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ABSTRACT

Agents are predominantly evaluated and optimized via task success metrics, which
are coarse, rely on manual design from experts, and fail to reward intermediate

emergent behaviors. We propose AutoLibra <=, a framework for agent evaluation,
that transforms open-ended human feedback e.g. “If you find that the button is
disabled, don’t click it again”, or “This agent has too much autonomy to decide
what to do on its own” into metrics for evaluating fine-grained behaviors in agent
trajectories. AutoLibra accomplishes this by grounding feedback to an agent’s
behavior, clustering similar positive and negative behaviors, and creating con-
crete metrics with clear definitions and concrete examples, which can be used for
prompting LLM-as-a-Judge as evaluators. We further propose two meta-metrics to
evaluate the alignment of a set of (induced) metrics with open feedback: “coverage”
and “redundancy”. Through optimizing these meta-metrics, we experimentally
demonstrate AutoLibra’s ability to induce more concrete agent evaluation metrics
than the ones proposed in previous agent evaluation benchmarks and discover new
metrics to analyze agents. We also present two applications of AutoLibra in agent
improvement: First, we show that AutoLibra serve human prompt engineers for
diagonalize agent failures and improve prompts iterative. Moreover, we find that
AutoLibra can induce metrics for automatic optimization for agents, which makes
agents improve through self-regulation. Our results suggest that AutoLibra is a
powerful task-agnostic tool for evaluating and improving language agents.

1 INTRODUCTION

Humans readily acquire skills from open-ended instructions and feedback from others (Tomasello
et al., 1993). These instructions and feedback are internalized for self-regulated learning (Pintrich &
Zusho, 2002; Nicol & Macfarlane-Dick, 2006), providing internal signals for continuous improvement.
Drawing inspiration from this process, we investigate how well Al agents can benefit from open-ended
human feedback through induction of generalizable metrics.

In this paper, we introduce AutoLibra 2 | a metric induction method, as a novel agent evaluation
framework that mitigates the limitations of current evaluation paradigms. AutoLibra is an evaluation
tool that induces interpretable metrics for Al agents from open-ended human feedback, which can
be collected from end users of Al agents or experts. This offers two advantages: (1) It is much
easier to provide concrete feedback for trajectories than creating metrics, and (2) AutoLibra allows
us to evaluate agents from the perspective of the users. AutoLibra-induced metrics provide concrete
definitions of behaviors that the model-based evaluation method should look for, which could be used
to understand agent behavior, as well as optimization targets to improve agents.

Inspired by the code-theme steps of thematic analysis conducted by experts in social sciences (Braun
& Clarke, 2006), we design the AutoLibra induction process (§2.2) as two steps: (1) feedback
grounding: where we ground every aspect of human feedback on some behavior in the entire agent
trajectory, and (2) behavior clustering: where we cluster the aspects into multiple clusters of similar
behaviors to summarize into metrics. As illustrated in Fig. 1, the user gives a web agent feedback “the
agent did not choose iPhone 14/15” which is grounded to the agent’s behavior, choosing “iPhone 16
Pro” from the drop-down menu. Similar behaviors are clustered into a common cluster, summarized
as Element Interaction Accuracy.
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Figure 1: AutoLibra << induces agent evaluation metrics from human feedback, and uses these
metrics to evaluate agents, which can be meta-evaluated via evaluating the coverage on unseen human
feedback. Here we show real examples of agent trajectories, human feedback, aspects, induced
metrics, evaluation results on WebVoyager (He et al., 2024).

The AutoLibra evaluation process is designed to provide a closed-loop feedback signal for the

induction process.

as-a-Judge (Zheng et al., 2023) on the induced metrics.

The agent trajectories used in the induction process are scored by LLM-
The evaluation process (§2.3) then

tries to match the feedback aspects, e.g. “recipe does not contain quinoa”, with the traits, e.g.
task-requirement-achievement. In this way, we can meta-evaluate the quality of the met-
rics: (i) coverage (what proportion of feedback aspects can be matched with an agent trait), and (ii)
redundancy of the metrics (what proportion of the detected traits are not mentioned by humans).
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These two metrics provide an overall statistical picture of the quality of the induced metrics. Based
on these two metrics, we can search for the set of metrics with the lowest redundancy within those
with the highest coverage. As shown in §3.1, we find that as the number of metrics increases,
the redundancy increases, and the coverage ultimately converges to the maximum coverage. With
AutoLibra, our aim is to answer the following research questions:

RQ1: How well do AutoLibra’s step-wise results align with human judgment?
RQ2: Does AutoLibra provide insights into agent behavior beyond expert-designed metrics?
RQ3: Can AutoLibra provide optimization signals for improving agents’ performance?

Experiments within multiple agent domains, including collaborative agents (Shao et al., 2024), social
agents (Zhou et al., 2024b), web agents (Zhou et al., 2024a; He et al., 2024), and text game agents
(Paglieri et al., 2024; Cloos et al., 2024), demonstrate that AutoLibra is able to induce fine-grained
and interpretable metrics with high coverage and low redundancy in unseen human feedback with
80 trajectories annotated with one feedback for each trajectory per dataset. These metrics are more
concrete, and some of them were even overlooked in expert designed metrics or error analysis (§4).
AutoLibra can iteratively discover new, emergent metrics (§3.2) throughout the agent optimization
process, and provide optimization signals helps improve the performance of frontier LLM in a
challenging 2D text game by over 20% (§5) in 3 stages with only 18 trajectory annotated per stage.

2 AUTOLIBRA <&

To address the limitations of existing evaluation paradigms, AutoLibra <= is designed to meet the
following desiderata: (1) induced from agent behavior: This ensures that metrics are grounded in
agent trajectories rather than predefined by human experts, (2) self-validating: Allows choosing
minimal set of metrics that cover unseen human feedback with sufficient abstraction to be useful
across different tasks, and (3) generalizable: Applicable to various agent environments, independent
of domain-specific design. Based on feedback data collected from humans (§2.1), AutoLibra achieves
these desiderata through a closed-loop pipeline consisting of two processes: Induction Process that
converts agent behaviors and corresponding feedback into metrics, (§2.2) and Evaluation Process
that predicts ratings and quality of new agent behaviors on the induced metrics (§2.3).

2.1 COLLECTING HUMAN FEEDBACK

In this paper, we use human feedback from two groups: (1) End-users — for agents that interact
directly with humans, we use the feedback from the users who interact and converse with the agents.
CoGym (Shao et al., 2024) is the environment that belongs to this category, and we use the user
comments collected in their study, resulting in 197 trajectories with feedback. (2) Experts — for
agents that do not directly interact with humans, we use the feedback from human annotators (five
authors in this paper) who observe agent trajectories. All other environments belong to this category,
these being Sotopia (Zhou et al., 2024b), WebArena (Zhou et al., 2024a), WebVoyager (He et al.,
2024), Baba-is-ai (Cloos et al., 2024), and MiniHack (Samvelyan et al., 2021). For each trajectory,
we collect only one element of feedback based on the complete agent trajectories. '

Annotators are instructed to explicitly indicate the aspects of agent behavior that they classify as
good or bad, and to avoid general comments such as "The agent is good at solving the task". The
annotators can also choose from a terminal or a web interface; in both cases the annotator is provided
with the agent’s task and then view the agent’s observation and actions step by step, in text form.> For
multi-agent tasks, we annotate each agent’s trajectory in a given interaction separately. For Sotopia
(Zhou et al., 2024b), WebArena (Zhou et al., 2024a), and WebVoyager (He et al., 2024), we annotate
100 trajectories of agents based on GPT-4 (Achiam et al., 2023) with feedback for each dataset. For
experiments in §5 we annotate 18 trajectories for each dataset in each iteration. The annotation
process is fast: Human annotators spend less than 5 minutes to provide feedback for each trajectory;
§4, we randomly hold out 20% of the trajectories for validation.

'While in theory we can leverage feedback on specific steps to achieve better feedback grounding and
multiple feedback for single trajectory, we leave it as future work.

>While viewing screenshots is standard for web navigation tasks, we keep the observation format consistent
across agents and humans to encourage more grounded feedback.
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2.2 INDUCTION PROCESS

Feedback Grounding The feedback of human annotators can contain multiple aspects; e.g. “Al
agent was pretty good at giving me a consistent itinerary and vacation plan, although it froze on the
last couple of minutes.”, collected from human annotators in CoGym (Shao et al., 2024), contains a
positive aspect about the agent’s ability to generate a consistent itinerary, and a negative aspect about
the agent freezing at the end. Here we define an aspect as a triple (behavior, feedback, sign).
In the positive aspect of the previous example, the behavior is the agent’s actions to create a
20-day itinerary for the Maldives, the feedback is that the created itinerary is consistent and the
sign is positive. This grounding procedure is similar to the coding procedure in thematic analysis.

We feed the trajectory and the feedback into the LLM (we use GPT-40 (OpenAl et al., 2024) as it
yields good results in our pilot experiments) and prompt the LLM with the following instructions: (1)
break down the feedback into bullet points; (2) for each bullet point, find the corresponding part of
the trajectory to which the feedback refers. Finally, we use constrained decoding to force GPT-4o to
output the aspects in the previous format. In our experiments, we find that on most datasets, for each
trajectory, the LLM can generate one to five aspects, with a mean of one to two aspects.

Behavior Clustering The second step of the extraction process is to group the aspects into N
metrics. To illustrate this step, we consider another example in the same dataset “The Al responds
quickly to write and run the Python script® where the behavior is the agent’s action to quickly
write and run a Python script, the feedback is that the agent responds quickly, and the sign
is positive. Although this aspect is a positive aspect, it reflects the same dimension of the agent’s
behavior as the previous negative aspect, with an opposite value. Each metric is a cluster of aspects,
with a definition summarizing the criteria of positive behaviors, a list of positive behavior examples,
and a list of negative behavior examples. This clustering procedure is similar to the theme induction
step in thematic analysis.

However, clustering similar agent behaviors together is challenging for statistical clustering methods.?
Inspired by LLM-based semantic clustering and concept induction methods Viswanathan et al. (2024);
Lam et al. (2024), we prompt an LLM (03-mini high*, as it produces the most accurate coverage
and redundancy scores as evaluated later) to cluster the aspects into metrics. As illustrated in Fig. 6,
we gather all the aspects of M trajectories and cluster into N metrics, where [V is a parameter set
through the optimization process (§3.1). We provide the LLM with the following instructions: The
granularity of the grouping should be minimal; only very similar behaviors are grouped together;
but don’t limit to one particular website or one particular character, which empirically makes the
metrics more concrete but still applicable across different tasks.

2.3  EVALUATION PROCESS

Evaluating agents with induced metrics LLM-as-a-Judge (Zheng et al., 2023), or more broadly,
model-based evaluation (Zhang et al., 2019; Celikyilmaz et al., 2021) is a method to use machine
learning models to evaluate the output of other machine learning models. The success of LLM-as-a-
Judge depends on the gap between the difficulty of evaluation or verification and that of generation
and action. In agentic tasks, this gap is often large, as the policy model must perform multiple
steps in decision-making, while the evaluation model must only classify the trajectories, which
make LLM-as-a-Judge widely used (Zhou et al., 2024a; He et al., 2024; Zhou et al., 2024b). In
AutoLibra, we employ LLM-as-a-Judge to evaluate the agent trajectories configured with the induced
metrics. However, LLM-as-a-Judge can be replaced by any other evaluation methods implementing
the induced metrics; e.g. an interact-valid-element metric could be evaluated by a rule-
based evaluator that checks if the agent interacts with valid elements on the webpage. Wenote that
AutoLibra could be used with other evaluation methods, such as programmatic evaluation (Ma et al.,
2024); we leave generating programs for the induced metrics for future work.

As illustrated in Fig. 7, taking the induced metrics as input, an LLM (we use 03-mini medium, as
it provides similar results in this step to 03-mini high) is prompted to rate the agent trajectories to

3In preliminary experiments, we tried to use K-means clustering on the aspect vectors generated by
text-embedding-3-large, but the clusters are mostly based on tasks and not on the behaviors.
*https://openai.com/index/openai-o3-mini/
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Figure 2: Metric optimization: optimizing the induction process through maximizing the coverage
while minimizing redundancy of the metrics, calculated via the evaluation process.

{+ 1, -1, N/A} for each metric. For an agent trajectory, the metrics labeled +1 are the positive traits,
and the ones labeled -1 are the negative traits. When we calculate the scores of the metrics, we
use the ratio of agent trajectories rated as positive to the ones that are rated as positive or negative,
ignoring those rated as N/A, since not all metrics are applicable to all trajectories (some metrics like
valid-search-terms are only applicable when the task involves searching).

Meta evaluation The final loop component is the meta-evaluation, i.e. evaluating the evaluation
metrics induced by AutoLibra. This step matches the traits detected by the LLM-as-a-Judge with as-
pects grounded from the human feedback. The goal is to verify whether (1) the induced metrics cover
the behaviors the human annotators care about, and (2) LLM-as-a-Judge can produce accurate evalua-
tion results based on the induced metrics. In the previous example, if the respond-promptly is
extracted as a metric, and the LL.M-as-a-Judge has the same opinion as the human annotators, then
this aspect is considered as successfully covered. If either a similar metric was not extracted, or the
LLM-as-a-Judge assigns a different score, then this aspect is considered as not covered.

As illustrated in Fig. 8, we perform meta-evaluation for each trajectory-feedback pair by classifying
the aspects into positive and negative aspects, classifying traits into positive and negative traits based
on rating, then matching the positive aspects with positive traits and the negative aspects with negative
traits. We prompt an LLM (we use GPT-40 (OpenAl et al., 2024)) with a list of aspects and another
list of traits and ask the LLM to find the best matching trait for each aspect or decide that there is no
matching trait. The coverage of the whole dataset is calculated as the proportion of aspects of all
instances that have a matching trait, and the redundancy is calculated as the proportion of traits of all
instances that have not been matched with any aspect.

3  OPTIMIZING AND VALIDATING AUTOLIBRA <&

AutoLibra is designed to be self-validating through the evaluation process, which allows us to search
the optimal set of metrics that cover the human opinion the best (§3.1). This optimization process can
also be applied iteratively throughout the agent improvement process. As the agent is optimized, new
metrics can be added to existing metrics (§3.2), which is similar to how unit tests are kept throughout
software development to prevent new features from interfere with existing features. In the last part of
this section, we study the alignment between each step of AutoLibra and human judgment.

3.1 METRIC OPTIMIZATION

As illustrated in Fig. 2, we optimize the metric induction process to maximize coverage and
minimize redundancy. Among the two, we prioritize coverage of the metrics to provide a com-
prehensive evaluation of the agent behavior, while minimizing overlap within the metrics to avoid
redundancy, thus maximizing the utility of induced metrics. To optimize for this objective, we
generate 20 different sets of metrics, with metric count N ranging from 4 to 13, and calcu-
late the coverage and redundancy of the metrics in human feedback. We then select metrics
with a coverage of at least the highest coverage minus 1%, and the lowest redundancy. This
is performed iteratively, by resetting the range of IV to the number of metrics selected previ-
ously £2, repeating until the coverage and redundancy of the selected metrics converge, normally
within 3 iterations. While this optimization process is simple, experiments with various other
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When applyipg AqtoLibra to agent pptimization, ity of concrete behavior examples
we can iteratively induce new metrics, as agents

develop new failure modes or new behaviors as they improve, which is useful for tracking agents’
progress across different iterations.’ To do this, we modify the behavior clustering step, by providing
the LLM with the existing metrics and their definitions, and ask the LLM not to change the definitions
of the existing metrics, to only add new behaviors to the existing metrics, and add new metrics if
necessary. We apply the same optimization strategy as in the metric optimization step ensure the
newly induced metrics cover emerging behaviors and do not overlap with existing metrics.

Table 1: The ratio of instances marked as fully correct in human validation. For each step and each
task, we randomly sample 40 instances to reach a relatively small confidence interval of 0.04 and ask
human annotators to label them as completely correct or not. Although the agreement scores vary
across tasks and steps, the average agreement for each step and dataset is above 0.85 significantly.

Steps CoGym Sotopia WebArena WebVoyager Baba-is-Al ‘ Average
Grounding 0.95 0.95 0.98 0.93 0.93 0.95 (£0.03)
LLM-as-a-Judge 0.90 0.85 0.95 1.00 0.90 0.92 (£0.04)
Meta-Evaluation 0.98 0.90 0.85 0.83 0.95 0.90 (£0.04)

3.3 HOW ALIGNED ARE THE STEPS IN AUTOLIBRA WITH HUMAN JUDGMENT?

Since AutoLibra uses LLMs in each step, we first ask whether LLM outputs are reliable or aligned
with human judgment. To measure the alignment of AutoLibra metric induction with human judgment,
we validate the feedback grounding, agent evaluation, and meta evaluation steps by having human
experts manually review each step (with exception of the behavior clustering step, as it is prohibitively
time-intensive for human annotators to process and cluster more than 400 aspects), scoring (1/0)
based on whether they agree with the outcomes of each iteration. The coverage and redundancy
scores, in combination with the validation results of the other steps in the loop, thus serve as an
indirect validation for the behavior clustering step. Table 1 shows the agreement rate of human
annotators in AutoLibra steps. It should be noted that these tasks are significantly different; e.g.,
grounding for WebVoyager (He et al., 2024) is challenging due to the length and wide action space of
the trajectory, and LLM-as-a-Judge for Sotopia (Zhou et al., 2024b) is difficult due to the complexity
of the evaluation of social interactions. Our results show that the majority (significantly over 85%) of
results in AutoLibra are reliable according to human validation.

3 Alternatively, a new set of metrics can be induced from scratch for each iteration - in practice, we do not
find that this results in any coverage loss, but we choose the former method for consistency



Under review as a conference paper at ICLR 2026

4 AUTOLIBRA AS A LENS z% : AGENT EVALUATION WITH AUTOLIBRA

In this section, we use AutoLibra as a lens to provide grounded, behavior-salient insights into
agent trajectories. In three data sets, CoGym (Shao et al., 2024), Sotopia (Zhou et al., 2024b), and
WebVoyager (He et al., 2024), we compare induced metrics with heuristically proposed evaluation
dimensions and failure modes summarized by the authors. We find that AutoLibra can discover
more concrete metrics than heuristically defined categories, and novel metrics that are overlooked
by experts. Tab. 2 summarizes the comparison between AutoLibra-induced metrics and evaluation
criteria across the three aforementioned datasets. Check out detailed analysis in App. §B.

For CoGym (Shao et al., 2024), AutoLibra induces 9 metrics from end user feedback that correspond
to the five failure categories proposed by authors, with failure rates matching manually labeled
categories and providing automated measurement of agent failures. For Sotopia (Zhou et al., 2024b),
AutoLibra recovers the exact Goal Completion dimension and three subdimensions of Believability,
while discovering four additional metrics overlooked in the original design. AutoLibra minimizes
redundancy by consolidating overlapping dimensions into a single Goal Achievement and Outcome
Effectiveness metric. For WebVoyager (He et al., 2024), AutoLibra discovers concrete behavioral
metrics such as Access Barrier Handling, Error Recovery and Adjustment, and Navigation Accuracy
that provide more specific characterization than previous "navigation stuck” classifications (He et al.,
2024; Zhou et al., 2024c). The framework identifies additional failure modes like Query Strategy
Efficiency (7%) and Final Output Quality (18%) not captured in prior analyses.

Table 2: AutoLibra-induced metrics and expert-proposed evaluation dimensions and failure categories.
Percentages in parenthesis denote failure frequency or score from AutoLibra or the original papers.

AutoLibra-t-induced metrics Failure categories by experts

Matched metrics and failure categories

T i fciency (759
3 Responsz\')ene.ss and Ej‘jﬁctenc‘) '(75 /0') Communication (65%)
& Communication Clarity & Notification (8%)
= Instruction Adherence & Follow-Through (24%) Situational Awareness (40%)
) i ili 9
e Iterative Refinement a‘nd Adaptability (47%) Planning (39%)
2 Autonomy and Proactiveness (28%)
VE) Content Quality and Coherence (16%)
> Search and Retrieval Accuracy (13%) Environmental Awareness (28%)
Q .
8 Data Analysis Competence (2%)
Interface and User Experience (23%) Personalization (16%)
Matched metrics and social dimensions
Goal Achievement & Outcome Effectiveness (19%) Goal Completion (14%)
Conversational Naturalness & Efficiency (5%)
Personality Consistency and Alignment (2%) Believability (4%)

Contextual Integration of Identity (1%)

Unmatched AutoLibra==-induced metrics

Negotiation Tactics and Strategic Adaptability (14%), Responsiveness and Conversational Termination
(5%), Adaptability and Flexibility in Dialogue (7%)

Sotopia (Zhou et al., 2024b)

Unmatched Sotopia-Eval dimensions

Relationship, Knowledge, Secret, Financial and Material Benefits, Social Rules

Matched metrics and failure reasons

Error Recovery & Adjustment (15%)
Step Efficiency & Action Redundancy (13%)

o Navigation Stuck (44%)
Navigation Accuracy (11%)
Access Barrier Handling (2%)
Information & Verification Accuracy (16%) Hallucination (22%)
Result Relevance Accuracy (9%) Prompt Misalignment (9%)

Unmatched AutoLibra==-induced metrics

Query and Search Strategy Efficiency (71%), Final Output and Summarization Quality (18%)

WebVoyager (He et al., 2024)

Unmatched WebVoyager fail reasons

Visual Grounding Issue (25%)
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the induced metrics. Although not optimized for, the success rate of the agent continuously improve
until Stage 3, when the agent begins to overthink.

5 AUTOLIBRA AS A LADDER 4 : AGENT IMPROVEMENT WITH AUTOLIBRA

As AutoLibra can automatically induce metrics from human feedback, a natural question to ask is
whether it can enable self-regulated improvement in agents through iterative feedback. This can be
achieved through optimizing the agent prompts towards higher scores on the metrics extracted by
AutoLibra. To answer this question, we use a challenging 2D game Baba-Is-Al (Cloos et al., 2024;
Paglieri et al., 2024) as a benchmark. Inspired by Baba-Is-You, this game requires not only following
rules to achieve goals, but also manipulating the rules, even self-referential ones. For example, in
the game illustrated in App. Fig. 9, the agent needs to change self-referential rules from baba is
you, to door is you to control the green door on the other side of the wall, form a new win rule ball
is win, and navigate to the red ball to achieve the win condition. To achieve a high score on this
dataset, the agent needs not only planning, but also metacognitive skills, which is very challenging
for LLM agents with frontier models as shown in the Balrog benchmark (Paglieri et al., 2024). In
this experiment, we use Gemini-2.5-Flash (Team et al., 2025) for the agent, AutoLibra, and agent
prompt optimization, throughout the experiment, which will be referred as the LLM in this section.
Gemini-2.5-Flash is ranked as the 3rd place, with a success rate of 50.8% =+ 4.6% on the Balrog
leaderboard for Baba-is-Al at the time of submission, and the state-of-the-art result is 56.7% + 4.5%.

Fig. 4 illustrated our procedure, and summarized the results. We employ an iterative process by
improving the agents in 3 stages through providing human feedback on 6 out of 40 tasks in the
Baba-Is-Al. Before each stage we show human annotators 3 trajectories for the 6 tasks, gather the
feedback, and apply AutoLibra iterative metric induction process (§3.2). This results in 5 metrics for
Stage 1 and 2, and another 1 metric for Stage 3. Within each stage, we iteratively feed 1 LLM agent
trajectory on each of these 6 tasks, together with evaluation results based on these AutoLibra-induced
metrics to the LLM to improve the prompt of the LLM agent. This process results in continuous
improvement not only on the running maximum metric scores, the cumulative average metrics, but
also game success rate. Fig. 4 shows these statistics on the whole 40 tasks, although we only use 6 out
of the 40 tasks in the whole optimization process. Upon examining the agent trajectories, we find the
skills learned in the process. In the first stage, the agent learns to find rules to form based on the map
boundary, which could be a result of an induced metric map-n-constraint-recognition.
Similarly, more advanced skills are learned in Stage 2 and 3, including forming win conditions and
self-referential rules, probably as a result of metric rule-manipulation-proficiency.

Our results show that the metrics induced by AutoLibra form effective objectives for improving the
agents through prompt optimization. It should note that AutoLibra is a metric induction method, which
is orthogonal to learning algorithms, including prompt optimization, fine-tuning or reinforcement
learning. We show that this process improves agent success rate by 20% without optimizing for
success rate, and in the future, researchers can study the effect of employing other learning algorithm.
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6 RELATED WORK

AutoLibra unifies three areas of research: it draws inspiration from thematic analysis to create nautral
language-derived evaluation metrics to evaluate and reward Al agents.

Evaluating AI agents Much of the work in Al agent evaluation focuses around benchmarks which
contains both task suites and evaluation metrics. In addition to the datasets we used in this paper, SWE-
Bench (Jimenez et al., 2024) uses human-written unit tests as evaluation metrics; Embodied Agent
Interface (Li et al., 2024) provides fine-grained evaluation for LLM-based embodied agents; 7-Bench
(Yao et al., 2024) compares database states for evaluation; concurrent work AgentRewardBench (Lu
et al., 2025) builds a benchmark for reward models for web agents. Recently, there are observatory
tools including Galileo (Galileo, 2025), Vertex Al Gen Al (Cloud, 2025), and Docent (Meng et al.,
2025) which provide user interfaces to visualize agent failure modes. Generating intrinsic rewards
have also been studied in the reinforcement learning community (Du et al., 2019; Pathak et al., 2017,
Laskin et al., 2022) to encourage exploration, sub-task completion, or skill discovery. In contrast to
these, AutoLibra is a pure data-driven task-agnostic method without predefined failure taxonomy for
generating interpretable metrics for agents.

Learning from natural language and human feedback Researchers have been studying reinforce-
ment learning with language feedback to provide a dense reward to agents (Goyal et al., 2019). Since
LLM agents are even harder to train with sparse reward, there is substantial interest in training LLM
agents from natural language feedback. Chen et al. (2024) propose an imitation learning method
for learning from human feedback; Text2Reward (Xie et al., 2024) uses code generation to generate
robot reward functions from open-ended human feedback; our work (Chen et al., 2025) uses feedback
to the improvement agent policy with prompting and then align the unprompted agent policy with the
prompted one; Shi et al. (2024) propose a new model architecture to incorporate human feedback into
policy learning. On the other hand, human non-open-ended feedback is also incorporated in training
agents, including rating feedback (Nguyen et al., 2017), preference feedback (Christiano et al., 2017),
demonstrative feedback (Shaikh et al., 2025). Unlike these papers, AutoLibra induces metrics from
feedback from all annotated instances and generates metrics that are generalizable to different tasks
and useful for both evaluation and agent fine-tuning.

Thematic analysis Thematic analysis is a powerful tool for qualitative study through coding and
iterative creation of themes. Gauthier & Wallace (2022) provide computational tools to aid this
process; Hong et al. (2022) and Gebreegziabher et al. (2023) explore human-AlI collaboration in
thematic analysis; LLooM (Lam et al., 2024), an automatic method for concept induction, closly
aligns with and informs our approach. This paper completes the loop of concept induction by using
the meta-evaluation step to optimize the induced metrics, and apply it to agent evaluation.

7 CONCLUSION AND FUTURE WORK

This work introduces AutoLibra, a new paradigm for agent evaluation, one of the first works to
explore adaptable trajectory-derived evaluation heuristics, offering substantial advantages in agent
training over traditional end-to-end evaluation. We find that this framework is generalizable to
a diverse range of agent tasks, provides new insights into agent behaviors, and identifies strong
optimization targets for agent improvement. There are a few directions for further extending and
applying this framework. (1) Behavior-centric evaluation AutoLibra leads a paradigm shift from
end-to-end agent evaluation (analogous to “integration tests” in software development) to evaluation
with granular metrics that measure agents’ concrete behaviors (analogous to “unit tests”). Future
work can study whether this process can be improved through better human-AlI collaboration. (2)
Sub-trajectory feedback from humans In AutoLibra, we label each trajectory with one piece of
feedback, and ground it into the agents’ concrete behavior which is at the sub-trajectory level. In
the future, researchers can let users directly give feedback for one or multiple steps in the trajectory,
which should lead to better feedback grounding results. Similarly, user feedback can be collected
during the interaction instead of after the agent has completed the tasks, which is a more user-friendly
way to gather high quality feedback data. (3) Wider exploration of agent improvement methods In
this paper, we only explored non-parametric for agent improvement to show the utility of AutoLibra.
Future work can use AutoLibra to provide dense rewards for individual steps, and use reinforcement
learning to train agents with these dense rewards.
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