
AdjointDEIS: Efficient Gradients for Diffusion Models

Zander W. Blasingame
Clarkson University

blasinzw@clarkson.edu

Chen Liu
Clarkson University
cliu@clarkson.edu

Abstract

The optimization of the latents and parameters of diffusion models with respect to
some differentiable metric defined on the output of the model is a challenging and
complex problem. The sampling for diffusion models is done by solving either the
probability flow ODE or diffusion SDE wherein a neural network approximates
the score function allowing a numerical ODE/SDE solver to be used. However,
naïve backpropagation techniques are memory intensive, requiring the storage of
all intermediate states, and face additional complexity in handling the injected
noise from the diffusion term of the diffusion SDE. We propose a novel family
of bespoke ODE solvers to the continuous adjoint equations for diffusion models,
which we call AdjointDEIS. We exploit the unique construction of diffusion SDEs
to further simplify the formulation of the continuous adjoint equations using
exponential integrators. Moreover, we provide convergence order guarantees for
our bespoke solvers. Significantly, we show that continuous adjoint equations
for diffusion SDEs actually simplify to a simple ODE. Lastly, we demonstrate
the effectiveness of AdjointDEIS for guided generation with an adversarial attack
in the form of the face morphing problem. Our code will be released at https:
//github.com/zblasingame/AdjointDEIS.

1 Introduction

Diffusion models are a large family of state-of-the-art generative models which learn to map samples
drawn from white Gaussian noise into the data distribution [1, 2]. These diffusion models have
achieved state-of-the-art performance on prominent tasks such as image generation [3–5], audio
generation [6, 7], or video generation [8]. Often, the state-of-the-art models are quite large and
training them is prohibitively expensive [9]. As such, it is fairly common to adapt a pre-trained
model to a specific task for post-training. This way, the generative model can learn new concepts,
identities, or tasks without needing to train the whole model [10–12]. Additional work has also
proposed algorithms for guiding the generative process of the diffusion models [13, 14].

One method to guide or direct the generative process is to solve an optimization problem w.r.t. some
guidance function L defined on the image space Rd. This guidance function works on the output of
the diffusion model and assesses how “good” the output is. However, the diffusion model works by
iteratively removing noise until a clean sample is reached. As such, we need to be able to efficiently
backpropagate gradients through the entire generative process. As Song et al. [15] showed, the
diffusion SDE can be simplified to an associated ODE, and as such, many efficient ODE/SDE solvers
have been developed for diffusion models [16–18]. However, naïvely applying backpropagation to
the diffusion model is inflexible and memory intensive; moreover, such an approach is not trivial to
apply to the diffusion models that used an SDE solver instead of an ODE solver.

AdvML-Frontiers’24: The 3nd Workshop on New Frontiers in Adversarial Machine Learning@NeurIPS’24,
Vancouver, CA.

https://github.com/zblasingame/AdjointDEIS
https://github.com/zblasingame/AdjointDEIS

Diffusion Sampling

AdjointDEIS

xtN

ϵθ

z ϵtN

xtN−1

ϵθ

z ϵt1

xt0

. . .

xt̃0

Lϵθ

xt̃1
xt̃N

ϵθ

ax(t̃0)ax(t̃1)ax(t̃M)

. . .

. . .
∂L
∂xt0

Figure 1: A high-level overview of the AdjointDEIS solver to the continuous adjoint equations for
diffusion models. The sampling schedule consists of {tn}Nn=0 timesteps for the diffusion model and
{t̃n}Mn=0 timesteps for AdjointDEIS. The gradients ax(T) can be used to optimize xT to find some
optimal x∗

T .

1.1 Contributions

Inspired by the work of Chen et al. [19] we study the application of the continuous adjoint equations to
diffusion models, with a focus on training-free guided generation with diffusion models. We introduce
several theoretical contributions and technical insights to both improve the ability to perform certain
guided generation tasks and to gain insight into guided generation with diffusion models.

First, we introduce AdjointDEIS a bespoke family of ODE solvers which can efficiently solve the
continuous adjoint equations for both diffusion ODEs and SDEs. To the best of our knowledge, this
is the first general backpropagation technique designed for diffusion SDEs. Moreover, we show that
the continuous adjoint equations for diffusion SDEs simplify to a mere ODE.

Overall, multiple theoretical contributions and technical insights are provided to bring a new family
of techniques for the guided generation of diffusion models, which we evaluate experimentally on the
task of face morphing.

2 Diffusion Models

In this section we provide a brief overview of diffusion models. Diffusion models learn a generative
process by first perturbing the data distribution into an isotropic Gaussian by progressively adding
Gaussian noise to the data distribution, then a neural network is trained to preform denoising steps,
allowing for sampling of the data distribution via sampling of a Gaussian distribution [2, 9]. Assume
we have an n-dimensional random variable x ∈ Rn with some distribution pdata(x). Then diffusion
models begin by diffusing pdata(x) according to the diffusion SDE [2], an Itô SDE given as

dxt = f(t)xt dt+ g(t) dwt (2.1)

where t ∈ [0, T] denotes time with fixed constant T > 0, f(·) and g(·) denote the drift and
diffusion coefficients, and wt denotes the standard Wiener process. The trajectories of xt follow
the distributions pt(xt) with p0(x0) ≡ pdata(x) and pT (xT) ≈ N (0, I). Under some regularity
conditions Song et al. [15] showed that Equation (2.1) has a reverse process as time runs backwards
from T to 0 with initial marginal distribution pT (xT) governed by

dxt = [f(t)xt − g2(t)∇x log pt(xt)] dt+ g(t) dw̄t (2.2)

2

where w̄t is the standard Wiener process as time runs backwards. Solving Equation (2.2) is what
allows diffusion models to draw samples from pdata(x) by sampling pT (xT). The unknown term
in Equation (2.2) is the score function ∇x log pt(xt), which in practice is modeled by a neural
network that estimates the scaled score function, ϵθ(xt, t) ≈ −σt∇x log pt(xt), or some closely
related quantity like x0-prediction [1, 2, 20].

The practical choice of a step size when discretizing SDEs is limited by the randomness of the Wiener
process as a large step size, i.e., a small number of steps, can cause non-convergence, particularly
in high-dimensional spaces [16]. Sampling an equivalent ODE over an SDE would enable faster
sampling. Song et al. [15] showed there exists an ODE whose marginal distribution at time t are
identical to that of Equation (2.2). This ODE is known as the probability flow ODE [15]. With a noise
prediction network, ϵθ(xt, t), trained to model the scaled score function, this ODE can be written as

dxt

dt
= f(t)xt +

g2(t)

2σt
ϵθ(xt, t) (2.3)

w.r.t. the noise prediction network.

While there exist several popular choices for the drift and diffusion coefficients, we opt to use the de
facto choice known as the Variance Preserving (VP) type diffusion SDE [1, 15, 21]. The coefficients
for VP-type SDEs are given as

f(t) =
d logαt

dt
, g2(t) =

dσ2
t

dt
− 2

d logαt

dt
σ2
t (2.4)

which corresponds to sampling xt from the distribution q(xt | x0) = N (αtx0, σ
2
t I).

3 Adjoint Diffusion ODEs

Problem statement. Given the diffusion ODE in Equation (2.3), we wish to solve the following
optimization problem:

argmin
xT ,z,θ

L
(
xT +

∫ 0

T

f(t)xt +
g2(t)

2σt
ϵθ(xt, z, t) dt

)
. (3.1)

I.e., we seek to find the optimal xT , z, and θ which satisfies our guidance function L. N.B., the
noise-prediction model is conditioned on additional information z.

Unlike GANs which can update the latent representation through GAN inversion [22, 23], as seen
in Equation (3.1) diffusion models require more care as they model an ODE or SDE and require
numerical solvers. Therefore, to update the latent representation, model parameters, and conditional
information we must backpropagate the gradient of loss defined on the output, ∂L(x0)/∂x0 through
the whole ODE or SDE.

A key insight of this work is the connection between the adjoint ODE used in neural ODEs by Chen
et al. [19] and specialized ODE/SDE solvers by [16–18] for diffusion models. It has been well
observed that diffusion models are a type of neural ODE [15, 24]. Since a diffusion model can be
thought of as a neural ODE, then we can solve the continuous adjoint equations [25] to find useful
gradients for guided generation. We can then exploit the unique structure of diffusion models to
develop efficient bespoke ODE solvers for the continuous adjoint equations.

Let ax(t) := ∂L/∂xt and likewise for az(t) and aθ(t). Using exponential integrators we can simplify
the formulation of adjoint diffusion ODEs.
Proposition 3.1 (Exact solution of adjoint diffusion ODEs). Given initial values [ax(t),az(t),aθ(t)]
at time t ∈ (0, T), the solution [ax(s),az(s),aθ(s)] at time s ∈ (t, T] of adjoint diffusion ODEs is

ax(s) =
αt

αs
ax(t) +

1

αs

∫ λs

λt

α2
λe

−λax(λ)
⊤ ∂ϵθ(xλ, z, λ)

∂xλ
dλ, (3.2)

az(s) = az(t) +

∫ λs

λt

αλe
−λax(λ)

⊤ ∂ϵθ(xλ, z, λ)

∂z
dλ, (3.3)

aθ(s) = aθ(t) +

∫ λs

λt

αλe
−λax(λ)

⊤ ∂ϵθ(xλ, z, λ)

∂θ
dλ. (3.4)

The full derivations of Proposition 3.1 can be found in Appendix A.1.

3

3.1 Numerical Solvers for AdjointDEIS

AdjointDEIS-1. Given an initial augmented adjoint state [ax(t),az(t),aθ(t)] at time t ∈ (0, T), the
solution [ax(s),az(s),aθ(s)] at time s ∈ (t, T] is approximated by

ax(s) =
αt

αs
ax(t) + σs(e

h − 1)
α2
t

α2
s

ax(t)
⊤ ∂ϵ(xt, z, t)

∂xt
,

az(s) = az(t) + σs(e
h − 1)

αt

αs
ax(t)

⊤ ∂ϵ(xt, z, t)

∂z
,

aθ(s) = aθ(t) + σs(e
h − 1)

αt

αs
ax(t)

⊤ ∂ϵ(xt, z, t)

∂θ
. (3.5)

We show that AdjointDEIS-k is a k-th order solver, as stated in the following theorem. The proof is
in Appendix B.

Theorem 3.1 (AdjointDEIS-k as a k-th order solver). Assume the function ϵθ(xt, z, t) and its
associated vector-Jacobian products follow the regularity conditions detailed in Appendix B, then
for k = 1, 2, AdjointDEIS-k is a k-th order solver for adjoint diffusion ODEs, i.e., for the sequence
{ãx(ti)}Mi=1 computed by AdjointDEIS-k, the global truncation error at time T satisfies ãx(tM)−
ax(T) = O(h2

max), where hmax = max1≤j≤M (λti − λti−1
). Likewise, AdjointDEIS-k is a k-th

order solver for the estimated gradients w.r.t. z and θ.

As previous work has shown that higher-order solvers may be unsuitable for large guidance scales [16–
18] we do explicitly construct or analyze any solvers for k > 2 and leave such explorations for future
study.

4 Adjoint Diffusion SDEs

As recent work [26, 27] has shown, diffusion SDEs have useful properties over probability flow
ODEs for image manipulation and editing. In particular, it has been shown that probability flow
ODEs are invariant in Nie et al. [27, Theorem 3.2] and that diffusion SDEs are contractive in Nie
et al. [27, Theorem 3.1], i.e., any gap in the mismatched prior distributions pt(xt) and p̃t(xt) for the
true distribution pt and edited distribution p̃t will remain between p0(x0) and p̃0(x0), whereas for
diffusion SDEs the gap can be reduced between p̃t(xt) and pt(xt) as t tends towards 0. Motivated
by this reasoning, we present a framework for solving the adjoint diffusion SDE using exponential
integrators. Full details can be found in Appendix D.

Proposition 4.1 (Exact solution of adjoint diffusion SDEs). Given initial values [ax(t),az(t),aθ(t)]
at time t ∈ (0, T), the solution [ax(s),az(s),aθ(s)] at time s ∈ (t, T] of adjoint diffusion SDEs is

ax(s) =
αt

αs
ax(t) +

2

αs

∫ λs

λt

α2
λe

−λax(λ)
⊤ ϵθ(xλ, z, λ)

∂xλ
dλ, (4.1)

az(s) = az(t) + 2

∫ λs

λt

αλe
−λax(λ)

⊤ ∂ϵθ(xλ, z, λ)

∂z
dλ, (4.2)

aθ(s) = aθ(t) + 2

∫ λs

λt

αλe
−λax(λ)

⊤ ∂ϵθ(xλ, z, λ)

∂θ
dλ. (4.3)

Remark 4.1. While the adjoint diffusion SDEs evolve with an ODE the same cannot be said for the
underlying state, xt. Rather this evolves with a backwards SDE (more details in Appendix D) which
requires the same realization of the Wiener process used to sample the image as the one used in the
backwards SDE.

5 Experiments

To illustrate the efficacy of our technique, we examine the application of guided generation for the
face morphing attack. The face morphing attack is a new emerging attack on Face Recognition (FR)
systems. This attack works by creating a singular morphed face image x

(ab)
0 that shares biometric

4

(a) Identity a (b) Face morphing with AdjointDEIS (c) Identity b

Figure 2: Example of guided morphed face generation with AdjointDEIS on the FRLL dataset.

Figure 3: Comparison of DiM morphs on the FRLL dataset. From left to right, identity a, DiM-A,
Fast-DiM, Morph-PIPE, AdjointDEIS (ODE), AdjointDEIS (SDE), and identity b.

information with the two contributing faces x(a)
0 and x

(b)
0 [28–30]. A successfully created morphed

face image can trigger a false accept with either of the two contributing identities in the targeted Face
Recognition (FR) system, see Figure 2 for an illustration. Recent work in this space has explored the
use of diffusion models to generate these powerful attacks [28, 31, 32]. All prior work on diffusion-
based face morphing used a pre-trained diffusion autoencoder [33] trained on the FFHQ [34] dataset
at a 256×256 resolution. We illustrate the use of the AdjointDEIS solvers by modifying the Diffusion
Morph (DiM) architecture proposed by Blasingame and Liu [28] to use the AdjointDEIS solvers to
find the optimal initial noise x(ab)

T and conditional zab. The AdjointDEIS solvers are used to calculate
the gradients with respect to the identity loss [32] defined as

LID = d(vab, va) + d(vab, vb), Ldiff =
∣∣d(vab, va)− d(vab, vb))

∣∣,
L∗
ID = LID + Ldiff , (5.1)

where va = F (x
(a)
0), vb = F (x

(b)
0), vab = F (x

(ab)
0), and F : X → V is an FR system which

embeds images into a vector space V which is equipped with a measure of distance, d. We used the
ArcFace [35] FR system for the identity loss.

We compare against three preexisting DiM methods, the original DiM algorithm [28], Fast-DiM [31],
and Morph-PIPE [32] as well as a GAN-inversion based face morphing attack, MIPGAN-I and
MIPGAN-II [36] based on the StyleGAN [34] and StyleGAN2 [37] architectures respectively. Fast-
DiM improves DiM by using higher-order ODE solvers to decrease the number of sampling steps
required to create a morph. Morph-PIPE performs a very simple version of guided generation by
generating a large batch of morphed images derived from a discrete set of interpolations between
x
(a)
T and x

(b)
T , and za and zb. For reference purposes, we compare against a reference GAN-based

method [36] which uses GAN-inversion w.r.t.to the identity loss to find the optimal morphed face,
and we include prior state-of-the-art Webmorph, a commercial off-the-shelf system [38].

We run our experiments on the SYN-MAD 2022 [38] morphed pairs which are constructed from the
Face Research Lab London dataset [39], more details in Appendix G.4. The morphed images are
evaluated against three FR systems, the ArcFace [35], ElasticFace [40], and AdaFace [41] models,

5

further details are found in Appendix G.5. To measure the efficacy of a morphing attack, the Mated
Morph Presentation Match Rate (MMPMR) metric [42] is used. The MMPMR metric as proposed
by Scherhag et al. [42] is defined as

M(δ) =
1

M

M∑
m=1

{[
min

n∈{1,...,Nm}
Sn
m

]
> δ

}
(5.2)

where δ is the verification threshold, Sn
m is the similarity score of the n-th subject of morph m, Nm is

the total number of contributing subjects to morph m, and M is the total number of morphed images.

In our experiments, we used a learning rate of 0.01, N = 20 sampling steps, M = 20 steps for
AdjointDEIS, and 50 optimization steps for gradient descent.

Table 1: Vulnerability of different FR systems across different morphing attacks on the SYN-MAD
2022 dataset. FMR = 0.1%.

MMPMR(↑)

Morphing Attack NFE(↓) AdaFace ArcFace ElasticFace

Webmorph [38] - 97.96 96.93 98.36
MIPGAN-I [36] - 72.19 77.51 66.46
MIPGAN-II [36] - 70.55 72.19 65.24
DiM-A [28] 350 92.23 90.18 93.05
Fast-DiM [31] 300 92.02 90.18 93.05
Morph-PIPE [32] 2350 95.91 92.84 95.5
DiM + AdjointDEIS-1 (ODE) 2250 99.8 98.77 99.39
DiM + AdjointDEIS-1 (SDE) 2250 98.57 97.96 97.75

In Table 1 we present the effectiveness of the morphing attacks against the three FR systems. Guided
generation with AdjointDEIS massively increases the performance of DiM, supplanting the old
state-of-the-art for face morphing. Interestingly, the SDE variant did not fare as well as the ODE
variant. This is likely due to the difficulty in discretizing SDEs with large step sizes [15–17]. We
present further results in Appendix E which explore the impact of the choice of learning rate and
number of discretization steps for AdjointDEIS.

6 Conclusion

We present a unified view on guided generation by updating latent, conditional, and model information
of diffusion models with a guidance function using the continuous adjoint equations. We propose
AdjointDEIS, a family of solvers for the continuous adjoint equations of diffusion models. We exploit
the unique construction of diffusion models to create efficient numerical solvers by using exponential
integrators. We prove the convergence order of solvers and show that the continuous adjoint equations
for diffusion SDEs evolve with an ODE. Furthermore, we show how to handle conditional information
that is scheduled in time, further expanding the generalizability of the proposed technique. Our
results in face morphing show that the gradients produced by AdjointDEIS can be used for guided
generation tasks.

Limitations. There are several limitations. Empirically, we only explored a small subset of the true
potential AdjointDEIS by evaluating on a single scenario, i.e., face morphing. Likewise, we only
explored a few different hyperparameter options. In particular, we did not explore much the impact of
the number of optimization steps and the number of sampling steps for diffusion SDEs on the visual
quality of the generated face morphs.

Broader Impact. Guided generation techniques can be misused for a variety of harmful purposes. In
particular, our approach provides a powerful tool for adversarial attacks. However, better knowledge
of such techniques should hopefully help direct research in hardening systems against such kinds of
attacks.

6

References
[1] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic mod-

els. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin, editors, Ad-
vances in Neural Information Processing Systems, volume 33, pages 6840–6851. Curran
Associates, Inc., 2020. URL https://proceedings.neurips.cc/paper/2020/file/
4c5bcfec8584af0d967f1ab10179ca4b-Paper.pdf. 1, 3, 27

[2] Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. In
International Conference on Learning Representations, 2021. URL https://openreview.
net/forum?id=St1giarCHLP. 1, 2, 3

[3] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), pages 10684–10695, June
2022. 1, 17

[4] Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. Hierarchical
Text-Conditional Image Generation with CLIP Latents. arXiv e-prints, art. arXiv:2204.06125,
April 2022. doi: 10.48550/arXiv.2204.06125.

[5] Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily L Den-
ton, Kamyar Ghasemipour, Raphael Gontijo Lopes, Burcu Karagol Ayan, Tim Sali-
mans, Jonathan Ho, David J Fleet, and Mohammad Norouzi. Photorealistic text-to-
image diffusion models with deep language understanding. In S. Koyejo, S. Mo-
hamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh, editors, Advances in Neu-
ral Information Processing Systems, volume 35, pages 36479–36494. Curran Associates,
Inc., 2022. URL https://proceedings.neurips.cc/paper_files/paper/2022/file/
ec795aeadae0b7d230fa35cbaf04c041-Paper-Conference.pdf. 1

[6] Haohe Liu, Zehua Chen, Yi Yuan, Xinhao Mei, Xubo Liu, Danilo Mandic, Wenwu Wang, and
Mark D. Plumbley. AudioLDM: Text-to-Audio Generation with Latent Diffusion Models. arXiv
e-prints, art. arXiv:2301.12503, January 2023. doi: 10.48550/arXiv.2301.12503. 1

[7] Scott H. Hawley. Pictures of midi: Controlled music generation via graphical prompts for
image-based diffusion inpainting, 2024. URL https://arxiv.org/abs/2407.01499. 1

[8] Andreas Blattmann, Robin Rombach, Huan Ling, Tim Dockhorn, Seung Wook Kim, Sanja
Fidler, and Karsten Kreis. Align your Latents: High-Resolution Video Synthesis with Latent
Diffusion Models. arXiv e-prints, art. arXiv:2304.08818, April 2023. doi: 10.48550/arXiv.2304.
08818. 1

[9] Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the design space of
diffusion-based generative models. In Proc. NeurIPS, 2022. 1, 2

[10] Nataniel Ruiz, Yuanzhen Li, Varun Jampani, Yael Pritch, Michael Rubinstein, and Kfir Aberman.
Dreambooth: Fine tuning text-to-image diffusion models for subject-driven generation. arXiv
preprint arXiv:2208.12242, 2022. 1

[11] Rinon Gal, Yuval Alaluf, Yuval Atzmon, Or Patashnik, Amit H. Bermano, Gal Chechik, and
Daniel Cohen-Or. An Image is Worth One Word: Personalizing Text-to-Image Generation
using Textual Inversion. arXiv e-prints, art. arXiv:2208.01618, August 2022. doi: 10.48550/
arXiv.2208.01618.

[12] Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang,
Lu Wang, and Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv
preprint arXiv:2106.09685, 2021. 1

[13] Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. In NeurIPS 2021 Workshop
on Deep Generative Models and Downstream Applications, 2021. URL https://openreview.
net/forum?id=qw8AKxfYbI. 1

7

https://proceedings.neurips.cc/paper/2020/file/4c5bcfec8584af0d967f1ab10179ca4b-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/4c5bcfec8584af0d967f1ab10179ca4b-Paper.pdf
https://openreview.net/forum?id=St1giarCHLP
https://openreview.net/forum?id=St1giarCHLP
https://proceedings.neurips.cc/paper_files/paper/2022/file/ec795aeadae0b7d230fa35cbaf04c041-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/ec795aeadae0b7d230fa35cbaf04c041-Paper-Conference.pdf
https://arxiv.org/abs/2407.01499
https://openreview.net/forum?id=qw8AKxfYbI
https://openreview.net/forum?id=qw8AKxfYbI

[14] Arpit Bansal, Hong-Min Chu, Avi Schwarzschild, Soumyadip Sengupta, Micah Goldblum,
Jonas Geiping, and Tom Goldstein. Universal Guidance for Diffusion Models. arXiv e-prints,
art. arXiv:2302.07121, February 2023. doi: 10.48550/arXiv.2302.07121. 1

[15] Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and
Ben Poole. Score-based generative modeling through stochastic differential equations. In
International Conference on Learning Representations, 2021. URL https://openreview.
net/forum?id=PxTIG12RRHS. 1, 2, 3, 6, 27

[16] Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan LI, and Jun Zhu. Dpm-
solver: A fast ode solver for diffusion probabilistic model sampling in around 10 steps. In
S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh, editors, Advances
in Neural Information Processing Systems, volume 35, pages 5775–5787. Curran Associates,
Inc., 2022. URL https://proceedings.neurips.cc/paper_files/paper/2022/file/
260a14acce2a89dad36adc8eefe7c59e-Paper-Conference.pdf. 1, 3, 4, 13, 14, 15

[17] Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu. Dpm-solver++:
Fast solver for guided sampling of diffusion probabilistic models, 2023. 6, 15, 21

[18] Qinsheng Zhang and Yongxin Chen. Fast sampling of diffusion models with exponential
integrator. In International Conference on Learning Representations, 2023. 1, 3, 4

[19] Ricky T. Q. Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary
differential equations. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi,
and R. Garnett, editors, Advances in Neural Information Processing Systems, volume 31. Curran
Associates, Inc., 2018. URL https://proceedings.neurips.cc/paper_files/paper/
2018/file/69386f6bb1dfed68692a24c8686939b9-Paper.pdf. 2, 3

[20] Tim Salimans and Jonathan Ho. Progressive distillation for fast sampling of diffusion models.
In International Conference on Learning Representations, 2022. URL https://openreview.
net/forum?id=TIdIXIpzhoI. 3

[21] Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data
distribution. Curran Associates Inc., Red Hook, NY, USA, 2019. 3

[22] R. Abdal, Y. Qin, and P. Wonka. Image2stylegan: How to embed images into the stylegan
latent space? In IEEE/CVF Int’l Conf. on Comp. Vision (ICCV), pages 4431–4440, 2019. doi:
10.1109/ICCV.2019.00453. 3

[23] Rameen Abdal, Yipeng Qin, and Peter Wonka. Image2stylegan++: How to edit the embed-
ded images? In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pages 8296–8305, 2020. 3

[24] Yaron Lipman, Ricky T. Q. Chen, Heli Ben-Hamu, Maximilian Nickel, and Matthew Le. Flow
matching for generative modeling. In The Eleventh International Conference on Learning
Representations, 2023. URL https://openreview.net/forum?id=PqvMRDCJT9t. 3

[25] Patrick Kidger. On Neural Differential Equations. PhD thesis, Oxford University, 2022. 3

[26] Chenlin Meng, Yutong He, Yang Song, Jiaming Song, Jiajun Wu, Jun-Yan Zhu, and Stefano
Ermon. SDEdit: Guided image synthesis and editing with stochastic differential equations. In
International Conference on Learning Representations, 2022. 4

[27] Shen Nie, Hanzhong Allan Guo, Cheng Lu, Yuhao Zhou, Chenyu Zheng, and Chongxuan
Li. The blessing of randomness: SDE beats ODE in general diffusion-based image editing.
In The Twelfth International Conference on Learning Representations, 2024. URL https:
//openreview.net/forum?id=DesYwmUG00. 4, 21

[28] Zander W. Blasingame and Chen Liu. Leveraging diffusion for strong and high quality face
morphing attacks. IEEE Transactions on Biometrics, Behavior, and Identity Science, 6(1):
118–131, 2024. doi: 10.1109/TBIOM.2024.3349857. 5, 6, 24, 25

8

https://openreview.net/forum?id=PxTIG12RRHS
https://openreview.net/forum?id=PxTIG12RRHS
https://proceedings.neurips.cc/paper_files/paper/2022/file/260a14acce2a89dad36adc8eefe7c59e-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/260a14acce2a89dad36adc8eefe7c59e-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/69386f6bb1dfed68692a24c8686939b9-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/69386f6bb1dfed68692a24c8686939b9-Paper.pdf
https://openreview.net/forum?id=TIdIXIpzhoI
https://openreview.net/forum?id=TIdIXIpzhoI
https://openreview.net/forum?id=PqvMRDCJT9t
https://openreview.net/forum?id=DesYwmUG00
https://openreview.net/forum?id=DesYwmUG00

[29] R. Raghavendra, K. B. Raja, and C. Busch. Detecting morphed face images. In IEEE 8th
Int’l Conf. on Biometrics Theory, Applications and Systems (BTAS), pages 1–7, 2016. doi:
10.1109/BTAS.2016.7791169.

[30] Eklavya Sarkar, Pavel Korshunov, Laurent Colbois, and Sébastien Marcel. Are gan-based
morphs threatening face recognition? In ICASSP 2022 - 2022 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), pages 2959–2963, 2022. doi: 10.1109/
ICASSP43922.2022.9746477. 5, 25

[31] Zander W. Blasingame and Chen Liu. Fast-dim: Towards fast diffusion morphs. IEEE Security
& Privacy, 22(4):103–114, June 2024. doi: 10.1109/MSEC.2024.3410112. 5, 6

[32] Haoyu Zhang, Raghavendra Ramachandra, Kiran Raja, and Busch Christoph. Morph-pipe:
Plugging in identity prior to enhance face morphing attack based on diffusion model. In
Norwegian Information Security Conference (NISK), 2023. 5, 6, 25

[33] Konpat Preechakul, Nattanat Chatthee, Suttisak Wizadwongsa, and Supasorn Suwajanakorn.
Diffusion autoencoders: Toward a meaningful and decodable representation. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages
10619–10629, June 2022. 5

[34] T. Karras, S. Laine, and T. Aila. A style-based generator architecture for generative adversarial
networks. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
pages 4396–4405, 2019. doi: 10.1109/CVPR.2019.00453. 5

[35] Jiankang Deng, Jia Guo, Niannan Xue, and Stefanos Zafeiriou. Arcface: Additive angular
margin loss for deep face recognition. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 4690–4699, 2019. 5, 25

[36] Haoyu Zhang, Sushma Venkatesh, Raghavendra Ramachandra, Kiran Raja, Naser Damer, and
Christoph Busch. Mipgan—generating strong and high quality morphing attacks using identity
prior driven gan. IEEE Transactions on Biometrics, Behavior, and Identity Science, 3(3):
365–383, 2021. doi: 10.1109/TBIOM.2021.3072349. 5, 6, 25

[37] T. Karras, S. Laine, M. Aittala, J. Hellsten, J. Lehtinen, and T. Aila. Analyzing and improving
the image quality of stylegan. In 2020 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 8107–8116, 2020. doi: 10.1109/CVPR42600.2020.00813. 5

[38] Marco Huber, Fadi Boutros, Anh Thi Luu, Kiran Raja, Raghavendra Ramachandra, Naser
Damer, Pedro C. Neto, Tiago Gonçalves, Ana F. Sequeira, Jaime S. Cardoso, João Tremoço,
Miguel Lourenço, Sergio Serra, Eduardo Cermeño, Marija Ivanovska, Borut Batagelj, Andrej
Kronovšek, Peter Peer, and Vitomir Štruc. Syn-mad 2022: Competition on face morphing attack
detection based on privacy-aware synthetic training data. In 2022 IEEE International Joint
Conference on Biometrics (IJCB), pages 1–10, 2022. doi: 10.1109/IJCB54206.2022.10007950.
5, 6, 25

[39] Lisa DeBruine and Benedict Jones. Face Research Lab London Set. 5 2017. doi: 10.
6084/m9.figshare.5047666.v5. URL https://figshare.com/articles/dataset/Face_
Research_Lab_London_Set/5047666. 5, 25

[40] Fadi Boutros, Naser Damer, Florian Kirchbuchner, and Arjan Kuijper. Elasticface: Elastic
margin loss for deep face recognition. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR) Workshops, pages 1578–1587, June 2022. 5, 25

[41] Minchul Kim, Anil K Jain, and Xiaoming Liu. Adaface: Quality adaptive margin for face
recognition. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2022. 5, 25

[42] Ulrich Scherhag, Andreas Nautsch, Christian Rathgeb, Marta Gomez-Barrero, Raymond N. J.
Veldhuis, Luuk Spreeuwers, Maikel Schils, Davide Maltoni, Patrick Grother, Sebastien Marcel,
Ralph Breithaupt, Raghavendra Ramachandra, and Christoph Busch. Biometric systems under
morphing attacks: Assessment of morphing techniques and vulnerability reporting. In 2017
International Conference of the Biometrics Special Interest Group (BIOSIG), pages 1–7, 2017.
doi: 10.23919/BIOSIG.2017.8053499. 6

9

https://figshare.com/articles/dataset/Face_Research_Lab_London_Set/5047666
https://figshare.com/articles/dataset/Face_Research_Lab_London_Set/5047666

[43] Marlis Hochbruck and Alexander Ostermann. Exponential integrators. Acta Numerica, 19:
209–286, 2010. doi: 10.1017/S0962492910000048. 13

[44] John Charles Butcher. Numerical methods for ordinary differential equations. John Wiley &
Sons, 2016. 18

[45] Xuechen Li, Ting-Kam Leonard Wong, Ricky T. Q. Chen, and David Duvenaud. Scalable
gradients for stochastic differential equations. In Silvia Chiappa and Roberto Calandra, editors,
Proceedings of the Twenty Third International Conference on Artificial Intelligence and Statis-
tics, volume 108 of Proceedings of Machine Learning Research, pages 3870–3882. PMLR,
26–28 Aug 2020. URL https://proceedings.mlr.press/v108/li20i.html. 19, 20

[46] Hiroshi Kunita. Stochastic differential equations and stochastic flows. Stochastic Flows and
Jump-Diffusions, pages 77–124, 2019. 19

[47] Chen Henry Wu and Fernando De la Torre. A latent space of stochastic diffusion models for
zero-shot image editing and guidance. In ICCV, 2023. 21

[48] Zander W. Blasingame and Chen Liu. Greedy-dim: Greedy algorithms for unreasonably
effective face morphs. In 2024 IEEE International Joint Conference on Biometrics (IJCB),
pages 1–10, September 2024. 24, 25, 26

[49] Ionut Cosmin Duta, Li Liu, Fan Zhu, and Ling Shao. Improved residual networks for image
and video recognition. In 2020 25th International Conference on Pattern Recognition (ICPR),
pages 9415–9422, 2021. doi: 10.1109/ICPR48806.2021.9412193. 25

[50] Xiang An, Xuhan Zhu, Yuan Gao, Yang Xiao, Yongle Zhao, Ziyong Feng, Lan Wu, Bin Qin,
Ming Zhang, Debing Zhang, and Ying Fu. Partial fc: Training 10 million identities on a
single machine. In 2021 IEEE/CVF International Conference on Computer Vision Workshops
(ICCVW), pages 1445–1449, 2021. doi: 10.1109/ICCVW54120.2021.00166. 25

[51] Jiwen Yu, Yinhuai Wang, Chen Zhao, Bernard Ghanem, and Jian Zhang. Freedom: Training-
free energy-guided conditional diffusion model. Proceedings of the IEEE/CVF International
Conference on Computer Vision (ICCV), 2023. 25, 26

[52] Xingchao Liu, Lemeng Wu, Shujian Zhang, Chengyue Gong, Wei Ping, and Qiang Liu. Flow-
grad: Controlling the output of generative odes with gradients. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 24335–24344, 2023. 25, 26

[53] Bram Wallace, Akash Gokul, Stefano Ermon, and Nikhil Naik. End-to-end diffusion latent
optimization improves classifier guidance, 2023. 25, 26

[54] Jiachun Pan, Jun Hao Liew, Vincent Tan, Jiashi Feng, and Hanshu Yan. AdjointDPM: Adjoint
sensitivity method for gradient backpropagation of diffusion probabilistic models. In The Twelfth
International Conference on Learning Representations, 2024. URL https://openreview.
net/forum?id=y33lDRBgWI. 25, 26, 27

[55] Pierre Marion, Anna Korba, Peter Bartlett, Mathieu Blondel, Valentin De Bortoli, Arnaud
Doucet, Felipe Llinares-López, Courtney Paquette, and Quentin Berthet. Implicit diffusion:
Efficient optimization through stochastic sampling. arXiv preprint arXiv:2402.05468, 2024. 26,
27

[56] Bram Wallace, Akash Gokul, and Nikhil Naik. Edict: Exact diffusion inversion via coupled
transformations. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 22532–22541, 2023. 26

10

https://proceedings.mlr.press/v108/li20i.html
https://openreview.net/forum?id=y33lDRBgWI
https://openreview.net/forum?id=y33lDRBgWI

A Derivation of AdjointDEIS

In this section we provide the full derivations for the family of AdjointDEIS solvers. First recall the
full definition of the continuous adjoint equations for the empirical probability flow ODE:

ax(0) =
∂L
∂x0

,
dax
dt

(t) = −ax(t)⊤
∂fθ(xt, z, t)

∂xt
,

az(0) = 0,
daz
dt

(t) = −ax(t)⊤
∂fθ(xt, z, t)

∂z
,

aθ(0) = 0,
daθ
dt

(t) = −ax(t)⊤
∂fθ(xt, z, t)

∂θ
. (A.1)

We can simplify the equations by explicitly solving gradients of the neural vector field fθ for the
drift term to obtain

dax
dt

(t) =−f(t)ax(t)−
g2(t)

2σt
ax(t)

⊤ ∂ϵθ(xt, z, t)

∂xt
,

daz
dt

(t) = 0− g2(t)

2σt
ax(t)

⊤ ∂ϵθ(xt, z, t)

∂z
,

daθ
dt

(t) = 0− g2(t)

2σt
ax(t)

⊤ ∂ϵθ(xt, z, t)

∂θ
. (A.2)

Remark A.1. The last two equations in Equations (A.2) the vector fields are independent of (az,aθ),
reducing these equations to mere integrals; however, it is often useful to compute the whole system
aaug = (ax,az,aθ) as an augmented ODE.
Remark A.2. Likewise, the last two equations in Equations (A.2) are functionally identical with a
simple swap of z for θ or vice versa.

As such, for the sake of brevity, the derivations for the AdjointDEIS solvers for (az,aθ) will only
explicitly include the derivations for az.

A.1 Simplified Formulation of the Continuous Adjoint Equations

Focusing first on the continuous adjoint equation for ax we apply the integrating factor
exp

(∫ t

0
f(τ) dτ

)
to Equation (A.2) to find

d

dt

[
e
∫ t
0
f(τ) dτax(t)

]
= −e

∫ t
0
f(τ) dτ g

2(t)

2σt
ax(t)

⊤ ∂ϵθ(xt, z, t)

∂xt
. (A.3)

Then, the exact solution at time s given time t < s is found to be

e
∫ s
0
f(τ) dτax(s) = e

∫ t
0
f(τ) dτax(t)−

∫ s

t

e
∫ u
0

f(τ) dτ g
2(u)

2σu
ax(u)

⊤ ϵθ(xu, z, u)

∂xu
du

ax(s) = e
∫ t
s
f(τ) dτax(t)−

∫ s

t

e
∫ u
s

f(τ) dτ g
2(u)

2σu
ax(u)

⊤ ϵθ(xu, z, u)

∂xu
du (A.4)

To simplify Equation (A.4), recall that f(t) is defined as

f(t) =
d logαt

dt
, (A.5)

for VP type SDEs. Furthermore, let λt := log(αt/σt) be one half of the log-SNR. Then the diffusion
coefficient can be simplified using the log-derivative trick such that

g2(t) =
dσ2

t

dt
− 2

d logαt

dt
σ2
t = 2σ2

t

(
d log σt

dt
− d logαt

dt

)
= −2σ2

t

dλt

dt
. (A.6)

Using this updated expression of g2(t) along with computing the integrating factor in closed form
enables us to express Equation (A.4) as

ax(s) =
αt

αs
ax(t) +

1

αs

∫ s

t

αuσu
dλu

du
ax(u)

⊤ ϵθ(xu, z, u)

∂xu
du. (A.7)

11

Lastly, by rewriting the integral in terms of an exponentially weighted integral αuσu = α2
uσu/αu =

α2
ue

−λu we find

ax(s) =
αt

αs
ax(t) +

1

αs

∫ λs

λt

α2
λe

−λax(λ)
⊤ ϵθ(xλ, z, λ)

∂xλ
dλ. (A.8)

This change of variables is possible as λt is a strictly decreasing function w.r.t. t and therefore it has
an inverse function tλ which satisfies tλ(λt) = t, and, with abuse of notation, we let xλ := xtλ(λ),
ax(λ) := ax(tλ(λ)), &c.and let the reader infer from context if the function is mapping the log-SNR
back into the time domain or already in the time domain.

Now we will show the derivations to find a simplified form of the continuous adjoint equation for the
conditional information. Using the continuous adjoint equation from Equations (A.2) for az(t) along
with the log-SNR, we can express the evolution of az(t) as

daz
dt

(t) = σt
dλt

dt
ax(t)

⊤ ∂ϵθ(xt, z, t)

∂z
. (A.9)

As we would like to express this as an exponential integrator, we simply multiply σt by αt/αt to
obtain αt · σt/αt = αte

−λt , as such we can rewrite Equation (A.9) as

daz
dt

(t) = αte
−λt

dλt

dt
ax(t)

⊤ ∂ϵθ(xt, z, t)

∂z
. (A.10)

Using Equations (A.8) and (A.10), we arrive at Proposition 3.1 from the main paper.
Proposition A.1. Given initial values [ax(t),az(t),aθ(t)] at time t ∈ (0, T), the solution
[ax(s),az(s),aθ(s)] at time s ∈ (t, T] of the adjoint empirical probability flow ODE in Equa-
tion (A.4) is

ax(s) =
αt

αs
ax(t) +

1

αs

∫ λs

λt

α2
λe

−λax(λ)
⊤ ∂ϵθ(xλ, z, λ)

∂xλ
dλ, (A.11)

az(s) = az(t) +

∫ λs

λt

αλe
−λax(λ)

⊤ ∂ϵθ(xλ, z, λ)

∂z
dλ, (A.12)

aθ(s) = aθ(t) +

∫ λs

λt

αλe
−λax(λ)

⊤ ∂ϵθ(xλ, z, λ)

∂θ
dλ. (A.13)

Then to find the AdjointDEIS solvers we take a k-th order Taylor expansion about λt and integrate in
the log-SNR domain.

A.2 Taylor Expansion

For k ≥ 1, the (k − 1)-th Taylor expansion at λt of the inner term of the exponentially weighted
integral in Equation (A.11) is

ax(λ)
⊤ ∂ϵθ(xλ, z, λ)

∂xλ
=

k−1∑
n=0

(λ− λt)
n

n!

dn

dλn

[
α2
λax(λ)

⊤ ∂ϵθ(xλ, z, λ)

∂xλ

]
λ=λt

+O((λ− λt)
k).

(A.14)

Then plugging this into Equation (A.11) yields

ax(s) =
αt

αs
ax(t) +

1

αs

∫ λs

λt

e−λ
k−1∑
n=0

(λ− λt)
n

n!

dn

dλn

[
α2
λax(λ)

⊤ ∂ϵθ(xλ, z, λ)

∂xλ

]
λ=λt

dλ

+O(hk+1)

=
αt

αs
ax(t) +

1

αs

k−1∑
n=0

dn

dλn

[
α2
λax(λ)

⊤ ∂ϵθ(xλ, z, λ)

∂xλ

]
λ=λt︸ ︷︷ ︸

estimated

∫ λs

λt

(λ− λt)
n

n!
e−λ dλ︸ ︷︷ ︸

analytically computed

+O(hk+1)︸ ︷︷ ︸
omitted

, (A.15)

12

where h = λs − λt.

The exponentially weighted integral
∫ λs

λt

(λ−λt)
n

n! e−λ dλ can be solved analytically by applying n
times integration by parts [16, 43] such that∫ λs

λt

e−λ (λ− λt)
n

n!
dλ =

σs

αs
hn+1φn+1(h), (A.16)

with the special φ-functions [43]. These functions are defined as

φn+1(h) :=

∫ 1

0

e(1−u)hu
n

n!
du, φ0(h) = eh, (A.17)

which satisfy the recurrence relation φk+1(h) = (φk(h)− φk(0))/h and have closed forms for
k = 1, 2:

φ1(h) =
eh − 1

h
, (A.18)

φ2(h) =
eh − h− 1

h2
. (A.19)

Likewise, the Taylor expansion of the exponentially weighted integral in Equation (A.12) yields

az(s) = az(t) +

∫ λs

λt

e−λ
k−1∑
n=0

(λ− λt)
n

n!

dn

dλn

[
αλax(λ)

⊤ ∂ϵθ(xλ, z, λ)

∂z

]
λ=λt

dλ+O(hk+1)

= az(t) +

k−1∑
n=0

dn

dλn

[
αλax(λ)

⊤ ∂ϵθ(xλ, z, λ)

∂z

]
λ=λt︸ ︷︷ ︸

estimated

∫ λs

λt

(λ− λt)
n

n!
e−λ dλ︸ ︷︷ ︸

analytically computed

+O(hk+1)︸ ︷︷ ︸
omitted

.

(A.20)

A.3 AdjointDEIS-1

For k = 1 and omitting the higher-order error term, Equation (A.15) becomes:

ax(s) =
αt

αs
ax(t) +

1

αs
α2
tax(t)

⊤ ∂ϵθ(xt, z, t)

∂xt

∫ λs

λt

(λ− λt)
0

0!
e−λ dλ

=
αt

αs
ax(t) + σs(e

h − 1)
α2
t

α2
s

ax(t)
⊤ ∂ϵθ(xt, z, t)

∂xt
By Equation (A.16). (A.21)

Likewise, the continuous adjoint equation for z, Equation (A.20), becomes when k = 1 by omitting
the higher-order error term:

az(s) = az(t) + αtax(t)
⊤ ∂ϵθ(xt, z, t)

∂z

∫ λs

λt

(λ− λt)
0

0!
e−λ dλ

= az(t) + σs(e
h − 1)

αt

αs
ax(t)

⊤ ∂ϵθ(xt, z, t)

∂z
By Equation (A.16). (A.22)

And the first-order solver for aθ(t) can be found in a similar fashion, thus we have derived the
AdjointDEIS-1 solvers.

A.4 AdjointDEIS-2M

For notational convenience let V(x; t) denote the scaled vector-Jacobian product of the adjoint state
ax(t) and the gradient of the model w.r.t. xt, i.e.,

V(x; t) = α2
tax(t)

⊤ ∂ϵθ(xt, z, t)

∂xt
. (A.23)

13

Consider the following definition of the limit in the log-SNR domain

d

dλ

[
α2
λax(λ)

⊤ ∂ϵθ(xλ, z, λ)

∂xλ

]
= lim

λr→λt

V(x;λt)−V(x;λr)

ρh
, (A.24)

where ρ = λt−λr

h with h = λs − λt and where r is some previous step r < t < s. Again V(x;λt)

is overloaded to mean V(x; tλ(λt)). Then by omitting higher-order error O(hk+1), Equation (A.15)
becomes:

ax(s) =
αt

αs
ax(t) +

1

αs

[
V(x;λt)

∫ λs

λt

(λ− λt)
0

0!
dλ+V(1)(x;λt)

∫ λs

λt

(λ− λt)
1

1!
dλ

]
=

αt

αs
ax(t) +

1

αs

[
σs

αs
(eh − 1)V(x;λt) +

σs

αs
(eh − h− 1)V(1)(x;λt)

]
. (A.25)

By applying the same approximation used in Lu et al. [16] of

eh − h− 1

h
≈ eh − 1

2
, (A.26)

then we can rewrite the second term of the Taylor expansion as

σs

αs
(eh − h− 1)V(1)(x;λt) ≈

σs

αs
(eh − h− 1)

V(x;λt)−V(x;λr)

ρh
By Equation (A.24)

≈ σs

αs

eh − 1

2ρ

(
V(x;λt)−V(x;λr)

)
By Equation (A.26)

=
σs

αs

eh − 1

2ρ

(
α2
tax(t)

⊤ ∂ϵθ(xt, z, t)

∂xt
− α2

rax(r)
⊤ ∂ϵθ(xr, z, r)

∂xr

)
.

(A.27)

Then Equation (A.25) becomes

ax(s) =
αt

αs
ax(t) + σs(e

h − 1)
α2
t

α2
s

ax(t)
⊤ ∂ϵθ(xt, z, t)

∂xt

+ σs
eh − 1

2ρ

(
α2
t

α2
s

ax(t)
⊤ ∂ϵθ(xt, z, t)

∂xt
− α2

r

α2
s

ax(r)
⊤ ∂ϵθ(xr, z, r)

∂xr

)
. (A.28)

Likewise, consider the scaled vector-Jacobian product of the adjoint state ax(t) and the gradient of
the model w.r.t. z, i.e.,

V(z; t) = αtax(t)
⊤ ∂ϵθ(xt, z, t)

∂z
, (A.29)

along with a corresponding definition of first-derivative w.r.t. λ as defined in Equation (A.24). As
such Equation (A.20), when k = 2, becomes the following when omitting the higher-order error
term:

az(s) = az(t) +V(z;λt)

∫ λs

λt

(λ− λt)
0

0!
dλ+V(1)(z;λt)

∫ λs

λt

(λ− λt)
1

1!
dλ

= az(t) +
σs

αs
(eh − 1)V(z;λt) +

σs

αs
(eh − h− 1)V(1)(z;λt). (A.30)

The second term of the Taylor expansion can be rewritten as

σs

αs
(eh − h− 1)V(1)(z;λt) ≈

σs

αs
(eh − h− 1)

V(z;λt)−V(z;λr)

ρh

≈ σs

αs

eh − 1

2ρ

(
V(z;λt)−V(z;λr)

)
By Equation (A.26)

=
σs

αs

eh − 1

2ρ

(
αtax(t)

⊤ ∂ϵθ(xt, z, t)

∂z
− αrax(r)

⊤ ∂ϵθ(xr, z, r)

∂z

)
.

(A.31)

14

Then Equation (A.30) becomes

az(s) = az(t) + σs(e
h − 1)

αt

αs
ax(t)

⊤ ∂ϵθ(xt, z, t)

∂z

+ σs
eh − 1

2ρ

(
αt

αs
ax(t)

⊤ ∂ϵθ(xt, z, t)

∂z
− αr

αs
ax(r)

⊤ ∂ϵθ(xr, z, r)

∂z

)
, (A.32)

and the corresponding second-order solver for aθ(t) can be found in a similar manner.

B Proof of Theorem 3.1

For notational brevity we denote the scaled vector-Jacobian products of the solution trajectory of
AdjointDEIS as

Ṽ(x; t) = α2
t ãx(t)

⊤ ∂ϵθ(x̃t, z, t)

∂x̃t
, (B.1)

Ṽ(z; t) = αtãx(t)
⊤ ∂ϵθ(x̃t, z, t)

∂z
. (B.2)

B.1 Assumptions

For the AdjointDEIS solvers, we make similar assumptions to Lu et al. [16].

Assumption B.1. The total derivatives of the vector-Jacobian products V(k)({xλ, z, θ}, λ) as a
function of λ exist and are continuous for 0 ≤ j ≤ k + 1 (and hence bounded).

Assumption B.2. The function ϵθ(x, z, t) is continuous in t and uniformly Lipschitz and continuously
differentiable w.r.t. its first parameter x.

Assumption B.3. hmax := max1≤j≤M hj = O(1/M).

Assumption B.4. ρi > c > 0 for all i = 1, . . . ,M and some constant c.

The first assumption is required by Taylor’s theorem. The second assumption is a mild assumption
to ensure Theorem B.1 holds, which is used to replace Ṽ({xt, z, θ}, t) with V({xt, z, θ}, t) +
O(ãx(t)− ax(t)) so the Taylor expansion w.r.t. λs is applicable. The third assumption is a technical
assumption to exclude a significantly large step size. The last assumption is necessary for the case
when k = 2. For our proofs we follow a similar outline to that taken by Lu et al. [17, Appendix A].

B.2 The Vector-Jacobian Product is Lipschitz

Lemma B.1 (Vector-Jacobian Product is Lipschitz.). Let fθ : Rd×Rz × [0, T]→ Rd be continuous
in t and uniformly Lipschitz and continuously differentiable in x. Let x : [0, T]→ Rd be the unique
solution to

dxt

dt
= fθ(xt, z, t)

with initial condition x0. Then the following map

(a, t) 7→ −a⊤ ∂fθ(xt, z, t)

∂[xt, z, θ]

is Lipschitz in a. Moreover, the Lipschitz constant L > 0 is given by

L = sup
t∈[0,T]

∣∣∣∣∂fθ(xt, z, t)

∂xt

∣∣∣∣. (B.3)

Proof. Now as xt is continuous and fθ is continuously differentiable in x, so t 7→ ∂fθ

∂[xt,z,θ]
(xt, z, t)

is a continuous function on the compact set [0, T], so it is bounded by some L > 0. Likewise,
for a ∈ Rd the map (a, t) 7→ −a⊤ ∂fθ(xt,z,t)

∂[xt,z,θ]
is Lipschitz in a with Lipschitz constant L and this

constant is independent of t.

15

B.3 Proof of Theorem 3.1 when k = 1

Proof. First we consider the case of the adjoint state ax(t). Recall that the AdjointDEIS-1 solver for
ax with higher-order error terms is given by

ax(ti+1) =
αti

αti+1

ax(ti) + σti+1
(ehi − 1)

α2
ti

α2
ti+1

ax(ti)
⊤ ∂ϵθ(xti , z, t)

∂xti

+O(h2
i), (B.4)

where we let ti = t, ti+1 = s, hi = λti+1
− λti from Equation (A.21). By Theorem B.1 and Equa-

tion (A.21) it holds that

ãx(ti+1) =
αti

αti+1

ãx(ti) + σti+1(e
hi − 1)

α2
ti

α2
ti+1

ãx(ti)
⊤ ∂ϵθ(x̃ti , z, t)

∂x̃ti

=
αti

αti+1

ãx(ti) + σti+1
(ehi − 1)

α2
ti

α2
ti+1

(
ax(ti)

⊤ ∂ϵθ(xti , z, t)

∂xti

+O(ãx(ti)− ax(ti))

)
=

αti

αti+1

ax(ti) + σti+1(e
hi − 1)

α2
ti

α2
ti+1

ax(ti)
⊤ ∂ϵθ(xti , z, t)

∂xti

+O(ãx(ti)− ax(ti))

= ax(ti+1) +O(h2
max) +O(ãx(ti)− ax(ti)). (B.5)

Repeat, this argument, from ãx(t0) = ax(0) then we find

ãx(tM) = ax(T) +O(Mh2
max) = ax(T) +O(hmax). (B.6)

Although the argument for the adjoint state az(t) follows an analogous form to the one above we
explicitly state it for completeness. Recall that the AdjointDEIS-1 solver for az with higher-order
error terms is given by

az(ti+1) = az(ti) + σti+1(e
hi − 1)

αti

αti+1

ax(ti)
⊤ ∂ϵθ(xti , z, t)

∂z
+O(h2

i). (B.7)

By Theorem B.1 and Equation (A.22) it holds that

ãz(ti+1) = ãz(ti) + σti+1
(ehi − 1)

αti

αti+1

ãx(ti)
⊤ ∂ϵθ(x̃ti , z, t)

∂z

= ãz(ti) + σti+1(e
hi − 1)

αti

αti+1

(
ax(ti)

⊤ ∂ϵθ(xti , z, t)

∂z
+O(ãx(ti)− ax(ti))

)
= az(ti) + σti+1

(ehi − 1)
αti

αti+1

ax(ti)
⊤ ∂ϵθ(xti , z, t)

∂z
+O(ãx(ti)− ax(ti)

= az(ti+1) +O(h2
max) +O(ãx(ti)− ax(ti). (B.8)

Repeat, this argument, from ãz(t0) = 0 then we find

ãz(tM) = az(T) +O(Mh2
max) = az(T) +O(hmax). (B.9)

An identical argument can be constructed for aθ thereby finishing the proof.

B.4 Proof of Theorem 3.1 when k = 2

We prove the discretization error of the AdjointDEIS-2M solver. Note for the AdjointDEIS-2M solver
we have hi = λti+1 − λti−1 and ρi =

λti
−λti−1

hi
. Furthermore, let ∆i = ∥ãx(ti)− ax(ti)∥. Without

loss of generality, we will prove this only for ax; the derivation for az and aθ is analogous.

Proof. First we consider the case of the adjoint state ax(t). Recall that the AdjointDEIS-2, see Equa-
tion (A.25), solver for ax with higher-order error terms is given by

ax(ti+1) =
αti

αti+1

ax(ti)+
1

αti+1

[
σti+1

αti+1

(ehi−1)V(x; ti)+
σti+1

αti+1

(ehi−hi−1)V(1)(x; ti)

]
+O(h3

i).

(B.10)

16

Taylor’s expansion yields∥∥∥∥ax(ti+1)−
(αti

αti+1

ax(ti)+
1

αti+1

[σti+1

αti+1

(ehi−1)V(x; ti)+
σti+1

αti+1

(ehi−hi−1)V(1)(x; ti)
])∥∥∥∥ ≤ Ch3

i ,

(B.11)
where C is a constant that depends on V(2)(xt, t). Also note that∥∥∥∥V(1)(x; ti)−

1

ρihi

(
V(x; ti)−V(x; ti−1)

)∥∥∥∥ ≤ Chi. (B.12)

Since ρi is bounded away from zero, and e−hi = 1− hi + h2
i /2 +O(h3

i), we know∥∥∥∥(ehi − hi + 1)V(1)(x; ti)−
ehi − 1

2ρi

(
Ṽ(x; ti)− Ṽ(x; ti−1)

)∥∥∥∥
≤ CLhi(∆i +∆i−1) + Ch3

i +
1

ρi

∣∣∣∣ehi − 1

2
− ehi − hi − 1

hi

∣∣∣∣∥V(x; ti)−V(x; ti−1)∥

≤ CLhi(∆i +∆i−1) + Ch3
i + Ch2

i ∥V(x; ti)−V(x; ti−1)∥
≤ CLhi(∆i +∆i−1) + CMih

3
i , (B.13)

where Mi = 1 + supti≤t≤ti+1
∥V(1)(x; t)∥ and L are the Lipschitz constants of V(x; t) by Theo-

rem B.1. Then, ∆i+1 can be estimated as

∆i+1 ≤
αti

αti+1

∆i +
σti+1

α2
ti+1

L∆i +
σti+1

α2
ti+1

(CMih
3
i + CLhi(∆i +∆i+1)) + Ch3

i

≤ αti

αti+1

∆i + C̃hi(∆i +∆i+1 + h2
i). (B.14)

Thus, ∆i+1 = O(h2
max) as long as hmax is sufficiently small and ∆0 +∆1 = O(h2

max), which can
be verified via Taylor expansion, thereby finishing the proof.

C Scheduled Conditional Information

Thus far, we have held the conditional information constant across time, i.e., the same text conditioning
like a prompt “fire dragon” can be fed to the noise prediction network. In guided generation tasks
it is not uncommon to take advantage of the iterative nature of diffusion models by scheduling the
conditional information to exhibit different values at different timesteps. E.g., blending concepts by
alternating between the prompt for “fire dragon” and the prompt for “ice dragon” at each timestep
to create a picture of a dragon with both the qualities of ice and fire—a technique which has been
popularized by Stable Diffusion [3].

We show that converting a constant z into a scheduled zt does not actually change the continuous
adjoint equation for zt, meaning we can still apply the AdjointDEIS-k solvers derived above to
find az(t) by simply replacing z with zt. We state this observation more formally in the following
theorem. The proof is in Appendix C.
Theorem C.1 (Continuous adjoint equations for time-dependent conditional information). Suppose
there exists a function z : R → Rz which is continuously differentiable in t and is the conditional
input into a parameterized vector field, fθ. Let fθ : Rd×Rz×R→ Rd be continuous in t, uniformly
Lipschitz in x, and continuously differentiable in x. Let x : R→ Rd be the unique solution for the
ODE

dxt

dt
= fθ(xt, zt, t)

with initial condition x0. Then there exists a unique solution az : R→ Rz to the following IVP:

az(T) = 0,
daz
dt

(t) = −ax(t)⊤
∂fθ(xt, zt, t)

∂zt
.

Proof. As z(t) is continuously differentiable w.r.t. t there exists some function z′(t) such that

dz

dt
(t) = z′(t). (C.1)

17

Consider the augmented state defined by

d

dt

[
x
z

]
(t) = f aug =

[
fθ(xt, zt, t)

z′(t)

]
, (C.2)

and the associated augmented adjoint state

aaug(t) :=

[
ax
az

]
(t). (C.3)

The Jacobian of f aug has the form

∂f aug

∂[x, z]
=

[
∂fθ(x,z,t)

∂x
∂fθ(x,z,t)

∂z
0 0

]
. (C.4)

Recall that ax(t) evolves with

dax
dt

(t) = −ax(t)⊤
∂fθ(x(t), z(t), t)

∂x(t)
. (C.5)

Using Equations (C.3) and (C.4) we can define the evolution of the adjoint augmented state as

daaug

dt
(t) = − [ax az] (t)

∂f aug

∂[x, z]
(t) = −

[
ax

∂fθ(x,z,t)
∂x ax

∂fθ(x,z,t)
∂z

]
(t). (C.6)

Therefore, az(t) evolves with the ODE

az(T) = 0,
daz
dt

(t) = −ax(t)⊤
∂fθ(x(t), z(t), t)

∂z(t)
. (C.7)

We have thus shown the evolution of az(t) for some continuously differentiable function z(t).

Now we prove the solution is unique and exists. As x(t) is continuous and fθ is continuously
differentiable in x, it follows that the map t 7→ ∂fθ

∂x (x(t), z(t), t) is a continuous function on the
compact set [0, T], and therefore it is bounded by some L > 0. Correspondingly, for a ∈ Rd it
follows that the map (a, t) 7→ −a⊤ ∂fθ

∂[x,z] (x(t), z(t), t) is Lipschitz in a with Lipschitz constant L
and this constant is independent of t. Therefore, by the Picard-Lindelölf theorem [44, Theorem 110C]
the solution az(t) exists and is unique.

While motivated by the case of scheduled conditional information in guided generation with diffusion
models, this result applies to neural ODEs more generally, which could open future research directions.
For additional clarity, we let x(t) ≡ xt and likewise, z(t) ≡ zt.

D Details on Adjoints for SDEs

In this section, we provide further details on the continuous adjoint equations for diffusion SDEs that
we omitted from the main paper due to their technical nature and for the purpose of brevity.

Consider the Itô integral given by

xT =

∫ T

0

xt dwt, (D.1)

where xt is a continuous semi-martingale adapted to the filtration generated by the Wiener process
{wt}t∈[0,T], {Ft}t∈[0,T]. The following quantity, however, is not defined∫ 0

T

xt dwt. (D.2)

This is because xt and wt are adapted to {Ft}t∈[0,T] which is defined in forwards time. This means
xt does not anticipate future events only depends on past events. While this is generally sufficient
when we wish to integrate backwards in time we want future events to inform past events.

18

D.1 Stratonovich Symmetric Integrals and Two-sided Filtration

Clearly, we need a different tool to model this backwards SDE. As such, taking inspiration from the
work on neural SDEs [45], we follow the treatment of Kunita [46] for the forward and backward
Fisk-Stratonovich integrals using two-sided filtration. Let {Fs,t}s≤t;s,t∈[0,T] be a two-sided filtration,
where Fs,t is the σ-algebra generated by {wv −wu : s ≤ u ≤ v ≤ t} for s, t ∈ [0, T] such that
s ≤ t.

Forward time. For a continuous semi-martingale {xt}t∈[0,T] adapted to the forward filtration
{F0,t}t∈[0,t], the Stratonovich stochastic integral is given as∫ T

0

xt ◦ dwt = lim
|Π|→0

N∑
k=1

xtk + xtk−1

2
(wtk −wtk−1

) (D.3)

where Π = {0 = t0 < · · · < tN = T} is a partition of the interval [0, T] and |Π| = maxk tk − tk−1.
The forward filtration {F0,t}t∈[0,t] is analogous to the filtration defined in the prior section; therefore,
any continuous semi-martingale adapted to it only considers past events and does not anticipate future
events.

Reverse time. Consider the backwards Wiener process qwt = wt − wT that is adapted to the
backward filtration {Fs,T }s∈[0,T], then for a continuous semi-martingale {qxt}t∈[0,T] adapted to the
backward filtration, the backward Stratonovich integral is∫ T

0

qxt ◦ dqwt = lim
|Π|→0

N∑
k=1

qxtk + qxtk−1

2
(qwtk−1

− qwtk) (D.4)

The backward filtration {Fs,T }s∈[0,T] is the opposite of the forward filtration in the sense that
continuous semi-martingales adapted to it only depend on future events and do not anticipate past
events. As such, time is effectively reversed.

Remark D.1. While the Stratonovich symmetric integrals give us a powerful tool for integrating
forwards and backwards in time with stochastic integrals, it is important that we use the same
realization of the Wiener process.

D.2 Stochastic Flow of Diffeomorphisms

Consider the Stratonovich SDE defined as

xT = x0 +

∫ T

0

f(xt, t) dt+

∫ T

0

g(xt, t) ◦ dwt, (D.5)

where f , g ∈ C∞,1
b , i.e., they belong to the class of functions with infinitely many bounded deriva-

tives w.r.t. the state and bounded first derivatives w.r.t. time. Thus, the SDE has a unique strong
solution. Given a realization of the Wiener process, there exists a smooth mapping Φ called the
stochastic flow such that Φs,t(xs) is the solution at time t of the process described in Equation (D.5)
started at xs at time s ≤ t. This then defines a collection of continuous maps S = {Φs,t}s≤t;s,t∈[0,T]

from Rd to itself.

Kunita [46, Theorem 3.7.1] shows that with probability 1 this collection S satisfies the flow property

Φs,t(xs) = Φu,t(Φs,u(xs)) s ≤ u ≤ t,xs ∈ Rd, (D.6)

and that each Φs,t is a smooth diffeomorphism from Rd to itself. Hence, S is the stochastic flow of
diffeomorphisms generated by Equation (D.5). Moreover, the backward flow qΨs,t := Φ−1

s,t satisfies
the backwards SDE:

qΨs,t(xt) = xt −
∫ t

s

f(qΨu,t(xt), u) du−
∫ t

s

g(qΨu,t(xt), u) ◦ dqwu, (D.7)

for all s, t ∈ [0, T] such that s ≤ t. This formulation makes intuitive sense as the backwards SDE
differs only from the forwards SDE by a negative sign.

19

D.3 Continuous Adjoint Equations

Now consider the adjoint flow As,t(xs) = ∂L(Φs,t(xs))/∂xs, then qAs,t(xt) = As,t(qΨs,t(xt)). Li
et al. [45] show that qAs,t(xt) satisfies the backward SDE:

qAs,t(xt) =
∂L
∂xt

+

∫ t

s

qAu,t(xt)
∂f

∂xu
(qΨu,t(xt), u) du+

∫ t

s

qAu,t(xt)
∂g

∂xu
(qΨu,t(xt), u) ◦ dqwu.

(D.8)
As the drift and diffusion coefficient of this SDE are in C∞,1

b , the system has a unique strong solution.

D.4 Adjoint Diffusion SDE is Actually an ODE

Theorem D.1. Let f : Rd × R→ Rd be in C∞,1
b and g : R→ Rd×w be in C1b . Let L : Rd → R be

a scalar-valued differentiable function. Let wt : [0, T]→ Rw be a w-dimensional Wiener process.
Let x : [0, T]→ Rd solve the Stratonovich SDE

dxt = f(xt, t) dt+ g(t) ◦ dwt,

with initial condition x0. Then the adjoint process ax(t) := ∂L(xT)/∂xt is a strong solution to the
backwards-in-time ODE

dax(t) = −ax(t)⊤
∂f

∂xt
(xt, t) dt. (D.9)

Proof.
dxt = f(xt, t) dt+ g(t) ◦ dwt. (D.10)

By Equation (D.8) the adjoint state admitted by the flow of diffeomorphisms generated by Equa-
tion (D.10) evolves with the SDE

qAs,t(xt) =
∂L
∂xt

+

∫ t

s

qAu,t(xt)
∂f

∂xu
(qΨu,t(xt), u) du+

∫ t

s

qAu,t(xt)
∂g

∂xu
(u) ◦ dqwu︸ ︷︷ ︸

=0

=
∂L
∂xt

+

∫ t

s

qAu,t(xt)
∂f

∂xu
(qΨu,t(xt), u) du. (D.11)

Clearly, the adjoint state evolves with an ODE revolving around only the drift coefficient, i.e., f .
Therefore, we can rewrite the evolution of the adjoint state as

dax(t) = −ax(t)⊤
∂f

∂xt
(xt, t) dt. (D.12)

D.5 Converting the Itô SDE to Stratonovich

The diffusion SDE in ?? is defined as an Itô SDE. However, Theorem D.1 is defined as Stratonovich
SDEs. However, an Itô SDE can be easily converted into the Stratonovich form, i.e., for some Itô
SDE of the form

dxt = f(xt, t) dt+ g(xt, t) dwt (D.13)

with a differentiable function σ, there exists a corresponding Stratonovich SDE of the form

dxt = [f(xt, t) +
1

2

∂g

∂x
(xt, t) · g(xt, t)] dt+ g(xt, t) ◦ dwt. (D.14)

As ?? is defined such that g(xt, t) = g(t) and is independent of the state xt, then the SDE may be
written in Stratonovich form as

dxt =
[
f(t)xt +

g2(t)

σt
ϵθ(xt, z, t)

]
dt+ g(t) ◦ dw̄t. (D.15)

20

D.6 Solving Backwards Diffusion SDEs

Lu et al. [17] propose the following first-order solver for diffusion SDEs

xt =
αt

αs
xs − 2σt(e

h − 1)ϵθ(xs, s) + σt

√
e2h − 1ϵs, (D.16)

where ϵs ∼ N (0, I). To solve the SDE backwards in time we follow the approach initially proposed
by Wu and la Torre [47] and used by later works [27]. Given a particular realization of the Wiener
process that admits xt ∼ N (αtx0 | σ2

t I), then for two samples xt and xs the noise ϵs can be
calculated by rearranging Equation (D.16) to find

ϵs =
xt − αt

αs
xs + 2σt(e

h − 1)ϵθ(xs, z, s)

σt

√
e2h − 1

(D.17)

With this the sequence {ϵti}Ni=1 of added noises can be calculated which will exactly reconstruct
the original input from the initial realization of the Wiener process. This technique is referred to as
Cycle-SDE after the CycleDiffusion paper [47].

E Additional Experiments

In this section, we include some additional experiments that did not fit within the main paper.

(a) M = 5 (b) M = 10 (c) M = 15 (d) M = 20

Figure 4: Morphed faces created by guided generation with AdjointDEIS with differing number of
discretization steps.

E.1 Impact of Discretization Steps

One of the advantages of AdjointDEIS is that the solver for the diffusion ODE and continuous adjoint
equations are distinct. This means that we don’t have to force N = M enabling greater flexibility
when using AdjointDEIS. As such we explore the impact of using fewer steps to estimate the gradient
while keeping the number of sampling steps N = 20 fixed. In Figure 4 we illustrate the impact of the
change in the number of discretization steps when estimating the gradients. Unsurprisingly, the fewer
steps we take the less accurate the gradients are. This matches the empirical data presented in Table 2
which measures the impact of face morphing performance measured in MMPMR.

Table 2: Impact of number of discretization steps, M , on face morphing with AdjointDEIS. FMR =
0.1%.

MMPMR(↑)

M (↓) AdaFace ArcFace ElasticFace

20 99.8 98.77 99.39
15 94.89 90.59 94.07
10 94.27 91.21 92.84
05 69.94 60.74 64.21

21

(a) η = 0.01 (b) η = 0.1 (c) η = 1

Figure 5: Morphed faces created by guided generation with AdjointDEIS with different learning
rates. All used M = 20 the ODE variant.

E.2 Impact of Learning Rate

We measure the impact of the learning rate on guided generation with AdjointDEIS in Table 2.
Unsurprisingly, large learning rates lower performance, especially for less accurate gradients. I.e.,
when M is small. We illustrate an example of the impact in Figure 5. Clearly, the learning rate of
η = 1 starts to distort the images even if it still fools the FR system.

Table 3: Impact of learning rate, η, on face morphing with AdjointDEIS. FMR = 0.1%.
MMPMR(↑)

SDE η M (↓) AdaFace ArcFace ElasticFace

✗ 1 20 98.77 98.98 98.77
✗ 0.1 20 99.8 98.77 99.39
✗ 0.01 20 95.5 92.64 95.91
✗ 1 10 50.92 49.69 50.92
✗ 0.1 10 94.27 91.21 92.84
✗ 1 05 2.66 2.04 1.84
✗ 0.1 05 69.94 60.74 64.21
✓ 1 20 98.57 99.59 98.98
✓ 0.1 20 98.57 97.96 97.75

E.3 Number of Steps

(a) N = 20 (b) N = 50

Figure 6: Morphed faces created by guided generation with AdjointDEIS with different number of
sampling steps. SDE solver, M = N .

22

As alluded to in the main paper, one of the drawbacks of diffusion SDEs is that they require small
step sizes to work properly. We observe that the missing high frequency content is added back in
when the step size is increased, see Figure 6.

F Implementation Details

F.1 AdjointDEIS-2M Algorithm

For completeness we have the full AdjointDEIS-2M solver implemented in Algorithm 1 for solving
the continuous adjoint equations for diffusion ODEs. We assume there is another solver which solves
the backwards ODE to yield {x̃ti}Mi=0. Remark that aaug := [ax,az,aθ]. Also Algorithm 1 can be
used to solve the continuous adjoint equations for diffusion SDEs by simply adding the factor of 2
into the update equations.

Algorithm 1 AdjointDEIS-2M.

Require: Initial values ax(0), monotonically increasing time steps {ti}Mi=0, and noise prediction
model ϵθ(xt, z, t).

1: Denote hi := λti+1
− λti , for i = 0, . . . ,M − 1.

2: ãx(t0)← ax(0) ▷ Initialize an empty buffer Q.
3: ãz(t0)← 0, ãθ(t0)← 0.
4: Q

buffer←− [Ṽ(x, t0), Ṽ(z, t0), Ṽ(θ, t0)]

5: ãx(t1)←
αti

αt1
ãx(t0) + σt1(e

h0 − 1)
α2

t0

α2
t1

ãx(t0)
⊤ ∂ϵθ(x̃t0

,z,t0)

∂x̃t0

6: ãz(t1)← ãz(t0) + σt1(e
h0 − 1)

αt0

αt1
ãx(t0)

⊤ ∂ϵθ(x̃t0
,z,t0)

∂z

7: ãθ(t1)← ãθ(t0) + σt1(e
h0 − 1)

αt0

αt1
ãx(t0)

⊤ ∂ϵθ(x̃t0
,z,t0)

∂θ

8: Q
buffer←− [Ṽ(x, t1), Ṽ(z, t1), Ṽ(θ, t1)]

9: for i← 1, 2, . . . ,M − 1 do
10: ρi ← hi−1

hi

11: Di ←
(
1 + 1

2ρi

)
Ṽ(x; ti)− 1

2ρi
Ṽ(x; ti−1)

12: Ei ←
(
1 + 1

2ρi

)
Ṽ(z; ti)− 1

2ρi
Ṽ(z; ti−1)

13: Fi ←
(
1 + 1

2ρi

)
Ṽ(θ; ti)− 1

2ρi
Ṽ(θ; ti−1)

14: ãx(ti+1)←
αti

αti+1
ãx(ti) +

σti+1

α2
ti+1

(ehi − 1)Di

15: ãz(ti+1)← ãz(ti) +
σti+1

αti+1
(ehi − 1)Ei

16: ãθ(ti+1)← ãθ(ti) +
σti+1

αti+1
(ehi − 1)Fi

17: if i < M − 1 then
18: Q

buffer←− [Ṽ(x, ti+1), Ṽ(z, ti+1), Ṽ(θ, ti+1)]
19: end if
20: end for
21: return ãx(tM), ãz(tM), ãθ(tM).

F.2 Code

Our code for AdjointDEIS will soon be available here at https://github.com/zblasingame/
AdjointDEIS.

F.3 Repositories Used

For reproducibility purposes, we provide a list of links to the official repositories of other works used
in this paper.

23

https://github.com/zblasingame/AdjointDEIS
https://github.com/zblasingame/AdjointDEIS

1. The SYN-MAD 2022 dataset used in this paper can be found at https://github.com/
marcohuber/SYN-MAD-2022.

2. The ArcFace models, MS1M-RetinaFace dataset, and MS1M-ArcFace dataset can be found
at https://github.com/deepinsight/insightface.

3. The ElasticFace model can be found at https://github.com/fdbtrs/ElasticFace.
4. The AdaFace model can be found at https://github.com/mk-minchul/AdaFace.
5. The official Diffusion Autoencoders repository can be found at https://github.com/

phizaz/diffae.
6. The official MIPGAN repository can be found at https://github.com/

ZHYYYYYYYYYYYY/MIPGAN-face-morphing-algorithm.

G Experimental Details

In this section, we outline the details for the experiments run in Section 5.

G.1 DiM Algorithm

For completeness, we provide the DiM algorithm from [28] following the notation used in [48]. The
original bona fide images are denoted x

(a)
0 and x

(b)
0 . The conditional encoder is E : X → Z , Φ is the

numerical diffusion ODE solver, Φ+ is the numerical diffusion ODE solver as time runs forwards
from 0 to T . The algorithm is presented in Algorithm 2.

Algorithm 2 DiM Framework.

Require: Blend parameter w = 0.5. Time schedule {ti}Ni=1 ⊆ [0, T], ti < ti+1.
1: za ← E(x(a)

0) ▷ Encoding bona fides into conditionals.
2: zb ← E(x(b)

0)
3: for i← 1, 2, . . . , N − 1 do
4: x

(a)
ti+1
← Φ+(x

(a)
ti , ϵθ(x

(a)
ti , za, ti), ti) ▷ Solving the probability flow ODE as time runs from

0 to T .
5: x

(b)
ti+1
← Φ+(x

(b)
ti , ϵθ(x

(b)
ti , zb, ti), ti)

6: end for
7: x

(ab)
T ← slerp(x(a)

T ,x
(b)
T ;w) ▷ Morph initial noise.

8: zab ← lerp(za, zb;w) ▷ Morph conditionals.
9: for i← N,N − 1, . . . , 2 do

10: x
(ab)
ti−1
← Φ(x

(ab)
ti , ϵθ(x

(ab)
ti , zab, ti), ti) ▷ Solving the probability flow ODE as time runs

from T to 0.
11: end for
12: return x

(ab)
0

G.2 NFE

In our reporting of the NFE we record the number of times the diffusion noise prediction U-Net is
evaluated both during the encoding phase, NE , and solving of the PF-ODE or diffusion SDE, N . We
chose to report N +NE over N + 2NE as even though two bona fide images are encoded resulting
in 2NE NFE during encoding, this process can simply be batched together, reducing the NFE down
to NE . When reporting the NFE for the Morph-PIPE model, we report NE +BN where B is the
number of blends. While a similar argument can be made that the morphed candidates could be
generated in a large batch of size B, reducing the NFE of the sampling process down to N , we chose
to report BN as the number of blends, B = 21, used in the Morph-PIPE is quite large, potentially
resulting in Out Of Memory (OOM) errors, especially if trying to process a mini-batch of morphs.
Using NE +N reporting over NE +BN , the NFE of Morph-PIPE is 350, which is comparable to
DiM. The reporting of NFE for AdjointDEIS was calculated as NE + nopt(N +M) where nopt
is the number of optimization steps and M is the number of discretization steps for the continuous
adjoint equations.

24

https://github.com/marcohuber/SYN-MAD-2022
https://github.com/marcohuber/SYN-MAD-2022
https://github.com/deepinsight/insightface
https://github.com/fdbtrs/ElasticFace
https://github.com/mk-minchul/AdaFace
https://github.com/phizaz/diffae
https://github.com/phizaz/diffae
https://github.com/ZHYYYYYYYYYYYY/MIPGAN-face-morphing-algorithm
https://github.com/ZHYYYYYYYYYYYY/MIPGAN-face-morphing-algorithm

G.3 Hardware

All of the main experiments were done on a single NVIDIA Tesla V100 32GB GPU. On average the
guided generation experiments for our approach took between 6 - 8 hours for the whole dataset of
face morphs with a batch size of 8. Some additional follow-up work for the camera-ready version
used an NVIDIA H100 Tensor Core 80GB GPU with a batch size of 16.

G.4 Datasets

The SYN-MAD 2022 dataset is derived from the Face Research Lab London (FRLL) dataset [39].
FRLL is a dataset of high-quality captures of 102 different individuals with frontal images and neutral
lighting. There are two images per subject, an image of a “neutral” expression and one of a “smiling”
expression. The ElasticFace [40] FR system was used to select the top 250 most similar pairs, in
terms of cosine similarity, of bona fide images for both genders, resulting in a total of 489 bona fide
image pairs for face morphing [38], as some pairs did not generate good morphs on the reference set;
we follow this minimal subset.

G.5 FR Systems

All three FR systems use the Improved ResNet (IResNet-100) architecture [49] as the neural net
backbone for the FR system. The ArcFace model is a widely used FR system [28, 30, 32, 36]. It
employs an additive angular margin loss to enforce intra-class compactness and inter-class distance,
which can enhance the discriminative ability of the feature embeddings [35]. ElasticFace builds
upon the ArcFace model by using an elastic penalty margin over the fixed penalty margin used by
ArcFace. This change results in an FR system with state-of-the-art performance [40]. Lastly, the
AdaFace model employs an adaptive margin loss by weighting the loss relative to an approximation
of the image quality [41]. The image quality is approximated via feature norms and is used to give
less weight to misclassified images, reducing the impact of “low” quality images on training. This
improvement allows the AdaFace model to achieve state-of-the-art performance in FR tasks.

The AdaFace and ElasticFace models are trained on the MS1M-ArcFace dataset, whereas the ArcFace
model is trained on the MS1M-RetinaFace dataset. N.B., the ArcFace model used in the identity
loss is not the same ArcFace model used during evaluation. The model used in the identity loss
is an IResNet-100 trained on the Glint360k dataset [50] with the ArcFace loss. We use the cosine
distance to measure the distance between embeddings from the FR models. All three FR systems
require images of 112× 112 pixels. We resize every image, post alignment from dlib which ensures
the images are square, to 112 × 112 using bilinear down-sampling. The image tensors are then
normalized such that they take values in [−1, 1]. Lastly, the AdaFace FR system was trained on BGR
images so the image tensor is shuffled from the RGB format to the BGR format.

H Additional Related Work

In this section we compare several recent methods for training-free guided generation. We broadly
classify these techniques into two categories:

1. Techniques which directly optimize the solution trajectory during sampling [48, 51, 52]

2. Techniques which search for the optimal latents xT and or z (this can include optimizing
the solution trajectory as well) [53, 54].

In Table 4 we compare several different techniques for training-free guided diffusion along this
category along with whether the formulation is for diffusion ODEs, SDEs, or both.

FlowGrad [52] controls the generative process by solving the following optimal control problem

min
u

L(x0) + λ

∫ 0

T

∥u(t)∥2 dt, (H.1)

s.t. x0 = xT +

∫ 0

T

fθ(xt, z, t) + u(t) dt (H.2)

25

Table 4: Comparison of different guidance methods for diffusion models.
Method ODE SDE Optimize xT Optimize (z, θ)

FlowGrad [52] ✓ ✗ ✗ ✗
FreeDoM [51] ✗ ✓ ✗ ✗
Greedy [48] ✓ ✓ ✗ ✗
DOODL [53] ✗ ✓ ✓ ✗
AdjointDPM [54] ✓ ✗ ✓ ✓
Implicit Diffusion [55] ✓ ✓ ✓ ✓
AdjointDEIS ✓ ✓ ✓ ✓

where u is the control function. This optimization objective learns to alter the flow, fθ, by u. In
practice, this amounts to injecting a control step governed by u(t) for a discretized schedule. This
technique does not allow for learning an optimal xT , z, or θ.

FreeDoM [51] looks at gradient guided generation of images by calculating the gradient w.r.t. xt by
using the approximated clean image

x0 ≈
xt − σtϵθ(xt, z, t)

αt
(H.3)

at each timestep. Let hi = λti − λti−1
. The strategy can be described as

xti−1
=

αti−1

αti

xti − 2σti−1
(ehi − 1)ϵθ(xti , z, ti) + σti−1

√
e2hi − 1ϵti , (H.4)

x̂0 =
xti − σtiϵθ(xti , z, ti)

αti

, (H.5)

gti =
∂L(x̂0)

∂xt
, (H.6)

xti−1 = xti−1 − ηtigti , (H.7)

where ηti is a learning rate defined per timestep. Importantly, FreeDoM operates on diffusion SDEs.
They have an addition algorithm in which the add noise back to the image, in essence going back one
timestep, and applying the guidance step again.

Similar to FreeDoM, greedy guided generation [48] looks to alter the generative trajectory by injecting
the gradient defined on the approximated clean image; however, this technique does so w.r.t. the
prediction noise, i.e.,

ϵ′ti = stopgrad(ϵθ(xti , z, ti)) (H.8)

x̂0 =
xti − σtiϵ

′
ti

αti

, (H.9)

gti =
∂L(x̂0)

∂ϵti
, (H.10)

ϵ′ti = ϵ′ti − ηtigti . (H.11)

The technique would work for either diffusion ODEs or SDEs.

DOODL [53] looks at gradient calculation based on the invertibility of EDICT [56]. This method
can find the gradient w.r.t. xT ; however, it cannot for the other quantities. DOODL additionally has
further overhead due to the dual diffusion process of EDICT. Further analysis of DOODL compared
to continuous adjoint equations for diffusion models can be found in [54].

More closely related to our work is the recent AdjointDPM [54] who also explores the use of adjoint
sensitivity methods for backpropagation through the probability flow ODE. While they also propose
to use the continuous adjoint equations to find gradients for diffusion models, our work differs in
several ways which we enumerate in Table 5. For clarity, we use orange to denote their notation.
They reparameterize Equation (2.3) as

dy

dρ
= ϵ̃θ(e

∫ γ−1(ρ)
0 f(τ) dτy, γ−1(ρ), c) (H.12)

26

Table 5: Comparison of adjoint sensitivity algorithms for diffusion models.
AdjointDPM [54] AdjointDEIS

Discretization domain ϵθ over ρ ϵθ over λ
Solver type Black box ODE solver Custom solver
Closed form SDE coefficients ✗ ✓
Interoperability with existing samplers ✗ ✓
Decoupled ODE schedule ✗ ✓
Supports SDEs ✗ ✓

where c denotes the conditional information, ρ = γ(t), and dγ
dt = e−

∫ t
0
f(τ) dτ g2(t)

2σt
. which gives

them the following ODE for calculating the adjoint.

d

dρ

[
∂L
∂yρ

]
= − ∂L

∂yρ

⊤ ∂ϵθ(e
∫ γ−1(ρ)
0 f(τ) dτyρ, z, γ

−1(ρ))

∂yρ
(H.13)

In our approach we integrate over λt whereas they integrate over ρ. Moreover, we provide custom
solvers designed specifically for diffusion ODEs instead of using a black box ODE solver. Our
approach is also interoperable with other forward ODE solvers meaning our AdjointDEIS solver is
agnostic to the ODE solver used to generate the output; however, the AdjointDPM model is tightly
coupled to its forward solver. Lastly and most importantly our method is more general and supports
diffusion SDEs, not just ODEs.

Although the original paper omitted a closed form expression for γ−1(ρ), we provide to give a
comparison between both methods, and to ensure AdjointDPM can be fully implemented. In the VP
SDE scheme with a linear noise schedule logαt is found to be

logαt = −
β1 − β0

4
t2 − β0

2
t (H.14)

on t ∈ [0, 1] with β0 = 0.1, β1 = 20, following Song et al. [15]. Then γ−1(ρ) is found to be

γ−1(ρ) =

β0 −
√
β2
0 + 4 log 1√

1

α2
0
(ρ+σ0)2+1

(β0 − β1)

β0 − β1
(H.15)

Concurrent work to ours by Marion et al. [55] has also explored the method of adjoint sensitivity for
guidance of diffusion models. They, however, focus on an efficient scheme to parallelize the solution
to the adjoint ODE from the perspective of bi-level optimization rather than the adjoint technique
itself. So while we focused on the details of the continuous adjoint equations, they focused on an
efficient implementation of the optimization problem from the perspective of bi-level optimization.

I Analytic Formulations of Drift and Diffusion Coefficients

For completeness, we show how to analytically compute the drift and diffusion coefficients for a
linear noise schedule Ho et al. [1] in the VP scenario Song et al. [15]. With a linear noise schedule
logαt is found to be

logαt = −
β1 − β0

4
t2 − β0

2
t (I.1)

on t ∈ [0, 1] with β0 = 0.1, β1 = 20, following Song et al. [15]. The drift coefficient becomes

f(t) = −β1 − β0

2
t− β0

2
(I.2)

and as σt =
√

1− α2
t we find

dσ2
t

dt
=

d

dt

[
1− exp

(
− β1 − β0

4
t2 − β0

2
t

)2]
= ((β1 − β0)t+ β0) exp

(
− β1 − β0

2
t2 − 2β0t

)
(I.3)

27

Therefore, the diffusion coefficient g2(t) is

g2(t) = ((β1 − β0)t+ β0) exp

(
− β1 − β0

2
t2 − 2β0t

)
︸ ︷︷ ︸

dσ2
t

dt

+
(
(β1 − β0)t+ β0

)[
1− exp

(
− β1 − β0

4
t2 − β0

2
t

)2]
︸ ︷︷ ︸

−2
d log αt

dt σ2
t

(I.4)

Importantly, dσt

dt does not exist at time t = 0, as σt is discontinuous at that point, and so an
approximation is needed when starting from this initial step. In practice, adding a small ϵ ≪ 1 to
t = 0 should suffice.

The inverse of λt is found via

Λ−1(λ) =
−β0 +

√
β2
0 − 4(β1 − β0) log

√
e2λ

1+e2λ

β1 − β0
(I.5)

Simplifies to

Λ−1(λ) =
−β0 +

√
β0 − 2

(
2λ− log(1 + e2λ)

)
(β1 − β0)

β1 − β0
(I.6)

αλ = exp

(
β2
0 − 4β0λ+ 2β0 log

(
e2λ + 1

)
− β0 + 4β1λ− 2β1 log

(
e2λ + 1

)
4 (β1 − β0)

)
=

eλ√
e2λ + 1

(I.7)

28

