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Abstract

Message passing plays a vital role in graph neural networks (GNNs) for effective
feature learning. However, the over-reliance on input topology diminishes the
efficacy of message passing and restricts the ability of GNNs. Despite efforts to
mitigate the reliance, existing study encounters message-passing bottlenecks or
high computational expense problems, which invokes the demands for flexible
message passing with low complexity. In this paper, we propose a novel dynamic
message-passing mechanism for GNNs. It projects graph nodes and learnable
pseudo nodes into a common space with measurable spatial relations between
them. With nodes moving in the space, their evolving relations facilitate flexible
pathway construction for a dynamic message-passing process. Associating pseudo
nodes to input graphs with their measured relations, graph nodes can communicate
with each other intermediately through pseudo nodes under linear complexity. We
further develop a GNN model named N2 based on our dynamic message-passing
mechanism. N2 employs a single recurrent layer to recursively generate the
displacements of nodes and construct optimal dynamic pathways. Evaluation on
eighteen benchmarks demonstrates the superior performance of N2 over popular
GNNs. N2 successfully scales to large-scale benchmarks and requires significantly
fewer parameters for graph classification with the shared recurrent layer.

1 Introduction
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Figure 1: Comparison between
different connection patterns for
pseudo nodes and graph nodes.

The inherent irregular structure of graphs poses nontriv-
ial challenges in graph learning [77]. To enable effective
learning on graphs, graph neural networks (GNNs) [33, 64]
have been specifically designed for graph-structured data.
Within GNN models, message passing serves as a crucial
function in extracting informative graph features [22, 63].
The vanilla message passing [33, 66] applies node-centric
aggregation constrained between the adjacent nodes. During
this aggregation process, central nodes access their neigh-
bors in an isotropic manner [29] and aggregate multi-hop
features iteratively. In consequence, the vanilla message
passing relies heavily on the input graph structure, leading
to over-smoothing [46] or over-squashing [2, 14, 15] issues
on GNNs.

To further improve the effectiveness of GNNs for graph
representation learning, one straightforward solution is to
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decouple message pathways from the input graph structure. Following this direction, methods [19, 12]
have been proposed to perform message passing beyond input structures for global information
exchange. Some methods directly model the pairwise relation between nodes [72, 35, 43], but the
dense relation causes high computational and space complexity. Other methods incorporate pseudo
nodes connected with all the graph nodes to serve as message pathways [22, 30, 42, 57]. However,
these models employ uniform pathways, i.e., each pseudo node is connected to all the graph nodes
with equal weights, as illustrated at the top of Fig. 1. In consequence, an overwhelming number of
node features are squashed equally into pseudo nodes, leading to information bottlenecks on pseudo
nodes for message passing and less discriminative representations for downstream tasks [57].

The above limitations call for message passing with flexible pathways and low complexity. In this
paper, we propose a novel dynamic message-passing mechanism. To construct flexible pathways, our
method measures the specific spatial relations between nodes across time and gives rise to dynamic
pathways, as illustrated at the bottom of Fig. 1. To reduce complexity, learnable pseudo nodes are
introduced as message-passing proxies between pairs of graph nodes.

Specifically, both graph nodes and pseudo nodes are embedded in a common space with measurable
spatial relations between them. By moving nodes in the space, their measured relations evolve
accordingly, facilitating a dynamic message-passing process with flexibility. Regarding the measured
relation as pseudo edges, the message passing on the input graphs can be extended to pseudo nodes.
As a result, graph nodes can communicate with each other intermediately through pseudo nodes, free
from dense relation modeling.

To achieve this dynamic process, we further develop a GNN model named N2, based on our graph
Nodes and pseudo Nodes mechanism for message passing. N2 incorporates a recurrent layer to
parameterize the displacements of graph nodes and pseudo nodes in the common space. With both
types of nodes moving in the common space, N2 measures the actively changing spatial relations
and constructs evolving pathways for dynamic message passing.

Our contributions are summarized as follows. First, we design a flexible and low-complexity
message-passing mechanism from a new perspective, where dynamic message pathways are built
upon evolving spatial relations between nodes. Second, we develop a novel GNN model named
N2 to achieve dynamic message passing, which employs a recurrent layer to parameterize the
evolutionary displacements of nodes. Third, we demonstrate the advantages of N2 on eighteen
real-world benchmarks, where N2 achieves superior performance. Codes are available at https:
//github.com/sunjss/N2.

2 Related Work

Flexible message passing on graphs. In pursuit of expressive operators for graph learning, methods
propose to approximate diverse filters with parameterized polynomials [11, 13, 34]. However, due
to the prohibitive computational complexity of higher-order polynomials, these methods [33, 71]
are constrained with lower orders and only perform local aggregation on graphs. This constrained
process couples message passing with input topology and contains inherent limitations, including
over-smoothing [39, 46] and over-squashing [2, 60]. To overcome these limitations, some works try
to decouple message passing from input topology and introduce alternate pathways, including edge
shortcuts [1, 60, 12, 24], pseudo nodes [42, 57], and graph pooling operations [20, 53, 74].

By adding edge shortcuts, methods aim to improve the message-passing efficiency on graphs. These
methods can relieve certain bottlenecks on the input graphs [12, 50, 60] and aggregate multi-hop
information during message passing [1, 24]. Notably, we categorize graph structure learning meth-
ods [79, 31, 65, 76] into the edge shortcut paradigm, which constructs message pathways by modeling
edge connectivity between nodes. While edge shortcuts refine local connections, pseudo nodes di-
rectly enable global message passing. However, the pseudo nodes in prior works employ uniform
pathways to connect with graph nodes, which become bottlenecks in message passing [57] and limit
efficient global communication. Unlike these works, N2 models dynamic interactions between graph
nodes and pseudo nodes, with edge weights varying flexibly across them.

Another line of effort in decoupling message passing from input topology is hierarchical GNNs. These
methods [53, 74] learn multi-scale graph features through iterative graph pooling, i.e., node clustering
or node drop. Node clustering [73, 3] learns soft assignment matrices to aggregate nodes into coarser
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levels. On the other hand, node drop [20, 37] ranks and selects salient subsets to prune less critical
nodes. Different from graph pooling methods, N2 performs both local and global message passing in
each recursive step, avoiding information loss in coarser graphs [67].

Reducing complexity for global message passing. Self-attention [62] that models pairwise relations
between nodes can be seen as message passing on fully connected graphs. However, dense attention
requires quadratic space and computational complexity, which is intractable for large-scale graphs.
In order to scale attention-based global message passing to larger graphs, recent methods propose to
approximate dense attention through expander graphs [57], kernel functions [69], and diffusion [68].
One similar work [7] to ours proves that message-passing layers with a single pseudo node can
approximate dense attention. In this paper, we follow a contrary thread and develop N2 with
a single shared message passing layer and multiple pseudo nodes. Each pseudo node interacts
dynamically with graph nodes, avoiding becoming message-passing bottlenecks as the uniform
connected pattern [22, 42, 57].

Recurrent layer for graph learning. Scarselli et al. [54] first employ a recurrent layer to update
node features recursively. According to Banach’s fixed point theorem [4], implementing the recurrent
layer as a contraction mapping guarantees the existence of a unique fixed point representation
for any input graph, towards which the recursive updates converge. However, their contraction
mapping formulation is topology-dependent, incurring over-smoothing as the number of recursive
steps increases. In contrast, the recurrent layer in N2 decouples message passing from input topology,
empowering flexible communication between graph nodes.

input graph

��

���

���

���

���

���

���

Common State Space

��

�( ,    )

pseudo nodeclass-0/1 graph node

Proximity Measurement

projectproject

projected node learnable weight

��

��

��

ProximityH L

Message Strength

message passing

Figure 2: Dynamic message-passing pathway construction in common state space. Graph
nodes and pseudo nodes interact actively in the common state space, constructing dynamic message
pathways through proximity measurement. In empirical model analysis, pseudo nodes tend to be
attracted toward a distinct graph node cluster.

3 Towards Dynamic Message Passing

Our dynamic message-passing mechanism parameterizes message pathways with measurable relations
between nodes in a common space. The displacements of nodes in the space give rise to evolving
relations. As a result, the message-passing process also changes dynamically. This section defines
the common space tailored for the dynamic message-passing process, where pseudo nodes are
employed to reduce the computational complexity. The next section demonstrates how N2 learns the
displacements of nodes towards the dynamic process.

3.1 Preliminaries

Notations. Let G = (V, E) be a graph, where V = {v1, · · · , vn} denotes the node set of size n and
E = {evi,vj |vj ∈ N (vi)} denotes the edge set of size m. N (·) denotes the one-hop neighbor set of
a given node. Each node v ∈ V corresponds to a feature vector xv ∈ Rd where d is the number of
features. Let X = (xv1 , · · · ,xvn)

⊤ ∈ Rn×d be the node feature matrix composed of feature vectors.
Let E ∈ Rn×n×de be the edge feature matrix with de features. Ei,j,· = evi,vj ∈ Rde .

Parameterize pathways as shared functions. When introducing pseudo nodes for message passing,
uniform pathways [22, 42, 57] directly parameterize the edge weights between pairs of graph nodes
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and pseudo nodes. Specifying different weights for each pair entails a parameter count scaling to the
number of graph nodes. To ensure a tractable number of parameters for various scales of input graphs,
we gain inspiration from DyN [48], a distinctive neural network model that directly models neurons,
instead of learning connection weights as conventional approaches [36, 62]. The connection weights
in DyN are parameterized with a path integral function given the spatial coordinates of neurons.
By sharing the integral function across neurons, DyN circumvents the need for heavy parameters.
Drawing an analogy between neurons and nodes, we can also parameterize relations between nodes
as a shared function.

3.2 Common State Space

In light of DyN, we propose to unify graph nodes and pseudo nodes in a common state space S ⊆ Rq

and define their spatial proximity with a shared measurement function. This function measures the
relations between pairs of nodes, enabling the construction of dynamic message pathways. Here, we
borrow the concept of state from prior works, such as DyN and LSTM [26], to denote the learned
descriptive embedding of nodes. Examples of the information encoded in the states include node
features and local topology. The states of a node identify its spatial coordinate in the state space. For
more discussion on "state space", please refer to Appendix A.

Embedded node states. Given a pseudo node set U = {u1, · · · , unp} of size |U| = np, we embed
pseudo nodes in the state space S as learnable parameters R = (ru1

, · · · , runp
)⊤ ∈ Rnp×q. These

learnable elements are named "pseudo nodes" to align with "graph nodes" from inputs. Pseudo nodes
can be associated with input graphs through pseudo edges and participate in the message passing
between graph nodes. We will elaborate on this association after introducing the spatial proximity
measurement in the state space. Given the graph node set V with feature matrix X, we have graph
node states Q = (q1, · · · ,qn)

⊤ = f(X) ∈ Rn×q, where f : Rd 7→ S is a permutation equivariant
function. Displacements of a node in the state space signify shifts in its states, i.e., the learned
descriptive embeddings. The objective of a GNN is to model the true distribution of graph nodes in
the state space, wherein nodes with similar features obtain proximal embeddings. In the following,
we refer to both graph nodes and pseudo nodes collectively as embedded nodes.

Proximity measurement. To model complex relations, we assume that the embedded nodes have a
non-linear relationship in the state space S . However, modeling non-linearity via operations such as
path integral can be computationally complex. To address this problem, we approximate non-linear
relations with piece-wise weighted inner products. Taking proximity measurement between graph
nodes as an example, each node is divided into k pieces with their proximity formulated as

ψ (qv,qv′) =

k∑
i=1

λiq
⊤
ivqiv′ , qi· = NLi(q·), (1)

where λi is a learnable parameter, NL(·) denotes a non-linear function with linear mapping followed by
LeakyReLU(·). ψ(·, ·) is termed as proximity instead of distance because it ranges in R. The spatial
proximity is weighted with different inner product similarity between k pairs of pieces to approximate
complex relations. We conduct ablation studies on the number of pieces k in Appendix D.5.

3.3 Associating Pseudo Nodes to Input Graphs

Pseudo edges. Based on the measurable proximity between the embedded nodes, we now introduce
how to obtain pseudo edges and thus associate pseudo nodes to input graphs. For each pseudo node
u ∈ U embedded at ru in the state space, it has pseudo edges with any pseudo node u′ ∈ U and graph
node v ∈ V , where pseudo edge weights eu,u′ and eu,v can be formulated as the proximity

eu,u′ = ψ(ru, ru′), eu,v = ψ(ru,qv). (2)

Messages for embedded nodes. Following the common practice in GNNs [63], we interpret the
interaction between the embedded nodes as message passing. To achieve this, both graph node v and
pseudo node u learn their messages mv,mu ∈ Rd to be passed in the state space. As a result, graph
node v and pseudo node u in the state space can be further described as

u ≜ (ru,mu, {eu,w, ew,u|w ∈ (U ∪ V)}) ,
v ≜ (qv,mv, {ev,w, ew,v|w ∈ (N (v) ∪ U)}) .

(3)
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The messages of graph nodes are initialized with node features. Each graph edge ev,v′ is characterized
by its edge feature ev,v′ .

3.4 Dynamic Message Passing in the State Space

Given the measured proximity as message pathways and the messages to be passed, the embedded
nodes can interact with each other through message passing. Specifically, the interactions between
graph nodes are performed in both local and global scopes.

Global message passing. In the state space, graph nodes perform global message passing based
on their states, where pseudo nodes serve as proxies. Given graph node states Q ∈ Rn×q, pseudo-
node states R ∈ Rnp×q and graph node messages Mn = (mv1 , · · · ,mvn)

⊤ ∈ Rn×d, the global
message-passing process can be formulated as

(Diffuse) G = EnpMn, Enp
ij =eui,vj

= ψ(Ri,·,Qj,·), (4)

(Refine) Ĝ = EppG, E
pp
ij =eui,uj = ψ(Ri,·,Rj,·), (5)

∆R = NL(Ĝ), Mp = NL(Ĝ),

(Collect) Mglob=EpnMp, Epn
ij =evi,uj

=ψ(Qi,·, [R+∆R]j,·), (6)

where Enp ∈ Rnp×n denotes the edge weight matrix from graph nodes to pseudo nodes, Epp and Epn

follow the similar name rule. An example of Enp
ij computation is illustrated in Fig. 2. Eq. 4 formulates

the process that graph nodes diffuse messages to pseudo nodes. Eq. 5 formulates the global feature
refinement at the pseudo-node level, where ∆R ∈ Rnp×q denotes the learned displacements for
pseudo nodes, Mp ∈ Rnp×d encodes the refined pseudo-node messages with global information.
Eq. 6 formulates the message collection process from pseudo nodes to graph nodes.

For simplicity, we compile Eq. 4-6 as Mglob,∆R = GlobMP(Q,Mn,R). Note that the space
complexity of our global message passing is O(knnp) with k, np ≪ n, significantly lower than
O(n2) in dense global message passing.

Local message passing. Topology-coupled message passing is employed to encode the local
structure. The resulted local message-passing process for graph node v can be formulated as

mlocal
v =

1

|N (v)|+ 1

mv+
∑

v′∈N (v)

NL(mv′ ||ev,v′)

 , (7)

where || denotes the concatenate operation. Through local message passing, graph nodes aggregate
messages from their adjacent nodes. Eq. 7 can be compiled as Mlocal = LocalMP(M,E) for all the
graph nodes.

4 Implementing Dynamic Message Passing with N2

We further develop a GNN model named N2 to move the embedded nodes to their optimal positions.
By feeding the states recursively into a single recurrent layer, N2 learns the displacements of all
the embedded nodes in the state space and updates their positions. The changes in position reshape
the spatial relations between the embedded nodes and thus reshape the dynamic message pathways.
These dynamically evolving pathways empower N2 to adapt to the specific positions of the embedded
nodes at each recursive step. In this section, we first outline the key process in the l-th recursive step,
i.e., pseudo-node adaptation and dynamic message passing, then describe different output fashion for
downstream tasks.

4.1 Pseudo-node Adaptation

Pseudo nodes are initialized randomly in the state space. To adapt to specific input graphs, N2 first
diffuses graph node messages to pseudo nodes, adjusting pseudo-node states and corresponding
messages accordingly. Given graph node messages Mn(l−1) (Mn(0) = X), graph node states Q(l−1)

and pseudo-node states R(l−1) at the l-th recursive step, the adaptation process can be formulated as

M̂glob(l),∆R̂(l)=GlobMP
(
Q(l−1),Mn(l−1),R(l−1)

)
,

R̂(l) = R(l−1) +∆R̂(l),
(8)
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Table 1: Graph classification results on small-scale benchmarks (measured by accuracy: %).

PROTEIN NCI1 IMDB-B IMDB-M COLLAB

#GRAPHS 1,113 4,110 1,000 1,500 5,000
#NODES 39.06 29.87 19.77 13.00 74.49
#EDGES 145.60 64.60 193.10 131.87 4,914.4
#NODE FEATURES 3 37 0 0 0

PATCHY-SAN [45] 75.00±2.51 78.60±1.90 71.00±2.29 45.23±2.84 72.60±2.15

GCN [33] 73.24±0.73 76.29±1.79 73.26±0.46 50.39±0.41 80.59±0.27

PG [29] 76.80±3.80 82.80±1.30 76.80±2.60 53.20±3.60 80.90±0.80

COCN [58] 76.86±0.13 82.89±0.19 77.26±0.27 56.32±0.18 86.15±0.10

GIN [71] 73.84±4.46 76.62±1.80 72.78±0.86 48.13±1.36 78.19±0.63

+PSEUDO NODE [42] 74.11±4.12 77.08±1.49 - - -
GRAPHSAGE [25] 73.48±5.66 73.82±2.17 68.80±4.50 47.60±3.50 73.90±1.70

+PSEUDO NODE [42] 73.93±5.68 74.31±2.27 - - -
DIFFPOOL [73] 75.62±5.17 76.62±1.93 73.14±0.70 51.31±0.72 82.13±0.43

+PSEUDO NODE [42] 75.98±3.89 77.08±1.33 - - -

TOPKPOOL [20] 70.48±1.01 67.02±2.25 71.58±0.95 48.59±0.72 77.58±0.85

SAGPOOL [37] 71.56±1.49 67.45±1.11 72.55±1.28 50.23±0.44 78.03±0.31

STRUCTPOOL [74] 75.16±0.86 78.64±1.53 72.06±0.64 50.23±0.53 77.27±0.51

SEP [67] 76.42±0.39 79.35±0.33 74.12±0.56 51.53±0.65 81.28±0.15

GMT [3] 75.09±0.59 76.35±2.62 73.48±0.76 50.66±0.82 80.74±0.54

N2 (OURS) 77.53±1.78 83.52±3.75 79.95±2.46 57.31±2.19 86.72±1.62

where M̂glob(l) denotes pseudo-node messages that are collected by graph nodes, serving as query
signals for different patterns on graphs. R̂(l) denotes the adjusted pseudo-node states.

4.2 Dynamic Message Passing

N2 performs both local and global message passing. At the local level, graph nodes exchange their
own messages Mn(l−1), collected messages M̂glob(l) and graph node states Q(l−1):

Mlocal(l) = LocalMP
[(

Mn(l−1)∥M̂glob(l)∥Q(l−1)
)
,E

]
,

Q̂(l) = Q(l−1) + NL(Mlocal(l)).
(9)

Through local message passing, graph node messages Mlocal(l) are generated in response to the
query messages M̂glob(l). N2 then sends the updated messages to global message passing:

Mglob(l),∆R(l)=GlobMP
(
Q̂(l),Mlocal(l), R̂(l)

)
,

Q(l) = Q̂(l) + NL(Mglob(l)), Mn(l) = Mn(l−1) +Mglob(l),

R(l) = R̂(l) +∆R(l).

(10)

4.3 Output Module

N2 updates the states of the embedded nodes recursively with a single recurrent layer. Instead of
employing different layers for each recursive step, the associated parameters are shared across steps.
After L recursive steps, the embedded nodes now reach their final states Q(L) and R(L). N2 then
takes graph node states and pseudo-node states as the learned representation for node-level and
graph-level tasks, respectively. For graph classification, N2 further applies NL(·) to aggregate the
pseudo-node states. To make class predictions, N2 employs learnable parameter C ∈ Rnc×q as the
states of nc class nodes and outputs the proximity between the recursive output and the class nodes.

5 Experiment

In this section, we provide empirical evaluation results of N2 on real-world benchmarks. N2 is
implemented with PyTorch [47] and PyTorch Geometric [18], and trained on a single Nvidia Geforce
RTX 4090. The detailed experimental settings are presented in Appendix C.

5.1 Graph Classification

Experimental setups. We adopt six benchmarks including three biochemical datasets (OGB-
molpcba [27], PROTEINS [44], NCI1 [44]) and three social network datasets [44] (COLLAB,
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Table 2: Graph classification re-
sults on large-scale benchmark
OGB-molpcba.

#GRAPHS #NODES #EDGES
437,929 26 28.1

METHODS
AVERAGE

PRECISION
(%)

#PARAMS
(K)

GCN [33] 20.20±0.24 565
+PSEUDO NODE [27] 24.24±0.34 2,017
GIN [71] 22.66±0.28 1,923
+PSEUDO NODE [27] 27.03±0.23 3,374
MPNN - -
+PSEUDO NODE [7] 28.48±0.26 -

GRAPHTRANS [7] 27.61±0.29 -
SAN [35] 27.65±0.42 5,885
GRAPHGPS [52] 29.07±0.28 9,745
GRAPHORMER [72] 31.39±0.32 119,529

N2 (OURS) 33.90±0.73 516

Table 3: Node classification results on small-scale homophilic
graphs (measured by ROC-AUC: %).

COAUTHORCS COAUTHORPHY AMZPHOTO AMZCOMPUTERS

#NODES 18,333 34,493 7,487 13,381
#EDGES 81,894 247,962 119,043 245,778

GCN [33] 92.92±0.12 96.18±0.07 92.70±0.20 89.65±0.52

GAT [64] 93.61±0.14 96.17±0.08 93.87±0.11 90.78±0.17

GPRGNN [11] 95.13±0.09 96.85±0.08 94.49±0.14 89.32±0.29

APPNP [21] 94.49±0.07 96.54±0.07 94.32±0.14 90.18±0.17

GT [56] 94.64±0.13 97.05±0.05 94.74±0.13 91.18±0.17

GRAPHORMER [72] OOM OOM 92.74±0.14 OOM
SAN [35] 94.51±0.15 OOM 94.86±0.10 89.83±0.16

GRAPHGPS [52] 93.93±0.12 OOM 95.06±0.13 OOM
NAGPHORMER [9] 95.75±0.09 97.34±0.03 95.49±0.11 91.22±0.14

EXPHORMER [57] 95.77±0.15 97.16±0.13 95.27±0.42 91.59±0.31

N2 (OURS) 94.44±0.45 97.56±0.28 95.75±0.34 92.51±0.13

IMDB-BINARY and IMDB-MULTI). The benchmark statistics are summarized in Tab. 1 and Tab. 2.
We choose convolutional GNNs, GNNs with a single pseudo node, hierarchical GNNs, and graph
transformers as the baselines of graph classification. For more details, please refer to Appendix. C.1.2.

Performance. N2 and baselines are evaluated on both small-scale and large-scale benchmarks.
The evaluation results in Tab. 1 and Tab. 2 showcase the ability of N2 to outperform various GNNs
and graph transformers. Especially on the large-scale benchmark OGB-molpcba, N2 surpasses
baseline models with only 500K parameters, while Graphormer reaches 31.39% average precision
with 119.5M parameters. Compared to GNNs with a single pseudo node, N2 gains significant
improvements. This demonstrates the effectiveness of our common state space where pseudo nodes
and graph nodes can interact dynamically with each other.

5.2 Node Classification

Table 4: Node classification results on small-scale heterophilic
graphs (measured by ROC-AUC except accuracy for amazon-
ratings: %). † denotes our reproduced results.

QUESTIONS AMAZON-RATINGS TOLOKERS MINESWEEPER

#NODES 48,921 24,492 11,758 10,000
#EDGES 153,540 93,050 519,000 39,402

SGC [66] 75.91±0.96 50.66±0.48 80.70±0.97 70.88±0.90

GCN [33] 76.09±1.27 48.70±0.63 83.64±0.67 89.75±0.52

GAT [64] 77.43±1.20 49.09±0.63 83.70±0.47 92.01±0.68

GPRGNN [11] 55.48±0.91 44.88±0.34 72.94±0.97 86.24±0.61

H2GCN [78] 63.59±1.46 36.47±0.23 73.35±1.01 89.71±0.31

FAGCN [5] 77.24±1.26 44.12±0.30 77.75±1.05 88.17±0.73

GLOGNN [40] 65.74±1.19 36.89±0.14 73.39±1.17 51.08±1.23

GT [56] 77.95±0.68 51.17±0.66 83.23±0.64 91.85±0.76

GRAPHORMER [72] OOM OOM OOM OOM
GRAPHGPS [52] OOM OOM 84.70±0.56 92.29±0.61

EXPHORMER [57] † 73.86±0.58 49.36±0.36 84.20±0.22 90.42±0.10

N2 (OURS) 78.07±0.63 50.25±0.53 86.25±0.41 93.97±0.27

Experimental setups. For
node classification, we conduct
experiments on (1) six small-
scale benchmarks: homophilic
graphs (AmazonPhoto, Ama-
zonComputers, CoauthorCS,
and CoauthorPhysics) [55],
heterophilic graphs (questions,
amazon-ratings, tolokers, and
minesweeper) [49]; and (2)
four large-scale benchmarks:
homophilic graphs (OGB-
arXiv, OGB-proteins) [27],
heterophilic graphs (arXiv-year,
genius) [41]. The statistics of
node classification benchmarks
are summarized in Tab. 3-5. We
choose convolutional GNNs and
graph transformers as the baselines. For detailed baseline setups, please refer to Appendix. C.2.2.

Performance. The evaluation results are presented in Tab. 3-5. N2 reaches superior or comparable
performance against strong GNN baselines on both small-scale and large-scale benchmarks. Com-
pared to graph transformers based on dense attention, including Graphormer, SAN, and GraphGPS,
N2 surpasses the baselines on small-scale benchmarks and successfully scales to large-scale bench-
marks. Note that Exphormer based on sparse attention also suffers from the out-of-memory problem
in our experimental environment. For other sparse graph transformers, N2 can achieve comparable
results and perform consistently between heterophilic and homophilic benchmarks.
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Table 5: Node classification results on large-scale benchmarks
(measured by ROC-AUC/accuracy: %). † denotes our repro-
duced results.

GENIUS ARXIV-YEAR OGB-ARXIV OGB-PROTEINS
METRICS ROC-AUC ACCURACY ACCURACY ROC-AUC

#NODES 421,961 169,343 169,343 132,534
#EDGES 984,979 1,166,243 1,166,243 39,561,252

SGC [66] 82.36±0.37 32.83±0.13 67.79±0.27 70.31±0.23

GCN [33] 87.42±0.37 46.02±0.26 71.74±0.29 72.51±0.35

GAT [64] 55.80±0.87 46.05±0.51 67.63±0.23 74.63±1.24

APPNP [21] 85.36±0.62 38.15±0.26 - -
H2GCN [78] OOM 49.09±0.10 OOM OOM
LINKX [41] 90.77±0.27 56.00±1.34 - -

GRAPHORMER [72]
SAN [35] OOM
GRAPHGPS [52]
EXPHORMER [57] OOM OOM 72.44±0.28 OOM
NODEFORMER [69] 88.62±0.27 (†) 37.68±0.30 (†) 59.90±0.42 77.45±1.15

SGFORMER [70] 83.91±2.60 (†) 44.34±0.07 (†) 72.63±0.13 79.53±0.38

N2 (OURS) 89.32±0.26 58.69±0.42 70.01±0.65 79.55±0.79
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Figure 3: Complexity analy-
sis. The results under differ-
ent numbers of graph nodes are
compared. Marker X denotes
out-of-memory. Dense denotes
dense pairwise relation model-
ing.

5.3 Model Analysis

5.3.1 Complexity Analysis

Our proposed dynamic message passing enables graph nodes to access each other without dense
pairwise modeling. As described in Sec. 3.4, the space complexity of our global message passing
is O(knnp). We further conduct an empirical analysis of N2 on computational complexity. As
presented in Fig. 3, the computational time exhibits linear scalability for the number of graph nodes n,
while being insensitive to the number of pseudo nodes np. In comparison to dense pairwise modeling,
we substitute the global message passing in N2 with a dense attention scheme. The resulting growth
rate of computational time for N2 is significantly lower than that of the dense method. Moreover,
the dense method fails to extend to large-scale graphs, whereas N2 only encounters out-of-memory
under the extreme situation of np = 256 and n = 1M.

5.3.2 Effectiveness of N2
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Figure 4: Effectiveness study.

Tackling over-squashing. N2 employs pseudo nodes in the
common state space to achieve global message passing with
linear complexity. These pseudo nodes also benefit N2 in tack-
ling over-squashing from two aspects, i.e., avoiding forming
new bottlenecks on pseudo nodes and detouring from the bot-
tlenecks on input graphs. Specifically, our pseudo nodes avoid
becoming new bottlenecks by employing dynamic connec-
tions. Compared to the uniform connection, dynamic connec-
tion learns the specific edge weights for each pseudo node to
different graph nodes. During global message passing, these
weights can eliminate messages from certain graph nodes
while preserving the others. As a result, the messages will
not be squashed equally into the pseudo nodes, preventing the
nodes from becoming new information bottlenecks. Regard-
ing the bottlenecks on input graphs, the pseudo nodes produce
two-hop message highways for message passing, detouring
messages from these bottlenecks. To evaluate N2 in tackling
over-squashing, we conduct experiments on Trees Match [2]
with training accuracy results presented in Fig. 4(a). N2 main-
tains the fitting ability across different tree depths, demon-
strating its ability to counteract over-squashing. Fig. 4(a) also
verifies the superiority of the dynamic connection in tackling
over-squashing, where N2 with the uniform connection shows
a decline in accuracy as the depth increases.
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Figure 6: Message passing analysis. The proximi-
ties between sampled graph nodes and pseudo nodes
are depicted in the center of each sub-figure, where
darker green indicates higher proximity and brighter
green indicates lower proximity. The distribution on
the top/right of each sub-figure denotes the sum of
proximity for each graph/pseudo node. Graph/pseudo
nodes are ranked based on the sum of proximity.

Figure 7: Ablation on the modules of
N2 (measured by accuracy: %). PA., L.,
and G. denote pseudo-node adaptation, local
message passing, and global message pass-
ing. Att. and Prx. denote the attention and
proximity measurement.

Amz
-ratings

Amz
Photo

RPO
-TEINS

w/o.
PA. 48.20±0.28 95.10±0.72 75.76±2.33

L. 48.69±0.67 94.84±0.59 75.77±2.17

G. 50.16±0.54 94.58±0.40 75.54±1.63

Full with Att. 49.18±0.47 95.02±0.20 73.68±1.87

Full with Prx. 50.25±0.53 95.75±0.34 77.53±1.78

Tackling over-smoothing. The other issue encountered when message passing relies heavily on input
topology is over-smoothing [46]. In N2, pseudo nodes are adopted as message pathway alternates,
decoupling the message-passing process from input topology. During global message passing, our
dynamic connection empowers the connected graph nodes on the input graphs to receive different
outputs and avoid becoming too similar to each other. For local message passing, learning node
displacements in N2 allows the combination of local message-passing outputs with layer inputs
and global message-passing outputs. Although stacking multi-layer local message passing leads to
over-smoothing, the layer inputs and global outputs can maintain the high-frequency signals. To
evaluate whether N2 can alleviate the over-smoothing issue, we explore the changes in the Dirichlet
energy [8] as the number of recursive steps increases. Fig. 4(b) compares among N2, N2 with the
uniform connection, and SGC [66] on AmazonPhoto and amazon-ratings. The reported values are
normalized to [0, 1] by dividing the maximum energy values. Results show that N2 with uniform
connections encounters over-smoothing as the number of recursive steps increases, while N2 with
dynamic connections can maintain the Dirichlet energy and alleviate over-smoothing.

5.3.3 Distribution of Embedded Nodes

(a) Epoch=20 (b) Epoch=500

Figure 5: Distribution of embedded nodes. The t-
sne [61] results under different training epochs are com-
pared. 0, 1, 2, 3, 4, 5 and 6 denote graph nodes with
different labels. △ denotes pseudo nodes. ⋆ denotes
class nodes.

We visualize the distribution of all the em-
bedded nodes during training. Results on
AmazonPhoto at the first recursive step are
depicted in Fig. 5. For results through re-
cursion, please refer to Appendix D.2. We
can see that as the graph nodes are clus-
tered with different class nodes, pseudo
nodes are also split into several groups.
Each pseudo-node group is attracted to-
ward a distinct graph node cluster. This
indicates that pseudo nodes will attend a
particular graph node group, serving as the
global message pathways to other groups.
As a result, each pseudo node assumes a balanced fraction of the global message load, mitigating the
risk of becoming bottlenecks for message passing.

To further analyze the message passing between graph nodes and pseudo nodes, we visualize the
proximity matrix Epn and Enp for pseudo-node adaptation (Eq. 8) on AmazonPhoto in Fig. 6. For
more proximity visualizations, please refer to Appendix D.3. 1000 graph nodes are sampled randomly
and ranked based on their intro-/outre-proximity summation. The intro-/outre-proximity summation
indicates the message load a graph node collects or diffuses during the message passing. As depicted
in Fig. 6, both graph nodes and pseudo nodes assume a balanced message load. Each pseudo node
has various proximity values toward individual graph nodes, different from the uniform pathways.
All these properties empower efficient global message passing on graphs.
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5.3.4 Ablation Study
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Figure 8: Ablation on the number
of pseudo nodes (np).
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Figure 9: Comparison between
single shared recurrent layer and
multiple recurrent layers.

Pseudo node. We conduct ablation studies on the number of
pseudo nodes np in Fig. 8. To present the results in a compara-
ble form within the same figure, the accuracy values have been
normalized by subtracting the minimum value. As np increases,
N2 gets improvement in accuracy for all three datasets. How-
ever, the accuracy exhibits degradation on PROTEINS when
np reaches 256. This is because np exceeds the optimization
capacity of N2. A similar degradation also happens on amazon-
ratings. In practice, the optimal value of np is around 16 to
32 for graph classification while reaching 128 to 300 for node
classification. We also conduct ablation studies on the engage-
ment of pseudo nodes in Appendix D.7, where N2 with pseudo
nodes outperforms dense message passing.

Recurrent layer. By employing the same recurrent layer
through recursive steps, N2 attains comparable performance
to baseline models with substantially fewer parameters. To
analyze the efficacy of parameter sharing, we conduct ablation
studies on the number of recurrent layers, comparing N2 with
shared parameters against N2 with multiple recurrent layers
in Fig. 9. For simplicity, we denote the number of recurrent
layers as Lp, where N2 with multiple recurrent layers has Lp

equals to the number of recursive steps L and N2 with shared
parameters has Lp = 1. Given the same L, N2 with Lp = 1
achieves matching performance with Lp = L. This indicates
that shared parameters are sufficient in modeling convergent
dynamics of the embedded nodes in the state space (Fig. 5).
However, N2 achieves better performance with Lp = L when
L surpasses 8 on amazon-ratings and AmazonPhoto. In further empirical analysis, we find that the
embedded nodes in N2 with Lp = 1 tend to maintain current dynamics through recursive steps and
thus become less effective in precise position optimization. Please refer to Appendix D.4 for detailed
analysis. A step-dependent parameter may further improve the performance of N2 with Lp = 1. We
will keep exploring it in future work.

Relation measurement. We compare our proximity measurement with attention [62] in Tab. 7.
Results show that N2 with proximity achieves better performance on all three benchmarks. We
ascribe this to the flexible range of the proximity values. In contrast, normalized attention that ranges
in [0, 1] can yield equally small weights and attenuate the messages, especially when the optimal
assignment involves a large number of graph nodes to the same pseudo node.

N2 modules. In Tab. 7, N2 with all three modules achieves superior performance across all the
benchmarks. In comparison among the ablated N2, removing global message passing leads to a
larger degradation in graph classification accuracy. Conversely, node classification exhibits greater
sensitivity to the removal of local message passing. Moreover, pseudo-node adaptation is required
by N2 on all three benchmarks. This indicates that adapting the randomly initialized distribution of
pseudo nodes enables better interactions with graph nodes.

6 Conclusion

In this paper, we presented a dynamic message-passing method on graphs. Both graph nodes and
pseudo nodes are embedded in a common state space with measurable relations between them. The
measured relations serve as dynamic pathways between the embedded nodes, empowering flexible
message passing. Associating pseudo nodes to input graphs with measured relations, graph nodes can
communicate with each other intermediately through pseudo nodes under linear complexity. Based
on the proposed dynamic message passing, we further developed a GNN model named N2 for graph
and node classification tasks. Experimental results show that N2 achieves superior performance over
competitive baseline models. For limitations discussion, please refer to Appendix F.
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A State Space

N2 unifies graph nodes and pseudo nodes in a common state space. The concept of state space has
been widely adopted in various machine learning methods. In reinforcement learning, the state space
is typically modeled as a discrete space, encompassing all possible states of an agent. By taking
discrete actions, agents make transitions between states. Through interactions with the environment,
agents learn optimal policies that determine their actions at certain states, maximizing the cumulative
reward over time.

In contrast to the discrete paradigm, recurrent models such as long short-term memory (LSTM) [26],
and state space models (SSMs) [23] utilize continuous state representations to model sequential data.
In this setting, input sequences are tokenized and consumed by the model in a successive manner. As
a result, recurrent models learn to update the state embeddings recursively.

Building upon the continuous paradigm, DyN [48] further applies measurements to the continuous
state space, giving rise to measurable spatial relations between state embeddings. All the input tokens
can now be modeled simultaneously in the state space.

However, modeling dense pairwise relations among a large number of graph nodes becomes in-
tractable in the graph representation learning setting, due to the quadratic complexity. To reduce
the complexity, we introduce pseudo nodes to serve as proxies for pairwise relations between graph
nodes. Consequently, the relations between graph nodes are decomposed into two components, i.e.,
relations between source graph nodes and pseudo nodes, and relations between pseudo nodes and
target graph nodes. Since the number of pseudo nodes is substantially smaller than the number of
graph nodes, this decomposition effectively reduces the overall complexity.

B Pseudo Nodes and Pooling Nodes

In hierarchical GNNs, graph nodes are compressed into higher-level nodes through iterative graph
pooling. These higher-level nodes, referred to as pooling nodes, are different from the pseudo
nodes in N2. First, pseudo nodes and pooling nodes are learned for different objectives. Pseudo
nodes optimize communication efficiency between graph nodes during global message passing.
Pooling nodes capture the hierarchy in the graph structures, ensuring better structure compression.
Second, pooling nodes and pseudo nodes have different relations with input graph nodes. Pooling
nodes are higher-level abstractions of graph nodes and are not physically connected with them.
In contrast, pseudo nodes can be regarded as learnable graph nodes. These nodes are physically
connected to graph nodes as part of the graphs and directly participate in the message passing between
graph nodes. Third, pseudo nodes and pooling nodes employ different communication pathways.
Pooling nodes employ the coarse adjacency matrix for message passing. Pseudo nodes are free from
structure-preserving constraints and learn fully connected pathways to communicate with each other.

C Details on Experiments

We have performed grid search for the hyper-parameters in Tab. S6 and the reproduced models based
on validation loss. All the learnable parameters in N2 are optimized during training, including the
weights in the linear transformations and the proximity measurement, the pseudo/class-node states.
The cross-entropy loss is adopted for classification and the L1 loss for regression. No position or
structural encoding methods are employed for N2.

C.1 Graph Classification

C.1.1 Benchmark Descriptions

We adopt six benchmarks for graph classification, including three biochemical datasets (OGB-
molpcba [27], PROTEINS [44], NCI1 [44]) and three social network datasets [44] (COLLAB,
IMDB-BINARY, and IMDB-MULTI).

OGB-molpcba is a large-scale molecular property prediction benchmark. Each graph is a discrete
molecule, wherein nodes denote individual atoms and edges encode chemical bonds between atoms.
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PROTEINS comprises 1,113 protein graphs with amino acids constituting the nodes. The associated
binary classification task involves predicting protein category labels, specifically discriminating
between enzymes versus non-enzymes.

NCI1 constitutes 4,110 graphs of chemical compounds assembled by the National Cancer Institute
(NCI). Graph labels categorize compounds as exhibiting either positive or negative efficacy against
cell lung cancer.

IMDB-BINARY and IMDB-MULTI constitute collaboration network graphs of movie actors and
actresses, with graph labels indicating movie genres.

COLLAB constitutes scientific collaboration networks wherein each graph is an ego network for
a researcher, encompassing their co-authors. Graph labels indicate the specific scientific interest
corresponding to each researcher.

C.1.2 Experimental Setups

We choose (1) Convolutional GNNs: GCN [33], PATCHY-SAN [45], GraphSAGE [25], GIN [71],
PG [29], and CoCN [58]; (2) GNNs with a single pseudo node from [42, 27, 7]; (3) Hierarchical
GNNs: DiffPool [73], TopKPool [20], SAGPool [37], StructPool [74], SEP [67], and GMT [3];
(4) Graph transformers: Graphormer [72], SAN [35], GraphGPS [52], and GraphTrans [7] as the
baselines of graph classification.

Except for OGB-molpcba, we perform 10-fold cross-validation with LIB-SVM following [71] and
report average performance. Average precision is reported for OGB-molpcba while accuracy is for
the others. Since COLLAB, IMDB-BINARY, and IMDB-MULTI have no graph node features, we
use the one-hot encoding of node degrees as node features following [71].

For experiments on all benchmarks, the learning rate is set to 1 × 10−3. We adopt Adam [32] as
optimizer and set weight decay as 1 × 10−6. Early stopping regularization is employed, where
we stop the training if there is no further reduction in the validation loss during 300 epochs. The
maximum epoch number is set to 1,000. The batch size is set to 1,024 on OGB-molpcba, 256 on
PROTEINS, NCI1, IMDB-BINARY, IMDB-MULTI, and COLLAB. The detailed hyper-parameter
settings on all benchmarks are reported in Tab. S6.

C.2 Node Classification

C.2.1 Benchmark Descriptions

For node classification, we conduct experiments on (1) six middle-scale benchmarks: homophilic
graphs [55] (AmazonPhoto, AmazonComputers, CoauthorCS, and CoauthorPhysics), heterophilic
graphs [49] (questions, amazon-ratings, tolokers, and minesweeper); (2) four large-scale benchmarks:
homophilic graphs [27] (OGB-arXiv, OGB-proteins), heterophilic graphs [41] (arXiv-year, genius).

CoauthorCS and CoauthorPhysics originate from the Microsoft Academic Graph, comprising
co-authorship graphs wherein nodes denote researchers and edges denote co-authorships between
pairs. Node features encapsulate keyword frequencies extracted from an author’s publications. Graph
labels categorize the dominant research interest in computer science or physics for each author.

AmazonComputers and AmazonPhoto constitute Amazon co-purchase graphs. Nodes denote
products that are available for purchase and edges denote co-purchase relation between pairs of
items. Node features are encoded customer review texts corresponding to each product. Graph labels
categorize the products.

Questions originates from the Yandex Q question-answering website, comprising user activity graphs
over a one-year interval (September 2021 to August 2022). Nodes represent users with interest in
"medicine". Edges denote one user answered another user’s posted question. The associated binary
graph classification task involves predicting which users remained active on the website without
account deletion or blocking. Node features are derived by averaging FastText word embedding
vectors corresponding to user profile descriptions.

Amazon-ratings utilizes the Amazon product co-purchasing network metadata sourced from the
SNAP Datasets [38]. Nodes are products with edges encoding frequent co-purchase relations between
item pairs. The associated task involves predicting the average reviewer rating for each product,
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Table S6: Hyper-parameter setups for N2.

#RECURSIVE
STEPS

(L)

HIDDEN
DIM.

STATE
SPACE
DIM.

#UNITS
(k)

#PSEUDO
NODES

(np)
DROPOUT

GENIUS 3 128 64 8 256 0.1
ARXIV-YEAR 6 128 64 8 300 0.1
OGB-ARXIV 5 128 64 8 320 0.3
OGB-PROTEINS 3 128 64 8 256 0.3

QUESTIONS 6 128 64 8 256 0.1
AMAZON-RATINGS 8 64 64 8 256 0.3
TOLOKERS 6 128 64 8 256 0.1
MINESWEEPER 7 64 64 8 128 0.3

COAUTHORCS 3 128 64 8 256 0.4
COAUTHORPHYSICS 3 128 64 8 256 0.5
AMAZONPHOTO 5 128 64 8 256 0.1
AMAZONCOMPUTERS 3 128 64 8 256 0.3

PROTEINS 8 128 64 8 32 0.1
NCI1 6 128 128 8 32 0.1
COLLAB 6 128 64 8 32 0.1
IMDB-BINARY 6 128 64 8 32 0.1
IMDB-MULTI 6 128 64 8 8 0.2
OGB-MOLPCBA 6 128 64 8 32 0.3

which is grouped into five ordinal rating classes. Node features are derived by averaging FastText
embedding representations corresponding to each product’s description text.

Tolokers encapsulates crowdsourcing participation data sourced from the Toloka platform. Nodes
denote contributors, referred to as "tolokers", involved in at least one out of 13 selected projects.
Edges link toloker pairs that have completed the same tasks. The associated binary classification is to
predict which tolokers have been banned from projects. Node features are profile attributes and task
performance statistics of each toloker.

Minesweeper is a synthetic 100x100 grid network. Nodes denote grid cells. 20% of nodes are
randomly designated as mines. The associated prediction task is to classify which nodes are mine or
not. For all nodes, input features are initialized as one-hot vectors encoding counts of neighboring
mines. The initialized features of 50% of randomly selected nodes are then reset to unknown values.
These nodes are indicated by an additional binary indicator.

OGB-arXiv is a citation network of Computer Science papers on arXiv. Nodes represent individual
articles whereas directed edges denote one paper citing another. Node features are derived by averag-
ing 128-dimensional word embeddings corresponding to the title and abstract of each publication.
The associated multi-class classification is to predict the primary category for arXiv articles across 40
classes.

OGB-proteins is an undirected, weighted graph of proteins. Nodes denote proteins while edges
denote biologically meaningful associations between proteins. Edge features represent confidence
scores for each association type. Node features are one-hot vectors denoting the species of each
protein. The associated multi-label classification is to predict the presence of 112 potential protein
functions, formulated as a binary prediction task for each label.

Genius is an online social network. Each node represents a user. The associated binary classification
task is to predict whether the accounts are marked or not.

arXiv-year is a citation network from arXiv. Each node represents a research publication. The
associated classification task is to predict the publication time of each node.
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Table S7: Effectiveness study on peptides-struct (measured by mean absolute error).

PEPTIDES-STRUCT ↓
GCNII 34.71
GCN 34.96
GINE 35.47
GATEDGCN 33.57
SAN 25.45
PATHNN 25.45
DREW-GCN 25.36
EXPHORMER 24.81
N2 (OURS) 25.12

C.2.2 Experimental Setups

For baseline models, we consider (1) Convolutional GNNs: GCN [33], GAT [64], APPNP [21],
SGC [66], H2GCN [78], FAGCN [5], LINKX [41], GPRGNN [11], and GloGNN [40]; (2) Graph
transformers: GT [56], Graphormer [72], SAN [35], GraphGPS [52], Nodeformer [69], NAG-
phormer [9], SGFormer [70] and Exphormer [57] based on pseudo node.

ROC-AUC is reported for questions, tolokers, and minesweeper while accuracy is for the others.
We apply 60%/20%/20% train/val/test random splits for Amazon and Coauthor benchmarks and
follow the standard splits as the original papers for the rest of the benchmarks. We reproduce the
results of Exphormer [57] on (genius, arXiv-year, OGN-Proteins, questions, amazon-ratings, tolokers,
minesweeper), Nodeformer [69] and SGFormer [70] on (genius and arXiv-year) with their released
codes for a fair comparison.

For experiments on all benchmarks, the learning rate is set to 1 × 10−3. We adopt Adam [32] as
optimizer and set weight decay as 1 × 10−6. Early stopping regularization is employed, where
we stop the training if there is no further reduction in the validation loss during 300 epochs. The
maximum epoch number is set to 1,000. The detailed hyper-parameter settings on all benchmarks are
reported in Tab. S6.

D Additional Experimental Results

D.1 Effectiveness on Tackling Over-squashing

We further benchmark N2 on Peptides-struct [17], a graph regression benchmark involving long-
range interactions. Baselines include traditional GNNs: GCN [33], GCNII [10], GINE [71, 28],
and GatedGCN [6]; methods aiming to capture long-range features: SAN [35], PathNN [59], Drew-
GCN [24], and Exphormer [57]. As presented in Tab. S7, we can see that N2 achieves competitive
performance with Exphormer and surpasses the rest of baselines. This indicates the effectiveness of
N2 to encounter over-squashing.

D.2 Distribution of Embedded Nodes

The distribution of the embedded nodes through training is visualized in Fig. S10. We can see that
pseudo nodes and graph nodes adjust their relative position actively in the state space. For the same
recursive step through training, pseudo nodes are split into several groups. Each group is attracted
toward a distinct graph node cluster. For the same epoch, the relative positions between graph
node clusters and the attracted pseudo nodes also evolve through recursive steps. This indicates
that N2 optimizes the proximity between graph nodes and pseudo nodes recursively, constructing
dynamic message-passing pathways.

D.3 Proximity for Message Passing

To further analyze the message passing between graph nodes and pseudo nodes, we visualize their
corresponding proximity on AmazonPhoto. In Fig. S11, 1, 000 graph nodes are sampled randomly.
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Figure S10: Full results on the distribution of embedded nodes. The t-sne [61] results under
different recursive steps across training are compared. Each row is from the same epoch. Each
column depicts results from the same recursive step (l-th step). Input graph nodes with different
labels are depicted as: 0, 1, 2, 3, 4, 5, 6. Pseudo nodes are depicted as △. Class nodes are depicted as
⋆.

Both graph nodes and pseudo nodes are ranked based on their intro-/outre-proximity summation. The
intro-/outre-proximity summation indicates the message load a graph node takes or emits during the
message passing. From Fig. S11, we can see that the intro-/outre-proximity is distributed evenly
across different graph nodes and pseudo nodes. This indicates that both graph nodes and pseudo nodes
assume a balanced message load. For each proximity matrix, the proximity value varies between
different pairs of graph nodes and pseudo nodes, thus constructing dynamic pathways instead of
uniform pathways.

D.4 Displacements Comparison between Single Shared Recurrent Layer and Multiple
Recurrent Layers

To understand the difference in multi-step performance, where N2 with multiple recurrent layers
(Lp = L) achieves better performance against N2 with shared parameters (Lp = 1), we further
analyze the displacements of the embedded nodes on AmazonPhoto and amazon-ratings. Fig. S12
depicts the comparison results. Four displacement types are presented in the figure, including
displacements of pseudo nodes in pseudo-node adaptation ∆R̂(l) (Eq. 8) and global message passing
∆R(l) (Eq. 10), displacements of graph nodes in local message passing NL(Mlocal(l)) (Eq. 9) and
global message passing NL(Mglob(l)) (Eq. 10). We take the Frobenius norm of each displacement
matrix and divide it by the larger results between N2 with Lp = 1 and N2 with Lp = L across

recursive steps, e.g., max
(
{∆R

(l)
Lp=1,∆R

(l)
Lp=L, l ∈ [1, L]}

)
.

From Fig. S12, we can see the consistency in the shape of the displacement curve between amazon-
ratings and AmazonPhoto. The displacement curves of N2 with Lp = 1 are smooth, whereas
N2 with Lp = L demonstrates fluctuation. We attribute this difference to the distinct inertia
characteristics exhibited by the embedded nodes. For the embedded nodes in N2 with Lp = 1,
they generally possess greater inertia, and thus tend to maintain current dynamics through recursive
steps. In contrast, the embedded nodes in N2 with Lp = L have smaller inertia and vary their
dynamics. Therefore, N2 with Lp = L can adjust the displacements of the embedded nodes more
flexibly according to different situations and gain better performance in situations requiring precise
distribution optimization. A step-dependent parameter may further improve the performance of
N2 with Lp = 1 on a larger number of recursive steps. We leave this for future exploration.
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Figure S11: Full results on the message passing analysis. The results under different recursive
steps across training are compared. Each row is from the same recursive step (l-th step). PNode.
Adpat. denotes the pseudo-node adaptation module in N2. Dy. MP. denotes the dynamic message
passing in N2. The proximities between sampled graph nodes and pseudo nodes are depicted in the
center of each sub-figure, where darker green indicates higher proximity and brighter green indicates
lower proximity. Each column of the proximity matrix associates with a graph node while each row
associates a pseudo node. The distribution on the top of each sub-figure denotes the sum of proximity
for each graph node while the distribution on the right is for each pseudo node. The sampled graph
nodes and pseudo nodes are ranked based on the sum of proximity.

D.5 Ablation on Proximity Measurement

To approximate non-linear relations with low complexity, we employ piece-wise weighted inner
products on the proximity measurement in Eq. 1. Each embedded node is divided into k pieces.
Ablation studies are conducted on k with amazon-ratings, AmazonPhoto, and PROTEINS. As
depicted in Fig. S13, N2 with multiple pieces outperforms a single piece on all three benchmarks
and gains improvement with k increasing. The optimal number of pieces k is around 8.

D.6 Ablation on Messages

In N2, graph nodes and pseudo nodes perform message passing based on their current states in
the common state space and pass on the learned messages to each other. States and messages take
different roles in our proposed method. Specifically, states are the descriptive embeddings of graph
nodes corresponding to specific tasks, and messages are employed for information exchange. For the
message passing from graph nodes to pseudo nodes, the messages contain the features of an input
graph. From pseudo nodes to graph nodes, the messages may contain the query information towards
input graphs. To evaluate the necessity of distinguishing states and messages, we conduct ablation
studies on messages by directly passing graph node states in message passing. The results with or
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Figure S12: Displacement comparison between N2 with a shared recurrent layer and N2 with
multiple recurrent layers.
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Figure S13: Ablation studies on the number of pieces k.

without specially distinguished messages are presented in Tab. S8. We can see that applying both
states and messages achieves the best performance.

D.7 Ablation on Pseudo Nodes

In addition to investigating the number of pseudo nodes, we conduct ablation studies to examine
the impact of including pseudo nodes within N2. For cases without pseudo nodes, dense message
passing is employed. However, as dense computation is not scalable, only small-scale benchmarks
are utilized for this ablation study. The results are presented in Table S9. Surprisingly, we find that
N2 with pseudo nodes outperforms dense computation on IMDB-B, IMDB-M, and PROTEINS.
This can be attributed to pseudo nodes functioning as information filters in global message passing,
facilitating the removal of redundant information while extracting discriminative features from inputs.

E Intuitions for the N2 Implementation

We provide more intuitions for the implementation in Section 4. N2 embeds graph nodes and pseudo
nodes into the common state space, employing a recurrent layer to parameterize the displacements of
the embedded nodes. The recurrent layer includes pseudo-node adaptation and dynamic message
passing. Pseudo-node adaptation employs GlobMP to generate query messages toward graph nodes.
Dynamic message passing then extracts graph features through LocalMP and refines these extracted
features at the pseudo-node level with GlobMP.
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Table S8: Ablation studies on messages.

W. MESSAGES W/O. MESSAGES W/O.-W.

QUESTIONS 78.07 76.01 -2.06
AMAZON-RATINGS 50.25 47.79 -2.46
TOLOKERS 86.25 85.05 -1.20
MINESWEEPER 93.97 92.38 -1.59
COAUTHORCS 94.44 92.39 -2.05
COAUTHORPHYSICS 97.56 96.27 -1.29
AMAZONPHOTO 95.75 93.80 -1.95
AMAZONCOMPUTERS 92.51 90.73 -1.78

Table S9: Comparison between dense and pseudo-node-based message passing.

DENSE N2

IMDB-B 77.94 79.95
IMDB-M 56.41 57.31
PROTEINS 76.94 77.53

As described by the pseudo-node adaptation in Eq. 8, graph nodes first diffuse messages to pseudo
nodes. Based on the information learned from these messages, pseudo nodes generate displacements
to adjust their own representations, enabling better interactions with graph nodes. Subsequently,
graph nodes collect responding messages from pseudo nodes, which serve as the query signals toward
specific information of the input graphs.

During the dynamic message passing, Eq. 9 presents the local message passing on input graphs.
Graph nodes collect query messages from pseudo nodes, and process them together with their own
generated messages and states through the LocalMP function. As a result, graph nodes learn the
features of the input graphs and generate feedback messages to pseudo nodes accordingly. The
generated messages containing the features of input graphs can also be leveraged to determine the
displacements of graph nodes.

Eq. 10 presents how graph nodes perform global message passing intermediately through pseudo
nodes. Pseudo nodes receive the feedback messages and again generate their displacements. As
feedback messages are aggregated at the pseudo-nodes level, more global information is incorporated,
guiding the movements of graph nodes and their message update.

F Limitations

N2 employs shared parameters to update the distribution of pseudo nodes and graph nodes recursively.
We only studied N2 with a simple update mechanism. As discussed in the model analysis section,
N2 encounters performance degradation when the number of recursive steps increases. In addition,
the learnable pseudo nodes can be regarded as parameters in GNNs, classified in line with neurons of
GNNs. Under this interpretation of pseudo nodes, only a subset of neurons from GNNs are embedded
in the common state space within our framework. Comprehensively bridging all neurons and graph
nodes remains an open research direction.

G Societal Impact

This paper proposed a novel method for constructing dynamic message-passing pathways by bridging
graph nodes and pseudo nodes in a common state space. Our goal is to advance the field of
graph representation learning. The proposed method remains independent of specific downstream
applications. As graph data are ubiquitous in the real world, there are many potential applications
of our work, including computational biology [75], intelligent transportation [51], and algorithmic
reasoning [16]. Regarding ethical considerations, we do not presently foresee evident issues or
potential for adverse societal impacts.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: This paper discusses the limitations of the work in Appendix F.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
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Justification: This paper does not provide theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Detailed experimental setups are provided in Appendix C. Code is provided at
https://github.com/sunjss/N2.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]

Justification: Code with instructions for reproduction is provided at https://github.
com/sunjss/N2.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Detailed experimental setups are provided in Appendix C.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Please refer to Tab. 1-5.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Please refer to the beginning of Sec. 5 and Fig. 3.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper conforms with the NeurIPS Code of
Ethics in every respect.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Please refer to Appendix G.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Please refer to Appendix C.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: Please refer to the supplementary materials and our open source code at
https://github.com/sunjss/N2.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This paper does not involve crowdsourcing or research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper does not involve crowdsourcing or research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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