi ∈ V there exists a deterministic finite automaton (DFA) (see, e.g., Sipser, 1997, Chapter 1)

Ai
U = ⟨Qi,Σ, δi, qi0,Acc

i⟩
that accepts the string σ = a1, . . . , st+1 iff U(sinit, σ) = vi. Note that Qi is the finite set of automaton states, Σ = A× S is
the set of input symbols, δi : Qi × Σ→ Qi is the transition function, qi0 is the automaton’s initial state, and Acci ⊆ Qi is
the automaton’s set of accepting states.

We define a memory augmentation ⟨M,minit, µ⟩ as follows:
M = Q1 ×Q2 × · · · ×Qk

minit = ⟨q10 , q20 , . . . , qk0 ⟩
µ(⟨q1, . . . , qk⟩, a, s) = ⟨δ1(q1, ⟨a, s⟩), . . . , δk(qk, ⟨a, s⟩)⟩

That is, the memory keeps track of the states of the automata that correspond to each possible output value v1, . . . , vk. Then
it can be seen that U ′ is Markovian in the memory-augmented NMFDP, because we can define

U ′
M (⟨s, ⟨q1, . . . , qk⟩⟩) = vi iff qi ∈ Acci

This is well-defined since the languages of the different automata are necessarily a partition of (A× S)∗, so exactly one
automaton will always be in an accepting state.

Proof of Theorem 5.5. U can only take the same values as U ′, and since U ′ is Markovian, it can only take finitely many
values (one for each augmented state ⟨s,m⟩). Let us say that V = {v1, . . . , vk} is the set of all possible output values of U .
For each vi, we can construct a DFA Ai

U = ⟨Qi,Σ, δi, qi0,Acc
i⟩ where

• Qi = S ×M is the set of automaton states,
• qi0 = ⟨sinit,minit⟩ is the initial state,
• Σ = A× S is the alphabet,
• δi(⟨s,m⟩, ⟨a, s′⟩) = ⟨s′, µ(m, a, s′)⟩ is the transition function, and
• Acci = {⟨s,m⟩ ∈ S ×M : U ′

M (⟨s,m⟩) = vi} is the set of accepting states.
It can be shown by induction that the DFA Ai

U accepts the sequence σ = ⟨a1, s2⟩, ⟨a2, s3⟩ . . . , ⟨at, st+1⟩ if and only if
U(sinit, σ) = vi. It follows from the equivalence of DFAs and regular expressions that U is value-regular.

Proof of Theorem 5.7. The proof of convergence of Q-learning by Watkins & Dayan (1992) mostly carries over; the only
thing we have to be careful about is whether the generated counterfactual experiences are biased relative to the environment’s
transition probabilities.4 However, since the set M ′

t of counterfactual memory states to use in constructing the counterfactual
experiences is chosen before observing the outcome of action at, that issue does not arise: all action outcomes used in
training are sampled according to the transition probabilities.

A.2. Tabular Q-Learning Experiments

We carry out the experiments described in Section 6.1 in a tabular setting. The environment setting is similar to Section 6.1,
where there are n = 3 people in the doughnut shop in the tabular version, and the episode length is 12. We evaluate several
baselines based on Q-Learning with different types of augmented memory units M :

• Full stores the entire stakeholder status U(τt)
• FairQCM stores the entire stakeholder status U(τt) as the memory mt at time t and uses Algorithm 1 to generate coun-

terfactual experiences. We limit it to 8 counterfactual experiences per time step, each such experience corresponding to
a counterfactual memory m′

t where for each i, (mt)i < (m′
t)i ≤ (mt)i + 2.

• Min stores U(τt)−mini U(τt)i
• Reset stores U(τt) but if in a time t all U(τt)i are equal, it sets them to zero and counts from there for the next steps
• Oracle and Random are hard-coded solutions, with Oracle realizing the optimal turn taking algorithm, and Random

taking random actions at each step.
4For example, if counterfactual experiences were only generated at time t if the action at resulted in a lottery being won, that could

make winning the lottery seem more likely than it really is.
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Figure 4. Tabular Q-Learning for Resource Allocation: The left plot shows accumulated Nash welfare scores at the end of the episode
for different approaches of augmented memory in different phases of training. The right plot shows the number of doughnuts that are not
wasted during the process for each approach.

Similar to the results in Section 6, FairQCM outperforms other approaches in terms of both NSW scores, and number of
samples needed to train.

Technical details We set γ = 0.99, α = 0.1, and use epsilon-greedy for exploration. ϵ = 1.0 at the beginning for each
state, and every time we visit a state s, ϵs is multiplied by 0.95 (diminishing factor), and remains greater than 0.2. We ran
each method 10 times, and Figure 4 shows the average and variance of those runs across 100000 time steps.

A.3. Extra Experiments with Simulated Lending Environment

We extend the experiments described in Section 6.2 in the simulated lending domain, to a scenario where the credit scores
of applicants are continuous variables. The change in the credit scores (whether positive or negative) is sampled from a
Gaussian distribution (µ = 0.05, σ = 0.1 when the applicant successfully repays their loan, and µ = −0.05, σ = 0.1 when
the applicant defaults). The rest of the environment and the baselines are the same as Section 6.2. Figure 5 illustrates the
accumulated relaxed DP scores at the end of the episode in different phases of training across three approaches with different
types of augmented memory. We observe the analogous behavior that FairQCM was more sample efficient, yielding superior
fairness measures for a given number of episodes.
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Figure 5. Simulated Lending with Gaussian Credit Score Changes: Accumulated Relaxed Demographic Parity scores for different
approaches of augmenting memory during different phases of training.
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A.4. Experimental Details

We ran the experiments on a system with the following specification: 2.3 GHz Quad-Core Intel Core i7 and 32 GB of RAM.
The total running time is less than 24 hours. The code for all experiments is available at https://github.com/praal/remembering-
to-be-fair.

A.4.1. RESOURCE ALLOCATION

State Representation We consider n = 5 people at the doughnut shop. Each person is at the counter with p = 0.8. The
state is a binary sequence of length n showing the people present at the counter.

Actions There are n actions which represent allocating a doughnut to person i for each i.

Rewards U(τt)i represents the number of doughnuts person i got so far. At time step t, if the doughnut is not wasted
rt = W (U(τt)) = log(Nash(U(τt) + 1)) =

∑
i∈[n] log(U(τt)i + 1) otherwise, rt = 0.

Neural Network Architectures Our DQN consists of 4 fully connected layers with ReLU activation function: states× 32,
32× 16, 16× 8, 8× actions

RNN approach consists of 3 fully connected layers and one GRU layer: states× 32, 32× 16, GRU (hidden states = 256),
16× actions

FairQCM FairQCM stores the entire stakeholder status U(τt) as the memory mt at time t and uses Algorithm 1 to generate
counterfactual experiences. We limit it to 32 counterfactual experiences per time step, each such experience corresponding to
a counterfactual memory m′

t where for each i, (mt)i < (m′
t)i ≤ (mt)i + 2. FairQCM stores the counterfactual experiences

in the replay buffer, and later samples from them during training.

Results We ran each method 10 times, and plot the average and variance of results across 1000 episodes in Figure 2.

Hyperparameters See Table 1.

A.4.2. SIMULATED LENDING

State Representation We consider n = 4 people in total, where each group has two people in it. The initial credit score
of people in group A is 0.5, and 0.9 for group B. Each applicant applies for a loan at each step with p = 0.9. The state
consists of a binary sequence of length n showing the applicants applying for a loan, credit score of each applicant, and
profit margin so far. If an applicant gets a loan and repays it, their credit score increases by 0.1, and similarly it decreases by
0.1 if the applicant defaults. However, a credit score of an applicant always remains in the range of [0.2, 0.9].

Actions There are n actions which represent granting the loan to person i for each i.

Rewards The rewards in this encoding of the problem are serving two purposes. One purpose is to incentivize the system
to learn to do the right thing—in this case, to only give loans to people who applied, and to maintain the stipulated profit
margin. In service of this, (i) at the final time step, if the bank didn’t make the profit margin of 10 percent then rt =

Hyperparameter Full, Min, and Reset approaches RNN approach FairQCM
Episode Length 100 100 100
Learning Rate 0.0001 0.002 0.0001

Discount Factor (γ) 0.95 0.95 0.95
Min Exploration Rate (ϵ) 0.2 0.2 0.2

Replay Buffer Size 400 1000 6400
Batch Size 64 256 2048

Table 1. Resource Allocation Hyperparameters
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−10× episode length; and (ii) if the bank grants a loan to someone who didn’t apply for a loan then rt = −episode length,
where episode length is 40.

The reward is also used to reflect the fairness score. U(τt)i represents the number of loans person i has received so far. At
time step t, if the bank grants a loan to an applicant that applied for the loan then rt = W (U(τt)) = −|

∑
i∈A U(τt)i −∑

i∈B U(τt)i|.

Neural Network Architectures Our DQN consists of 3 fully connected layers with ReLU activation function: states× 32,
32× 8, 8× actions.

RNN approach consists of 3 fully connected layers and one GRU layer: states× 32, 32× 16, GRU (hidden states = 256),
16× actions.

FairQCM For each protected subgroup X ∈ {A,B}, FairQCM stores
∑

j∈X U(τt)j − mink∈{A,B}
∑

j∈k U(τt)j as
the memory mt at time t and uses Algorithm 1 to generate counterfactual experiences. As each mt can be written as
mt = ⟨0, x⟩ or mt = ⟨x, 0⟩ (x ∈ [n]), we limit the number of counterfactual experiences to at most 10 per time step,
each such experience corresponding to a counterfactual memory m′

t where, if mt = ⟨0, x⟩, m′
t ∈ {⟨0, x − 5⟩, ⟨0, x −

4⟩, . . . , ⟨0, x− 1⟩, ⟨0, x+ 1⟩, . . . ⟨0, x+ 5⟩}, and similarly if mt = ⟨x, 0⟩. FairQCM stores the counterfactual experiences
in the replay buffer, and later samples from them during training.

Results We ran each method 10 times, and plotted the average and variance of results across 1000 episodes in Figure 3.

Hyperparameters See Table 2.

Hyperparameter Full and Min approaches RNN approach FairQCM
Episode Length 40 40 40
Learning Rate 0.0001 0.005 0.0001

Discount Factor (γ) 0.95 0.95 0.95
Min Exploration Rate (ϵ) 0.2 0.2 0.2

Replay Buffer Size 1000 2000 8000
Batch Size 64 512 512

Table 2. Simulated Lending Hyperparameters
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