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Abstract

Large language model (LLM) agents have demonstrated high potential of improving
performance for complex computer systems, such as cluster scheduling, network
congestion control, and adaptive video streaming. However, in the lack of a
standard, safe, and extensible benchmarking platform, it is difficult to evaluate
whether these LLM agents improve real-world system performance and by how
much. We present InfraGym, an open, extensible platform where researchers
can study computer system optimization with LLM agents. Our current release
includes three real-world cases and supports interaction with both simulated and
real environments. We benchmark multiple LLM agents on these tasks using both
open-source and closed-source LLMs, and outline future directions. The code is
available at https://github.com/MLSysOps/InfraGym

1 Introduction

Beyond traditional agentic applications such as game playing [1, 2] and medical assistance [3, 4], we
found that Large Language Model (LLM) agents start to demonstrate great potential of optimizing
complex real-world computer systems, such as load balancing [5], adaptive video streaming [6] and
network congestion control [7, 8]. These systems directly affect billions of users and are critical to
technology companies. For example, load balancing distributes requests across servers to balance
resource utilization, while video streaming relies on adaptive bitrate control to maintain a consistent
user experience under varying bandwidth conditions.

The success of LLM agents in optimizing computer systems is not random. Before LLMs,
Reinforcement-Learning-based (RL-based) agents are widely studied by both machine learning
and system research literature [9–11]. Those RL agents can achieve high performance in controlled
research environments. However, they struggle to generalize to dynamic, real-world systems [12, 13].
Further, their reliance on complex training pipelines and large datasets also limits their adoption. To
understand the abilities of these RL agents, RL platforms such as Park [9] were built to standardize
training and evaluation of RL agents in computer systems. In contrast, LLM-based agents can gener-
alize to real-world systems without extra training, making them much more robust when optimizing
complex real-world computer systems.

However, existing RL platforms are poorly suited for LLM agents. First, they assume structured
numeric states and low-level actions (e.g., bitrate levels), while LLM agents rely on natural language
descriptions. Second, RL platforms focus more on enabling training through trial-and-error for
a specific case, which limits generalization and interpretability. In contrast, LLM agents excel at
inference-time adaptation, reasoning [14–16], and in-context learning [17, 18]. Third, RL platforms
lack LLM-required flexibility. LLM agents often need preloaded prompts [19], memory [20, 21],
or tools such as web search [22] and calculators [23], none of which are supported by current RL
platforms. Thus, researchers can not plug-and-play them to benchmark agent performance with ease.
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Figure 1: Overview of InfraGym. Infrastructure environments (simulated or live) send states and
rewards through the interaction interface to LLM agents. Agents return actions to the interface, which
validate actions before sending them to the environments. Moreover, the collector and trainer support
trajectory logging and further learning.

To fill the gap, we propose to develop a new platform for building, testing, and improving LLM agents
on computer system optimizations. Our design principles are as follows. First, the new system should
treat natural language description as first-class input. This improves agent understanding and provides
more interpretability for humans. By doing so, we open the black box of system optimizations and
enable human-agent co-learning. Second, the system should pay more attention to the inference stage
and try to explore LLMs’ native abilities in reasoning, long-context processing, and tool use. Third,
the platform should be highly customized. Users are able to configure the memory size, tool use, etc,
to better benchmark LLM agents’ ability under controlled settings.

We propose InfraGym, an open, standardized, and extensible environment for both ML and system
communities to study LLM agents on computer systems. First, it supports both natural language and
numeric inputs and processes real-world computer systems in different ways. Second, it provides
a unified interface for LLM agents to operate on simulated or production environments with ease.
Meanwhile, the interface is human-readable for interpretability, validates actions for safety, and
follows OpenAI Gym conventions [24] with added plug-and-play flexibility. Finally, it allows to
record agent–environment trajectories for later offline analysis and reinforcement fine-tuning.

We evaluate agents powered by three LLMs (GPT4 [25], Gemini [26], and Qwen3 [27]) across three
representative environments: video streaming, caching, and load balancing. Results show the great
potential of LLM agents in reducing cost and improving resource utilization while also discussing
their limitations. We open-sourced InfraGym and plan to expand it with more environments and
agents to foster community-driven research: https://github.com/MLSysOps/InfraGym.

2 The InfraGym Design

Figure 2: Example Interface of In-
fraGym

This section describes InfraGym’s architecture (Figure 1).
Computer environments send states and rewards to LLM
agents for decision-making. Between them, we build an
interaction interface to translate raw, unstructured data
into a structured observation space with natural language
descriptions. This translation helps agents interpret en-
vironmental changes and plan subsequent actions. The
interface also serves as a safeguard by blocking risky [28]
or invalid actions [29]. In addition, InfraGym provides a
collector and trainer to support continuous learning and
adaptation in a real-world environment.

Infrastructure environment. InfraGym supports both
simulated and live environments, each with its own states,
actions, and reward functions. Simulated environments
can be used in two ways: replaying real-world traces to
reproduce historical events, or generating synthetic data to
explore edge cases. Live environments allow direct interaction with production systems. To integrate
with them, users need to follow our standards and examples to define their own wrappers.
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Figure 3: Benchmark results on InfraGym. LLM agents outperform rule-based baselines in video
streaming, load balancing, and caching, showing both effectiveness and variability across LLMs.

Interaction interface. This component serves two purposes. First, it receives raw RPC requests
(states and rewards) from environments and converts them into structured observations [30]. Users
may choose to attach natural language descriptions as shown in Figure 2, which improves agent
comprehension, or omit them to test agents’ ability to interpret raw data and reduce inference latency.
Second, the interface validates actions from agents and returns executable commands via RPC. This
design ensures safe, seamless integration of diverse environments and agents.

LLM backend. The backend includes three components: agents, a collector, and a trainer. Users
can implement agents with different LLMs using a unified template, and our backend supports fast
prototyping of prompts and workflows. Specifically, we adopt LangGraph [31] to build the agent tem-
plate. Meanwhile, the collector, built with Langfuse [32], records trajectories of agent–environment
interactions for analysis and future training. Finally, a trainer wrapper built on the Verl framework
[33] supports reinforcement learning to further improve agent performance [34].

3 Benchmark Studies

We evaluate InfraGym on three representative computer system optimization tasks: adaptive bitrate
(ABR) streaming, caching, and load balancing. The reason we choose them is that they all reflect
core challenges in computer system optimization, though their detailed targets are different (e.g.,
ABR for user experiences and caching for lower latency).

0.60s 0.80s 1.00s 1.20s 1.40s

GPT-4o (2024-08-06)

1.50s 3.00s 4.50s 6.00s 7.50s

Gemini (2.5-Flash)

0.23s 0.24s 0.25s 0.25s 0.26s

Qwen3 (30B, vLLM)

Figure 4: LLM agent latency distribu-
tions

Experimental settings. We benchmark a rule-based baseline
and three LLM agents including GPT-4o [25], Gemini-2.5-
Flash [26], and Qwen3-30B (without reasoning mode) [27].
Each experiment is repeated ten times with different seeds.
For the ABR and load balancing tasks, we use simulated
environments with 50 warm-up steps followed by 200 test
steps. For the caching task, we use a real-world trace with
200 warm-up steps and 1000 test steps.

Effectiveness. Figure 3 shows, LLM agents consistently out-
perform rule-based baselines across all three tasks. In video
streaming, they deliver higher quality-of-experience scores,
with Qwen3-30B achieving the best result (2.13) compared
to the buffer-based baseline (1.45). We hypothesize that this
advantage comes from the model’s smaller size: while larger
models sometimes “overthink” and hallucinate in simple de-
cision tasks, Qwen3-30B produces more direct and stable responses, which is beneficial for ABR
control. In load balancing, all LLMs reduce average job completion time, with Gemini-2.5-Flash
performing best at 1.36 s versus 2.38 s for round robin. In caching, LLM agents also surpass
rule-based methods such as Least Frequently Used (LFU) and Size-Aware Admission (SAA), with
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Gemini-2.5-Flash reaching a 44.9% hit rate compared to 35–37% for rules. These results confirm
that LLM agents can generalize across different infrastructure problems, though the performance gap
among models suggests opportunities to further improve robustness and efficiency.

Obs (t = 0.0): Server Status [...] Metrics: [...]
Action: Server 2
Obs (t = 0.1): Server Status [...] Metrics: [...]
Action: Server 1
...

Think:
Server 2 has the highest service rate and is about to
finish a job, making it the best choice for the
incoming job to minimize processing time and overall
queue length.
Action: Server 2

Obs (t = 21.2):
Servers Status
S0(rate: 1.91): 2 jobs, next in 1.7s
S1(rate: 2.15): 2 jobs, next in 1.7s
S2(rate: 2.77): 6 jobs, next in 0.0s
Incoming: size 1.4 units, 1 waiting
Metrics: finish 83, avg wait 0.28s, avg process 0.82s
Action Space: Server 0, 1, 2

You are balancing jobs across 3 servers [...]
Task: pick one server to assign the incoming job

Observation
& Reward

History

Task

Reasoning

Action

Figure 5: InfraGym case study

Efficiency. Figure 4 shows the latency dis-
tribution of the three LLMs when applied to
load balancing. Qwen3-30B, deployed with
vLLM, achieves the lowest and most stable la-
tency (0.23–0.26 s). GPT-4o exhibits moderate
latency (0.6–1.4 s), striking a balance between
responsiveness and reasoning quality. Gemini-
2.5-Flash, while achieving high effectiveness,
incurs the highest latency (1.5–7.5 s), limiting
its suitability for latency-sensitive environments.
These results reveal a trade-off between capa-
bility and efficiency, pointing to future work on
hybrid strategies that combine fast small models
with powerful large ones.

Cast study. Beyond performance, InfraGym
enables interpretability by exposing how LLM
agents reason and act. Figure 5 shows a load balancing example, where the agent explains its choice
of sending a request to a server in natural language. Unlike RL agents, which often act as black boxes,
LLM agents provide step-by-step rationales that help researchers debug and refine their behavior. As
our InfraGym’s supports this human-in-the-loop manner, users can understand agent mistakes, and
then adjust prompts to improve agent policies iteratively.

4 Related Work

We review two lines of related work: LLM agents for computer system optimization, and gym-style
environments for benchmarking.

LLM agents for computer system. Recent studies applied LLM agents to computer systems.
One line of work [5] uses the ReAct framework for multi-objective HPC job scheduling, where
LLM agents improved throughput, wait time, and fairness over FIFO and Google OR-Tools by
leveraging adaptive reasoning. Other work [7, 8] explored congestion control with LLM agents,
showing promising results, while NetLLM [6] unified several network optimization tasks under a
single LLM framework. Unlike these task-specific efforts, InfraGym provides an open, extensible
platform for both LLM and infrastructure researchers to benchmark and improve agents across diverse
optimization problems.

Gym environments. Open gym environments are crucial for benchmarking and refining LLM agents.
ML-Gym [35] and ML-Dojo [36] standardize machine learning tasks for evaluating ML engineering
agents. SWE-Gym [37] builds software development environments for training software engineering
agents. AgentGym [38] extends evaluation to interactive domains such as the web and games. In
contrast, InfraGym focuses on low-level computer systems, where we need specialized LLM agents
to deal with distinct challenges.

5 Conclusion

We presented InfraGym, an open platform to study LLM agents for computer system optimization.
InfraGym provides three key features: a connector for both simulated and live environments, a
flexible LLM backend, and a unified interaction interface. We benchmark multiple LLM agents on
three representative tasks, and the results highlight a promising direction. Despite encouraging results,
InfraGym also reveals challenges in the use of LLM agents. For example, Large models often incur
high inference costs and response delays, and their decisions can be inconsistent. Looking ahead, we
will extend InfraGym with more environments and agents, and explore hybrid strategies that combine
fast small models with powerful large ones. We invite both ML and system communities to try our
open-source release https://github.com/MLSysOps/InfraGym.
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