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ABSTRACT

Out-of-distribution (OOD) detection ensures safe and reliable model deployment.
Contemporary OOD algorithms using geometry projection can detect OOD or
adversarial samples from clean in-distribution (ID) samples. However, this setting
regards adversarial ID samples as OOD, leading to incorrect OOD predictions.
Existing efforts on OOD detection with ID and OOD data under attacks are mini-
mal. In this paper, we develop a robust OOD detection method that distinguishes
adversarial ID samples from OOD ones. The sharp loss landscape created by
adversarial training hinders model convergence, impacting the latent embedding
quality for OOD score calculation. Therefore, we introduce a Sharpness-aware
Geometric Defense (SaGD) framework to smooth out the rugged adversarial
loss landscape in the projected latent geometry. Enhanced geometric embedding
convergence enables accurate ID data characterization, benefiting OOD detection
against adversarial attacks. We use Jitter-based perturbation in adversarial training
to extend the defense ability against unseen attacks. Our SaGD framework sig-
nificantly improves FPR and AUC over the state-of-the-art defense approaches in
differentiating CIFAR-100 from six other OOD datasets under various attacks. We
further examine the effects of perturbations at various adversarial training levels,
revealing the relationship between the sharp loss landscape and adversarial OOD
detection. The implementation code will be released upon paper acceptance.

1 INTRODUCTION

Advancements in artificial intelligence (AI) go beyond mere model accuracy. One critical aspect is
the AI model’s capability to identify and reject unfamiliar samples, ensuring reliable AI deployment.
The technical field of detecting out-of-distribution (OOD) samples [45, 53] has raised substantial
attention. The aim is to distinguish disjoint OOD samples from the in-distribution (ID) training
samples. For example, an image classifier should recognize unfamiliar input images outside training
classes to avoid generating unreliable predictions.

The deep neural network is known to be vulnerable to adversarial attacks [18], which are intentionally
manipulated perturbations in a subtle way that is malicious to mislead model predictions. A handful of
adversarial defense studies are proposed to secure the model prediction against the attacks [40, 38, 15].
Notably, adversarial training and hyperspherical geometry learning effectively alleviate adversarial
situations in image classification tasks. In the case of OOD detection, existing studies typically
predict adversarial samples as OOD samples [29], leading to substantial alarms for adversarial ID
cases shown in Figure 1. These studies have still not yet explored how to distinguish adversarial
ID from adversarial OOD samples and thus are still not resilient to attacks in realizing real OOD
applications. We aim to ensure the OOD detection system robustly operates in clean and adversarial
conditions.

The task of differentiating OOD itself is hard due to the widespread new data pattern to the model [16],
and suffering from adversarial attacks increases the complexity of OOD detection. ATOM is a
pioneering framework for dealing with attacks on open-set samples [5]. Recently, Azizmalayeri
et al. [1] found that adversarial attacks on both ID and OOD data significantly degrade detection
accuracy. They introduced an Adversarial Training Discriminator (ATD) with an outlier exposure
strategy that simulates both adversarial ID and OOD samples. The outlier exposure method highly
depends on the auxiliary OOD datasets which are expected to be excessively large. This requirement
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leads to inefficient and impracticality in real-world applications. We target the defense against
challenging white-box attacks on both ID and OOD data and seek effective perturbation strategies
without relying on additional large outlier datasets.

Figure 1: Problem scope of the adversarial
OOD detection

In this work, we aim to tackle this robust OOD de-
tection issue by combining two perspectives, includ-
ing geometry optimization and loss landscape smooth-
ing. First, the hypersphere and hyperbolic geome-
tries can learn compact representations for OOD de-
tection [36], but we still empirically observe a high
false positive rate. Therefore, we further examine the
ability of the multiple-geometric learning method [30]
in accommodating ID data variability under adversarial
attacks. Second, sharp loss has been observed in prior
research [14, 56] which is caused by adversarial sam-
ples. These samples increase the gradient norm and the
subsequent local minimum, sharp loss, and challenges in convergence. The GAN-like structure in
ATD is also known for its loss convergence issues.

Therefore, we introduce a sharpness-aware adversarial training framework that effectively allevi-
ates the sharp loss landscape, achieving robust latent geometry learning. Our backbone network
learns a Multi-Geometry Projection (MGP) [30] by incorporating two Riemannian (hypersphere and
hyperbolic) geometries with distinct curvatures to fully characterize the complex ID data. In the
adversarial training procedure, we propose to utilize the Riemannian Sharpness-aware Minimization
(RSAM) [55, 47], which improves the multiple Riemannian geometry convergence by flattening the
adversarial loss landscape. We empirically find that performing adversarial training based on the
Jitter attacks [41] demonstrates generalizability in defending against other attacks.

Our experiments comprehensively investigate mainstream OOD detection approaches with and
without adversarial training. We use CIFAR-10 and CIFAR-100 as ID datasets and perform OOD
evaluation using six other datasets. We compare the proposed SaGD against ATD [1], the state-of-
the-art (SoTA) defense approach for OOD detection, and show our improvements. Additionally, we
examine the effects of different adversarial training approaches to reveal the generalization ability
of SaGD in defending other types of attacks. In contrast to other OOD studies [1, 5, 6], which only
present one type of Projected Gradient Descent (PGD) attack, our results are comprehensively from
the average of six conditions, including the case without attack and five other cases under different
attacks. We report the area under the ROC curve (AUC) along with the false positive rate at 95%
true positive rate (abbreviated as FPR95) as evaluation metrics. The FPR95 is a common metric for
OOD detection; however, it is not reported in [1]. In the adversarial OOD detection experiments
using the CIFAR-10 ID dataset, our SaGD robustly reduces 14.91% FPR95 and enhances 7.47% AUC
over the SoTA approach. We also achieved a 17.71% average FPR95 reduction and 10.18% AUC
improvement using CIFAR-100 as the ID dataset.

Our contribution is summarized as follows:

• We introduce a novel sharpness-aware method for improving OOD detection in adversarial training.
Our method investigates the combination of Riemannian geometries under adversarial conditions.
This expansion of geometry space sharpens our defense against adversarial attacks and avoids
reliance on large OOD datasets for auxiliary training.

• We examine different perturbation techniques (not limited to PGD) for adversarial training to
identify their effectiveness for robust OOD detection.

• We investigate various adversarial attacks on different OOD detection approaches and report results
on FPR95 and AUC. Our SaGD sets a new SoTA for OOD detection, excelling in FPR95 and AUC
metrics, both with or without attacks.

• We analyze the relations between the minimization of a sharp loss landscape and OOD detection
performance under various adversarial conditions.
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Figure 2: Overview of the proposed Sharpness-aware Geometry Defense (SaGD) framework for
robust OOD detection. The Multi-Geometry Projection (MGP) network is trained using Jitter-based
adversarial samples and optimized via sharpness-aware loss minimization using RSAM. In testing,
sample embedding is computed for scoring to discern OOD from ID cases.

2 RELATED WORK

2.1 OOD DETECTION

Post-processing OOD detection. Model-agnostic OOD detection methods [45, 53] formulate scoring
functions based on prediction probability and energy score. Determining prediction confidence can
take various forms, such as utilizing softmax outputs [21], energy-based scores [33], or entropy
functions [4]. To avoid re-training or excessive tuning of the given model, recent advancements
focus on introducing perturbation [31], conducting pruning [12], and generating an unknown novel
class [48] to enhance the distinction between OOD and in-distribution (ID) samples.

Model training OOD detection. Other OOD studies have sought to enhance fixed-model post-
processing by incorporating network constraints during training to improve OOD detection. Sophis-
ticated designs are devised for network space projection and embedding distance measurement to
effectively train models for OOD detection. Noteworthy examples include SSD [42] and KNN+[46],
employing contrastive loss for latent embedding learning and calculating Mahalanobis[29] and non-
parametric KNN distances, respectively. A recent addition to this line of work is the CIDER frame-
work [36], which has demonstrated improved OOD detection performance by imposing constraints
on samples using a hypersphere-based loss function. The hyperbolic embedding also demonstrates
the enhanced ability for OOD detection [19]. Despite the impressive results achieved by these OOD
detection approaches, their performance is not robust when facing adversarial samples in practice.

2.2 ADVERSARIAL DEFENSES

Adversarial training [34] stands out as a key defense against adversarial attacks. This method
involves integrating adversarial samples into model training to bolster the network’s resilience against
perturbations. The goal is to approximate potential perturbations in adversarial samples, using them
to enhance model accuracy. However, the incorporation of adversarial samples unavoidably leads to a
degradation in prediction accuracy due to the introduction of various noises. To this end, Helper-based
Adversarial Training (HAT) seeks balance and reduces harm from adversarial samples by tailoring
network architecture and loss designs [40]. Notably, works such as [43, 44] train dual-attentive
denoising layers, leading to clean reconstructed samples from adversarial ones. Originally devised
for addressing the open-set detection problem, these techniques find application in OOD detection
scenarios under adversarial attacks [1].

Outlier exposure [22, 39] emerges as a strategy in OOD detection, broadening its capabilities by
incorporating outliers during training. Although these techniques can also foster a robust learning
space for adversarial outliers [6], their practical utility is constrained by the uncertainty surrounding
the optimal inclusion of outliers and the types of adversarial that should be artificially introduced.
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2.3 REGULARIZATION AND ADVERSARIAL ROBUSTNESS

Regularizing neural networks proves effective against adversarial attacks by preventing the adop-
tion of overly complex parameters, and avoiding suboptimal convergence at saddle points. When
attacked samples have distributions vastly different from the training space, it significantly biases
the network parameters. Implementing regularization based on various network designs, such as
angular and margin regularization on hypersphere geometry, enhances adversarial robustness [38, 15].
Prioritizing more regularization for vulnerable samples minimizes the robustness risk and improves
generalizability [52]. The underlying reason is that adversarial training can generate rugged sample
space and thus hinder model convergence. Such a sharp loss landscape hinders the training process
with scattered gradients and increased curvatures [32].

Sharpness-Aware Minimization (SAM) [17] is a well-known technique for its regularization ability
to mitigate training overfitting on a sharp loss landscape. A recent study [49] delves into SAM’s
potential for adversarial robustness and empirically establishes a lightweight alternative to PGD
adversarial training without significant sacrifices in clean sample accuracy. However, the integration
of SAM-based regularization with adversarial training, especially in OOD detection, remains limited.
The exploration of geometric projection associations, such as RSAM operating on the Riemannian
manifold [55, 47], is largely uncharted. This paper advances current research by combining RSAM
with multi-geometry learning techniques for OOD detection. We also investigate the effects of various
adversarial training types in experiments.

3 SHARPNESS-AWARE GEOMETRY DEFENSE (SAGD)

Figure 2 overviews our proposed SaGD framework, where the training phase consists of adversarial
training using Jitter-based adversarial samples (§3.1), multi-geometry projection (§3.2), and sharpness-
aware optimization (§3.3). The multi-geometry backbone combines the hypersphere and hyperbolic
branches in a multi-task joint loss optimization scheme. We first introduce the architecture along with
the scoring function for OOD score calculation. We then show how the Riemannian Sharpness-aware
Minimization (RSAM) optimizes the framework with adversarial training.

Problem setup. Given labeled data (x, y) from a distribution D, we consider a model fθ with
parameters θ. The training and testing data are denoted as Ds and Dt, respectively, where Dt contains
both in-distribution (Did) and out-of-distribution (Dood) test data. We assume Did is drawn from the
same distribution as Ds, while Dood is from a different distribution that needs to be distinguished.
The standard procedure for OOD detection is as follows: (1) Train a model fθ with Ds. (2) Fix model
parameter θ during test time. For each test sample x, derive embedding z using fθ. (3) Calculate
OOD score s(x) and differentiate OOD samples with a threshold λ. To protect the model against
adversarial attacks, we focus on the first step to strengthen the model’s robustness.

3.1 ADVERSARIAL TRAINING

We utilize the Jitter adversarial attack [41] to generate adversarial samples. Each input sample x is
perturbed by Jitter attack to simulate the inference-time attacks. Denote the perturbed samples as
xγ = x+ γ, where ||γ||p ≤ ϵ with an lp-norm bound and we select p to be the infinite norm.

The Jitter attack rescales the softmax function as ĥ = softmax
(
α · h

||h||∞

)
. This is based on a

finding that a small value range of output logits h can reduce the attack success rate. By default, α
is chosen to be 10. Then, our optimization goal for the attacking model in adversarial training is to
maximize the Euclidean distance between the rescaled softmax output ĥ and the one-hot encoded
ground truth vector y: L2 = ||ĥ−y||2. We further perturb the target loss by adding a Gaussian noise
N (0, σ) with magnitude σ. Such perturbed attack loss is then: LN = ||ĥ+N (0, σ)− y||2.

An adaptive searching rule is designed to downscale the perturbation by a factor β once the attack
succeeds which avoids over-optimized adversarial samples biased far from ID characteristics. The
Jitter loss is then:

LJitter =

{
||ĥ+N (0,σ)−y||2

β if fθ(xγ) = y,

||ĥ+N (0, σ)− y||2 otherwise.
(1)
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3.2 MULTI-GEOMETRY PROJECTION (MGP)

Our backbone network fθ incorporates a dual-stream geometry projection to capture diverse latent
structures in ID data. Each geometry stream is defined by its specific loss function for joint op-
timization. In this context, we introduce hypersphere and hyperbolic geometry, both Riemannian
manifolds with positive and negative curvature, respectively. The curvature serves as an indicator of
deviation from the Euclidean space. Hyperspherical geometry has shown its effectiveness in OOD
detection [36]. The hyperbolic space has been used in open-set recognition [11] that can model the
hierarchical structures found in real-world vision data [13], as evident in datasets like Imagenet.

We assume parameter θ resides on a Riemannian manifold M with the Riemannian metric tensor
gM. The tensor gM : TθM × TθM consists of inner products in its tangent space TθM. A
retraction map Rθ provides transformations from M to the tangent space TθM. The tangent space
can be regarded as a measure of small deviation γ near parameter θ, and the metric gM smoothly
varies across θ ∈ M, resulting in the geodesic distance. The deviation γ on TθM is considered as
the perturbation generated for adversarial training (as discussed in §3.1), which will be utilized in
Riemannian manifold optimization (§3.3).

We incorporate the following geometries, each with its own loss metric designs.

Hypersphere geometry: Learning hypersphere geometry involves compactness and disparity loss
functions to group data samples onto a hypersphere. These functions ensure that samples from
different classes are kept at sufficient distances from each other. The hypersphere projection approach
initially introduced as CIDER [36], is based on the von Mises-Fisher (vMF) distribution assumption.
It is calculated using a unit vector zs ∈ Rd

s in class k and the class prototype µk as: pd(zs;µk) =
τ exp (µkzs/τ) , where τ is a temperature parameter. The probability of the embedding zs assigned
to class k is: P (y = k|zs; {µk, τ}) = exp(µkzs/τ)∑K

j=1 exp(µjzs/τ)
. We derive the compactness loss by taking

negative log-likelihood, which compels the projected samples to stay near the class prototypes.

Lcom = − 1

N
log

exp(µkzs/τ)∑K
j=1 exp(µjzs/τ)

. (2)

The disparity loss penalizes the class prototypes that are too close to each other:

Ldis = − 1

K

K∑
i=1

log
1

K − 1

K∑
j=1

1ji exp (µiµj/τ), (3)

where 1ji is indication function, 1ji =

{
1 if j ̸= i,

0 otherwise.
The hypersphere loss function is Lsph =

Lcom + Ldis, which imposes constraints on ID intra-class compactness and inter-class disparity on
the hypersphere. Meanwhile, OOD data are more likely to be separated farther from ID prototypes.

Hyperbolic geometry: A hyperbolic space Hd consists of d-dimensional Riemannian manifolds
with constant negative curvature [25]. An isomorphic hyperbolic transformation, Poincaré Ball
(Dd

c , g
D), defines a manifold Dd = {u ∈ Rd : c||u|| < 1} equipped with the Riemannian metric

gD(u) = (λc
u)

2gE = ( 2
1−c||u||2 )

2I, where λ = 2
1−c||u||2 is a conformal factor with curvature c, and

gE = I is an Euclidean metric tensor. The manifold operates on Mobius gyrovector space with
Mobius addition ⊕c and scalar multiplication ⊗c (referring to appendix A.1).

The pairwise geodesic distance is in the following form for two points u and v: D(u,v) =
2√
c
arctanh (

√
c|| − u⊕c v||) . Utilizing the operations of the hyperbolic space, we project the

latent embedding with a hyperbolic head to derive the embedding u on the Poincaré ball. Considering
an augmented set A from X to form a full set I = A∪X , the supervised contrastive loss is calculated
on the positive sample p(i) of the i ∈ I in contrast to other augmented samples a ∈ A. The
supervised hyperbolic contrastive loss can thus be formulated as Lhypb =

−
∑
i∈I

1

|P (i)|
∑

p∈P (i)

log
exp

(
−D(zi, zhp)/τ

)∑
a∈A exp (−D(zhi, zha)/τ)

.

The final loss is the combination of the hypersphere and hyperbolic losses, along with a cross-entropy
loss Lce to optimize for ID classification accuracy: L = Lsph + Lhypb + Lce.
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3.3 RIEMANNIAN SHARPNESS-AWARE MINIMIZATION

Learning complex latent geometries may face undesirable peaks in the loss minimization process.
Inspired by SAM [17] which was originally crafted for model generalization, we employ an improved
approach for Riemannian manifolds [55, 47] tailored to our multi-geometry network. The considera-
tion of multiple geometries in the network represents various manifolds that might not consistently
converge in the same gradient direction. The recent work [36] only accounts for a single hypersphere
geometry, which limits the ability to represent the OOD space. In our scenario, we aim to utilize the
Riemannian manifold optimization strategy to strenthen multiple geometries.

Given a loss function L(θ) with model parameter θ ∈ M and retraction map Rθ, the manifold
sharpness is defined as LS = max

||δ||2θ≤ρ
L (Rθ(δ))− L(θ), where δ is a projected perturbation in the

tangent space TθM of the manifold M. The minimization of min
θ∈M

LS reduces loss sharpness.

We simplify the first term in LS using Taylor expansion to approximate perturbed loss in the
maximization process: L(Rθ(δ)) ≈ L(θ) + ⟨∇θL(θ), δ⟩θ, where ∇θ denotes the Riemannian
gradient. A closed-form solution for LS is picking δ equal to the Riemannian gradient within the upper
bound ρ. The optimal perturbation is then δ∗ = ρ ∇θ(L(θ))

||∇θ(L(θ)||θ . We project δ∗ onto the tangent space
via Rθ and derive the optimal parameter θ∗ = Rθ (δ

∗). The network parameter in the next training
iteration θ′ can be updated using Riemannian gradient descent as: θ′ = Rθ (−η · ∇θ(L(θ∗))) , where
η is the learning rate. During the adversarial training described in §3.1, the sharpness LS on the loss
landscape would unexpectedly increase. Our solution is introducing RSAM, which can regularize the
network to increase convergence quality.

3.4 OOD SCORING FUNCTION

With a trained network f in the MGP framework, we extract the penultimate layer output as an L2
normalized embedding z of the sample x to compute its OOD score. To distinguish OOD from ID
samples, we calculate the embedding distance between each input sample and the training ID samples
and specify the kth nearest neighbor as a reference embedding zk. The OOD score is based on the
L2 distance, S(z) = ||z− zk||2. An OOD sample is detected using a threshold λ on the score S(z).

4 EXPERIMENTS

Dataset: Our OOD detection experiments are categorized into results for approaches with and without
defense. For OOD detection without adversarial defense, we use CIFAR-10 and CIFAR-100 [27]
as the ID dataset, and evaluate the performance on six other datasets that are treated as OOD: Tiny-
ImageNet [28], Place365 [57], LSUN [54], LSUN-Resize [54], iSUN [50], and Textures [8]. For the
compared OOD detection with adversarial defense, ATOM [5] and ATD [1] requires Food-101 [2]
dataset for additional outlier data training and SVHN [37] dataset for validation.

Evaluation metric: (1) FPR95: False positive rate at true positive rate 95% in the Receiver Operating
Characteristic (ROC) analysis. (2) AUC: Area under the ROC curve.

Attack setup: We investigate a set of attacks including PGD [34], FGSM [18], FAB [9], Jitter [41],
and Carlini and Wagner Attack (CW) [3], which are implemented using the TorchAttacks toolbox [26].
The attacks are constrained with perturbation bound ϵ = 8

255 and step size 2
255 for 10-step iterations.

Model Configurations: Our CIFAR-10 evaluation uses a ResNet-18 backbone network and CIFAR-
100 uses ResNet-34. The base optimizer is stochastic gradient descent (SGD) with momentum 0.9,
weight decay 10−4, and an initial learning rate of 0.5. This optimizer is regularized by RSAM in §3.3.
The model undergoes training for 500 epochs with a batch size of 512. We specify the intermediate
layer with 128 dimensions. The curvature c of hyperbolic geometry is set to be 0.01.

4.1 EVALUATION OF OUT-OF-DISTRIBUTION ACCURACY

We report the averaged OOD detection results over six OOD datasets. Our adversarial results are
mean values of the averaged OOD results over five adversarial conditions. The full results for each
dataset under different attacks are reported in the supplementary files.
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Table 1: Evaluation of OOD detection methods without adversarial training and with adversarial
training. We report the average FPR95 and AUC scores across the six OOD datasets. Apart from the
“Clean” setting, “Adversarial” conditions denote the further average results over five attacks (PGD,
Jitter, FAB, FGSM, and CW). Complete results are presented in the supplementary files.

Without Adversarial Training

ID Dataset CIFAR10 CIFAR100

Condition Clean Adversarial Clean Adversarial

Metric FPR95↓ AUC↑ FPR95↓ AUC↑ FPR95↓ AUC↑ FPR95↓ AUC↑
KNN+ 18.06 96.59 67.14 81.25 65.47 85.07 90.47 56.87
SSD 33.08 94.87 69.11 72.88 70.98 84.94 90.56 54.53
CIDER-KNN 52.20 88.41 65.18 78.39 65.99 83.44 72.88 82.01
CIDER-Maha 51.19 88.91 55.52 85.87 67.28 84.36 68.40 80.03
MGP-KNN 21.60 96.11 69.08 79.49 57.89 85.26 73.02 77.52
MGP-Maha 29.98 95.36 47.41 90.23 66.47 83.19 73.80 72.62

With Adversarial Training

Condition Clean Adversarial Clean Adversarial

Metric FPR95↓ AUC↑ FPR95↓ AUC↑ FPR95↓ AUC↑ FPR95↓ AUC↑
ACET 33.80 83.96 69.90 64.48 80.04 75.43 83.19 75.43
CCU 26.46 86.03 64.66 67.99 79.63 77.46 81.67 77.26
ATOM 23.57 88.22 56.13 79.08 72.81 79.31 76.82 80.12
ATD 27.46 94.15 42.59 87.36 63.04 82.90 67.58 77.41
SaGD 22.46 95.77 27.68 94.83 50.89 87.26 49.87 87.59

Without Defense: The upper part of Table 1 showcases popular OOD detection methods under ad-
versarial attacks. We compare with embedding-based methods without adversarial training including
SSD [42], KNN+ [46], and CIDER [36], and our MGP approach (§3.2). We consider both KNN [46]
and Mahalanobis [29] as scoring functions for CIDER and MGP, which are denoted in the form of
‘detector-function’ in Table 1. Other score-based methods along with detailed results are reported in
supplementary files. These OOD approaches are not designed to defend against malicious attacks.
Thus, the experiment can reflect performance degradation under attacks.

MGP-Maha outperforms other methods on the CIFAR-10 in Table 1. CIDER-Maha still obtains
an 8.11% gap in FPR95 though the 68.40% FPR95 is notable on the CIFAR-100. In the context of
CIDER and MGP detectors under adversarial attacks, Mahalanobis scores (Maha) [29] stands out as
a remarkable scoring function. Conversely, KNN generally performs well in clean conditions.

With Defense: In Table 1, we compare our proposed SaGD approach to the SToA adversarial defense
methods, ATD [1]. Other methods including ACET [20], CCU [35], and ATOM [5] proposed in
similar but different settings are also reported. SaGD achieves notable performance with average
FPR95 of 27.68% and AUC of 94.83% using CIFAR-10 as ID data. For CIFAR-100 as the ID data,
SaGD attains an average FPR95 of 50.03% and an AUC of 87.53%, outperforming ATD significantly.
The confidence-based algorithms such as CCU and ACET are not resilient to adversarial conditions,
with average FPR95 values over 60% and 80% for the CIFAR-10 and CIFAR-100 datasets. Although
ATOM obtains a 23.57% average FPR95 in clean OOD detection using the CIFAR-10 ID data, the
adversarial results are still inferior to SaGD and ATD. SaGD demonstrates substantial superiority over
ATD by at least 17% on the CIFAR-100 ID dataset. For the clean set without attacks, ATD achieves
a relatively close AUC to SaGD on the CIFAR-10 dataset but falls short by 4.64%. Notably, the
difference in FPR95 is substantial, with SaGD achieving 5.00% and 12.15% lower FPR95 than ATD
on CIFAR-10 and CIFAR-100 datasets, respectively. The more difficult OOD detection conditions of
CIFAR-100 reveal even more pronounced advantages of using SaGD.

Another advantage of our SaGD is its ability to circumvent the need for additional outlier datasets, a
requirement in ATD and ATOM for performing outlier exposure.

4.2 ABLATION STUDY

We conduct an ablation study for related techniques using the CIFAR-10 ID dataset, to elucidate the
effects of each module in our SaGD framework. The results are presented in Table 2.
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Table 2: Ablation study results on CIFAR-10. The upper part presents the ablation of modules in
SaGD including MGP/CIDER network, Jitter adversarial training, and RSAM optimization. Our
proposed SaGD is located in the last row of the upper table (MGP+RSAM+Jitter). The lower part is
about replacing Jitter with other perturbations for adversarial training.

CIDER Clean PGD Jitter FAB FGSM CW Average

RSAM AT FPR95 AUC FPR95 AUC FPR95 AUC FPR95 AUC FPR95 AUC FPR95 AUC FPR95 AUC

✗ ✗ 52.20 88.41 66.73 76.92 66.48 78.73 66.35 76.95 72.86 72.50 66.45 76.83 65.18 78.39
✓ ✗ 62.48 86.76 77.43 71.65 73.33 76.97 69.62 75.60 75.62 77.48 64.01 85.71 70.41 79.03
✗ Jitter 35.23 94.12 59.18 86.67 60.57 86.5 59.68 86.52 70.55 81.59 60.03 86.6 57.54 87.00
✓ Jitter 44.66 92.20 47.58 91.06 47.29 91.52 55.89 89.44 46.52 92.00 45.39 92.14 47.89 91.39

MGP FPR95 AUC FPR95 AUC FPR95 AUC FPR95 AUC FPR95 AUC FPR95 AUC FPR95 AUC

✗ ✗ 21.60 96.11 82.49 72.02 70.64 81.71 78.27 77.95 78.27 77.95 83.22 71.2 69.08 79.49
✓ ✗ 22.84 96.01 73.22 78.65 73.22 78.65 72.89 78.89 75.55 71.07 71.89 78.94 73.35 80.37
✗ Jitter 30.32 94.88 30.87 94.70 31.97 94.67 31.49 94.66 38.08 93.27 31.39 94.68 32.35 94.48
✓ Jitter 22.46 95.77 28.69 94.70 26.43 95.05 28.99 94.68 37.19 92.99 22.32 95.80 27.68 94.83

SaGD Clean PGD Jitter FAB FGSM CW Average

RSAM AT FPR95 AUC FPR95 AUC FPR95 AUC FPR95 AUC FPR95 AUC FPR95 AUC FPR95 AUC

✓ PGD 86.64 60.31 95.62 75.42 94.54 60.95 88.25 77.74 20.25 95.19 86.60 60.36 78.65 71.66
✓ FAB 87.00 61.31 42.72 91.13 94.23 51.71 42.92 91.15 99.46 61.23 43.79 90.96 68.35 74.58
✓ FGSM 92.67 52.23 80.51 85.46 95.07 50.34 98.46 51.10 59.20 91.20 92.71 52.24 86.44 63.76
✓ CW 45.44 91.67 70.24 83.88 53.60 88.42 69.69 83.77 66.71 85.35 48.77 90.83 59.08 87.32

Ablation study of geometry space, adversarial training, and RSAM: The removal of the RSAM
optimization module from our proposed SAGD adversely impacts both FPR95 and AUC. Specifically,
MGP-Jitter experiences a decline in average FPR95 to 32.35%, reflecting a 4.67% reduced margin
compared to SaGD. Meanwhile, SaGD maintains a high average AUC of 94.48%, showing no
significant decrease. Looking from another perspective, MGP-RSAM, discarding the Jitter adversarial
training step from SaGD results in a significant increase of 45.67% in FPR95 and a decrease of 14.46%
in AUC. We also simplify the MGP structure as CIDER in SaGD which results in its combination with
Jitter and RSAM. Jointly using Jitter and RSAM with CIDER obtains 47.89% FPR95 which shows
22.58% and 9.65% improvements over CIDER-RSAM and CIDER-Jitter, respectively. Overall, the
Jitter adversarial training benefits both CIDER and MGP frameworks. These results emphasize the
significance of conducting Jitter adversarial training, and the RSAM approach can further facilitate
the optimization steps.

Evaluation on different adversarial training methods: Based on the idea of generating adversarial
examples for robust model training, we investigate additional adversarial attack approaches for
adversarial training. Apart from Jitter, we incorporate PGD, FAB, FGSM, and CW to assess the OOD
detection results under these different attacks. The lower part of Table 2 shows the average FPR95

and AUC over six OOD testing datasets. Most adversarial attacks lead to substantial performance
degradation. For example, PGD and FGSM share similar attack properties, resulting in average
FPR95 exceeding 80% for the model subjected to any attacks except FGSM. An intriguing result
is observed with PGD, achieving 20.25% FPR95 and a 95.19% AUC. This suggests that this type
of perturbation can generate a notably robust model against the specific type of attack but may not
generalize well to others.

4.3 TESTING WITH DIFFERENT ADVERSARIAL PARAMTERS

Figure 3: CIFAR-10 OOD detection results
under different PGD attack perturbation in-
tensities (ϵ).

Perturbation intensity: We investigate the influence
of varying perturbation intensities (ϵ) in the PGD adver-
sarial attack on the SaGD method using the CIFAR-10
dataset. Figure 3 shows that FPR95 is more suscep-
tible to changes, while AUC maintains a consistently
high standard as ϵ increases. Notably, an intense attack
with ϵ = 16 causes FPR95 to double, whereas AUC
experiences a 6.72% decline. These results suggest con-
sidering FPR95 in the evaluation, an aspect that has been
previously overlooked in the literature [1].
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Table 3: Additional metrics (inlier and outlier AUC) and adaptive attacks on the CIFAR-10 dataset.
Average Adversarial APGD-100 APGD-1000 Autoattack

FPR95 AUC AUCIn AUCOut FPR95 AUC FPR95 AUC FPR95 AUC

ATD 42.59 87.36 88.69 89.03 43.89 88.41 44.25 85.36 47.95 83.86
SaGD 27.68 94.83 95.71 95.86 28.67 94.18 29.13 94.50 32.18 93.01

Iterative Attacks: We include adaptive PGD (APGD) and autoattack [10] in Table 3. The adaptive
PGD is investigated with 100 and 1000 steps and the autoattack is a parameter-free ensemble of
multiple attacks. Increasing steps for APGD does not significantly affect the performance of ATD
and SaGD compared to other types of attacks. The Autoattack obtains similar results with APGD in
1000 steps. SaGD can robustly defend for these different adversarial scenarios.

Inlier AUC and Outlier AUC: We analyze adversarial AUC metrics applying to inliers and outliers
(AUCIn and AUCOut) which are also reported in [1]. Our targeted setting performing attacks on
ID and OOD data results in lower AUC values than in AUCIn and AUCOut. SaGD can robustly
achieve over 94% AUC and outperform ATD in the different metrics.

4.4 OOD SCORE VISUALIZATION

Figure 4 presents the OOD score histogram distribution between the CIFAR-10 ID testing data and
TinyImageNet OOD testing data under clean and adversarial conditions. We demonstrate FGSM
and FAB adversarial conditions. Other adversarial results with six OOD datasets are shown in the
supplementary file. The ID data are colored in blue and the OOD data are in green. We consider
models from the ablation study to further shed light on our proposed technical modules. Specifically,
MGP, CIDER-RSAM-Jitter, and SaGD correspond to rows 5, 4, 9, and 8 in Table 2, respectively.

Figure 4: ID (blue) and OOD (green)
score distribution in the clean condi-
tion, FGSM, and FAB adversarial con-
ditions. We denote “detector/condition”
where the detector can be MGP, CIDER-
RSAM-Jitter, SaGD-PGD, or SaGD.

In clean conditions, MGP and SaGD distributions look
alike, while CIDER-RSAM-Jitter shows a sharper OOD
pattern. SaGD-PGD exhibits overlapping distributions be-
tween ID and OOD samples, albeit in a narrow area. Under
the FGSM attack, MGP and CIDER-RSAM-Jitter distribu-
tions collapse significantly, blurring the line between ID and
OOD samples. In contrast, SaGD maintains a consistent
distribution, preserving a strong discriminative ability even
under adversarial conditions. SaGD-PGD produces distinct
peaks between ID and OOD distributions against PGD at-
tacks. Investigating further, under FAB attacks, SaGD-PGD
generates multiple peaks in the OOD distribution, confus-
ing it with the long-tailed ID distribution. This highlights
the overfitting challenges of adversarial training. These
visualizations illustrate model properties regarding ID and
OOD distributions, suggesting the potential of regularizing
adversarial optimization across geometry spaces.

5 CONCLUSION

In this paper, we address the robustness issue for out-of-distribution (OOD) detection by investigating
various types of adversarial attacks. We propose a novel SaGD framework that leverages the Jitter
attack for adversarial training and optimizes the multi-geometry network using RSAM to enhance
model convergence. The sharpness minimization strategy mitigates the rugged loss landscape induced
by adversarial examples, resulting in improved OOD detection performance under attacks. Our
OOD detection experiments encompass two in-distribution (ID) datasets and six OOD datasets tested
against five types of attacks. SaGD achieves significantly low FPR95 and high AUC on average. Our
ablation study shows the critical role of Jitter-based adversarial training, highlighting the potential
risk of employing popular perturbation approaches like PGD and FGSM. Our analysis shows the
importance of using FPR95 for evaluation as it tends to be impacted by increased attacks.

Future work includes the exploration of loss convergence conditions during adversarial geometry
learning and improving the generalization of OOD detection capability under various adversarial con-
ditions. We anticipate this work can initiate a novel direction to investigate an in-depth understanding
of the relation between geometric loss optimization and robust OOD detection.
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A DETAILS OF ALGORITHMS

A.1 HYPERBOLIC AVERAGE DERIVATION

The process of obtaining a hyperbolic average begins with the application of an exponential map to
the embedding vector v, transforming it to the tangent space on the Poincaré ball. This transformation
expressed by the following equation essentially achieves hyperbolic embedding [25]:

Ec(v) = tanh
(√

c||v||
) v√

c||v||
. (4)

The projected vectors in the hyperbolic space can use operations on Mobius gyrovector space with
Mobius addition ⊕c and scalar multiplication ⊗c, where u and v are vectors, and w is a scalar.

u⊕c v =
(1 + 2c < u,v > +c||v||2)u+ (1− c||u||2)v

1 + 2c < u,v > +c2||u||2||v||2
,

w ⊗c u =
1√
c
tanh

(
w · arctanh

(√
c||u||

)) u

||u||
. (5)

Moving forward, we derive the process of hyperbolic averaging involving multiple hyperbolic
embeddings through the Einstein midpoint. The embedding is projected from the Poincaré ball Dd

c to
the Klein model Kd

c , facilitating a simpler average computation in the Klein coordinate system:

uK =
2uD

1 + c||uD||2
, uK =

∑m
i=1 riuK,i∑m

i=1 ri
, (6)

where ri is the Lorentz factor.

Following the derivation of the average embedding within the Klein coordinate system, we then
transform the space back to the Poincaré ball:

uD =
uK

1 +
√
1− c||uK||2

. (7)

A.2 CHARACTERISTICS OF VARIOUS ADVERSARIAL ATTACKS

In the main paper, we investigate a set of adversarial attacks to examine the robustness of OOD
detection approaches. Since adversarial training is realized by using adversarial samples generated
by adversarial attacks, we discuss the characteristics of these adversarial attacks in this section.

Given a data sample x with label y, an adversarial sample x∗ = x+ γ is generated to attack the target
model fθ in an optimization process aiming to maximize the following equation with a perturbation
intensity γ smaller than the upper-bound ϵ:

max
||x−x∗||∞<ϵ

L(x∗, y; fθ), (8)

1
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where L is a targeted loss function, which is usually a cross-entropy for the targeted classification
task. On the other hand, the adversarial training for defense is another optimization process aiming to
determine the minimal impact from these adversarial samples, which can be written as:

argmin
θ

E(x,y)∼Din
min

||x−x∗||∞<ϵ
L(x∗, y; fθ). (9)

We next summarize popular adversarial attacks that are considered in the main paper.

Fast Gradient Sign Method (FGSM) [18]: The basic idea is to determine the gradient of the loss
∇L in order to amplify the loss. The adversarial sample x∗ is formed by combining the original
sample x with a perturbation:

x∗ = x+ ϵ sign (∇L(x, y; fθ)) . (10)

Projected Gradient Descent (PGD) [34]: enhances the attack by using a t-step updating iteration
on the greatest loss gradient with a step size η. The initial step starts with adding a random noise
from a uniform distribution U(−ϵ, ϵ):

x∗
t+1 = max

||x−x∗
t ||∞<ϵ

{x∗
t + η sign (∇L(x∗

t , y; fθ))} (11)

The Jitter attack [41] is described in the main manuscript.

The Fast Adaptive Boundary (FAB) [9] attack focuses on making a correctly classified sample x0

to be misclassified by finding the decision hyperplane close to x0 and performing extrapolation. This
hyperplane projection πs : ⟨w, x⟩+ b with the parameters w ∈ Rd and b ∈ R under a box constrain
C = {z ∈ Rd : li ≤ zi ≤ ui, i = 1, 2, ..., d} can be estimated to be the closest decision boundary of
x0 using first-order Taylor expansion. That is the projected point on the closest decision boundary, z0
fulfills the optimization result:

z0 = argmin
z

||z − x0||p, (12)

with ⟨w, z⟩+ b = 0. A box-constrained hyperplane projection is then described as:

Projp(x, πs, C) →
{

z0 if eq. equation 12 is hold
z′ else (13)

where z′ is another condition in the optimization iterations that z is not sat on the hyperplane, with
ρ = sign(⟨w, z⟩+ b)

z′ =

{
li if ρwi > 0
ui if ρwi < 0
xi if wi = 0, for i = 1, 2, ..., d

(14)

When we obtain the projection to the closest hyperplane for x0 as Projp(x0, πs, C), we can perform
extrapolation to derive the resulting adversarial sample x∗ which does not violate the box constrain.

The CW [3] attack is named after Carlini and Wagner, the inventors constructing adversarial samples
in the following tanh space: w∗ =

min
w

∥∥∥∥12(tanh(w) + 1)− x

∥∥∥∥2
2

+ c · g
(
1

2
(tanh(w) + 1)

)
, (15)

x∗ =
1

2
(tanh(w∗) + 1), (16)

where the hyperparameter c determines the intensity of the perturbation and g(x) =
max (f(x)y −maxi ̸=y(f(x)i), κ) indicates the aim to encourage f(x)y −maxi̸=y(f(x)i) in prox-
imity to κ. The CW attack modifies the variable in the tanh optimization space, with the underlying
rationale of smoothing the clipped gradient to steer clear of local suboptimal points of w∗.
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A.3 LOSS LANDSCAPE OF ADVERSARIAL TRAINING

The practice of adversarial training serves as a countermeasure to defense against adversarial attacks.
However, previous studies have uncovered challenges related to model convergence, attributed to the
intricate loss landscape shaped by adversarial samples during training steps [51, 7]. We next delve
into the theoretical underpinnings of this phenomenon.

The weight of a j-th layer in a neural network fθ can be expressed as: WT = WT
j Σj−1Ẅ

T
2 Σ2W

T
1 Σ1,

which generetes gradient gW = ∂
∂W L(x, y; fθ). Introducing adversarial samples x∗ = x + γ, the

corresponding gradient becomes g∗W = ∂
∂W L(x+ γ, y; fθ). Considering ∆gW = g∗W − gW as the

additional gradient values resulting from adversarial training, the full expression for gradient δgW is
as follows:

∆gW =
∂

∂W
L(x, y; fθ)−

∂

∂W
L(x+ γ, y; fθ), (17)

where γ can be regularized by a l2 or l∞ norm. This adversarial perturbation γ is generated by m
steps of attacks with each step size α, where m should be large and alpha is small.

we next analyze the case of binary classification, where the multi-class classification tasks can be
simplified by focusing on the difference between the prediction for the targeted class z′1 and the second
highest probable class z′2. Misclassification occurs when the probability of the second class surpasses
that of the targeted class, and this difference is denoted as z = z′1 − z′2 ∈ R. The effect of introducing
adversarial samples brings in a change of the gradient g̃x = ∂z(x)

∂x . The additional gradient for
updating the model with a learning rate η in adversarial training is expressed as ∆g̃x = −η∆gW g̃h.
Here, g̃h = ∂z(x)

∂h indicates the gradient of the network output z(x) with respect to the latent layer h.

Based on a lamma described in [7], we know that the following relations hold with A =
mαHz||g̃x||2 ∈ R:

Hx∆g̃W = (eA − 1)Hxxg̃
T
h − 1

Hz||g̃x||2
(e2A − eA)Hxgxg

T
h . (18)

The Hessian matrix is Hh = ∂2

∂h∂hT L(x + γ, y; fθ) which can be rewritten as Hh = Hz g̃hg̃
T
h and

Hx = Hz g̃xg̃
T
x .

Therefore, we can assess the significance of this change ∆g̃x along the direction of g̃x:

g̃Tx∆g̃x = −ηg̃Tx∆gW g̃h (19)

= (eA − 1)g̃Tx∆g̃0x − ηg2z ||g̃h||2

Hz
(e2A − eA), (20)

where ∆g̃0x = −ηgW g̃h. Meanwhile, the significance measuring for the adversarial training along
the direction of g̃x is as follows:

g̃Tx∆g̃∗x = −ηg̃Tx∆g∗W g̃h (21)

= eAg̃Tx∆g̃0x − ηg2ze
2A − eA

Hz
||g̃h||2. (22)

This design of adversarial training expects the gradient gx with gTx∆g̃x < 0. However, this assumption
might not be held as the second term of equation equation 20 and equation equation 22 can be negative
owing to Hz > 0. A few unconfident samples tend to generate large values for Hz and large gradient
values ||g̃x||. The phenomenon leads to difficulties in model convergence during adversarial training.

B ADDITIONAL RESULTS WITH DETAILS

In our experiments, we assess six Out-of-Distribution (OOD) datasets in conjunction with various
In-Distribution (ID) datasets. The OOD detection experiments involve diverse adversarial attacks,
yielding a multitude of results. Therefore, the main paper incorporates averaged detection outcomes
across the six OOD datasets. In this section, we provide a comprehensive breakdown of these results
for each dataset, elucidating the distinctive characteristics under various adversarial conditions.
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B.1 EVALUATION OF OUT-OF-DISTRIBUTION ACCURACY

We report additional post-processing based OOD detection baselines including MaxSoftmax [21],
Energy [33], MaxLogits [23], KLMatching [23], Entropy [4], Mahalanobis [29], MaxSoftmax [21],
Energy [33], MaxLogits [23] and KLMatching [23], ODIN [31], ViM [48], GODIN [24], and
ASH [12]. The OOD detection results for CIFAR-10 and CIFAR-100 datasets in the clean and
adversarial conditions are demonstrated in Table 4 and Table 5, respectively. These OOD detection
methods without adversarial training are vulnerable to adversarial attacks, yet these are all commonly
used OOD detection methods. The results in Table 4 and Table 5 show that these OOD methods obtain
over 80% FPR95 and lower AUC than 60%. In contrast, MGP demonstrates potential robustness over
adversarial attacks shown in Table 7 and Table 8.

We also report the detailed results using KNN+, SSD, CIDER, MGP, ATD, and SaGD on each OOD
dataset based on CIFAR-10 as the ID dataset with their FPR95 and AUC in Table 7. The results using
the CIFAR-100 dataset as the ID dataset are presented in Table 8. For CIDER and MGP, we consider
both KNN and Mahalanobis distance measurement approaches.

In differentiation the CIFAR-10 dataset from the other OOD dataset, KNN+ stands out in four
of the six OOD datasets with 18.06% FPR95 and 96.59% AUC averaged over the six datasets in
the clean condition. SaGD keeps a high standard of FPR95 and AUC even though it is trained for
adversarial conditions. For the five attacks including PGD, Jitter, FAB, FGSM, and CW, Our proposed
SaGD almost achieved the best performance on each dataset. The only exception occurs when using
CIDER-Maha in the LSUN dataset. Nevertheless, CIDER-Maha attains minimal model performance
on other datasets which causes nearly doubled FPR95. The LSUN dataset is relatively separable from
the CIFAR-10 datasets, allowing several models to achieve single-digit FPR95 and over 95% AUC in
both clean and adversarial scenarios.

In differentiation the CIFAR-100 dataset from the other OOD dataset, SaGD outperforms other
methods in both adversarial and clean conditions. Given the difficulty of the OOD detection task posed
by the CIFAR-100 dataset in comparison to CIFAR-10, SaGD shines in its remarkable robustness.
This resilience is attributed to the effective smoothing of the loss landscape during adversarial
training conditions. Introducing perturbations during training significantly boosts resilience in
the challenging OOD task, particularly when CIFAR-100 is utilized as the ID dataset. Notably,
MGP-Maha occasionally achieves low FPR95 and high AUC when detecting data from LSUN,
which is a relatively easy OOD dataset. This phenomenon is also observed with CIDER-Maha
under FGSM attacks, albeit without significant impact on other datasets. We found that these OOD
detction methods were substantially affected by numerous attacks on the iSUN and LSUN-R datasets.
Examples include the extremely high FPR95 (over 90%) using MGP-KNN under PGD, Jitter, FAB,
and FGSM. Although ATD reduces the high FPR95 on the LSUN-R and iSUN datasets, the 61.80%
FPR95 and 62.16% AUC under PGD attacks are still much worse than SaGD with 32.91% and
36.15% FPR95 on the LSUN-R and iSUN datasets, respectively.

Across the six OOD datasets, SaGD exhibits comparable performance under the five adversarial
conditions and the best results in clean sets. However, there is still room for improvement in its
performance on TinyImgNet and Place365, presenting an opportunity for further enhancements in
OOD detection methods.

B.2 ABLATION STUDY

Table 9 presents a detailed ablation study conducted on CIFAR-10 in differentiation of the six other
OOD datasets. The left section investigates OOD detection performance with and without Jitter
adversarial training, as well as RSAM using hypersphere geometry (CIDER) or multiple-geometry
(MGP) learning schemes. On the right, various adversarial training methods within the SaGD
framework are explored. The results are elucidated in the following two sections.

Throughout the subsequent paragraphs, we adopt the format “Model-Adversarial Training-RSAM" to
denote the components employed in the ablation study. Our proposed SaGD represents MGP-Jitter-
RSAM, allowing for different combinations with various models and adversarial training methods.
To describe the right part of Table 9, we substitute Jitter adversarial training with alternative methods,
namely PGD, FAB, FGSM, and CW, which are denoted as SaGD-PGD, SaGD-FAB, SaGD-FGSM,
SaGD-CW, respectively.
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Table 4: Evaluation for different OOD detection methods without adversarial training using CIFAR-
10 as ID samples and the other six datasets as OOD samples. We report the average FPR95 and AUC
scores across the six tests.

CIFAR10 Clean PGD Jitter FAB FGSM CW Average

FPR95 AUC FPR95 AUC FPR95 AUC FPR95 AUC FPR95 AUC FPR95 AUC FPR95 AUC

KLMatching 74.41 86.85 92.89 48.53 89.81 58.64 92.88 48.53 92.17 52.77 92.95 48.06 89.19 57.23
MaxSoftmax 35.89 90.25 95.16 47.25 90.19 57.98 95.16 47.25 93.72 52.67 96.05 46.49 84.36 56.98
EnergyBased 40.82 91.32 94.21 48.96 88.23 65.94 94.21 48.96 92.46 52.42 94.99 47.79 84.15 59.23
MaxLogit 40.88 91.28 94.19 48.90 88.37 65.52 94.19 48.90 92.55 52.48 95.03 47.81 84.20 59.15
Entropy 32.18 91.59 95.14 48.00 90.46 59.14 95.14 48.00 93.75 52.83 96.00 47.16 82.11 57.79
ViM 29.17 92.98 91.65 60.59 81.68 71.03 91.65 60.59 87.61 65.78 92.20 60.14 78.99 68.52
Mahalanobis 17.46 96.84 75.03 73.58 70.96 74.83 75.04 73.57 74.59 73.55 76.23 72.53 64.89 77.48
ODIN 42.51 91.12 92.93 55.22 89.71 63.30 92.93 55.22 91.38 61.47 94.68 53.98 84.02 63.39
GODIN 18.72 96.10 70.87 83.81 60.59 84.76 71.08 83.75 70.33 83.23 70.68 83.95 60.38 85.93
ASH 27.53 94.08 71.31 78.45 68.54 79.58 81.79 71.12 87.07 67.86 81.66 70.90 69.65 77.00
KNN+ 18.06 96.59 77.52 78.5 77.41 78.83 76.32 75.14 77.26 78.81 76.26 79.65 67.14 81.25
SSD 33.08 94.87 79.72 65.01 78.28 68.3 80.03 65.13 64.13 78.88 79.39 65.08 69.11 72.88
CIDER-KNN 52.20 88.41 66.73 76.92 66.48 78.73 66.35 76.95 72.86 72.50 66.45 76.83 65.18 78.39
CIDER-Maha 51.19 88.91 58.95 83.47 54.29 87.43 59.32 83.49 49.96 88.42 59.41 83.51 55.52 85.87
MGP-KNN 21.60 96.11 82.49 72.02 70.64 81.71 78.27 77.95 78.27 77.95 83.22 71.2 69.08 79.49
MGP-Maha 29.98 95.36 55.39 87.81 50.43 90.52 55.49 87.93 38.91 91.82 54.28 87.92 47.41 90.23

Table 5: Evaluation for different OOD detection methods without adversarial training using CIFAR-
100 as ID samples and the other six datasets as OOD samples. We report the average FPR95 and
AUC scores across the six tests.

CIFAR100 Clean PGD Jitter FAB FGSM CW Average

FPR95 AUC FPR95 AUC FPR95 AUC FPR95 AUC FPR95 AUC FPR95 AUC FPR95 AUC

KLMatching 94.57 44.52 95.15 54.24 93.79 58.54 90.67 56.51 93.88 51.79 90.40 55.57 93.08 53.53
MaxSoftmax 88.78 58.99 92.39 53.10 87.91 59.77 79.35 61.98 93.17 49.65 92.42 52.97 89.00 56.08
EnergyBased 83.97 63.75 89.46 55.95 81.47 65.41 74.20 61.83 89.85 52.23 89.37 55.53 84.72 59.12
MaxLogit 84.35 63.45 89.63 55.19 81.88 64.96 74.47 62.02 90.29 51.46 89.52 55.26 85.02 58.72
Entropy 88.62 60.42 92.36 53.65 87.96 61.67 79.30 62.14 93.03 49.89 92.11 53.88 88.90 56.94
ViM 75.94 73.34 83.55 63.17 80.16 65.52 74.00 69.21 84.34 58.72 80.10 68.91 79.68 66.48
Mahalanobis 72.21 74.22 81.38 63.00 81.53 63.07 77.23 66.09 82.79 59.45 75.42 69.63 78.43 65.91
ODIN 81.57 68.05 89.86 58.54 84.56 63.94 76.88 62.07 91.18 54.42 89.96 58.33 85.67 60.89
GODIN 74.58 80.88 90.19 67.37 90.45 73.03 94.66 66.41 95.33 64.85 90.39 67.39 89.27 69.99
ASH 59.04 84.44 73.74 62.56 70.37 77.93 78.18 70.14 85.89 65.01 75.24 75.72 73.69 72.63
KNN+ 65.47 85.07 95.59 51.07 95.39 51.38 95.44 51.61 95.55 50.53 95.38 51.58 90.47 56.87
SSD 70.98 84.94 95.16 46.80 94.51 49.60 95.28 46.75 92.31 52.54 95.10 46.60 90.56 54.53
CIDER-KNN 65.99 83.44 75.69 82.95 66.59 82.07 74.70 83.08 78.24 77.43 76.10 83.06 72.88 82.01
CIDER-Maha 67.28 84.36 75.47 75.85 63.36 83.94 74.83 75.76 53.26 84.38 76.17 75.91 68.40 80.03
MGP-KNN 57.89 85.26 80.23 76.17 81.41 74.63 79.8 76.28 78.74 69.99 60.05 82.79 73.02 77.52
MGP-Maha 66.47 83.19 79.33 65.81 74.12 74.96 81.32 62.72 64.99 75.98 76.60 73.09 73.80 72.62

B.2.1 ABLATION STUDY OF GEOMETRY SPACE, ADVERSARIAL TRAINING, AND RSAM

In Table 9, the removal of multi-geometry learning, Jitter, or RSAM individually leads to a decline in
FPR95 and AUC. Comparing CIDER and MGP with RSAM, MGP maintains a low FPR95 in the
clean condition, while both methods exhibit high FPR95 in adversarial conditions, hovering around
70%. CIDER and MGP with Jitter adversarial training notably enhance results compared to models
using RSAM. The clean condition FPR95 for CIDAR-Jitter outperforms CIDER-RSAM by 27.25%,
with improvements across all datasets except LSUN, where the FPR95 is already low. MGP-Jitter
achieves low FPR95 in both clean and adversarial conditions.

The lowest averaged FPR95 occurs in PGD, and the highest averaged FPR95 is 38.08% in FGSM,
close to the 30.32% averaged FPR95 in clean condition. Among the six OOD datasets using MGP-
Jitter, the TinyImageNet dataset poses a challenging task with 54.57% FPR95, while the LSUN
dataset achieves 18.40% FPR95 under FGSM attacks.

CIDER-RSAM-Jitter improves upon CIDER-RSAM and CIDER-Jitter, achieving a notable 7.40%
FPR95 in the LSUN dataset under Jitter attacks. Moreover, CIDER-RSAM-Jitter demonstrates
significant improvement with a 22.67% FPR95 in the Places356 dataset under FGSM attacks compared
to the result of CIDER-Jitter. Despite the effectiveness of using Jitter adversarial training and RSAM
validated by CIDER-RSAM-Jitter, our proposed SaGD consistently outperforms other methods with
better averaged FPR95 and AUC across all OOD datasets.
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Table 6: The average FPR95 and AUC scores with adversarial training over six datasets using
CIFAR-100 as ID samples. Clean denotes the standard OOD detection without any attack. We
consider the OOD detection under PGD, Jitter, FAB, FGSM, CW attacks.

CIFAR10 Clean PGD Jitter FAB FGSM CW Average

FPR95 AUC FPR95 AUC FPR95 AUC FPR95 AUC FPR95 AUC FPR95 AUC FPR95 AUC

ATD 27.46 94.15 57.04 79.63 43.61 87.60 33.09 92.38 37.56 90.70 56.78 79.69 42.59 87.36
SaMD 22.46 95.77 28.69 94.70 26.43 95.05 28.99 94.68 37.19 92.99 22.32 95.80 27.68 94.83

CIFAR100 Clean PGD Jitter FAB FGSM CW Average

FPR95↓AUC↑FPR95↓AUC↑FPR95↓AUC↑FPR95↓AUC↑FPR95↓AUC↑FPR95↓AUC↑FPR95↓AUC↑

ATD 63.04 82.90 73.79 66.18 64.90 80.07 63.04 82.90 70.38 76.37 70.30 76.06 67.58 77.41
SaMD 50.89 87.26 48.31 88.13 47.63 88.15 49.08 87.88 52.51 86.78 50.81 87.32 49.87 87.59

B.2.2 EVALUATION ON DIFFERENT ADVERSARIAL TRAINING METHODS

In the right section of Table 9, we substitute Jitter adversarial attacks with alternative approaches for
adversarial training. The results are discussed as follows.

Utilizing FGSM, PGD, and FAB for training significantly increases FPR95 in the clean condition, with
the worst FPR95 reaching 97.17%, 99.94%, and 95.46% for the three adversarial training methods.
These adversarial training approaches are not robust enough to defend against different attacks,
leading to unexpectedly high FPR95. Models trained with FGSM or PGD exhibit over 80% averaged
FPR95 under attacks, except for FGSM. Although training with FAB successfully defends against
PGD, FAB, and CW during testing, it fails to perform OOD detection under Jitter and FGSM attacks.
Notably, the failure of defense tends to occur simultaneously across all tested OOD datasets rather
than being specific to a single dataset.

Training with CW yields more consistent defensive results, with no attack showing a clear preference
for using CW over Jitter. Although CW adversarial training reaches 11.02% and 32.67% FPR95 in
the LSUN and Textures datasets, respectively, SaGD-Jitter achieves better results with 3.91% and
17.87% FPR95 in the same datasets.

B.3 OOD SCORE VISUALIZATION

We analyze the OOD detection results by plotting the histogram of the OOD score for both ID and
OOD data in blue and green, as shown in Figure 5. The histograms are represented in blue and green,
respectively, in the subfigure comparing MGP, SaGD, CIDER-Jitter-RSAM, and SaGD-PGD.

Generally, SaGD exhibits the best performance, leading to more separable distributions, while the
other methods have more overlapped regions. MGP, on the other hand, displays varying distribution
plots between the clean condition and other adversarial conditions. In contrast, SaGD and CIDER-
Jitter-RSAM consistently exhibit similar distribution plots across different conditions, indicating
minimal influence from the applied attacks.

Through this visualization analysis, we glean insights into the model’s robustness. For example,
SaGD and CIDER-Jitter-RSAM display smoother visualization results, whereas MGP generates
additional peaks. Despite a tail persisting in the ID distribution of SaGD, it remains distant from
the majority of ID samples. On the other hand, CIDER-Jitter-RSAM sometimes yields a slim ID
distribution but significantly overlaps with the OOD data, as evident in the Textures dataset.

In the ablation study, considering PGD as a substitute for Jitter adversarial training reveals defense
failures under multiple attacks. SaGD-PGD introduces additional spikes in FAB attacks, resulting in
a high and sharp peak in both ID and OOD distributions. However, these two distributions exhibit
significant overlap, indicating poorly converged results. Our proposed SaGD, designed to address
the non-smooth loss landscape in adversarial training, consistently manifests smoother OOD score
distributions.
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(a) MGP (b) SaGD

(c) CIDER-Jitter-RSAM (d) SaGD-PGD

Figure 5: Complete visualization of the OOD score histograms conducted using CIFAR-10 as ID
dataset for the comparison of (a) MGP, (b) SaGD, (c) CIDER-Jitter-RSAM, and (d) SaGD-PGD
methods. The ID and OOD samples are colored in blue and green, respectively. Each column
represents results from an OOD dataset, and each row indicates different adversarial conditions.
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Table 7: Full evaluation results for different OOD detection methods using CIFAR-10 as ID samples
and the other six datasets as OOD samples.

KNN+ SSD CIDER CIDER-Maha MGP MGP-Maha ATD SaGD

Clean FPR95 AUC FPR95 AUC FPR95 AUC FPR95 AUC FPR95 AUC FPR95 AUC FPR95 AUC FPR95 AUC

TinyImgNet 31.47 93.21 34.10 92.70 69.19 84.31 65.29 85.02 36.89 92.64 36.08 92.81 45.27 88.42 41.31 91.75
Place365 21.65 95.56 23.58 95.33 66.75 85.18 63.11 85.92 29.61 94.52 31.36 94.44 36.64 92.89 30.92 93.93
LSUN 1.23 99.62 2.11 99.49 4.14 99.15 3.43 98.91 9.70 98.35 13.25 97.98 24.40 94.52 3.93 99.09
LSUN-R 21.37 96.46 62.93 92.06 64.79 85.53 72.19 85.05 19.09 96.71 39.68 94.88 18.40 96.35 19.97 96.34
iSUN 24.81 96.05 67.23 91.12 61.38 85.81 67.98 85.57 18.92 96.78 45.30 94.26 26.60 95.04 20.71 96.38
Textures 7.82 98.63 8.51 98.50 46.93 90.50 35.14 93.01 15.39 97.66 14.18 97.79 13.45 97.70 17.89 97.14

Average 18.06 96.59 33.08 94.87 52.20 88.41 51.19 88.91 21.60 96.11 29.98 95.36 27.46 94.15 22.46 95.77

PGD FPR95 AUC FPR95 AUC FPR95 AUC FPR95 AUC FPR95 AUC FPR95 AUC FPR95 AUC FPR95 AUC

TinyImgNet 82.49 71.54 77.56 73.87 84.00 67.79 70.97 79.33 90.98 62.33 56.67 85.91 68.66 71.17 43.48 91.51
Place365 81.80 73.37 79.71 74.49 78.00 73.68 67.72 81.57 86.14 66.8 50.97 89.5 59.20 79.48 34.65 93.15
LSUN 56.99 87.15 54.86 85.33 20.24 94.01 1.6 99.61 81.34 77.16 22.67 96.14 64.60 73.72 8.27 98.39
LSUN-R 98.87 63.36 99.71 39.86 71.67 78.66 86.41 75.04 85.65 73.19 79.31 83.37 47.24 85.44 34.99 93.86
iSUN 98.02 64.4 99.25 39.92 72.44 77.39 84.15 75.7 86.06 73.87 82.21 80.75 54.30 83.35 34.83 93.9
Textures 65.21 75.46 67.22 76.61 74.01 69.99 42.85 89.59 64.75 78.75 40.50 91.22 48.25 84.60 15.94 97.41

Average 80.56 72.55 79.72 65.01 66.73 76.92 58.95 83.47 82.49 72.02 55.39 87.81 57.04 79.63 28.69 94.70

Jitter FPR95 AUC FPR95 AUC FPR95 AUC FPR95 AUC FPR95 AUC FPR95 AUC FPR95 AUC FPR95 AUC

TinyImgNet 83.43 72.20 75.64 76.28 84.58 70.72 65.87 83.69 85.07 71.99 50.67 88.60 57.91 79.97 43.20 91.40
Place365 82.93 73.97 76.99 77.75 81.16 72.35 62.71 85.65 78.74 76.87 44.22 91.44 44.86 87.80 2.79 99.52
LSUN 52.76 89.23 54.30 86.91 16.21 96.47 1.40 99.62 46.89 89.63 21.66 96.64 51.71 83.39 36.39 92.93
LSUN-R 98.91 66.02 99.63 44.53 72.81 79.22 80.43 81.65 75.98 83.63 72.57 87.62 34.06 91.46 8.90 98.28
iSUN 97.90 67.14 99.08 44.61 72.03 78.01 77.78 81.93 77.78 83.41 77.31 85.49 38.42 90.44 33.54 94.06
Textures 67.16 76.09 64.06 79.72 72.09 75.64 37.54 92.04 59.40 84.74 36.12 93.30 34.69 92.52 33.76 94.08
Average 80.51 74.11 78.28 68.30 66.48 78.73 54.29 87.43 70.64 81.71 50.43 90.52 43.61 87.60 26.43 95.05

FAB FPR95 AUC FPR95 AUC FPR95 AUC FPR95 AUC FPR95 AUC FPR95 AUC FPR95 AUC FPR95 AUC

TinyImgNet 55.11 85.21 77.72 74.05 83.57 68.04 71.18 79.78 88.19 69.77 56.53 85.84 68.65 71.17 43.64 91.46
Place365 83.35 73.02 80.24 74.62 77.95 73.68 68.47 81.43 83.57 73.46 51.73 89.43 35.69 93.41 35.17 93.21
LSUN 55.33 87.41 55.36 85.41 19.68 93.99 1.62 99.59 76.13 82.52 22.81 96.20 49.03 85.59 8.38 98.36
LSUN-R 98.76 64.6 99.72 39.97 71.89 78.56 86.92 74.94 80.03 79.11 79.22 83.70 30.19 93.31 35.78 93.8
iSUN 98.2 65.19 99.28 40.04 71.66 77.23 84.5 75.6 80.74 79.55 82.16 81.08 34.29 92.60 34.55 93.86
Textures 67.16 75.44 67.87 76.70 73.33 70.21 43.21 89.58 60.99 83.27 40.51 91.31 16.27 96.98 16.4 97.41
Average 76.32 75.14 80.03 65.13 66.35 76.95 59.32 83.49 78.27 77.95 55.49 87.93 39.02 88.85 28.99 94.68

FGSM FPR95 AUC FPR95 AUC FPR95 AUC FPR95 AUC FPR95 AUC FPR95 AUC FPR95 AUC FPR95 AUC

TinyImgNet 81.33 76.86 52.98 86.16 88.78 63.96 52.47 87.66 93.10 54.20 36.43 91.07 59.96 82.31 50.51 90.12
Place365 80.07 78.00 50.77 88.47 81.98 69.96 46.33 89.93 87.88 62.91 24.46 94.79 35.69 93.41 40.63 91.84
LSUN 44.14 92.28 33.22 94.13 20.01 94.85 0.79 99.8 44.31 88.49 11.79 97.97 49.03 85.59 14.18 97.54
LSUN-R 98.84 71.46 96.61 61.29 86.8 66.83 81.67 81.24 95.41 56.40 58.51 89.34 30.19 93.31 50.06 90.56
iSUN 97.79 72.14 95.85 59.86 85.22 66.88 80.82 80.59 94.05 59.40 65.04 86.42 34.20 92.60 47.27 91.2
Textures 61.37 82.11 55.37 83.36 74.38 72.50 37.71 91.28 65.57 76.37 37.25 91.30 16.27 96.98 20.48 96.67
Average 77.26 78.81 64.13 78.88 72.86 72.50 49.96 88.42 80.05 66.30 38.91 91.82 37.56 90.70 37.19 92.99

CW FPR95 AUC FPR95 AUC FPR95 AUC FPR95 AUC FPR95 AUC FPR95 AUC FPR95 AUC FPR95 AUC

TinyImgNet 82.63 70.92 76.53 74.08 83.66 67.85 71.34 79.70 91.39 61.72 54.67 86.14 68.69 71.17 41.3 91.78
Place365 83.40 72.69 79.20 74.31 78.51 73.43 68.61 81.76 87.20 65.32 49.26 89.53 59.04 79.48 30.17 94.02
LSUN 57.4 86.97 54.53 85.39 20.16 93.92 1.71 99.58 81.57 76.54 22.07 96.19 64.48 73.95 3.91 99.09
LSUN-R 98.91 62.84 99.70 39.98 71.53 78.34 86.97 74.91 86.65 72.48 78.41 83.50 46.93 85.39 19.95 96.35
iSUN 97.86 63.82 99.25 40.05 71.27 77.18 84.62 75.56 86.33 73.18 81.38 80.88 53.40 83.49 20.71 96.39
Textures 65.35 75.01 67.16 76.66 73.55 70.28 43.24 89.52 66.19 77.95 39.91 91.27 48.13 84.63 17.87 97.14
Average 80.93 72.04 79.39 65.08 66.45 76.83 59.41 83.51 83.22 71.20 54.28 87.92 56.78 79.69 22.32 95.80

8



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Table 8: Full evaluation results for different OOD detection methods using CIFAR-100 as ID samples
and the other six datasets as OOD samples.

KNN+ SSD CIDER-KNN CIDER-Maha MGP-KNN MGP-Maha ATD SaGD

Clean FPR95 AUC FPR95 AUC FPR95 AUC FPR95 AUC FPR95 AUC FPR95 AUC FPR95 AUC FPR95 AUC

TinyImgNet 76.18 80.21 77.92 79.97 76.33 79.23 76.43 80.52 74.06 81.49 78.49 79.87 78.38 74.71 76.70 79.82
Place365 81.46 77.49 81.16 77.71 82.44 74.10 81.50 77.45 74.30 78.99 77.21 79.51 66.77 84.82 79.00 76.81
LSUN 49.30 90.10 41.00 92.78 43.31 89.72 24.70 95.29 11.87 96.94 21.09 96.15 79.13 72.81 38.37 91.06
LSUN-R 78.76 81.47 90.08 80.12 68.95 84.57 79.93 83.03 69.17 83.79 77.36 80.55 43.95 89.97 35.89 92.47
iSUN 80.08 80.20 90.61 78.93 68.21 84.31 80.85 82.33 69.99 82.06 80.64 78.82 56.02 87.50 38.90 91.09
Textures 55.90 89.15 60.14 88.05 56.67 88.73 60.25 87.56 47.93 88.28 64.01 84.25 53.97 87.56 36.45 92.33
Average 70.28 83.19 73.48 82.93 65.99 83.44 67.28 84.36 57.89 85.26 66.47 83.19 63.04 82.90 50.89 87.26

PGD FPR95 AUC FPR95 AUC FPR95 AUC FPR95 AUC FPR95 AUC FPR95 AUC FPR95 AUC FPR95 AUC

TinyImgNet 94.57 48.63 94.42 48.52 81.17 80.17 76.93 75.87 87.75 72.99 75.71 80.69 96.23 26.56 74.16 80.63
Place365 95.18 49.15 95.62 47.76 83.57 78.38 76.90 76.02 88.35 72.29 88.63 67.34 66.97 79.48 76.19 78.30
LSUN 99.83 55.36 99.92 42.65 58.49 88.4 38.42 90.17 47.17 88.49 30.53 92.60 87.64 59.92 35.62 92.25
LSUN-R 99.59 49.92 99.78 40.28 78.42 82.74 89.94 71.97 92.35 72.95 94.96 52.70 61.80 76.26 32.91 93.05
iSUN 98.83 52.23 99.56 42.23 76.62 82.94 92.04 68.67 92.47 71.56 96.69 48.47 62.16 77.30 36.15 91.80
Textures 85.53 54.91 81.68 59.37 75.85 85.10 78.56 72.4 73.30 78.77 89.45 53.08 67.94 77.57 34.84 92.74
Average 95.59 51.70 95.16 46.80 75.69 82.95 75.47 75.85 80.23 76.18 79.33 65.81 73.79 66.18 48.31 88.13

Jitter FPR95 AUC FPR95 AUC FPR95 AUC FPR95 AUC FPR95 AUC FPR95 AUC FPR95 AUC FPR95 AUC

TinyImgNet 94.86 48.45 93.71 50.17 77.89 77.29 64.48 82.81 88.14 71.71 75.38 80.64 78.93 71.56 73.30 80.67
Place365 95.10 48.79 94.83 49.44 80.00 75.21 65.89 81.96 88.27 69.67 82.86 74.11 64.66 82.54 75.98 78.22
LSUN 99.86 55.28 99.90 47.08 52.16 85.83 27.77 94.09 54.73 84.93 20.15 96.01 78.52 72.39 35.17 92.27
LSUN-R 99.63 48.35 99.69 43.88 64.70 82.94 75.76 82.26 91.48 71.62 90.80 66.69 48.62 86.76 31.64 93.15
iSUN 99.11 50.50 99.50 45.72 62.98 83.94 80.09 79.80 91.81 70.41 94.02 62.90 55.90 85.15 34.99 91.93
Textures 83.79 56.89 79.45 61.32 61.83 87.19 66.17 82.74 74.02 79.45 81.52 69.38 62.95 82.00 34.68 92.68
Average 95.39 51.38 94.51 49.60 66.59 82.07 63.36 83.94 81.41 74.63 74.12 74.96 64.93 80.07 47.63 88.15

FAB FPR95 AUC FPR95 AUC FPR95 AUC FPR95 AUC FPR95 AUC FPR95 AUC FPR95 AUC FPR95 AUC

TinyImgNet 94.55 48.87 94.43 48.57 79.98 80.51 75.73 75.72 87.36 72.96 90.55 60.77 78.38 74.71 75.75 79.69
Place365 95.32 48.39 95.67 47.42 83.24 78.19 76.45 76.00 87.48 72.77 87.86 67.60 66.77 84.82 76.89 77.82
LSUN 99.70 55.40 99.95 42.70 57.43 88.60 37.85 90.22 46.80 88.47 29.46 92.78 79.13 72.81 36.22 92.24
LSUN-R 99.52 49.92 99.79 40.31 77.50 83.10 89.34 71.85 92.08 73.41 94.51 53.08 43.95 89.97 33.44 93.01
iSUN 98.98 52.12 99.62 42.20 75.56 83.11 91.57 68.51 92.10 71.57 96.45 48.84 56.02 87.50 36.63 91.86
Textures 84.54 54.97 82.2 59.28 74.49 84.96 78.03 72.27 72.98 78.48 89.10 53.26 53.97 87.56 35.53 92.66
Average 95.44 51.61 95.28 46.75 74.70 83.08 74.83 75.76 79.80 76.28 81.32 62.72 63.04 82.90 49.08 87.88

FGSM FPR95 AUC FPR95 AUC FPR95 AUC FPR95 AUC FPR95 AUC FPR95 AUC FPR95 AUC FPR95 AUC

TinyImgNet 94.84 48.04 89.52 54.45 81.94 75.58 51.15 85.38 83.80 69.87 71.00 77.21 84.30 64.94 74.91 80.80
Place365 94.10 49.78 88.51 55.26 83.65 74.79 44.84 88.46 85.87 69.53 59.99 85.25 65.15 82.79 76.45 76.95
LSUN 99.84 54.00 98.62 49.36 60.37 85.52 15.98 96.07 50.44 89.09 12.13 97.15 88.46 66.99 41.45 89.86
LSUN-R 99.58 47.45 99.11 47.05 83.61 73.06 66.59 82.89 93.18 56.7 82.08 68.89 57.56 80.55 40.05 91.39
iSUN 99.05 49.45 98.38 48.31 81.65 74.62 74.14 78.50 93.56 56.54 86.36 64.21 60.69 80.65 42.31 90.40
Textures 85.87 54.44 79.72 60.80 78.23 81.00 66.88 74.98 65.59 78.20 78.35 63.15 66.13 82.32 39.88 91.26
Average 95.55 50.53 92.31 52.54 78.24 77.43 53.26 84.38 78.74 69.99 64.99 75.98 70.38 76.37 52.51 86.78

CW FPR95 AUC FPR95 AUC FPR95 AUC FPR95 AUC FPR95 AUC FPR95 AUC FPR95 AUC FPR95 AUC

TinyImgNet 94.13 48.67 94.21 48.22 81.94 80.26 77.98 76.06 85.98 67.09 86.58 69.65 81.98 67.91 76.72 79.81
Place365 95.33 48.75 95.40 47.09 84.37 78.41 78.09 75.83 74.62 79.00 85.62 69.20 67.11 79.34 78.57 77.17
LSUN 99.72 55.28 99.91 42.87 58.97 88.51 39.09 90.20 11.95 96.90 33.10 92.97 85.07 67.87 38.35 91.06
LSUN-R 99.55 49.81 99.76 40.06 78.78 83.03 90.25 72.10 69.39 83.66 88.48 67.62 57.26 82.32 35.89 92.47
iSUN 98.86 52.10 99.60 41.99 76.90 83.07 92.34 68.82 70.17 81.92 91.47 64.55 59.84 82.38 38.90 91.09
Textures 84.68 54.87 81.70 59.35 75.64 85.09 79.24 72.43 48.21 88.19 74.33 74.53 70.55 76.55 36.45 92.33
Average 95.38 51.58 95.10 46.6 76.10 83.06 76.17 75.91 60.05 82.79 76.60 73.09 70.30 76.06 50.81 87.32
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Table 9: Full ablation results for different OOD detection methods using CIFAR-10 as ID samples
and the other six datasets as OOD samples. AT denotes adversarial training.

Model CIDER MGP SaGD

RSAM ✓ ✗ ✓ ✓ ✗ ✓ ✓ ✓ ✓

AT ✗ Jitter Jitter ✗ Jitter FGSM PGD FAB CW

Clean FPR95 AUC FPR95 AUC FPR95 AUC FPR95 AUC FPR95 AUC FPR95 AUC FPR95 AUC FPR95 AUC FPR95 AUC

TinyImgNet 79.68 80.09 46.91 90.86 60.53 87.44 35.92 92.81 42.11 91.53 94.09 45.47 94.47 46.46 95.46 47.32 57.11 88.36
places365 75.02 84.15 40.03 92.53 47.45 91.1 28.75 94.72 38.08 93.22 87.49 65.09 85.79 70.63 92.83 59.73 47.68 90.68
LSUN 4.63 98.72 8.01 98.71 7.75 98.35 8.79 98.66 35.36 95.23 92.92 67.23 99.94 20.53 78.38 70.43 9.81 98.25
LSUN-R 73.04 87.92 43.88 93.49 62.53 91.42 23.55 96.18 23.23 96.23 97.17 43.44 78.49 84.06 83.6 69.18 60.65 89.88
iSUN 76.72 86.91 46.22 93.26 60.23 91.46 22.07 96.38 24.36 96 95.65 45.15 78.73 81.49 84.73 67.32 63.01 89.04
Textures 65.78 82.79 26.35 95.88 29.47 93.44 17.98 97.31 18.76 97.04 88.67 47.02 82.41 58.72 86.97 53.87 34.4 93.83
AVG 62.48 86.76 35.23 94.12 44.66 92.20 22.84 96.01 30.32 94.88 92.67 52.23 86.64 60.32 87.00 61.31 45.44 91.67

PGD FPR95 AUC FPR95 AUC FPR95 AUC FPR95 AUC FPR95 AUC FPR95 AUC FPR95 AUC FPR95 AUC FPR95 AUC

TinyImgNet 91.03 63.74 68.69 82.26 61.79 86.42 84.29 69.79 45.11 90.66 78.28 87.03 98.18 77.6 39.72 91.24 80.76 79.45
places365 89 66.27 67.07 82.67 50.05 90.18 79.87 73.88 36.58 93.57 77.42 83.32 95.75 76.56 47.41 90.21 80.94 80.39
LSUN 23.3 94.76 28.77 95.36 8.01 98.36 50.34 88.29 27.23 96.29 90.39 79.9 99.99 77.5 35.36 94.17 32.73 92.8
LSUN-R 89.7 70.55 73.11 83.92 68.49 89.12 82.48 78.3 28.2 95.41 78.54 88.93 92.99 71.54 50.19 90.57 84 82.89
iSUN 91.2 68.44 74.53 83.78 65.9 89.37 82.99 78.94 27.97 95.45 77.85 88.89 93.08 71.44 53.62 88.89 86.53 81.2
Textures 80.32 66.14 42.93 92.01 31.26 92.92 59.34 82.69 20.14 96.82 80.59 84.69 93.76 77.88 30.02 91.72 56.51 86.53
AVG 77.43 71.65 59.18 86.67 47.58 91.06 73.22 78.65 30.87 94.70 80.51 85.46 95.63 75.42 42.72 91.13 70.24 83.88

Jitter FPR95 AUC FPR95 AUC FPR95 AUC FPR95 AUC FPR95 AUC FPR95 AUC FPR95 AUC FPR95 AUC FPR95 AUC

TinyImgNet 90.28 67.06 69.52 82.41 62.72 86.75 84.29 69.79 44.19 91.08 94.29 51.95 96.79 62.86 94.97 51.46 69.48 83.41
places365 88.16 70.16 65.37 83.87 50.17 90.58 79.87 73.88 37.94 93.45 92.68 54.13 92.78 63.18 93.44 53.77 64.39 84.65
LSUN 13.87 96.17 18.71 96.47 7.4 98.4 50.34 88.29 30.75 95.94 97.84 53.57 99.53 56.03 96.08 50.92 13.89 97.24
LSUN-R 81.27 80.2 78.91 83.58 67.47 90.21 82.48 78.3 29.25 95.35 95.81 44.91 93.44 62.19 92.96 50.33 61.08 88.65
iSUN 83.74 79.21 81.41 82.67 64.58 90.12 82.99 78.94 29.18 95.29 96.08 45.9 94 61.3 92.94 51.5 64.94 86.97
Textures 82.66 69.03 49.49 90 31.37 93.07 59.34 82.69 20.51 96.9 93.72 51.58 90.71 60.13 95.02 52.27 47.8 89.58
AVG 73.33 76.97 60.57 86.5 47.29 91.52 73.22 78.65 31.97 94.67 95.07 50.34 94.54 60.95 94.24 51.71 53.6 88.42

FAB FPR95 AUC FPR95 AUC FPR95 AUC FPR95 AUC FPR95 AUC FPR95 AUC FPR95 AUC FPR95 AUC FPR95 AUC

TinyImgNet 84.22 68.18 68.58 82.15 70.24 84.02 84.5 69.69 47.02 90.87 98.82 50.86 89.18 77.47 39.4 91.35 80.15 79.41
places365 82.18 71.03 67.75 82.36 60.96 88.07 79.34 73.99 37 93.33 98 51.91 88.14 77.67 47.47 90.35 80 80.09
LSUN 14.59 96.11 29.63 95.22 8.25 98.06 49.78 88.61 27.18 96.27 97.84 51.63 87.67 77.91 35.9 93.95 32.29 92.83
LSUN-R 78.96 76.9 73.49 83.87 80.64 87.47 81.56 78.86 28.77 95.33 99.32 49.98 87.64 77.95 50.69 90.58 83.68 82.85
iSUN 82.06 75.38 75.45 83.57 78.07 87.62 82.58 79.32 28.62 95.35 99.05 50.45 88.11 77.79 53.61 89 86.14 81.04
Textures 75.74 66.01 43.17 91.95 37.18 91.39 59.59 82.88 20.35 96.81 97.71 51.75 88.79 77.66 30.43 91.69 55.85 86.39
AVG 69.63 75.60 59.68 86.52 55.89 89.44 72.89 78.89 31.49 94.66 98.46 51.10 88.26 77.74 42.92 91.15 69.69 83.77

FGSM FPR95 AUC FPR95 AUC FPR95 AUC FPR95 AUC FPR95 AUC FPR95 AUC FPR95 AUC FPR95 AUC FPR95 AUC

TinyImgNet 92.48 68.44 84.54 73.32 61.87 87.32 90.27 60.05 54.57 88.64 56.2 92.1 18.8 95.03 99.83 60.61 79.47 80.41
places365 88.42 75.3 79.47 77.05 49.86 90.88 84.58 67.31 44.9 91.86 45.39 91.68 27.59 95.09 99.81 59.07 75.25 82.6
LSUN 11.62 97.21 27.12 94.92 8.37 98.26 25.72 92.98 18.4 97.12 64.87 91.42 8.91 95.56 99.52 63.4 19.89 96.21
LSUN-R 87.47 75.46 90.7 77.48 65.73 91.05 95.1 62.07 43.74 92.83 63.5 90.87 19.34 96.09 98.95 63.75 87.3 81.56
iSUN 88.11 75.52 88.17 78.62 63.05 91.13 93.43 65.34 42.57 93.21 61.71 90.9 17.93 96 99.16 61.27 86.81 81.14
Textures 85.6 72.94 53.3 88.17 30.23 93.37 64.2 78.66 24.27 95.98 63.53 90.23 28.92 93.39 99.49 59.3 51.52 90.18
AVG 75.62 77.48 70.55 81.59 46.52 92.00 75.55 71.07 38.08 93.27 59.20 91.20 20.25 95.19 99.46 61.23 66.71 85.35

CW FPR95 AUC FPR95 AUC FPR95 AUC FPR95 AUC FPR95 AUC FPR95 AUC FPR95 AUC FPR95 AUC FPR95 AUC

TinyImgNet 81.15 78.69 68.39 82.3 61.16 87.37 83.21 70.05 45.6 90.88 94.09 45.47 94.47 46.46 40.54 91.18 60.41 87.44
places365 75.89 83.11 67.65 82.55 48.1 91.06 79.06 73.87 38.14 93.35 86.95 65.22 85.54 70.9 48.81 90.06 51.23 89.52
LSUN 5.3 98.58 29.76 95.2 7.97 98.34 48.85 88.78 27.33 96.28 93.75 67.12 99.94 20.53 36.44 93.95 11.02 98.06
LSUN-R 75.89 86.71 74.52 83.8 63.9 91.33 80.23 78.93 28.66 95.37 97.17 43.44 78.49 84.06 50.71 90.48 65.36 88.82
iSUN 79.08 85.64 75.81 83.68 61.47 91.37 81.6 79.13 28.66 95.38 95.65 45.15 78.73 81.49 54.96 88.6 67.96 87.92
Textures 66.76 81.54 44.08 92.05 29.75 93.38 58.4 82.91 19.95 96.79 88.67 47.02 82.41 58.72 31.28 91.51 36.67 93.19
AVG 69.62 75.6 60.03 86.6 45.39 92.14 71.89 78.94 31.39 94.68 98.46 51.1 88.25 77.74 42.92 91.15 48.77 90.83
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