InfraGym: Empowering LLM Agents for Real-World Computer System Optimization

Huaizheng Zhang¹ Lei Zhang¹ Yuanming Li² Yizheng Huang³ Xiaotong Yang²
Kuntai Du⁴ Yihua Cheng⁴ Junchen Jiang⁴ Han Li¹

¹ByteDance ²MLSysOps ³UCLA ⁴University of Chicago

Abstract

Large language model (LLM) agents have demonstrated high potential of improving performance for complex computer system, such as cluster scheduling, 2 network congestion control, and adaptive video streaming. However, in lack of 3 a standard, safe, and extensible benchmarking platform, it is difficult to evaluate whether these LLM agents improve real-world system performance and by how much. We present InfraGym, an open, extensible platform where researchers can study computer system optimization with LLM agents. Our current release includes three real-world cases and supports interaction with both simulated and 8 real environments. We benchmark multiple LLM agents on these tasks using both 9 open-source and closed-source LLMs, and outline future directions. The code is 10 available at https://github.com/MLSysOps/InfraGym 11

12 1 Introduction

Beyond traditional agentic applications such as game playing [1, 2] and medical assistance [3, 4], we found that Large Language Model (LLM) agents start to demonstrate great potential of optimizing complex real-world computer systems, such as load balancing [5], adaptive video streaming [6] and network congestion control [7, 8]. These systems directly affect billions of users and are critical to technology companies. For example, load balancing distributes requests across servers to avoid bottlenecks, while video streaming depends on adaptive bitrate control to maintain user experience under changing bandwidth.

The success of LLM agents in optimizing computer systems is not random. Before LLMs, 20 Reinforcement-Learning-based (RL-based) agents are widely studied by both machine learning 21 and system research literature [9–11]. Those RL agents can achieve high performance in controlled 22 research environments. However, they struggle to generalize to dynamic, real-world systems [12, 13]. 23 Further, their reliance on complex training pipelines and large datasets also limits their adoption. To 24 understand the abilities of these RL agents, RL platforms such as Park [9] were built to standardize 25 training and evaluation of RL agents in computer systems. In contrast, LLM-based agents can 26 generalize to real-world systems without extra training, making it much more robust when optimizing 27 complex real-world computer systems.

However, existing RL platforms are poorly suited for LLM agents. First, they assume structured numeric states and low-level actions (e.g., bitrate levels), while LLM agents rely on natural language descriptions. Second, RL platforms emphasize training through trial-and-error for a specific case, which limits generalization and interpretability. In contrast, LLM agents excel at inference-time adaptation, reasoning [14–16], and in-context learning [17, 18]. Third, RL platforms lack flexibility: LLM agents often need preloaded prompts [19], memory [20, 21], or tools such as web search [22] and calculators [23], none of which are supported. Thus, researchers can not plug-and-play them to benchmark agent performance with ease.

Figure 1: Overview of InfraGym. Infrastructure environments (simulated or live) send states and rewards through the interaction interface to LLM agents. Agents return actions to the interface, which validate actions before sending them to the environments. Moreover, the collector and trainer support trajectory logging and further learning.

To fill the gap, we propose to develop a new platform for building, testing, and improving LLM agents on computer system optimizations. Our design principles are as follows. First, the new system should 38 treat natural language description as first-class input. This improves agent understanding and provides 39 more interpretability for humans. By doing so, we open the black box of system optimizations and 40 enable human-agent co-learning. Second, the system should pay more attention to the inference stage. 41 Instead of training pipelines, InfraGym highlights LLMs' native abilities in reasoning, long-context 42 processing, and tool use. Third, the platform should be highly customized. Users are able to configure 43 the memory size, tool use, etc, to better benchmark LLM agents' ability under controlled settings. We propose InfraGym, an open, standardized, and extensible environment with a unified interface 45 connecting LLM agents to computer systems. First, it supports both natural language and numeric 46 inputs and can replay traces from real-world computer systems. Second, it provides a unified interface 47 for LLM agents to operate on simulated or production environments with ease. Meanwhile, the 48 interface is human-readable for interpretability, validates actions for safety, and follows OpenAI 49 Gym conventions [24] with added plug-and-play flexibility. Finally, it records agent—environment 50 trajectories for offline analysis and reinforcement learning fine-tuning. 51 We evaluate agents powered by three LLMs (GPT4 [25], Gemini [26], and Qwen3 [27]) across three 52 representative environments: video streaming, caching, and load balancing. Results show the great 53 potential of LLM agents in reducing cost and improving resource utilization while also discussing 54 their limitations. We open-sourced InfraGym and plan to expand it with more environments and 55 agents to foster community-driven research: https://github.com/MLSysOps/InfraGym. 56

2 The InfraGym Design

57

70

71

72

This section describes InfraGym's architecture (Figure 1). 58 Computer environments send states and rewards to LLM 59 agents for decision-making. Between them, InfraGym 60 defines an interaction interface that translates raw, unstruc-61 62 tured data into a structured observation space with optional natural language descriptions. This translation helps 63 64 agents interpret environment changes and plan actions. The interface also safeguards real systems by blocking 65 risky [28] or invalid actions [29]. In addition, InfraGym 66 provides a collector and trainer to support continuous learn-67 ing and adaptation. 68

Infrastructure environment. InfraGym supports both simulated and live environments, each with its own states, actions, and reward functions. Simulated environments can be used in two ways: replaying real-world traces to

import infragym from infragym import Agent # Create a load balancing environment env = infragym.make('load_balance', num server=3, max_episode_steps=1000, reward scale=1.0) # Init the env obs, info = env.reset() # Define the Agent agent = Agent(obs['task_description'], obs['available_actions']) # Agent-env interaction loop While True: server_index = agent.action(obs['text_observation']) obs, reward, done, truncated, info = env.step(1) env.close()

Figure 2: Example Interface of InfraGym

reproduce historical events, or generating synthetic data to
explore edge cases. Live environments allow direct interaction with production systems. To integrate
with them, users need to follow our standards and examples to define their own wrappers.

Figure 3: Benchmark results on InfraGym. LLM agents outperform rule-based baselines in video streaming, load balancing, and caching, showing both effectiveness and variability across LLMs.

Interaction interface. This component serves two purposes. First, it receives raw RPC requests (states and rewards) from environments and converts them into structured observations [30]. Users may choose to attach natural language descriptions as shown in Figure 2, which improve agent comprehension, or omit them to test agents' ability to interpret raw data and reduce inference latency. Second, the interface validates actions from agents and returns executable commands via RPC. This design ensures safe, seamless integration of diverse environments and agents.

LLM backend. The backend includes three components: agents, a collector, and a trainer. Users can implement agents backed by different LLMs using a unified template, enabling fast prototyping of prompts and workflows. We adopt LangGraph [31] as the agent backend. The collector, built with Langfuse [32], records trajectories of agent—environment interactions for analysis and future training. Finally, a trainer wrapper built on the Verl framework [33] supports reinforcement learning to further improve agent performance [34].

88 3 Benchmark Studies

We evaluate InfraGym on three representative infrastructure tasks: adaptive bitrate (ABR) streaming, caching, and load balancing. These tasks reflect core challenges in computer system optimization, including maintaining user quality of experience, reducing latency, and balancing system resources.

Experimental settings. We compare three LLM agents: GPT-40 [25], Gemini-2.5-Flash [26], and Qwen3-30B (without reasoning mode) [27], against rule-based baselines. Each experiment is repeated ten times with different seeds. For ABR and load balancing, we use simulated environments with 50 warm-up steps followed by 200 test steps. For caching, we evaluate on a real-world trace with 200 warm-up steps and 1000 test steps.

Effectiveness. Across all three tasks, LLM agents consistently outperform rule-based baselines as shown in Figure 3, highlighting their ability to adapt to dynamic system conditions. In video streaming, they deliver higher quality-of-experience scores, with Qwen3-30B achieving the best result (2.13) compared to the buffer-based baseline (1.45). We hypothesize that this advantage comes from the model's smaller size: while larger models sometimes "overthink" and hallucinate in simple decision tasks, Qwen3-30B produces more direct and stable responses, which is beneficial for ABR control. In load balancing, all LLMs reduce average job completion time, with Gemini-2.5-Flash performing best at 1.36 s versus 2.38 s for round robin. In caching, LLM agents also surpass rule-based methods such as Least Frequently Used (LFU) and Size-Aware Admission (SAA), with Gemini-2.5-Flash

Figure 4: LLM agent latency distributions.

reaching a 44.9% hit rate compared to 35–37% for rules. These results confirm that LLM agents can generalize across different infrastructure problems, though the performance gap among models suggests opportunities to further improve robustness and efficiency.

Efficiency. Figure 4 shows the latency dis-115 tribution of the three LLMs when applied to 116 load balancing. Qwen3-30B, deployed with 117 vLLM, achieves the lowest and most stable la-118 tency (0.23–0.26 s). GPT-40 exhibits moderate 119 latency (0.6–1.4 s), striking a balance between 120 responsiveness and reasoning quality. Gemini-121 2.5-Flash, while achieving high effectiveness, 122 incurs the highest latency (1.5–7.5 s), limiting 123 its suitability for latency-sensitive environments. 124 These results reveal a trade-off between capability and efficiency, pointing to future work on hybrid strategies that combine fast small models 127 with powerful large ones. 128

Figure 5: InfraGym case study

Cast study. Beyond performance, InfraGym enables interpretability by exposing how LLM

agents reason and act. Figure 5 shows a load balancing example where the agent explains its choice of server in natural language, making the decision process transparent. Unlike RL agents, which often act as black boxes, LLM agents provide step-by-step rationales that help researchers debug, trust, and refine their behavior. InfraGym's interface supports this human–agent co-evolution, allowing users to understand mistakes, adjust prompts or rules, and iteratively improve agent policies.

136 4 Related Work

We review two lines of related work: LLM agents for computer system optimization, and gym-style environments for benchmarking.

LLM agents for computer system. Recent studies applied LLM agents to computer systems.
One line of work [5] uses the ReAct framework for multi-objective HPC job scheduling, where
LLM agents improved throughput, wait time, and fairness over FIFO and Google OR-Tools by
leveraging adaptive reasoning. Other work [7, 8] explored congestion control with LLM agents,
showing promising results, while NetLLM [6] unified several network optimization tasks under a
single LLM framework. Unlike these task-specific efforts, InfraGym provides an open, extensible
platform for both LLM and infrastructure researchers to benchmark and improve agents across diverse
optimization problems.

Gym environments. Open gym environments are crucial for benchmarking and refining LLM agents. ML-Gym [35] and ML-Dojo [36] standardize machine learning tasks for evaluating ML engineering agents. SWE-Gym [37] builds software development environments for training software engineering agents. AgentGym [38] extends evaluation to interactive domains such as the web and games. In contrast, InfraGym focuses on computer systems, which pose distinct challenges: dynamic, distributed workloads and strict requirements for reliability and efficiency.

5 Conclusion

153

We presented InfraGym, an open platform for studying LLM agents in infrastructure optimization. 154 InfraGym provides three key features: support for simulated and live environments, a flexible 155 LLM backend, and a unified interaction interface. We benchmarked four LLM agents on three 156 representative tasks, highlighting both their promise and current limitations. Despite encouraging results, InfraGym also exposes challenges of LLM agents: cost, latency, and stability. Large models 158 often incur high inference costs and response delays, making them less suitable for latency-sensitive 159 systems. Their decisions can also be inconsistent, raising robustness concerns. Looking ahead, we 160 will extend InfraGym with more environments and agents, and explore hybrid strategies that combine 161 fast small models with powerful large ones. We invite the community to build on our open-source 162 release https://github.com/MLSysOps/InfraGym.

4 References

- [1] Sihao Hu, Tiansheng Huang, Gaowen Liu, Ramana Rao Kompella, Fatih Ilhan, Selim Furkan
 Tekin, Yichang Xu, Zachary Yahn, and Ling Liu. A survey on large language model-based
 game agents. arXiv preprint arXiv:2404.02039, 2024.
- [2] Jen-tse Huang, Eric John Li, Man Ho Lam, Tian Liang, Wenxuan Wang, Youliang Yuan,
 Wenxiang Jiao, Xing Wang, Zhaopeng Tu, and Michael Lyu. Competing large language models
 in multi-agent gaming environments. In *The Thirteenth International Conference on Learning Representations*, 2025.
- [3] Wenxuan Wang, Zizhan Ma, Zheng Wang, Chenghan Wu, Jiaming Ji, Wenting Chen, Xiang Li, and Yixuan Yuan. A survey of llm-based agents in medicine: How far are we from baymax? *arXiv preprint arXiv:2502.11211*, 2025.
- 175 [4] Xi Chen, Huahui Yi, Mingke You, WeiZhi Liu, Li Wang, Hairui Li, Xue Zhang, Yingman Guo, 176 Lei Fan, Gang Chen, et al. Enhancing diagnostic capability with multi-agents conversational 177 large language models. *NPJ digital medicine*, 8(1):159, 2025.
- 178 [5] Prachi Jadhav, Hongwei Jin, Ewa Deelman, and Prasanna Balaprakash. Evaluating the efficacy of llm-based reasoning for multiobjective hpc job scheduling. *arXiv preprint arXiv:2506.02025*, 2025.
- [6] Duo Wu, Xianda Wang, Yaqi Qiao, Zhi Wang, Junchen Jiang, Shuguang Cui, and Fangxin
 Wang. Netllm: Adapting large language models for networking. In *Proceedings of the ACM SIGCOMM 2024 Conference*, pages 661–678, 2024.
- 184 [7] Deol Satish, Shiva Raj Pokhrel, Jonathan Kua, and Anwar Walid. Distilling large language models for network active queue management. *arXiv preprint arXiv:2501.16734*, 2025.
- 186 [8] Shyam Kumar Shrestha, Shiva Raj Pokhrel, and Jonathan Kua. Adapting large language models for improving tcp fairness over wifi. *arXiv preprint arXiv:2412.18200*, 2024.
- [9] Hongzi Mao, Parimarjan Negi, Akshay Narayan, Hanrui Wang, Jiacheng Yang, Haonan Wang,
 Ryan Marcus, Mehrdad Khani Shirkoohi, Songtao He, Vikram Nathan, et al. Park: An open
 platform for learning-augmented computer systems. Advances in Neural Information Processing
 Systems, 32, 2019.
- 192 [10] Hongzi Mao, Ravi Netravali, and Mohammad Alizadeh. Neural adaptive video streaming with pensieve. In *Proceedings of the conference of the ACM special interest group on data communication*, pages 197–210, 2017.
- 195 [11] Hongzi Mao, Mohammad Alizadeh, Ishai Menache, and Srikanth Kandula. Resource management with deep reinforcement learning. In *Proceedings of the 15th ACM workshop on hot topics in networks*, pages 50–56, 2016.
- [12] Francis Y Yan, Hudson Ayers, Chenzhi Zhu, Sadjad Fouladi, James Hong, Keyi Zhang, Philip
 Levis, and Keith Winstein. Learning in situ: a randomized experiment in video streaming. In
 17th USENIX Symposium on Networked Systems Design and Implementation (NSDI 20), pages
 495–511, 2020.
- [13] Fernando Martinez-Lopez, Tao Li, Yingdong Lu, and Juntao Chen. In-context reinforcement learning via communicative world models. *arXiv preprint arXiv:2508.06659*, 2025.
- [14] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le,
 Denny Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models.
 Advances in neural information processing systems, 35:24824–24837, 2022.
- Shunyu Yao, Jeffrey Zhao, D Yu, N Du, I Shafran, K Narasimhan, and Y Cao. React: Synergizing reasoning and acting in language models. doi: 10.48550. arXiv preprint ARXIV.2210.03629, 2022.
- 210 [16] Andy Zhou, Kai Yan, Michal Shlapentokh-Rothman, Haohan Wang, and Yu-Xiong Wang.
 211 Language agent tree search unifies reasoning acting and planning in language models. *arXiv*212 *preprint arXiv:2310.04406*, 2023.

- 213 [17] Qingxiu Dong, Lei Li, Damai Dai, Ce Zheng, Jingyuan Ma, Rui Li, Heming Xia, Jingjing Xu, Zhiyong Wu, Tianyu Liu, et al. A survey on in-context learning. *arXiv preprint* arXiv:2301.00234, 2022.
- 216 [18] Denny Zhou, Nathanael Schärli, Le Hou, Jason Wei, Nathan Scales, Xuezhi Wang, Dale Schuurmans, Claire Cui, Olivier Bousquet, Quoc Le, et al. Least-to-most prompting enables complex reasoning in large language models. *arXiv preprint arXiv:2205.10625*, 2022.
- [19] Mathurin Videau, Alessandro Leite, Marc Schoenauer, and Olivier Teytaud. Evolutionary pre-prompt optimization for mathematical reasoning. *arXiv preprint arXiv:2412.04291*, 2024.
- [20] Zeyu Zhang, Quanyu Dai, Xiaohe Bo, Chen Ma, Rui Li, Xu Chen, Jieming Zhu, Zhenhua Dong,
 and Ji-Rong Wen. A survey on the memory mechanism of large language model based agents.
 ACM Transactions on Information Systems, 2024.
- 224 [21] Wujiang Xu, Kai Mei, Hang Gao, Juntao Tan, Zujie Liang, and Yongfeng Zhang. A-mem: Agentic memory for llm agents. *arXiv preprint arXiv:2502.12110*, 2025.
- [22] Jason Wei, Zhiqing Sun, Spencer Papay, Scott McKinney, Jeffrey Han, Isa Fulford, Hyung Won
 Chung, Alex Tachard Passos, William Fedus, and Amelia Glaese. Browsecomp: A simple yet
 challenging benchmark for browsing agents. arXiv preprint arXiv:2504.12516, 2025.
- [23] Jize Wang, Ma Zerun, Yining Li, Songyang Zhang, Cailian Chen, Kai Chen, and Xinyi Le. Gta:
 a benchmark for general tool agents. Advances in Neural Information Processing Systems, 37:
 75749–75790, 2024.
- [24] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang,
 and Wojciech Zaremba. Openai gym. 2016. eprint. arXiv preprint arXiv:1606.01540, 50, 2016.
- [25] Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni
 Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4
 technical report. arXiv preprint arXiv:2303.08774, 2023.
- 237 [26] Gemini Team, Rohan Anil, Sebastian Borgeaud, Jean-Baptiste Alayrac, Jiahui Yu, Radu Soricut,
 238 Johan Schalkwyk, Andrew M Dai, Anja Hauth, Katie Millican, et al. Gemini: a family of highly
 239 capable multimodal models. *arXiv preprint arXiv:2312.11805*, 2023.
- [27] A Yang Qwen, Baosong Yang, B Zhang, B Hui, B Zheng, B Yu, Chengpeng Li, D Liu, F Huang,
 H Wei, et al. Qwen2. 5 technical report. arXiv preprint, 2024.
- [28] Hakan Inan, Kartikeya Upasani, Jianfeng Chi, Rashi Rungta, Krithika Iyer, Yuning Mao,
 Michael Tontchev, Qing Hu, Brian Fuller, Davide Testuggine, et al. Llama guard: Llm-based
 input-output safeguard for human-ai conversations. arXiv preprint arXiv:2312.06674, 2023.
- [29] Yixin Dong, Charlie F Ruan, Yaxing Cai, Ruihang Lai, Ziyi Xu, Yilong Zhao, and Tianqi Chen.
 Xgrammar: Flexible and efficient structured generation engine for large language models. arXiv preprint arXiv:2411.15100, 2024.
- ²⁴⁸ [30] Andrew D Birrell and Bruce Jay Nelson. Implementing remote procedure calls. *ACM Transactions on Computer Systems (TOCS)*, 2(1):39–59, 1984.
- 250 [31] LangGraph Team. Langgraph build resilient language agents as graphs., 2024.
 251 URL https://github.com/langchain-ai/langgraph. Software available from https://github.com/langchain-ai/langgraph.
- 253 [32] Clemens Rawert, Marc Klingen, and Maximilian Deichmann. Langfuse open-source 254 llm engineering platform, 2023. URL https://langfuse.com/. Software available from 255 https://langfuse.com.
- [33] Guangming Sheng, Chi Zhang, Zilingfeng Ye, Xibin Wu, Wang Zhang, Ru Zhang, Yanghua
 Peng, Haibin Lin, and Chuan Wu. Hybridflow: A flexible and efficient rlhf framework. In
 Proceedings of the Twentieth European Conference on Computer Systems, pages 1279–1297,
 2025.

- [34] Jiazhan Feng, Shijue Huang, Xingwei Qu, Ge Zhang, Yujia Qin, Baoquan Zhong, Chengquan
 Jiang, Jinxin Chi, and Wanjun Zhong. Retool: Reinforcement learning for strategic tool use in
 llms. arXiv preprint arXiv:2504.11536, 2025.
- [35] Deepak Nathani, Lovish Madaan, Nicholas Roberts, Nikolay Bashlykov, Ajay Menon, Vincent Moens, Amar Budhiraja, Despoina Magka, Vladislav Vorotilov, Gaurav Chaurasia, et al.
 Mlgym: A new framework and benchmark for advancing ai research agents. arXiv preprint arXiv:2502.14499, 2025.
- [36] Rushi Qiang, Yuchen Zhuang, Yinghao Li, Rongzhi Zhang, Changhao Li, Ian Shu-Hei Wong,
 Sherry Yang, Percy Liang, Chao Zhang, Bo Dai, et al. Mle-dojo: Interactive environments for
 empowering Ilm agents in machine learning engineering. arXiv preprint arXiv:2505.07782,
 2025.
- [37] Jiayi Pan, Xingyao Wang, Graham Neubig, Navdeep Jaitly, Heng Ji, Alane Suhr, and Yizhe
 Zhang. Training software engineering agents and verifiers with swe-gym. arXiv preprint
 arXiv:2412.21139, 2024.
- 274 [38] Zhiheng Xi, Yiwen Ding, Wenxiang Chen, Boyang Hong, Honglin Guo, Junzhe Wang, Dingwen Yang, Chenyang Liao, Xin Guo, Wei He, et al. Agentgym: Evolving large language model-based agents across diverse environments. *arXiv preprint arXiv:2406.04151*, 2024.