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Abstract

Deep neural networks (DNNs) are highly suscepti-
ble to adversarial samples, raising concerns about
their reliability in safety-critical tasks. Currently,
methods of evaluating adversarial robustness are
primarily categorized into attack-based and cer-
tified robustness evaluation approaches. The for-
mer not only relies on specific attack algorithms
but also is highly time-consuming, while the latter
due to its analytical nature, is typically difficult to
implement for large and complex models. A few
studies evaluate model robustness based on the
model’s decision boundary, but they suffer from
low evaluation accuracy. To address the aforemen-
tioned issues, we propose a novel adversarial ro-
bustness evaluation metric, Robustness Difference
Index (RDI), which is based on model statistical
features. RDI draws inspiration from clustering
evaluation by analyzing the intra-class and inter-
class distances of feature vectors separated by the
decision boundary to quantify model robustness. It
is attack-independent and has high computational
efficiency. Experiments show that, RDI demon-
strates a stronger correlation with the gold-standard
adversarial robustness metric of attack success rate
(ASR). The average computation time of RDI is
only 1/30 of the evaluation method based on the
PGD attack. Our open-source code is available at:
https://github.com/BUPTAIOC/RDI.

1 INTRODUCTION

With the rapid advancement of deep learning, deep neural
networks (DNNs) have achieved unprecedented success in
fields such as computer vision Ruiz et al. [2023], natural lan-
guage processing Alberts et al. [2023], and multimodal tasks
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Liu et al. [2024]. However, recent studies have shown that
even DNNs that perform excellently on standard benchmark
datasets may experience significant performance degrada-
tion when facing with small perturbations Goodfellow et al.
[2015]. These minor disturbances, especially adversarial
examples generated by advanced attack algorithms, reveal
the vulnerabilities of DNNs in terms of adversarial robust-
ness. Consequently, effectively assessing the adversarial
robustness of DNNs has become one of the current research
hotspots.

Research on adversarial robustness assessment has pri-
marily focused on two directions: attack-based Moosavi-
Dezfooli et al. [2016], Mądry et al. [2018], Bai et al.
[2023], Andriushchenko et al. [2020], Williams and Li
[2023] and certified robustness evaluation methods Hein
and Andriushchenko [2017], Weng et al. [2018], Cohen
et al. [2019], Carlini et al. [2023]. The former generates ad-
versarial examples through attack algorithms and measures
adversarial robustness by calculating the attack success rate
(ASR). However, these methods have notable limitations:
on one hand, the process of generating adversarial exam-
ples is complex and resource-intensive; on the other hand,
such robustness evaluation heavily depend on the selected
attack methods, which may lead to biased assessments. Cer-
tified robustness employs mathematical methods to analyze
the model’s structure and activation functions, aiming to
determine the lower bound of the perturbation that causes
misclassification. However, due to its analytical nature, these
methods are often difficult to implement in large and com-
plex models, and the resulting robustness lower bounds are
often overly conservative, limiting their practical applicabil-
ity.

To address the above issues, [Jin et al., 2022] proposed a
robustness evaluation metric, ROBY, based on the decision
boundary of the model. This metric quantifies robustness by
measuring the intra-class and inter-class distances of vectors
separated by the model’s decision boundary. The evaluation
method calculates intra-class and inter-class distances of
vectors, and then combines them to produce the final ad-
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Figure 1: Framework of RDI adversarial robustness evaluation.

versarial robustness metric. Therefore, the accuracy of the
robustness assessment depends critically on the distance
calculation and the reasonableness of the weighting ratio
used to combine them into the final metric. Such evalua-
tion method brings the following issues: First, it overlooks
the fact that the average magnitude of inter-class distance
is larger than that of intra-class distance, resulting in diffi-
culty to combine them to calculate the final ROBY score.
Second, it is difficult to find an appropriate normalization
strategy, making it challenging to compare ROBY scores
across different models, which leads to a poor correlation
with ASR. Finally, the metric calculation is time consuming
and has a low efficiency. The reasons for the above issues
are explained in Section A of the supplementary material.

To address the limitations of existing evaluation methods,
we propose a new adversarial robustness evaluation metric
for DNNs, Robustness Difference Index (RDI). RDI ex-
tracts feature vectors from the model’s feature layers and
analyzes the intra-class and inter-class distances of feature
vectors separated by the model’s decision boundary to quan-
tify the model’s robustness. Different from ROBY, RDI
adopts a novel approach to calculate intra-class and inter-
class distances, as well as the final robustness evaluation
metric, ensuring a more reasonable combination of these
two distance indicators in the final RDI. RDI does not need
a normalization strategy, allowing for effective comparison
of RDI values across different models and providing an ac-
curate assessment of adversarial robustness among different
models. Moreover, RDI has high computational efficiency.

RDI doesn’t rely on adversarial examples or attack al-
gorithms, making it an metric independent of attacks.
Experiments demonstrate that, across various advanced
DNNs (AlexNet Krizhevsky et al. [2012], ResNet50 He
et al. [2016], ResNet101 He et al. [2016], DenseNet121
Huang et al. [2017], DenseNet161 Huang et al. [2017], Mo-
bileNetV2 Howard et al. [2018], ViT Dosovitskiy [2020]),
RDI shows a significant correlation with the robustness gold

standard metric ASR in adversarial robustness evaluation. In
addition, in terms of computational efficiency, RDI outper-
forms both attack-based methods and ROBY. The efficiency
of attack-based methods is influenced by the model architec-
ture and attack parameter settings, while ROBY’s efficiency
depends on the number of classes in the dataset. However,
RDI is almost unaffected by these factors. For example, the
average computation time of RDI across all models on five
image classification datasets is only 1/30 of the evaluation
method based on PGD attack Mądry et al. [2018], and for the
Tiny-ImageNet dataset Deng et al. [2009] with 200 classes,
RDI’s computation time is only 1/25 of ROBY’s. To vali-
date the generalizability of RDI, we conducted experiments
on the speech recognition dataset SPEECHCOMMANDS
Warden [2018]. The results demonstrate that this metric also
exhibits excellent applicability across classification datasets
of different modalities.

In summary, we aim to make the following contributions:

• We propose a model-statistical-features-based adver-
sarial robustness evaluation metric, RDI. It is effi-
cient, lightweight, attack-independent, and applicable
to nearly all classification models.

• We use a novel approach to calculate intra-class and
inter-class distances of feature vectors, and design the
final robustness evaluation metric based on this. This
approach ensures a reasonable combination of the two
distance metrics to calculate RDI.

• We compare the RDI values across different models,
as well as between natural models and adversarially
trained models, and verify their strong correlation with
ASR. Moreover, compared to attack-based evaluation
methods and ROBY, RDI significantly improves com-
putational efficiency.



2 RELATED WORKS

Currently, adversarial robustness evaluation methods can be
broadly categorized into two types: attack-based evaluation
methods and certified robustness evaluation methods. Addi-
tionally, decision-boundary-based evaluation methods are
also worth attention.

2.1 ADVERSARIAL ATTACK

Adversarial attacks are the primary method for assessing
the robustness of DNNs. Many works proposed attack algo-
rithms aiming at generating l2 or l∞ norm constraining ad-
versarial perturbations. In the white-box scenario, attackers
have full access to the target model’s internal information,
including the network architecture and gradient. As a result,
many works Moosavi-Dezfooli et al. [2016], Carlini and
Wagner [2017], Mądry et al. [2018], Tramèr et al. [2018],
Wang et al. [2022], Liu et al. [2023], Gong et al. [2024] lever-
aged gradient information from the model’s loss function to
generate adversarial examples. In contrast, in black-box sce-
nario, attackers have limited access to the target model, only
able to obtain the output probability distribution. In this case,
although direct access to gradient information is unavailable,
some studies Chen et al. [2017], Ilyas et al. [2018], Su et al.
[2019], Zhou et al. [2022], Bai et al. [2023], Williams and
Li [2023], Wang et al. [2025] estimated the gradient of the
loss function indirectly by querying the model’s output and
then used gradient-based optimization methods to create
adversarial examples. Additionally, some black-box attack
methods Andriushchenko et al. [2020], Guo et al. [2019],
Hong et al. [2024] do not require gradient estimation but
instead optimize through specific random strategies to attack
the model.

2.2 CERTIFIED ROBUSTNESS EVALUATION

Certified robustness evaluation methods primarily rely on
the structure of DNNs. Through carefully designed metrics
or model certifiers, these methods provide provable lower
bounds on the adversarial distance required to cause mis-
classification.

[Szegedy, 2013] showed that DNNs’ input-output mapping
often exhibits discontinuity by calculating the global Lip-
schitz constant for each layer, offering an initial explana-
tion of DNN robustness. Building on this, [Hein and An-
driushchenko, 2017] provided a lower bound for model
robustness using local Lipschitz continuity conditions. Fur-
thermore, [Weng et al., 2018] introduced CLEVER, a metric
to evaluate the minimum perturbation needed for effective
adversarial examples. [Cohen et al., 2019] provided verifi-
able adversarial robustness guarantees for classifiers through
the method of random smoothing. [Carlini et al., 2023] pro-
posed a more efficient boundary algorithm by integrating

pre-trained denoising diffusion models with high-precision
classifiers. [Hammoudeh and Lowd, 2024] applied certified
robustness to adversarial defense.

2.3 EVALUATION METHODS BASED ON MODEL
DECISION BOUNDARY

Besides above two types of robustness evaluation methods,
a few studies have shown that the decision boundary is
closely related to a model’s classification performance on
adversarial examples and is a key factor in assessing model
robustness Ustun et al. [2019]. Based on this finding, nearly
all decision-boundary-based methods focus on exploring
the relationship between the model’s decision boundary and
adversarial robustness.

[Yousefzadeh and O’Leary, 2019] calculated precise points
on the model’s decision boundary and provided tools to
study the surface defining the boundary. [He et al., 2018]
further investigated the decision boundary characteristics
of model for both adversarial and natural inputs. [Yang
et al., 2020] introduced the concept of boundary thickness
for evaluating model robustness. However, these decision-
boundary-based methods still rely on the generation of ad-
versarial examples. To address this issue, [Jin et al., 2022]
proposed a robustness evaluation metric, ROBY, which does
not depend on adversarial examples or attack algorithms.

3 PROPOSED EVALUATION METHOD
FOR ADVERSARIAL ROBUSTNESS

3.1 OVERVIEW

The framework of the proposed metric RDI is shown in
Figure 1. First, the testing data is input into the model to be
evaluated, and the features of the model’s embedding space
are extracted to form feature vectors. Then, for each class la-
bel of the data, compute the intra-class distance (IntraD) and
inter-class distance (InterD) of the feature vectors. Finally,
based on the IntraD and InterD, the adversarial robustness
evaluation metric RDI is obtained.

Our method transforms the problem of calculating the dis-
tance from test data to the decision boundary in the model’s
embedding space into the computation of intra-class and
inter-class distances of the feature vectors. Specifically, the
smaller intra-class distance and the larger inter-class dis-
tance, the stronger the model’s resistance to adversarial
attacks. Figure 2 illustrates the principles behind the RDI
calculation. Figure 2(a) presents a two-dimensional visual-
ization of the model’s decision space, where solid circles in
different colors represent samples from various classes, and
the boundary regions indicate the model’s decision bound-
aries. Ēk(k ∈ [1, 4]) represents the center of the feature
vectors for each class, while Ē0 denotes the center of all
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Figure 2: RDI principle schematic.

sample feature vectors. Ēk and Ē0 are computed in subsec-
tions3.4 and 3.5, respectively. Figure 2(b) demonstrates how
the model’s robustness affects the RDI value. More details
will be provided in the subsequent sections.

3.2 FEATURE VECTOR EXTRACTION

Since the feature (penultimate) layer of the model can
quickly capture and contain sufficient feature information,
we use its output as the feature vectors representation of the
testing data in the model’s embedding space. Therefore, the
dimensionality of each feature vector equals the number of
model classes. For example, for an input sample x, we use a
K-dimensional embedding E(x) : (e1, ..., eK) as its vector
representation in the model’s embedding space. Suppose the
model classifies sample x as k ∈ RK , we denote the feature
vector of this sample as Ek(xi).

3.3 DISTANCE FUNCTION

We use the Euclidean distance (l2 norm distance) to rep-
resent the distance between two K-dimensional vectors
E(xi) : (ei1, ..., eiK) and E(xj) : (ej1, ..., ejK) in the
model’s embedding space, denoted as ||E(xi), E(xj)||2:

||E(xi), E(xj)||2 = (

K∑
k=1

(eik − ejk)
2)1/2. (1)

3.4 INTRAD METRIC

The intra-class distance (IntraD) of the feature vectors de-
notes the compactness of samples classified by the model

as the same class.

Since the feature vector center of each class reflects the
overall characteristics of that class, we first define the center
to facilitate the subsequent calculation of IntraD. For all
samples classified by the model as class k (denoted as set
Nk), the mean feature vectors of this class in the model’s
embedding space is defined as the center of the class’s fea-
ture vectors, denoted as vector Ēk, e.g., Ēk (k ∈ [1, 4])
in Figure 2(a). The radius of each dashed circle in the fig-
ure represents the average intra-class distance of all sample
feature vectors within that class.

Ēk =
1

|Nk|
∑

xi∈Nk

Ek(xi). (2)

where |Nk| is the total number of samples classified as class
k by the model, xi is the i-th sample in Nk, and Ek(xi)
denotes the feature vector of sample xi classified as class k
by the model. The IntraD metric is the average distance of
the feature vectors of samples within the same class to the
center of the class’s feature vectors:

IntraDk =
1

|Nk|

|Nk|∑
i=1

||Ek(xi), Ēk||2. (3)

IntraD =
1

K

K∑
i=1

IntraDk. (4)

where IntraDk represents the intra-class distance of the
feature vectors for class k, e.g., the distance between Ē3

and p3 in Figure 2(a), and K is the total number of classes.
Equations (3) and (4) ensure that IntraD is always positive.



3.5 INTERD METRIC

The inter-class distance (InterD) of the feature vectors de-
notes the separation among samples classified by the model
as different classes in the model’s embedding space.

Since the feature vector centers of all classes reflect the
overall distribution features of the samples, to calculate
InterD, we first compute the mean of the feature vectors
centers for each class as the center of all class feature vectors,
denoted as vector Ē0, e.g., Ē0 in Figure 2(a).

Ē0 =
1

K

K∑
k=1

Ēk. (5)

The InterD metric is the average distance from each class’s
feature vectors center to the center of all class feature
vectors, e.g., the average distance between Ē0 and Ēk

(k ∈ [1, 4]) in Figure 2(a).

InterD =
1

K

K∑
i=1

||Ēk, Ē0||2. (6)

Equation (6) ensures that InterD is always positive.

3.6 RDI METRIC

Generally, models with higher robustness exhibit smaller
intra-class distances and larger inter-class distances. There-
fore, we define RDI to ensure a positive correlation between
RDI and model robustness:

RDI =
InterD − IntraD

max(InterD, IntraD)
. (7)

Equation (7) ensures that RDI is in the range [−1, 1].

A higher RDI value typically indicates better separation
among samples from different classes and stronger grouping
of samples within the same class in the model’s embedding
space. This results in each sample being farther from the
decision boundary, meaning that larger adversarial perturba-
tions are needed to shift the samples into adversarial regions.
As a result, the model exhibits stronger robustness. Fig-
ure 2(b) visually illustrates the relationship between the RDI
value and model robustness, revealing 3 cases leading to an
increase in the RDI value. For class 1 in Figure 2(b), the
inter-class distance remains unchanged while the intra-class
distance decreases (from [Ē1, q1] to [Ē1, q

∗
1 ]). For class 4,

the intra-class distance remains unchanged while the inter-
class distance increases (from [Ē0, Ē4] to [Ē0, Ē

∗
4 ]). For

class 2, both the intra-class distance decreases and the inter-
class distance increases (the intra-class distance decreases
from [Ē2, q2] to [Ē∗

2 , q
∗
2 ], and the inter-class distance in-

creases from [Ē0, Ē2] to [Ē0, Ē
∗
2 ]). Apparently, all the 3

cases increase the average distance from samples to the de-
cision boundary, resulting in a higher RDI value. In other

words, an increase in RDI indicates a larger average distance
from the samples to the decision boundary, demonstrating
greater robustness. Models with higher RDI values require
larger perturbation to generate adversarial samples, demon-
strating greater robustness.

The calculation of RDI only requires natural samples, the
property makes it an attack-independent metric. Note that
the model evaluation uses samples with predicted label,
not the true label. The reason is that the predicted labels
reflect the model’s partitioning of the data, representing
the decision boundary it has truly learned, while the true
labels do not capture the model’s decision-making behavior.
Robustness evaluation is meaningful only for models with
a certain level of classification accuracy. In other words, it
makes no sense to evaluate the robustness of a model with a
very low classification accuracy.

The pseudocode of RDI calculation is presented in Algo-
rithm 1 of the supplementary material. First, feature vectors
of the testing samples are extracted. Then, the feature centers
for each class and for all samples are calculated, followed
by the computation of intra-class and inter-class distances.
Finally, the RDI metric is computed from these distances.

4 EXPERIMENTS

We conducted four experiments to verify the effectiveness
and efficiency of the RDI, focusing on the following re-
search questions: (1) Can RDI effectively address the issues
of existing evaluation methods and accurately assess ad-
versarial robustness across different models? (2) Can RDI
evaluate the robustness of adversarial trained models? (3)
Does RDI demonstrate high computational efficiency? Our
experiments are conducted on a server with an Intel Xeon
Gold 6330 CPU, NVIDIA 4090 GPUs using PyTorch 1.13.0
on the Python 3.9.0 platform.

4.1 DATASETS AND MODELS

For image classification tasks, we conducted experiments
on MNIST LeCun et al. [1998], Fashion-MNIST Xiao
et al. [2017], CIFAR10 Krizhevsky et al. [2009], CIFAR100
Krizhevsky et al. [2009], and Tiny-ImageNet Deng et al.
[2009]. For the first four datasets, we select six DNNs:
AlexNet Krizhevsky et al. [2012], ResNet50 He et al.
[2016], ResNet101 He et al. [2016], DenseNet121 Huang
et al. [2017], DenseNet161 Huang et al. [2017], and Mo-
bileNetV2 Howard et al. [2018]. For the Tiny-ImageNet
dataset, to further validate the effectiveness of RDI in as-
sessing the robustness of state-of-the-art models, we addi-
tionally included the ViT Dosovitskiy [2020] model, as ViT
is not well-suited for smaller datasets.

To show the broad applicability of RDI, we applied
it to a speech recognition task. We conducted exper-
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Figure 3: The relationship among RDI, ROBY, and Adversarial Accuracy across different image classification models.
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Figure 4: The relationship among RDI, ROBY, and Adver-
sarial Accuracy across different speech recognition models.

iments on SPEECHCOMMANDS Warden [2018] and
evaluated the robustness metrics on M5 model Arik
et al. [2017], M5 model with an attention mechanism
(M5Attention) Arik et al. [2017], CNN model based on
DeepSpeech (SpeechCNN) Abdel-Hamid et al. [2014], and
two transformer-based speech recognition models (Speech-
Transformer) Dong et al. [2018].

4.2 ATTACK METHODS

For image classification models, we used three white-box
attack methods (PGD Mądry et al. [2018], RFGSM Tramèr
et al. [2018] and C&W Carlini and Wagner [2017]) and one
black-box attack method (Square Attack Andriushchenko

et al. [2020]). For the MNIST and Fashion-MNIST, PGD
and RFGSM ran for 40 iterations with a step size of 0.01
and perturbation size ϵ = 0.3, C&W ran for 50 iterations
with a step size of 0.01 and the confidence parameter c = 1,
while Square Attack ran for 5000 iterations with ϵ = 0.3.
For the CIFAR10, PGD and RFGSM ran for 10 iterations
with a step size of 0.0025 and perturbation size ϵ = 0.1,
C&W ran for 10 iterations with a step size of 0.01 and
the confidence parameter c = 0.5, and Square Attack ran
for 200 iterations with ϵ = 0.1. For the CIFAR100 and
Tiny-ImageNet, PGD and RFGSM ran for 10 iterations
with a step size of 0.001 and perturbation size ϵ = 0.01,
C&W ran for 10 iterations with a step size of 0.01 and the
confidence parameter c = 0.1, while Square Attack ran
for 200 iterations with ϵ = 0.01. For speech recognition
models, we employed the adversarial audio attack method
SirenAttack Du et al. [2020], which ran for 50 iterations
with a step size of 0.05 and perturbation size ϵ = 0.5.

4.3 BASELINE METRIC

We used ASR, Adversarial Accuracy, and ROBY Jin et al.
[2022] as baseline comparisons with RDI.

ASR and Adversarial Accuracy:

ASR = Nerr/N. (8)

Adversarial Accuracy = 1−ASR. (9)

where Nerr represents the number of classification errors
on adversarial examples, and N denotes the total number
of adversarial samples. Since a larger RDI value indicates a



more robust model, it is inversely proportional to ASR. Thus
we introduced Adversarial Accuracy as one of the baseline
metrics for a more intuitive comparison.

ROBY: ROBY is another metric which quantifies the
model’s robustness via the intra-class and inter-class dis-
tances of vectors, the detailed calculation method is pro-
vided in Section A of the supplementary material. A smaller
ROBY value indicates higher model robustness.

4.4 RESULTS OF RDI AND BASELINE METRICS
FOR EVALUATING MODEL ROBUSTNESS

To validate the precision of RDI in evaluating model ad-
versarial robustness and highlight the issues of ROBY, we
conducted experiments across multiple datasets. Specifi-
cally, we reported the average Adversarial Accuracy, ROBY,
and RDI metrics for five image classification datasets under
four different attack methods as well as a speech recognition
dataset under SirenAttack. The relationships among these
metrics are illustrated in Figure 3 and 4.

For each dataset in the figures, the models are arranged from
left to right in increasing order of Adversarial Accuracy, re-
sulting in an increasing curve for Adversarial Accuracy.
Notably, RDI also forms an increasing curve. The similar
trend of both metrics indicates a significant positive correla-
tion between RDI and Adversarial Accuracy. Additionally,
for more challenging datasets (such as CIFAR100 and Tiny-
ImageNet), the RDI values of all models are generally lower.
This phenomenon aligns with our expectations for the RDI
metric, as models tend to learn ambiguous decision bound-
aries on challenging datasets, leading to degraded classifi-
cation performance. Moreover, such ambiguous boundary
result in increased intra-class distances and reduced inter-
class distances in the model’s embedding space, making
the model more susceptible to attack. However, for mod-
els with reasonable classification capability, the inter-class
distances is typically greater than the intra-class distances.
Consequently, we did not observe any instances where the
RDI values fell below zero in our experiments.

ROBY should be negatively correlated with Adversarial
Accuracy. However, as shown in Figure 3 and 4, ROBY
exhibits clear outliers in each dataset, and its trend does
not strictly follow an inverse relationship with Adversarial
Accuracy. This result indicates that ROBY exhibits limited
accuracy in evaluting model robustness.

Finally, we presented a more detailed evaluation results
of model robustness under each dataset in Table 3 and Ta-
ble 4 in the supplementary material. For image classification
datasets, we reported the accuracy, ASR under different at-
tacks, average ASR, average Adversarial Accuracy, ROBY,
and RDI values for each model, arranged in descending
order of average ASR for each dataset. For the speech recog-
nition dataset, models are ranked by descending ASR un-

Table 1: The computation time of RDI and ROBY.

Dataset Category Time (s)
RDI ROBY

MNIST 10 3.42 3.95
Fashion-MNIST 10 3.38 4.02
CIFAR10 10 3.43 3.96
CIFAR100 100 4.12 19.84
Tiny-ImageNet 200 8.82 220.22

Table 2: The computation time for evaluating model robust-
ness using RDI metric versus PGD attack method.

Model Time (s)
RDI PGD Attack

AlexNet 3.38 11.50
MobileNetV2 3.05 65.77
ResNet50 3.61 108.52
DenseNet121 4.63 138.66
ResNet101 5.36 162.91
DenseNet161 6.57 217.96
Avg 4.43 133.39

der SirenAttack, with reported metrics including accuracy,
ROBY, RDI, ASR under SirenAttack, and corresponding
Adversarial Accuracy.

4.5 RESULTS OF RDI METRIC FOR NATURAL
AND ADVERSARIAL TRAINING MODELS

Previous studies Guo et al. [2019], Szegedy [2013] have
shown that adversarial training increases the distance be-
tween the training (testing) data and the decision boundary.
In our experiments, we adopted the widely adopted PGD
adversarial training method Mądry et al. [2018] for models
adversarial training. We evaluated the effectiveness of the
RDI in assessing the adversarial robustness of both natural
models and adversarially trained models on five image clas-
sification datasets. The experimental results are shown in
Figure 5.

As observed, in all five datasets, almost all adversarially
trained models have higher RDI values than their natural
models. This result further validates the effectiveness of
the robustness evaluation metric RDI. We believe that the
higher adversarial robustness of adversarially trained models
is due to the increased distance between samples of different
classes and the decision boundary, while the distribution of
samples within the same class becomes more concentrated.
As a result, the model becomes less susceptible to attack.
This provides a reasonable explanation for the increase in
the values of RDI after adversarial training.
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Figure 5: Comparison of RDI between natural and adversarial training models.

4.6 COMPUTATION TIME OF RDI VS. ROBY AND
ATTACK-BASED EVALUATION METHOD

This section analyzes the time overhead of RDI, ROBY, and
the PGD attack-based method to assess RDI’s efficiency.
Table 1 shows the computational cost of RDI and ROBY
metrics on different image classification datasets. The re-
ported times represent the average computation times for
different models on each dataset, covering the entire process
from model inference, feature vector extraction, and final
metric calculation. Table 2 presents the time overhead of
RDI compared to the PGD attack-based evaluation method
for different models in the experiment. The reported times
are the average computation times of each model across
different datasets. Since the ViT model is used only on the
Tiny-ImageNet dataset, it is excluded from Table 2 to ensure
fairness in the averaging process across datasets.

As shown in Table 1, the computational efficiency of ROBY
significantly decreases as the number of classes in the
dataset increases, while the efficiency of RDI is nearly unaf-
fected by changes in the number of classes. In datasets with
10 classes, the computational efficiency of ROBY and RDI
is comparable; however, as the number of classes increases,
the efficiency advantage of RDI becomes more pronounced.
For example, for the 100-class dataset, the computational ef-
ficiency of RDI is approximately 5 times that of ROBY, and
for the 200-class dataset, RDI’s efficiency is 25 times that of
ROBY. Table 2 shows that the computational efficiency of
attack-based methods significantly decreases as the model
complexity increases. The average computation time of RDI
across all models (except ViT) on five datasets is only 1/30
of that for the PGD attack-based evaluation method. Addi-

tionally, the evaluation efficiency of attack-based methods
is particularly affected by attack parameters, especially the
number of iterations.

The computation of RDI only requires natural samples and
does not require generating adversarial examples, signifi-
cantly reducing the computational time compared to attack-
based evaluation methods.

5 CONCLUSION AND FUTURE WORK

This paper proposes a sample-clustering-features-based ad-
versarial robustness evaluation metric, RDI. RDI transforms
the evaluation of model robustness into the calculation of
intra-class and inter-class distances of sample feature vec-
tors in the model’s embedding space, completely eliminating
the reliance on adversarial examples and making it an attack-
independent metric. Experimental results demonstrate that
RDI shows a high correlation with Adversarial Accuracy
across different models and accurately reflects the adver-
sarial robustness differences between natural models and
adversarially trained models. Additionally, RDI offers sig-
nificant advantages in computational efficiency.

We believe RDI has broad applicability for various classifi-
cation tasks. In future research, we will explore the potential
applications of RDI in more classification scenarios and in-
vestigate its value in other robustness-related problems. For
example, RDI’s efficiency enables its direct integration into
the model training process, allowing for effective enhance-
ment of model robustness without relying on adversarial
training methods. This approach not only significantly re-
duces the overhead of adversarial training but also provides



an efficient and innovative solution for robustness research.
Therefore, we believe that the RDI will play a significant
role in both model robustness research and applications.
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A SPECIFIC CAUSES OF PROBLEMS WITH ROBY

The formulas for ROBY are as follows:

FSAk =
1

|Nk|
norm(

|Nk|∑
i=1

dist(fxi,k, fck)).

FSDk,k+1 = norm(dist(fck , fck+1
)).

ROBYk,k+1 = FSAk + FSAk+1 − FSDk,k+1.

ROBY =

∑k−1
i=1

∑k
j=i+1 norm(ROBYij)

K(K − 1)/2
.

where fxi,k represents the feature vector of a sample classified as class k, fck denotes the center of the feature vectors for
class k, FSAk represents the intra-class distance for class k, FSDk,k+1 denotes the inter-class distance between classes
k and k + 1, and ROBYk,k+1 represents the ROBY metric value between classes k and k + 1, norm(·) is the min-max
normalization function, and dist(·) represents the l2 norm distance. From the above equation, it can be seen that a smaller
ROBY value indicates higher model robustness, and this metric is positively correlated with ASR.

Based on these formulas, we analyze the three main issues with the ROBY metric. First, the intra-class distance (FSA)
of feature vectors in ROBY is measured by calculating the distance from the data of the same class to its class center,
reflecting the "dispersion of data from the center." In contrast, the inter-class distance (FSD) is directly computed as the
distance between the centers of different class data. The inconsistency in the measurement methods of these two distances
leads to an unequal weight distribution when combining them into the final ROBY metric, resulting in biased evaluation
outcomes. Second, ROBY uses the normalization function norm(·) for calculating FSA, FSD, and itself, employing min-max
normalization. As shown in the formulas, this normalization is performed within the independent solution space of each
model, making it impossible to directly compare the normalized ROBY values across different models to assess their
robustness. Moreover, finding a suitable normalization strategy for this calculation is challenging. Finally, due to the many
unnecessary normalization operations, ROBY also suffers from inefficiency in terms of computational cost.

*Corresponding author



B THE PSEUDOCODE OF RDI CALCULATION

Algorithm 1 RDI Calculation

Input: The number of classes K, the samples with K classes.
Output: RDI value

1: Initialization: center_list← {}, IntraD_list← {}
2: // feature vectors extract
3: // feature_vectors[i][j] represents the feature vector of sample j classified by the model as category i
4: feature_vectors← model(samples)
5: for k ← 1 to K do
6: // Nk represents the set of feature vectors of all samples classified as k by the model
7: Nk ← feature_vectors[k]
8: end for
9: for k ← 1 to K do

10: // calculate the feature centers for each class
11: Ēk ← 0
12: for i← 1 to |Nk| do
13: Ēk ← Ēk +Nk[i]
14: end for
15: Ēk ← Ēk/|Nk|
16: center_list[k]← Ēk

17: // calculate the intra-class distance of class k
18: IntraDk ← 0
19: for i← 1 to |Nk| do
20: IntraDk ← IntraDk + ||Nk[i], Ēk||2
21: end for
22: IntraD_list[k]← IntraDk/|Nk|
23: end for
24: // calculate the overall inter-class distance
25: IntraD ← mean(IntraD_list)
26: // calculate the overall feature center for all samples
27: Ē0 ← mean(center_list)
28: // calculate the inter-class distance
29: InterD ← 0
30: for k ← 1 to K do
31: InterD ← InterD + ||center_list[k], Ē0||2
32: end for
33: InterD ← InterD/K
34: // calculate RDI
35: RDI ← (InterD − IntraD)/max(InterD, IntraD)
36: return RDI



C EVALUATION RESULTS OF MODEL ROBUSTNESS

Table 3: Robustness evaluation of image classification models based on ASR, Adversarial Accuracy (AA), RDI and ROBY.

Dataset model ACC ROBY RDI ASR
(PGD)

ASR
(RFGSM)

ASR
(Square
Attack)

ASR
(C&W)

ASR
(avg)

AA
(avg)

MNIST

AlexNet 0.9916 0.5555 0.5874 0.7981 0.8064 0.8121 0.7108 0.7819 0.2181
ResNet50 0.9895 0.5464 0.6566 0.7408 0.7461 0.7502 0.6988 0.7340 0.2660

DenseNet161 0.9906 0.5365 0.6873 0.6931 0.6967 0.7071 0.6382 0.6838 0.3162
DenseNet121 0.9911 0.4598 0.7127 0.6379 0.6447 0.6431 0.5304 0.6140 0.3860
MobileNetV2 0.9851 0.6523 0.7251 0.5621 0.5738 0.5813 0.4768 0.5485 0.4515
ResNet101 0.9868 0.5775 0.7324 0.5116 0.5250 0.5247 0.4274 0.4972 0.5028

Fashion-
MNIST

MobileNetV2 0.9124 0.5439 0.3872 0.9026 0.9146 0.9098 0.7491 0.8690 0.1310
AlexNet 0.9125 0.5275 0.5014 0.7966 0.8092 0.8043 0.6642 0.7686 0.2314

ResNet50 0.9121 0.4846 0.5603 0.7743 0.7841 0.7768 0.6886 0.7560 0.2440
DenseNet161 0.8877 0.5987 0.6104 0.7362 0.7413 0.7388 0.6503 0.7167 0.2833
ResNet101 0.9123 0.4640 0.6169 0.7081 0.7167 0.7227 0.6258 0.6933 0.3067
DenseNet121 0.9040 0.6183 0.6289 0.6713 0.6803 0.6894 0.5923 0.6583 0.3417

CIFAR10

MobileNetV2 0.8134 0.4392 0.3947 0.9064 0.9072 0.9224 0.9063 0.9106 0.0894
ResNet101 0.8340 0.3837 0.4324 0.8208 0.8237 0.8673 0.8330 0.8362 0.1638
ResNet50 0.8422 0.5056 0.4419 0.7974 0.7986 0.8394 0.8131 0.8121 0.1879

DenseNet121 0.8401 0.4888 0.4454 0.7832 0.7856 0.8286 0.7895 0.7967 0.2033
DenseNet161 0.8214 0.4402 0.4754 0.7622 0.7652 0.8301 0.7695 0.7818 0.2182

AlexNet 0.8083 0.4126 0.4851 0.7270 0.7299 0.7879 0.7471 0.7480 0.2520

CIFAR100

AlexNet 0.6545 0.5084 0.1242 0.9254 0.9305 0.8487 0.8024 0.8768 0.1232
MobileNetV2 0.6651 0.3925 0.1580 0.8821 0.8890 0.8547 0.8115 0.8593 0.1407
ResNet50 0.6928 0.3904 0.3557 0.8607 0.8652 0.8282 0.7812 0.8338 0.1662
ResNet101 0.7032 0.4433 0.3722 0.8392 0.8462 0.8114 0.7681 0.8162 0.1838
DenseNet121 0.7096 0.3943 0.3876 0.8206 0.8281 0.7977 0.7498 0.7991 0.2009
DenseNet161 0.7362 0.3825 0.3931 0.8072 0.8176 0.7773 0.7294 0.7829 0.2171

Tiny-
ImageNet

AlexNet 0.6452 0.5163 0.0211 0.9345 0.9477 0.8983 0.8949 0.9189 0.0811
MobileNetV2 0.6555 0.4627 0.1025 0.9145 0.9299 0.8564 0.8773 0.8945 0.1055
ResNet50 0.6920 0.4493 0.2595 0.8882 0.9016 0.8562 0.8616 0.8769 0.1231

DenseNet121 0.6810 0.4778 0.2723 0.8762 0.8879 0.8516 0.8501 0.8665 0.1335
ResNet101 0.7277 0.4445 0.2826 0.8728 0.8838 0.8420 0.8403 0.8597 0.1403
DenseNet161 0.7418 0.4576 0.2936 0.8415 0.8571 0.7979 0.8016 0.8245 0.1755

ViT 0.7988 0.4179 0.3553 0.8042 0.8389 0.6738 0.6689 0.7465 0.2535

Table 4: Robustness evaluation of speech recognition models based on ASR, Adversarial Accuracy (AA), RDI and ROBY.

Dataset model ACC ROBY RDI ASR
(SirenAttack)

AA
(SirenAttack)

SPEECHCOMMANDS

M5Attention 0.9067 0.3837 0.4305 0.8071 0.1929
M5 0.9575 0.4753 0.4749 0.7148 0.2852

SpeechCNN 0.9251 0.4608 0.5955 0.5986 0.4014
SpeechTransformer1 0.9116 0.4419 0.6060 0.5408 0.4592
SpeechTransformer2 0.9028 0.4932 0.6278 0.5204 0.4796
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