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Abstract

Large language model (LLM) agents have demonstrated high potential of im-
proving performance for complex computer system, such as cluster scheduling,
network congestion control, and adaptive video streaming. However, in lack of
a standard, safe, and extensible benchmarking platform, it is difficult to evaluate
whether these LLM agents improve real-world system performance and by how
much. We present InfraGym, an open, extensible platform where researchers
can study computer system optimization with LLM agents. Our current release
includes three real-world cases and supports interaction with both simulated and
real environments. We benchmark multiple LLM agents on these tasks using both
open-source and closed-source LLMs, and outline future directions. The code is
available at https://github.com/MLSysOps/InfraGym|

1 Introduction

Beyond traditional agentic applications such as game playing [1} 2] and medical assistance [3} 4], we
found that Large Language Model (LLM) agents start to demonstrate great potential of optimizing
complex real-world computer systems, such as load balancing [5]], adaptive video streaming [6] and
network congestion control [7, [8]. These systems directly affect billions of users and are critical
to technology companies. For example, load balancing distributes requests across servers to avoid
bottlenecks, while video streaming depends on adaptive bitrate control to maintain user experience
under changing bandwidth.

The success of LLM agents in optimizing computer systems is not random. Before LLMs,
Reinforcement-Learning-based (RL-based) agents are widely studied by both machine learning
and system research literature [9H11]. Those RL agents can achieve high performance in controlled
research environments. However, they struggle to generalize to dynamic, real-world systems [12} [13].
Further, their reliance on complex training pipelines and large datasets also limits their adoption. To
understand the abilities of these RL agents, RL platforms such as Park [9]] were built to standardize
training and evaluation of RL agents in computer systems. In contrast, LLM-based agents can
generalize to real-world systems without extra training, making it much more robust when optimizing
complex real-world computer systems.

However, existing RL platforms are poorly suited for LLM agents. First, they assume structured
numeric states and low-level actions (e.g., bitrate levels), while LLM agents rely on natural language
descriptions. Second, RL platforms emphasize training through trial-and-error for a specific case,
which limits generalization and interpretability. In contrast, LLM agents excel at inference-time
adaptation, reasoning [[14H16]], and in-context learning [17, [18]]. Third, RL platforms lack flexibility:
LLM agents often need preloaded prompts [19], memory [20,21]], or tools such as web search [22]
and calculators [23]], none of which are supported. Thus, researchers can not plug-and-play them to
benchmark agent performance with ease.
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Figure 1: Overview of InfraGym. Infrastructure environments (simulated or live) send states and
rewards through the interaction interface to LLM agents. Agents return actions to the interface, which
validate actions before sending them to the environments. Moreover, the collector and trainer support
trajectory logging and further learning.
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To fill the gap, we propose to develop a new platform for building, testing, and improving LLM agents
on computer system optimizations. Our design principles are as follows. First, the new system should
treat natural language description as first-class input. This improves agent understanding and provides
more interpretability for humans. By doing so, we open the black box of system optimizations and
enable human-agent co-learning. Second, the system should pay more attention to the inference stage.
Instead of training pipelines, InfraGym highlights LLMs’ native abilities in reasoning, long-context
processing, and tool use. Third, the platform should be highly customized. Users are able to configure
the memory size, tool use, etc, to better benchmark LLLM agents’ ability under controlled settings.

We propose InfraGym, an open, standardized, and extensible environment with a unified interface
connecting LLLM agents to computer systems. First, it supports both natural language and numeric
inputs and can replay traces from real-world computer systems. Second, it provides a unified interface
for LLM agents to operate on simulated or production environments with ease. Meanwhile, the
interface is human-readable for interpretability, validates actions for safety, and follows OpenAl
Gym conventions [24] with added plug-and-play flexibility. Finally, it records agent—environment
trajectories for offline analysis and reinforcement learning fine-tuning.

We evaluate agents powered by three LLMs (GPT4 [25]], Gemini [26]], and Qwen3 [27]) across three
representative environments: video streaming, caching, and load balancing. Results show the great
potential of LLM agents in reducing cost and improving resource utilization while also discussing
their limitations. We open-sourced InfraGym and plan to expand it with more environments and
agents to foster community-driven research: https://github.com/MLSysOps/InfraGym|

2 The InfraGym Design

This section describes InfraGym’s architecture (Figure [T)).
Computer environments send states and rewards to LLM import. infragym

.. . from infragym import Agent
agents for decision-making. Between them, InfraGym
defines an interaction interface that translates raw, unstruc-

# Create a load balancing environment
env = infragym.make('load balance',

tured data into a structured observation space with op- nun_server=3,

tional natural language descriptions. This translation helps T vy

agents interpret environment changes and plan actions. | 7™ ™

The interface also safeguards real systems by blocking # Define the Agent. -

risky [28] or invalid actions [29]. In addition, InfraGym e et motone )

provides a collector and trainer to support continuous learn- 7 hgent-eny interaction loop

ing and adaptation. server_index = agent.action(obs( ' text_observation'])

obs, reward, done, truncated, info = env.step(l)
Infrastructure environment. InfraGym supports both | Loy ™
simulated and live environments, each with its own states,
actions, and reward functions. Simulated environments Figure 2: Example Interface of In-
can be used in two ways: replaying real-world traces to fraGym
reproduce historical events, or generating synthetic data to
explore edge cases. Live environments allow direct interaction with production systems. To integrate
with them, users need to follow our standards and examples to define their own wrappers.
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Figure 3: Benchmark results on InfraGym. LLM agents outperform rule-based baselines in video
streaming, load balancing, and caching, showing both effectiveness and variability across LLMs.

Interaction interface. This component serves two purposes. First, it receives raw RPC requests
(states and rewards) from environments and converts them into structured observations [30]. Users
may choose to attach natural language descriptions as shown in Figure 2] which improve agent
comprehension, or omit them to test agents’ ability to interpret raw data and reduce inference latency.
Second, the interface validates actions from agents and returns executable commands via RPC. This
design ensures safe, seamless integration of diverse environments and agents.

LLM backend. The backend includes three components: agents, a collector, and a trainer. Users can
implement agents backed by different LLMs using a unified template, enabling fast prototyping of
prompts and workflows. We adopt LangGraph as the agent backend. The collector, built with
Langfuse [32]), records trajectories of agent—environment interactions for analysis and future training.
Finally, a trainer wrapper built on the Verl framework [33] supports reinforcement learning to further
improve agent performance [34].

3 Benchmark Studies

We evaluate InfraGym on three representative infrastructure tasks: adaptive bitrate (ABR) streaming,
caching, and load balancing. These tasks reflect core challenges in computer system optimization,
including maintaining user quality of experience, reducing latency, and balancing system resources.

Experimental settings. We compare three LLM agents: GPT-4o [25], Gemini-2.5-Flash [26], and
Qwen3-30B (without reasoning mode) [27]], against rule-based baselines. Each experiment is repeated
ten times with different seeds. For ABR and load balancing, we use simulated environments with 50
warm-up steps followed by 200 test steps. For caching, we evaluate on a real-world trace with 200
warm-up steps and 1000 test steps.

Effectiveness. Across all three tasks, LLM agents consis-
tently outperform rule-based baselines as shown in Figure
[l highlighting their ability to adapt to dynamic system con-
ditions. In video streaming, they deliver higher quality-of-
experience scores, with Qwen3-30B achieving the best result

GPT-40 (2024-08-06)

0.60s 0.80s 1.00s 1.20s 1.40s

(2.13) compared to the buffer-based baseline (1.45). We hy- Gemini (2.5-Flash)
pothesize that this advantage comes from the model’s smaller
size: while larger models sometimes “overthink™ and halluci- 1805  3.00s 450s  6.00s 7.805
nate in simple decision tasks, Qwen3-30B produces more di-
rect and stable responses, which is beneficial for ABR control. Qwen3 (308, vLLM)

In load balancing, all LLMs reduce average job completion | ; ' ' '
time, with Gemini-2.5-Flash performing best at 1.36 s versus 023s 024s 025s 0.25s 0.26s

2.38 s for round robin. In caching, LLM agents also surpass Lo
rule-based methods such as Least Frequently Used (LFU) Figure 4: LLM agent latency distribu-
and Size-Aware Admission (SAA), with Gemini-2.5-Flash ~t10nS.
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reaching a 44.9% hit rate compared to 35-37% for rules. These results confirm that LLM agents
can generalize across different infrastructure problems, though the performance gap among models
suggests opportunities to further improve robustness and efficiency.

Efficiency. Figure [] shows the latency dis-

tribution of the three LLMs when applied to Task T T e crves o meign e neoning son
load balancing. Qwen3-30B, deployed with obs (= 0.0): Server Status [...] Metrics: [...]
vLLM, achieves the lowest and most stable la- History [obs (BN 01): SSEUSEESEEEGS (...) MEEENES: (...
tency (0.23-0.26 s). GPT-40 exhibits moderate potion: Sexver 1
latency (0.6—1.4 s), striking a balance between ooe B |

Servers Status

responsiveness and reasoning quality. Gemini- o rorer 1 511s 2 sobe, mext in 1.75
1 1 1 1 1 Ob: ti Sl(rate: 2.15): 2 jobs, next in 1.7s
2.5-F1ash, Whlle achieving high effect1yep§ss, & Reward 22 (rate: .17+ & Jomey newt in 008
Incurs th'e‘hlghest latency (1:5'—7-5 s)', limiting Weteics: finiah 33, avo wait 0.28e. avg process 0.82s
its suitability for latency-sensitive environments. Action Space: Server 0, 1, 2
These results reveal a trade-off between capa- o s e e s e o
bility and efficiency, pointing to future work on finien @ Job, making it the best cholee for the
A . . Acti
hybrid strategies that combine fast small models O Jaueue zengen.

incoming job to minimize processing time and overall
A [Action: Server 2
with powerful large ones.

Reasoning

Cast study. Beyond performance, InfraGym Figure 5: InfraGym case study

enables interpretability by exposing how LLM

agents reason and act. Figure [5|shows a load balancing example where the agent explains its choice
of server in natural language, making the decision process transparent. Unlike RL agents, which often
act as black boxes, LLM agents provide step-by-step rationales that help researchers debug, trust, and
refine their behavior. InfraGym’s interface supports this human—agent co-evolution, allowing users to
understand mistakes, adjust prompts or rules, and iteratively improve agent policies.

4 Related Work

We review two lines of related work: LLM agents for computer system optimization, and gym-style
environments for benchmarking.

LLM agents for computer system. Recent studies applied LLM agents to computer systems.
One line of work [5]] uses the ReAct framework for multi-objective HPC job scheduling, where
LLM agents improved throughput, wait time, and fairness over FIFO and Google OR-Tools by
leveraging adaptive reasoning. Other work [7, 8] explored congestion control with LLM agents,
showing promising results, while NetLLM [6] unified several network optimization tasks under a
single LLM framework. Unlike these task-specific efforts, InfraGym provides an open, extensible
platform for both LLM and infrastructure researchers to benchmark and improve agents across diverse
optimization problems.

Gym environments. Open gym environments are crucial for benchmarking and refining LLM
agents. ML-Gym [35] and ML-Dojo [36] standardize machine learning tasks for evaluating ML
engmeermg agents. SWE-Gym [37] builds software development environments for training software
engineering agents. AgentGym [38]] extends evaluation to interactive domains such as the web and
games. In contrast, InfraGym focuses on computer systems, which pose distinct challenges: dynamic,
distributed workloads and strict requirements for reliability and efficiency.

5 Conclusion

We presented InfraGym, an open platform for studying LLM agents in infrastructure optimization.
InfraGym provides three key features: support for simulated and live environments, a flexible
LLM backend, and a unified interaction interface. We benchmarked four LLM agents on three
representative tasks, highlighting both their promise and current limitations. Despite encouraging
results, InfraGym also exposes challenges of LLM agents: cost, latency, and stability. Large models
often incur high inference costs and response delays, making them less suitable for latency-sensitive
systems. Their decisions can also be inconsistent, raising robustness concerns. Looking ahead, we
will extend InfraGym with more environments and agents, and explore hybrid strategies that combine
fast small models with powerful large ones. We invite the community to build on our open-source
release |https://github.com/MLSysOps/InfraGym|
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