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Abstract

Large language model (LLM) agents have demonstrated high potential of im-1

proving performance for complex computer system, such as cluster scheduling,2

network congestion control, and adaptive video streaming. However, in lack of3

a standard, safe, and extensible benchmarking platform, it is difficult to evaluate4

whether these LLM agents improve real-world system performance and by how5

much. We present InfraGym, an open, extensible platform where researchers6

can study computer system optimization with LLM agents. Our current release7

includes three real-world cases and supports interaction with both simulated and8

real environments. We benchmark multiple LLM agents on these tasks using both9

open-source and closed-source LLMs, and outline future directions. The code is10

available at https://github.com/MLSysOps/InfraGym11

1 Introduction12

Beyond traditional agentic applications such as game playing [1, 2] and medical assistance [3, 4], we13

found that Large Language Model (LLM) agents start to demonstrate great potential of optimizing14

complex real-world computer systems, such as load balancing [5], adaptive video streaming [6] and15

network congestion control [7, 8]. These systems directly affect billions of users and are critical16

to technology companies. For example, load balancing distributes requests across servers to avoid17

bottlenecks, while video streaming depends on adaptive bitrate control to maintain user experience18

under changing bandwidth.19

The success of LLM agents in optimizing computer systems is not random. Before LLMs,20

Reinforcement-Learning-based (RL-based) agents are widely studied by both machine learning21

and system research literature [9–11]. Those RL agents can achieve high performance in controlled22

research environments. However, they struggle to generalize to dynamic, real-world systems [12, 13].23

Further, their reliance on complex training pipelines and large datasets also limits their adoption. To24

understand the abilities of these RL agents, RL platforms such as Park [9] were built to standardize25

training and evaluation of RL agents in computer systems. In contrast, LLM-based agents can26

generalize to real-world systems without extra training, making it much more robust when optimizing27

complex real-world computer systems.28

However, existing RL platforms are poorly suited for LLM agents. First, they assume structured29

numeric states and low-level actions (e.g., bitrate levels), while LLM agents rely on natural language30

descriptions. Second, RL platforms emphasize training through trial-and-error for a specific case,31

which limits generalization and interpretability. In contrast, LLM agents excel at inference-time32

adaptation, reasoning [14–16], and in-context learning [17, 18]. Third, RL platforms lack flexibility:33

LLM agents often need preloaded prompts [19], memory [20, 21], or tools such as web search [22]34

and calculators [23], none of which are supported. Thus, researchers can not plug-and-play them to35

benchmark agent performance with ease.36
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Figure 1: Overview of InfraGym. Infrastructure environments (simulated or live) send states and
rewards through the interaction interface to LLM agents. Agents return actions to the interface, which
validate actions before sending them to the environments. Moreover, the collector and trainer support
trajectory logging and further learning.

To fill the gap, we propose to develop a new platform for building, testing, and improving LLM agents37

on computer system optimizations. Our design principles are as follows. First, the new system should38

treat natural language description as first-class input. This improves agent understanding and provides39

more interpretability for humans. By doing so, we open the black box of system optimizations and40

enable human-agent co-learning. Second, the system should pay more attention to the inference stage.41

Instead of training pipelines, InfraGym highlights LLMs’ native abilities in reasoning, long-context42

processing, and tool use. Third, the platform should be highly customized. Users are able to configure43

the memory size, tool use, etc, to better benchmark LLM agents’ ability under controlled settings.44

We propose InfraGym, an open, standardized, and extensible environment with a unified interface45

connecting LLM agents to computer systems. First, it supports both natural language and numeric46

inputs and can replay traces from real-world computer systems. Second, it provides a unified interface47

for LLM agents to operate on simulated or production environments with ease. Meanwhile, the48

interface is human-readable for interpretability, validates actions for safety, and follows OpenAI49

Gym conventions [24] with added plug-and-play flexibility. Finally, it records agent–environment50

trajectories for offline analysis and reinforcement learning fine-tuning.51

We evaluate agents powered by three LLMs (GPT4 [25], Gemini [26], and Qwen3 [27]) across three52

representative environments: video streaming, caching, and load balancing. Results show the great53

potential of LLM agents in reducing cost and improving resource utilization while also discussing54

their limitations. We open-sourced InfraGym and plan to expand it with more environments and55

agents to foster community-driven research: https://github.com/MLSysOps/InfraGym.56

2 The InfraGym Design57

Figure 2: Example Interface of In-
fraGym

This section describes InfraGym’s architecture (Figure 1).58

Computer environments send states and rewards to LLM59

agents for decision-making. Between them, InfraGym60

defines an interaction interface that translates raw, unstruc-61

tured data into a structured observation space with op-62

tional natural language descriptions. This translation helps63

agents interpret environment changes and plan actions.64

The interface also safeguards real systems by blocking65

risky [28] or invalid actions [29]. In addition, InfraGym66

provides a collector and trainer to support continuous learn-67

ing and adaptation.68

Infrastructure environment. InfraGym supports both69

simulated and live environments, each with its own states,70

actions, and reward functions. Simulated environments71

can be used in two ways: replaying real-world traces to72

reproduce historical events, or generating synthetic data to73

explore edge cases. Live environments allow direct interaction with production systems. To integrate74

with them, users need to follow our standards and examples to define their own wrappers.75
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Figure 3: Benchmark results on InfraGym. LLM agents outperform rule-based baselines in video
streaming, load balancing, and caching, showing both effectiveness and variability across LLMs.

Interaction interface. This component serves two purposes. First, it receives raw RPC requests76

(states and rewards) from environments and converts them into structured observations [30]. Users77

may choose to attach natural language descriptions as shown in Figure 2, which improve agent78

comprehension, or omit them to test agents’ ability to interpret raw data and reduce inference latency.79

Second, the interface validates actions from agents and returns executable commands via RPC. This80

design ensures safe, seamless integration of diverse environments and agents.81

LLM backend. The backend includes three components: agents, a collector, and a trainer. Users can82

implement agents backed by different LLMs using a unified template, enabling fast prototyping of83

prompts and workflows. We adopt LangGraph [31] as the agent backend. The collector, built with84

Langfuse [32], records trajectories of agent–environment interactions for analysis and future training.85

Finally, a trainer wrapper built on the Verl framework [33] supports reinforcement learning to further86

improve agent performance [34].87

3 Benchmark Studies88

We evaluate InfraGym on three representative infrastructure tasks: adaptive bitrate (ABR) streaming,89

caching, and load balancing. These tasks reflect core challenges in computer system optimization,90

including maintaining user quality of experience, reducing latency, and balancing system resources.91

Experimental settings. We compare three LLM agents: GPT-4o [25], Gemini-2.5-Flash [26], and92

Qwen3-30B (without reasoning mode) [27], against rule-based baselines. Each experiment is repeated93

ten times with different seeds. For ABR and load balancing, we use simulated environments with 5094

warm-up steps followed by 200 test steps. For caching, we evaluate on a real-world trace with 20095

warm-up steps and 1000 test steps.96

0.60s 0.80s 1.00s 1.20s 1.40s

GPT-4o (2024-08-06)

1.50s 3.00s 4.50s 6.00s 7.50s

Gemini (2.5-Flash)

0.23s 0.24s 0.25s 0.25s 0.26s

Qwen3 (30B, vLLM)

Figure 4: LLM agent latency distribu-
tions.

Effectiveness. Across all three tasks, LLM agents consis-97

tently outperform rule-based baselines as shown in Figure98

3, highlighting their ability to adapt to dynamic system con-99

ditions. In video streaming, they deliver higher quality-of-100

experience scores, with Qwen3-30B achieving the best result101

(2.13) compared to the buffer-based baseline (1.45). We hy-102

pothesize that this advantage comes from the model’s smaller103

size: while larger models sometimes “overthink” and halluci-104

nate in simple decision tasks, Qwen3-30B produces more di-105

rect and stable responses, which is beneficial for ABR control.106

In load balancing, all LLMs reduce average job completion107

time, with Gemini-2.5-Flash performing best at 1.36 s versus108

2.38 s for round robin. In caching, LLM agents also surpass109

rule-based methods such as Least Frequently Used (LFU)110

and Size-Aware Admission (SAA), with Gemini-2.5-Flash111
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reaching a 44.9% hit rate compared to 35–37% for rules. These results confirm that LLM agents112

can generalize across different infrastructure problems, though the performance gap among models113

suggests opportunities to further improve robustness and efficiency.114

Obs (t = 0.0): Server Status [...] Metrics: [...]
Action: Server 2
Obs (t = 0.1): Server Status [...] Metrics: [...]
Action: Server 1
...

Think:
Server 2 has the highest service rate and is about to
finish a job, making it the best choice for the
incoming job to minimize processing time and overall
queue length.
Action: Server 2

Obs (t = 21.2):
Servers Status
S0(rate: 1.91): 2 jobs, next in 1.7s
S1(rate: 2.15): 2 jobs, next in 1.7s
S2(rate: 2.77): 6 jobs, next in 0.0s
Incoming: size 1.4 units, 1 waiting
Metrics: finish 83, avg wait 0.28s, avg process 0.82s
Action Space: Server 0, 1, 2

You are balancing jobs across 3 servers [...]
Task: pick one server to assign the incoming job

Observation
& Reward

History

Task

Reasoning

Action

Figure 5: InfraGym case study

Efficiency. Figure 4 shows the latency dis-115

tribution of the three LLMs when applied to116

load balancing. Qwen3-30B, deployed with117

vLLM, achieves the lowest and most stable la-118

tency (0.23–0.26 s). GPT-4o exhibits moderate119

latency (0.6–1.4 s), striking a balance between120

responsiveness and reasoning quality. Gemini-121

2.5-Flash, while achieving high effectiveness,122

incurs the highest latency (1.5–7.5 s), limiting123

its suitability for latency-sensitive environments.124

These results reveal a trade-off between capa-125

bility and efficiency, pointing to future work on126

hybrid strategies that combine fast small models127

with powerful large ones.128

Cast study. Beyond performance, InfraGym129

enables interpretability by exposing how LLM130

agents reason and act. Figure 5 shows a load balancing example where the agent explains its choice131

of server in natural language, making the decision process transparent. Unlike RL agents, which often132

act as black boxes, LLM agents provide step-by-step rationales that help researchers debug, trust, and133

refine their behavior. InfraGym’s interface supports this human–agent co-evolution, allowing users to134

understand mistakes, adjust prompts or rules, and iteratively improve agent policies.135

4 Related Work136

We review two lines of related work: LLM agents for computer system optimization, and gym-style137

environments for benchmarking.138

LLM agents for computer system. Recent studies applied LLM agents to computer systems.139

One line of work [5] uses the ReAct framework for multi-objective HPC job scheduling, where140

LLM agents improved throughput, wait time, and fairness over FIFO and Google OR-Tools by141

leveraging adaptive reasoning. Other work [7, 8] explored congestion control with LLM agents,142

showing promising results, while NetLLM [6] unified several network optimization tasks under a143

single LLM framework. Unlike these task-specific efforts, InfraGym provides an open, extensible144

platform for both LLM and infrastructure researchers to benchmark and improve agents across diverse145

optimization problems.146

Gym environments. Open gym environments are crucial for benchmarking and refining LLM147

agents. ML-Gym [35] and ML-Dojo [36] standardize machine learning tasks for evaluating ML148

engineering agents. SWE-Gym [37] builds software development environments for training software149

engineering agents. AgentGym [38] extends evaluation to interactive domains such as the web and150

games. In contrast, InfraGym focuses on computer systems, which pose distinct challenges: dynamic,151

distributed workloads and strict requirements for reliability and efficiency.152

5 Conclusion153

We presented InfraGym, an open platform for studying LLM agents in infrastructure optimization.154

InfraGym provides three key features: support for simulated and live environments, a flexible155

LLM backend, and a unified interaction interface. We benchmarked four LLM agents on three156

representative tasks, highlighting both their promise and current limitations. Despite encouraging157

results, InfraGym also exposes challenges of LLM agents: cost, latency, and stability. Large models158

often incur high inference costs and response delays, making them less suitable for latency-sensitive159

systems. Their decisions can also be inconsistent, raising robustness concerns. Looking ahead, we160

will extend InfraGym with more environments and agents, and explore hybrid strategies that combine161

fast small models with powerful large ones. We invite the community to build on our open-source162

release https://github.com/MLSysOps/InfraGym.163
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