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ABSTRACT
Dynamic graph link prediction is widely utilized in the complexweb

of the real world, such as social networks, citation networks, recom-

mendation systems, etc. Recent Transformer-based link prediction

methods on dynamic graphs not only fail to model the fine-grained

structures such as triangles with the vanilla Transformers in the

graph serialization process, but also amplify the imbalanced distri-

bution of graphs because of their over-estimation of high-degree
nodes. To tackle these issues, we propose a Topology-aware Trans-
former on Dynamic Graph (TopDyG) for link prediction, consisting

of a topology injected Transformer (Ti-Transformer) and a mutual

information learning (Mi-Learning). The Ti-Transformer explores

the explicit structure of serialized graphs, capturing the topological

features. The Mi-Learning mines the relationship between nodes

by modeling the mutual information with a prior knowledge, alle-

viating the over-estimation of high-degree nodes when applying

the Transformer-based models for the dynamic graph link predic-

tion task. Extensive experiments on four public datasets containing

both transductive and inductive settings present the superiority of

our proposal. In particular, TopDyG presents an improvement of

43.27% and 28.75% against the state-of-the-art baselines in terms

of NDCG and Jaccard, respectively. The advantages are especially

obvious on the high-density graphs.
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1 INTRODUCTION
Graph structure is leveraged for representing various kinds of data

on World Wide Web, such as citation networks [4, 14], social net-

works [11, 45], and recommendation systems [3, 27]. Realistically,

1
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Figure 1: Graph serialization in vanilla transformer.
the graph data in the above scenarios is not always static, but con-

tinuously evolving over time, i.e., the edges between nodes or the

nodes themselves may appear or disappear over time. In reality,

forecasting the changes in interactions between nodes on dynamic

graphs, such as product clicks in e-commerce, social media follow-

ings, or mutual citations in citation networks, is quite prevalent

and can serve as a fundamental task. Therefore, we concentrate

on the task of link prediction on dynamic graphs, in the hope of

capturing the potential pattern to support real-world applications,

e.g., knowledge graph completion [26] and social analysis [35].

Recent dynamic graph link prediction works can be mainly di-

vided into two categories: GNN-based methods and Transformer-

based methods. The former approaches usually consist of two main

modules, i.e., the structural feature extractors like graph neural

networks (GNN) [41, 42] and the temporal feature extractors like

recurrent neural networks [17] as well as the attention modules

[33]. In addition, Cong et al. [4], Wu et al. [40], Yu et al. [44] propose

to leverage the Transformer architecture to model the temporal

graphs. They creatively convert the initial graphs into node se-

quences, which help model the structural and temporal relations

between nodes. Such paradigm presents a better capability on sim-

ulating the long-term temporal dependencies than the GNN-based

methods, achieving the state-of-the-art performance.

Albeit much progress, the Transformer-based methods still ex-

hibit two inherent flaws when applying to the dynamic link predic-

tion. The first flaw is graph serialization. As a naturally suited

model for Euclidean data, the vanilla Transformer can easily handle

text [2, 8], images [9] and videos [38]. As for the graph, the non-

Euclidean data has to be serialised in an occurrence order before

feeding into Transformer [40, 44] (see the upper right part of Fig. 1).

As shown in Fig. 1, each graph node as the centre only accesses its

neighbors in this way, which can be mapped into a radial structure
consisting of edges 1, 2, 3, 5, 6, resulting in a missing edge 4. Revisit-

ing the topology of 1-hop subgraph in Fig. 1, we argue that it is the
graph serialization that destructs the triangle relations formed

by edges 1, 4 and 5. Analogous to the real world, the triangular

relationship has always been an important factor in maintaining

the clique stability [24].

To quantify the significance of triangles within the graph struc-

ture, we collect the statistics related to the triangles from several

realistic datasets in Fig. 2. As shown in Fig. 2a, each node contributes

to the formation of at least 1 triangle on average, and nearly half

1
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Figure 2: Triangle-related statistics of three realistic datasets.

nodes are involved in the constructing triangles, except in ML-10M.

To overcome the random data noise in realistic graphs, we further

employ the Erdős-Rényi algorithm [10] to generate the correspond-

ing random graphs for each dataset based on the number of nodes

and edges, and plot their triangle numbers in a pair way in Fig. 2b.

Clearly, on three datasets, the number of triangles in the realis-

tic dataset is significantly greater than that in the synthetic one.

The above phenomena prove that the triangles are ubiquitous in

dynamic graphs. Therefore, modeling the triangles we argue is a

key role in capturing the commonalities between neighbors in a

1-hop subgraph [24] and further compensating the vanished edge

in graph serialization.

The second flaw in Transformer is over-estimation of high-
degree nodes. The conditional likelihood in Transformer always

make predictions in the maximum-probability way [30]. When it

comes to the sequence prediction task, the longer sequence causes

the accumulation of more high-probability nodes, e.g., Hubs nodes
in the scale-free networks. Adding insult to injury, the graph se-

rialization in Transformer converts the link prediction task into a

sequence forecasting one. Additionally, most realistic networks, e.g.,

citation networks and social networks, are scale-free [1], where the

node degrees are subject to a power-law distribution. Hence, when

the Transformer-based models are trained on the scale-free graphs,

they are inclined to predict nodes with extremely high degrees [1],

rather than the high-proposition but low-degree nodes.

In this paper, we attempt to provide solutions to above-mentioned

issues by proposing a topology-aware Transformer architecture for

dynamic graph link prediction, termed TopDyG, which consists

of two main components: the topology-injected Transformer (Ti-

Transformer) and the mutual information learning (Mi-Learning).

In particular, for the flaw of graph serialization, the Ti-Transformer

explores the structural features, especially triangles, by a simple yet

efficient way without any extra trainable networks. For the flaw of

over-estimation of high-degree nodes, inspired by the researches on

long-tail or class-imbalanced problems [6, 20–22], the Mi-learning

obtains the intrinsic correlation of nodes in sequences rather than

the high-frequency tokens (Hubs), which effectively alleviates the

bottleneck caused by the accumulation of high-probability nodes.

We conduct extensive experiments on four public datasets, in-

cluding three non-bipartite graph datasets rich in triangles and a

bipartite graph dataset devoid of triangles. TopDyG outperforms

the state-of-the-art baselines on all datasets in terms of NDCG and

Jaccard. Specifically, the experimental results illustrate that the

advantage of TopDyG over baselines is positively correlated with

the topological statistics, e.g., the graph density and the average

number of triangles each node participates in. The contributions of

our work can be condensed into the following three aspects.

(1) We give the ability of capturing the explicit topology feature

in serialized dynamic graphs to Transformer without

attaching any trainable module and complex components.

(2) We introduce a novel learning strategy based on mutual in-

formation to alleviate the effects caused by over-estimation
of high-degree nodes in dynamic graphs, thus assisting

the model to capture the intrinsic patterns.

(3) We evaluate our proposals on extensive experiments on

four real-world datasets and find that TopDyG achieves

obvious improvements over several competitive baselines.

2 RELATEDWORK
2.1 Dynamic link prediction
Recent dynamic graph researches can be classified into discrete-

time approaches and continuous time ones [7, 46].

For the discrete-time approaches [29, 33, 47], their time sets

are discrete, where the events on dynamic graphs between time

points are not be recorded completely. Computationally, such mod-

els assuming discrete-time domain are easier to manipulate. For

instance, one of the representative methods is DySAT [33], which

leverages a graph attention network and the self-attention mod-

ule as cornerstones, aiming to model the structural and temporal

features, respectively. Additionally, EvolveGCN combines graph

convolution networks with GRUs or LSTMs to learn both struc-

tural and temporal features. For the continuous-time approaches

[5, 17, 32, 36, 39, 42], they deal with data that fully records the events

on the graphs and corresponding timestamps. Therefore, they can

capture more details compared to discrete-time methods. Specifi-

cally, they always pay more attention to time encoding because of

the more abundant temporal resources compared to discrete set-

tings. Wen and Fang [39] propose to integrate both the event and

node dynamics to respectively capture the individual and collective

features, and Cong et al. [5] design a GNN-free architecture termed

GraphMixer with MLPs as well as an offline time encoding function,

aiming to capture temporal information. Furthermore, Wu et al.

[40] introduce a simple but effective Transformer-based method

to predict the future links with serialized subgraphs, which are

processed by the temporal alignment technique.

2.2 Graph Transformers
Transformers for graph data are a recent advancement in graph data

mining, offering a new type of neural network models for graph

data [34]. Inspired by the success of transformers in NLP and CV,

researchers attempt to integrate them into GNNs to develop their

potential in modeling graph structures. For instance, Ying et al. [43]

propose Graphormer framework, which is built upon the standard

Transformer architecture and can obtain satisfying capability of

graph representation with different granularity of structural encod-

ing functions. And some methods attempt to obtain global topology

by eigenvectors or eigenvalues of a matrix representation, such as

adjacency or Laplacian matrix [16, 31]. Additionally, Min et al. [25]

2
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introduce a graph masking attention mechanism to assist Trans-

formers to capture the graph-related knowledge for modeling the

structural features.

When it comes to dynamic graphs, Cong et al. [4] propose a

novel but complex architecture termed DyFormer, aiming to capture

co-occurrence neighbors of different nodes and encode temporal

information. On the other hand, SimpleDyG [40] is a more concise

method for dynamic graph than previous researches since that it

only rely on the standard Transformer architecture without any

learnable attachment, preventing the complex modifications.

The differences between our proposals and the current dynamic

graph modeling methods can be summarized in the following folds.

First, although our proposals still rely on the vanilla Transformer

architecture, we inject the topological information to guide the

model capture the graph structure in an explicit way. Second, we

modify the optimization goal of Transformers from maximizing the

conditional probability of the generated sequence to the mutual

information between nodes and their history, considering the prior

structure to alleviate the imbalanced distribution problem.

3 PRELIMINARY
3.1 Problem definition
Formally, a dynamic graph G can be defined as G = {V, E,X},
whereV = {𝑣𝑖 , 𝑖 ∈ (1, 2, · · · , |V|)} is the set of nodes 𝑣𝑖 appeared
in G; E = {𝑒𝑖 𝑗 |𝑒𝑖 𝑗 = (𝑣𝑖 , 𝑣 𝑗 , 𝑡𝜏 ), 𝜏 ∈ [1, 2, · · · ,T]} is the edge set,
whose triplets (𝑣𝑖 , 𝑣 𝑗 , 𝑡𝜏 ) represent an edge 𝑒𝑖 𝑗 connecting nodes 𝑣𝑖

and 𝑣 𝑗 at timestamp 𝑡𝜏 ; X = [𝑥1, 𝑥2, · · · , 𝑥 |V |−1, 𝑥 |V | ] ∈ R |V |×𝑑

denotes the 𝑑-dimension feature set matching with the node setV .

Given a dynamic graph G, our task is training a model 𝑓 (G;𝜃 ) with
parameter 𝜃 , to obtain the pattern of temporal evolution of G at the

next timestamp, so that predicting the new edge set E[ ; ; 𝑡T+1] at
the future timestamp 𝑡T+1:𝜃

∗ = argmin

𝜃 ∈Θ

∑T
𝜏=2

∥ E[ ; ; 𝑡𝜏 ] − 𝑓 (G𝑡𝜏−1 , 𝜃 ) ∥𝐹
E[ ; ; 𝑡T+1] = 𝑓 (G𝑡T , 𝜃

∗)
, (1)

where G𝑡𝜏 , E[ ; ; 𝑡𝜏 ] denote the dynamic graph G and the edge st

at timestamp 𝑡𝜏 , respectively; Θ denotes a parameter space named

hypothesis space, and ∥ · ∥𝐹 represent the Frobenius norm of matrix.

3.2 Serialization of dynamic graphs
The original graph cannot directly be fed into Transformer-based

models since that Transformer is designed for dealing with the

Euclidean structure data such as texts [2, 8], images [9] and videos

[38]. Vanilla Transformer cannot understand the topology of graph

data, therefore, traditional solution is to convert graph data into

sequence data for the Transformer to understand and utilize [40].

For example, recent study segments the given dynamic graph

into 1-hop subgraphs of each node and transforms the subgraphs

into token sequences sorted by interaction time. Suppose the node

𝑣𝑖 as the center, its serialized sequence can be represented as:{
[𝑣𝑖 , 𝑣

𝑡1,𝑣𝑖
𝑖

, 𝑣
𝑡2,𝑣𝑖
𝑖

, · · · , 𝑣𝑡 𝑗,𝑣𝑖
𝑖

, · · · , 𝑣𝑡𝑛𝑖 ,𝑣𝑖
𝑖

],
𝑠 .𝑡 . {𝑡1,𝑣𝑖 , 𝑡2,𝑣𝑖 , · · · 𝑡𝑛𝑖 ,𝑣𝑖 } ⊆ {𝑡1, 𝑡2, · · · , 𝑡T }

(2)

where 𝑣
𝑡 𝑗,𝑣𝑖
𝑖

denotes the node connected with center 𝑣𝑖 at timestamp

𝑡 𝑗,𝑣𝑖 . Furthermore, to assist Transformers understand a global time

domain across sequences and synchronize the time interval, the

timestamp sequence of center 𝑣𝑖 connection can be averagely cut

into 𝑇 subsequences with ⌈T/𝑇 ⌉ interval. Correspondingly, the
serialized sequence in Eq. (2) is also segmented into subsequences:

𝑆𝑚
𝑖

= [𝑣𝑡𝑚,1

𝑖
, 𝑣

𝑡𝑚,2

𝑖
, · · · , 𝑣

𝑡𝑚,|𝑆𝑚
𝑖

|
𝑖

],
𝑠 .𝑡 ., [𝑡𝑚,1, 𝑡𝑚, |𝑆𝑚

𝑖
| ] ⊆ ((𝑚 − 1) ⌈T/𝑇 ⌉,𝑚⌈T/𝑇 ⌉ ] .

𝑚 ∈ 1, 2, · · · ,𝑇
(3)

To assist Transformer to capture the ego node and its temporal

pattern, some special tokens are inserted, including the start to-

kens for historical and predicted data ⟨|ℎ𝑖𝑠𝑡 |⟩ and ⟨|𝑝𝑟𝑒𝑑 |⟩, and cor-
responding end tokens ⟨|𝑒𝑛𝑑𝑜 𝑓 ℎ𝑖𝑠𝑡 |⟩ and ⟨|𝑒𝑛𝑑𝑜 𝑓 𝑝𝑟𝑒𝑑 |⟩. Besides,
⟨|𝑡𝑖𝑚𝑒 𝑚 |⟩ denotes the begin of𝑚-th time period. Hence, the input

and output sequence for center node 𝑣𝑖 can be represented as:

x𝑖 =[⟨|ℎ𝑖𝑠𝑡 |⟩, 𝑣𝑖 , ⟨|𝑡𝑖𝑚𝑒1|⟩, 𝑆1𝑖 , ⟨|𝑡𝑖𝑚𝑒2|⟩, · · · , 𝑆𝑇−1
𝑖 ,

⟨|𝑒𝑛𝑑𝑜 𝑓 ℎ𝑖𝑠𝑡 |⟩],

y𝑖 =[⟨|𝑝𝑟𝑒𝑑 |⟩, ⟨|𝑡𝑖𝑚𝑒𝑇 |⟩, 𝑆𝑇𝑖 , ⟨|𝑒𝑛𝑑𝑜 𝑓 𝑝𝑟𝑒𝑑 |⟩] .
(4)

4 APPROACHES
4.1 Overview
In this section, we detail the TopDyG model, which consists of two

main components, i.e. topology-injected Transformer (see Sec. 4.2),

and mutual information learning (see Sec. 4.3).

The workflow of TopDyG is plotted in Figure 3. First, we extract

the 1-hop subgraph for each node from the original dynamic graph

and serialize them into sequences consisting of node tokens and

special tokens. Then we capture the topology feature of each se-

quence by constructing its corresponding normalized adjacent ma-

trix. After that, we inject the topology features into the vanilla mask

matrices of Transformer model to shape the topology-injected
Transformer, which is capable of eliciting the hidden topology

information from generated representations. Finally, we utilize the

distribution of degree of each node, obtained from the original

graph, as the prior knowledge to model the mutual information

between tokens and their history, alleviating the over-estimation

bottleneck in high-degree nodes.

4.2 Topology-injected Transformer
4.2.1 Capturing the topology of input. Given a dynamic graph

G = {𝐺1,𝐺2, · · · ,𝐺 |V | } segmented by nodes, where𝐺𝑖 = {𝑉𝑖 , 𝐸𝑖 , 𝑋𝑖 }
denotes the 1-hop subgraph centered around the node 𝑣𝑖 extracted

from G. And 𝑉𝑖 , 𝐸𝑖 , 𝑋𝑖 represent the node set, edge set, and node

features of 𝐺𝑖 , respectively.

For each subgraph 𝐺𝑖 , we can construct the serialized input

sequence x(𝑖 ) according to Eq.(4) and abstract it as:

x(𝑖 ) = [ℎ (𝑖 )
1

, ℎ
(𝑖 )
2

, · · · , ℎ (𝑖 )𝑛 ] ∈ R𝑛, (5)

where x(𝑖 ) consists of 𝑛 token ids from common node tokens or

special tokens mentioned in Section 3.2.

And then, we obtain the complete binary relation matrix 𝐴(𝑖 ) =
{0, 1}𝑛×𝑛 of the input sequence x(𝑖 ) , which not only includes the

relationships between the neighbor nodes and the ego node but

also the relationships between the neighbor nodes themselves, i.e.,

𝐴
(𝑖 )
𝑝𝑞 = 1 if (ℎ (𝑖 )𝑝 , ℎ

(𝑖 )
𝑞 ) ∈ 𝐸𝑖 , otherwise 𝐴

(𝑖 )
𝑝𝑞 = 0. Thus, x(𝑖 ) can be

3
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Figure 3: The workflow of TopDyG

regarded as special version of serialized subgraph 𝐺𝑖 appending

with special tokens.

Finally, we compute the normalized relation matrix𝐴(𝑖 )
of input

sequence x(𝑖 ) [15]:

𝐴(𝑖 ) = 𝐷 (𝑖 ) −
1

2𝐴(𝑖 )𝐷 (𝑖 ) −
1

2 ∈ R𝑛×𝑛, (6)

where𝐷 (𝑖 )
is the degree matrix of x(𝑖 ) and𝐷 (𝑖 )

𝑝𝑝 =
∑
𝑞 𝐴

(𝑖 )
𝑝𝑞 . Com-

pared to the original matrix 𝐴(𝑖 )
, the normalized 𝐴(𝑖 )

reduces the

weights of nodes with high degrees through the 𝐷 (𝑖 ) −
1

2
, assisting

the model to capture the informative pattern in x(𝑖 ) .

4.2.2 Injecting the topology into Transformer. Weuseh ∈ R𝑑
to represent the 𝑑−dimensional hidden feature of token ℎ in Eq.(5).

Thus, the input sequence x(𝑖 ) can be converted to a matrix H(𝑖 )
:

H(𝑖 ) = [h(𝑖 )
1

,h(𝑖 )
2

, · · · ,h(𝑖 )
𝑛 ] ∈ R𝑛×𝑑 . (7)

The core component in Transformer is multi-head self-attention

module Attention(·).
Firstly, it encodes H(𝑖 )

to a triplet (Q(𝑖 ) ,K(𝑖 ) ,V(𝑖 ) ):

Q(𝑖 ) = H(𝑖 )WQ,K(𝑖 ) = H(𝑖 )WK,V(𝑖 ) = H(𝑖 )WV, (8)

where WQ ∈ R𝑑×𝑑Q , WK ∈ R𝑑×𝑑K , WV ∈ R𝑑×𝑑V are trainable

weights and 𝑑Q = 𝑑K = 𝑑V = 𝑑
𝑁ℎ𝑑

. 𝑁ℎ𝑑 denotes the number of

operations in the multi-head self-attention module, resulting in

(Q(𝑖 )
𝑗
,K(𝑖 )

𝑗
,V(𝑖 )

𝑗
) for 1 ≤ 𝑗 ≤ 𝑁ℎ𝑑 .

Since that we concentrate on the prediction capability for future

connected nodes, we decide to utilize the decoder-only architecture

to simulate the scenario where only historical nodes are available

in practical applications. Therefore, a unit lower triangular mask

matrix 𝑀 ∈ R𝑛×𝑛 is utilized for preserving the historical tokens

and masking the future tokens:

𝑀 =


1

.

.

.
. . .

1 · · · 1

𝑛×𝑛 , (9)

where elements with a value of 1 indicate that the token will be

retained. Thus, each token in an input sequence can only see the

current moment and historical tokens without knowing about fu-

ture tokens, which models the temporal information. Similarly, we

fuse the structural information into the original mask matrix to

form the topology-injected mask matrix𝑀 (𝑖 )∗
as follows:

𝑀 (𝑖 )∗ = 𝑀 +𝐴
(𝑖 )
𝑙𝑡

, (10)

where 𝐴
(𝑖 )
𝑙𝑡

denotes the lower triangular part of 𝐴(𝑖 )
, s.t., 𝐴

(𝑖 )
𝑙𝑡

=

𝑀 ⊙ 𝐴(𝑖 )
. And ⊙ denotes Hadamard product operation. With such

topology-injected mask matrix 𝑀 (𝑖 )∗
, the output of Transformer

can be computed as:

ℎ𝑒𝑎𝑑
(𝑖 )
𝑗

= Softmax
©­«
Q(𝑖 )

𝑗
K(𝑖 )

𝑗

⊤

√
𝑑K

⊙
(
𝑀 (𝑖 )∗ −

(
lim

𝐶→∞
𝐶

(
1 − 𝑀 (𝑖 )∗

)))ª®¬V(𝑖 )
𝑗

Attention(H(𝑖 ) ) = Concat(ℎ𝑒𝑎𝑑 (𝑖 )
1

, · · · , ℎ𝑒𝑎𝑑 (𝑖 )
𝑁ℎ𝑑

)W𝑂 ,

(11)

where 𝐶 is a coefficient approaching infinity, 1 ∈ R𝑛×𝑛 is a

matrix with all values of 1, W𝑂 ∈ R𝑑×𝑑 represents a trainable

matrix, and Concat(·) denotes the concatenation operation.

4.3 Mutual information learning
We designed a learning strategy based on mutual information

termed Mi-Learning, aiming to help the Ti-Transformer learn

the meaningful evolution law and alleviate the over-estimation of

high-degree nodes.

In the generative paradigm for dynamic link prediction task, the

occurrence frequency of a node token in the sequence set can be

equivalent to its degree in original graph. Thus, we can estimate

the prior distribution 𝑝 (𝑣𝑖 ) of node token 𝑣𝑖 by:

𝑝 (𝑣𝑖 ) =
Degree(𝑣𝑖 )∑

𝑣∈V Degree(𝑣) , (12)

4
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where Degree(𝑣) represents the degree of node 𝑣 ∈ V . Then we

introduce the strategy to coalesce the prior distribution into the

optimization goal.

Given the sequence x(𝑖 ) in Eq.(5), the probability of the vanilla

Transformer generating the 𝑘-th token can be formalized as:

𝑝 (ℎ (𝑖 )
𝑘

|x(𝑖 )
<𝑘

) = Softmax

(
LayerNorm(H(𝑖 )

<𝑘 )Wtoken

)
, (13)

whereℎ
(𝑖 )
𝑘

is the 𝑘-th token in x(𝑖 ) , x(𝑖 )
<𝑘

denotes the subsequence of

x(𝑖 ) containing the first (𝑘 − 1) tokens,H(𝑖 )
<𝑘 denotes the hidden

embedding of x(𝑖 )
<𝑘

, and W
token

is the learnable matrix to obtain

the probability across the node tokens. Thus, the relation between

𝑝 (ℎ (𝑖 )
𝑘

|x(𝑖 )
<𝑘

) and H(𝑖 )
<𝑘

can be simplified as:

log 𝑝 (ℎ (𝑖 )
𝑘

|x(𝑖 )
<𝑘

) ∼ H(𝑖 )
<𝑘

(14)

To further explore the relationship between current token ℎ
(𝑖 )
𝑘

and its historical sub-sequence x(𝑖 )
<𝑘

, the pointwise mutual informa-

tion (PMI) between them can be written as following form:

log

𝑝 (ℎ (𝑖 )
𝑘

, x(𝑖 )
<𝑘

)

𝑝 (ℎ (𝑖 )
𝑘

)𝑝 (x(𝑖 )
<𝑘

)
∼ H(𝑖 )

<𝑘

⇐⇒ log

𝑝 (ℎ (𝑖 )
𝑘

, x(𝑖 )
<𝑘

)

𝑝 (x(𝑖 )
<𝑘

)
− log𝑝 (ℎ (𝑖 )

𝑘
) ∼ H(𝑖 )

<𝑘

⇐⇒ log𝑝 (ℎ (𝑖 )
𝑘

|x(𝑖 )
<𝑘

) ∼ H(𝑖 )
<𝑘

+ log 𝑝 (ℎ (𝑖 )
𝑘

),

(15)

where 𝑝 (ℎ (𝑖 )
𝑘

) is the prior distribution of token ℎ
(𝑖 )
𝑘

. It is worth

noting that the 𝑝 (ℎ (𝑖 )
𝑘

) of node tokens can be obtained by Eq. (12)

while the 𝑝 (ℎ (𝑖 )
𝑘

) of all special tokens is set to the maximum prior

probability among node tokens, i.e., max

𝑣∈V
𝑝 (𝑣), since that the special

tokens are regarded as Hubs mentioned in Introduction. Without

loss of generality, we multiply log 𝑝 (ℎ (𝑖 )
𝑘

) by a coefficient 𝜏 to adjust

the importance of log 𝑝 (ℎ (𝑖 )
𝑘

). Thus, the Eq. (13) can be updated as:

𝑝∗ (ℎ (𝑖 )
𝑘

|x(𝑖 )
<𝑘

) = Softmax

(
LayerNorm(H(𝑖 )

<𝑘
)W

token
+ 𝜏 log𝑝 (ℎ (𝑖 )

𝑘
)
)
.

(16)

Thus, the final objective of training the model with parameters 𝜃

is defined as:

L = −
|V |∑︁
𝑖=1

|x(𝑖 ) |∑︁
𝑘=1

log𝑝∗
𝜃
(ℎ (𝑖 )

𝑘
|x(𝑖 )

<𝑘
) . (17)

5 EXPERIMENTS
To examine the effectiveness of our proposals, we concentrate on

answering the following research questions:

RQ1 How do our proposals perform in comparison to state-of-

the-art methods on dynamic graph link prediction tasks?

RQ2 Among our proposed components, which one contributes

the most to the performance?

RQ3 What is the impact of different loss functions on the per-

formance of link prediction?

RQ4 How does the choice of different mask matrices affect the

performance of link prediction? Does the time-based mask-

ing scheme have an impact on the performance?

RQ5 How is the performance of link prediction affected by dif-

ferent weights of the prior knowledge?

5.1 Experiments setup
5.1.1 Evaluation datasets. We utilize four real-world public data-

sets, including UCI [28], ML-10M [13], Hepth [18], and MMConv

[19], from different domains for our experiments. To ensure the

fairness of the comparative experiment and temporal alignment,

we follow the previous researches [33, 40] by re-segmenting UCI,

ML-10M, Hepth, and MMConv into 13, 13, 12, and 16 time periods,

respectively. In addition, detailed introduction and preprocessing

of four datasets are presented in Appendix A.1.

5.1.2 Model Configurations. Following the previous work [40],

we utilize the GPT-2 model [30] as the backbone. For all the four

datasets, we follow the previous setting [5, 40] by regarding the

dynamic graphs as undirected graphs. The dataset is split into

training, validation, and testing based on the predefined time steps

mentioned in Sec.5.1.1. Specifically, the data in the first (𝑇 − 2)
time steps are used as the training set to optimize models, the data

in time period (𝑇 − 1) is used as the validation set to adjust the

hyperparameters, and the data in the time period 𝑇 is used as the

test set to examine the final performance.

5.1.3 Baselines for comparison. A number of link prediction

methods have been proposed in recent years. In our modeling,

we focus on dynamic graphs. Thus, we do not make comparisons

with researches designed for static graphs such as GraphSage [12]

and GAT-AE [37, 48]. We compare our proposals with the follow-

ing baselines: (1) Two discrete-time methods, i.e., DySAT [33] and

EvolveGCN [29]; (2) Six continuous-time methods, i.e., DyRep [36],

JODIE [17], TGAT [42], TGN [32], TREND [39], and GraphMixer

[5]; (3) A Transformer-based method, i.e., SimpleDyG [40]. Addi-

tionally, the detailed introduction of the baselines is presented in

Appendix A.2.

5.2 Overall performance (RQ1)
To answer RQ1, we examine the dynamic graph link prediction

performance of our proposals as well as the baselines in Table 1.

Generally, our TopDyG outperforms all the discussed baselines

in all datasets. Specifically, it achieves up to a 43.27% performance

improvement over the optimal baseline method on the transductive

datasets including UCI, ML-10M, and MMConv. On the more chal-

lenging inductive dataset Hepth, although there is still a gap in the

absolute performance values compared to the transductive scenario,

both the NDCG and Jaccard achieve more than 20% improvement

over the state-of-the-art baseline.

Additionally, we note an interesting phenomenon: the perfor-

mance improvement of our proposal over the SOTA method is

positively correlated with density of the datasets showed in Table 3.

Specifically, the performance improvement of TopDyG over the

SOTA methods on different datasets shows a positive correlation

with the average number of triangles and the average degree for

each node in the datasets. For instance, ML-10M dataset has the least

number of average triangles per node among the four discussed

datasets. Our proposal also has the minimal advantage against Sim-

pleDyG, i.e., only 4.59% and 3.10% in terms of NDCG and Jaccard,
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Table 1: Performance of dynamic link prediction by our proposal and the baselines on four datasets. (In each column, the best
result is bolded and the runner-up is underlined. And all the performance data of baselines is obtained fromWu et al. [40].)

UCI ML-10M Hepth MMConv

NDCG@5 Jaccard NDCG@5 Jaccard NDCG@5 Jaccard NDCG@5 Jaccard

DySAT 0.010±0.003 0.010±0.001 0.058±0.073 0.050±0.068 0.007±0.002 0.005±0.001 0.102±0.085 0.095±0.080
EvolveGCN 0.064±0.045 0.032±0.026 0.097±0.071 0.092±0.067 0.009±0.004 0.007±0.002 0.051±0.021 0.032±0.017
DyRep 0.011±0.018 0.010±0.005 0.064±0.036 0.038±0.001 0.031±0.024 0.010±0.006 0.140±0.057 0.067±0.025
JODIE 0.022±0.023 0.012±0.009 0.059±0.016 0.020±0.004 0.031±0.021 0.011±0.008 0.041±0.016 0.032±0.022
TGAT 0.061±0.007 0.020±0.002 0.066±0.035 0.021±0.007 0.034±0.023 0.011±0.006 0.089±0.033 0.058±0.021
TGN 0.041±0.017 0.011±0.003 0.071±0.029 0.023±0.001 0.030±0.012 0.008±0.001 0.096±0.068 0.066±0.038
TREND 0.067±0.010 0.039±0.020 0.079±0.028 0.024±0.003 0.031±0.003 0.010±0.002 0.116±0.020 0.060±0.018
GraphMixer 0.104±0.013 0.042±0.005 0.081±0.033 0.043±0.022 0.011±0.008 0.010±0.003 0.172±0.029 0.085±0.016
SimpleDyG 0.104±0.010 0.092±0.014 0.138±0.009 0.131±0.008 0.035±0.014 0.013±0.006 0.184±0.012 0.169±0.010
TopDyG (Ours) 0.149±0.007 0.101±0.006 0.144±0.002 0.135±0.002 0.042±0.004 0.017±0.002 0.242±0.040 0.218±0.030
Improvement 43.27% 9.70% 4.59% 3.10% 21.14% 27.31% 31.64% 28.75%

respectively. On the other hand, MMConv dataset is a bipartite

dynamic graph without triangle, but our TopDyG still has about

30% improvement. In view of the above phenomena, we analyze

statistics of MMConv showed in Table 3 and consider that although

it misses the triangle pattern, it has an average node degree greater

than 26, the largest one in the four datasets. In such case, our topol-

ogy injection method not only does not fail, but also assist the

model to pay more attention to the relationship between neighbor

nodes and the ego node in the sequences of subgraphs, rather than

to the relationship with special tokens. It can be attributed to the

fact that the average number of triangles and node degrees are

positively correlated with density of the datasets. To sum up, the

more dense the graphs, the more obvious the topological features

contribute to the performance of TopDyG.

5.3 Ablation study (RQ2)
To answer RQ2, we perform an ablation study to get a deep insight

into each component of our proposed TopDyG model. We remove

or replace a certain component of TopDyG and examine the corre-

sponding performance of the incomplete TopDyG on all discussed

datasets, which is denoted as the notation ‘w/o’. In particular, there

are two individual TopDyG models we want to investigate, i.e.,

TopDyG𝑤/𝑜 [𝑇𝑖 ] that removes the topology-injected mechanism,

and TopDyG𝑤/𝑜 [𝑀𝑖 ] that removes the mutual information learn-

ing strategy. We compute the relative performance change rates of

incomplete TopDyG models against the integrated TopDyG model.

Each ablation result is computed with the average of relative change

rates for the NDCG and Jaccard indices. We report the detail results

in Table 2.

As shown in Table 2, removing either of the two components re-

sults in an obvious performance drop under different circumstances.

Specifically, “w/o Ti-Transformer” causes the biggest drop of both

NDCG and Jaccard on Hepth and MMconv datasets. Performance

diminish on Hepth indicates that modeling the topology feature is

an effective way to boost the dynamic graph link prediction under

the inductive setting. Furthermore, the performance degradation

of the model on different datasets after removing topology feature

UCI ML-10M Hepth MMConv
Datasets
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Figure 4: Performance comparison to examine the impact of
loss functions.
aligns with the trend observed in Table 1. That is, the greater the

average number of triangles and the average degree of the dataset,

the more the performance is influenced by topology features, which

precisely corroborates our perspective presented in Sec 5.2.

In addition, “w/o Mi-Learning” leads to the biggest drop of both

NDCG and Jaccard on UCI and ML-10M datasets. Performance drop

on the two datasets indicates that leveraging the prior distribution

in Mi-Learning is an effective way to improve the model capabil-

ity under transductive setting. Overall, the impact of removing

different modules on transductive datasets is similar while topo-

logical features have a greater influence on Hepth than other three

datasets, indicating that priority should be given to considering the

topological structure of dynamic graphs in inductive scenarios.

5.4 Impact of optimization goals (RQ3)
To answer RQ3 to see the impact of the loss functions for dynamic

link prediction task, we compare the performance of our proposals

and several variants, i.e., TopDyG[𝐶𝐵 ] and TopDyG[𝐹𝑜𝑐𝑎𝑙 ] . Specif-
ically, TopDyG[𝐶𝐵 ] and TopDyG[𝐹𝑜𝑐𝑎𝑙 ] denote the Mi-Learning

module in TopDyG is replaced by the Class Balanced Loss [6] and Fo-
cal Loss [20], respectively. Such methods are utilized for alleviating

the class imbalanced problem.

First, we concentrate on the comparison between TopDyG based

methods and the SOTA baseline SimpleDyG. As shown in Fig. 4,
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Table 2: Ablation studies of TopDyG for the link prediction tasks. The biggest drop in each column is appended ↓.

UCI ML-10M Hepth MMConv

NDCG@5 Jaccard NDCG@5 Jaccard NDCG@5 Jaccard NDCG@5 Jaccard

TopDyG 0.149±0.007 0.101±0.006 0.144±0.002 0.135±0.002 0.042±0.004 0.017±0.002 0.242±0.040 0.218±0.030
w/o 0.124±0.011 0.093±0.005 0.137±0.007 0.127±0.006 0.025±0.006 0.010±0.002 0.164±0.003 0.156±0.002
Ti-Transformer -16.48% -8.33% -5.43% -6.22% -40.19% ↓ -37.76% ↓ -32.29% ↓ -28.26% ↓
w/o 0.110±0.011 0.088±0.015 0.133±0.014 0.125±0.013 0.036±0.017 0.013±0.007 0.168±0.010 0.158±0.012
Mi-Learning -25.95% ↓ -12.71% ↓ -7.93% ↓ -7.48% ↓ -15.47% -20.00% -30.85% -27.25%
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Figure 5: Performance comparison to examine the impact of
topology injection techniques.
TopDyG[𝐹𝑜𝑐𝑎𝑙 ] only outperforms SimpleDyG onUCI datasets while

other variants of TopDyG obtains worse performance than Sim-

pleDyG on all datasets. We consider that such phenomenon is

caused by the reweighting mechanism in Focal Loss, aiming to

force the model pay attention to the difficult samples in classifi-

cation tasks. However, token prediction is more challenging than

sample classification due to the vast number of tokens from which

to choose when generating the next token. Consequently, meth-

ods designed for addressing long-tail classification are not directly

applicable to generative tasks. Such inapplicability is highlighted

by the TopDyG[𝐶𝐵 ] on ML-10M dataset, where the TopDyG[𝐶𝐵 ]
obtains the worst performance among the discussed models.

Next we zoom in on the performance of TopDyG. It is obvious

that our TopDyG maintains its advantage compared with several

variants. Specifically, not only does it have the best average per-

formance in terms of NDCG and Jaccard, but it also exhibits the

smallest standard deviation, illustrating the highest stability among

all the methods discussed. Therefore, we consider that modeling

the mutual information serves as a straightforward and effective

approach to boost the performance of the Transformer-based model

with real-world graphs.

5.5 Effect of topology injection methods (RQ4)
To investigate the effect of different types of the topology injection

technique, we modify the adjacent matrix 𝐴 of input sequence x
into two variants, i.e. the topological variant 𝐴[𝐴𝑑𝑑 ] and temporal

variant 𝐴[𝑊𝑜𝑇 ] . The results are shown in Fig. 5.

From the topological perspective, we accumulate the number of

times each edge appears in the subgraph and use it as an element

in the adjacency matrix:

𝐴[𝐴𝑑𝑑 ]𝑝𝑞 = Count( [𝑝, 𝑞]), (18)

where Count( [𝑝, 𝑞]) denotes the frequency of the edge (𝑝, 𝑞) ap-
pears in the dynamic graph. From the temporal perspective, we

consider that the importance of historical edges diminishes over

time. Thus, the corresponding matrix 𝐴[𝑊𝑜𝑇 ] is defined as:

𝐴[𝑊𝑜𝑇 ]𝑝𝑞 =

𝑇∑︁
𝑚=1

exp (𝑚 −𝑇 ) × 𝑔 ( [𝑝, 𝑞],𝑚) , (19)

where𝑊𝑜𝑇 is the abbreviation of “weighting over time”,𝑔 ( [𝑝, 𝑞],𝑚) =
{0, 1} is a function discriminating the existence of edge (𝑝, 𝑞) at
time period𝑚.

We can observe that almost all the TopDyG-based models out-

perform the SimpleDyG on all discussed datasets. However, for

ML-10M dataset, TopDyG[𝐴𝑑𝑑 ] obtains the best performance in

terms of NDCG while the worst in terms of Jaccard. It can be attrib-

uted to the accumulating mechanism since that it overemphasizes

the importance of nodes with high degrees, leading the model to

repeatedly generate such high-frequency nodes. Therefore, the di-

versity of prediction decreases and the Jaccard metric is reduced.

For the TopDyG[𝑊𝑜𝑇 ] , it outperforms TopDyG[𝐴𝑑𝑑 ] in terms of

the Jaccard metric for most datasets. This is mainly because that

it generally reduces the weight of high-degree nodes compared to

TopDyG[𝐴𝑑𝑑 ] , mitigating the model’s preference for high-degree

nodes. On the other hand, either TopDyG[𝐴𝑑𝑑 ] or TopDyG[𝐴𝑑𝑑 ]
has the worst stability on most of the datasets, indicating that the

re-weighting operation is not the best choice to assist the model

capture the features.

5.6 Impact of the prior knowledge (RQ5)
In order to investigate the impact of the weight of prior knowledge

in Mi-Learning, we test the performance of TopDyG on all datasets

by ranging the weight 𝜏 from 0 to 1.5 with a step size of 0.25. The

results are shown in Fig. 6.

The metrics, i.e., NDCG and Jaccard, reach the peaks when 𝜏 is

close to 0.75, showing an overall upward trend from 0 to 0.75, and

a general downward trend from 0.75 to 1.5. When 𝜏 = 0 or 𝜏 = 1.5,

TopDyG shows the worst performance on all the four datasets.

Specifically, 𝜏 = 0 means that the optimization goal degrades into

the conditional probability without prior knowledge of the dataset.

Thus, the model cannot be trained well to capture the evolution

pattern, and it is bothered by the imbalanced distribution of real-

world graphs.

On the other hand, setting the value of 𝜏 to 1.5 means that the

weight of the prior distribution is overemphasized in the optimiza-

tion goal, which leads to an excessive averaging of node importance,
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Figure 6: Performance of TopDyG on four datasets with the
parameter 𝜏 in Eq. (16) changing from 0 to 1.5. The dark line
represents the mean, and the light shaded area indicates the
standard deviation.

preventing the model from identifying important nodes. Further-

more, the phenomenon is particularly pronounced in the MMConv

dataset because it is a bipartite graph lacking triangles, with the

1-hop subgraph exhibiting a single radial pattern. Therefore, over-

averaging the degree features of nodes leads to impaired structural

features and the worst performance.

5.7 Case study
In this subsection, we show an example from the test set of UCI to

illustrate the different attention matrices produced by TopDyG and

the state-of-the-art baseline SimpleDyG; see Fig. 7.

Fig. 7a shows the normalized adjacency of a 1-hop subgraph

sequence with node 848 as the center, where the sequences on the

left and bottom sides are the original input sequences. The darker

the area in the plot, the more important the information is. It can

be observed from the Fig. 7b and 7c that SimpleDyG roughly fo-

cuses its attention on the first few tokens without distinguishing

between special tokens and node tokens, whereas TopDyG directs

its attention primarily to the central node token. Additionally, as

shown in Fig. 7d and 7e, TopDyG can also pay attention to the rela-

tionships between neighbors of the center node, while SimpleDyG

is poor at modeling such structural features in the input sequence.

In summary, compared to the attention matrices produced by Sim-

pleDyG, those produced by TopDyG are more similar to the original

topology shown in Fig. 7a. This confirms that TopDyG has a bet-

ter capability for modeling the inner relationships of neighboring

nodes than SimpleDyG.

6 CONCLUSION
In this paper, we propose a topology-aware Transformer archi-

tecture for dynamic graph link prediction (TopDyG), which con-

sists of a topology-injected Transformer (Ti-Transformer) and a

mutual information learning strategy (Mi-Learning). Specifically,

Ti-Transformer explores the relationship between the neighboring
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(e) Attention of head 6 in TopDyG

Figure 7: An example of attention matrices generated by
TopDyG and SimpleDyG.

nodes of the center node in a serialized 1-hop subgraph, and feeds

the topological feature into Transformer model in an explicit way

without extra learnable modules. Additionally, Mi-Learning mod-

els the mutual information between nodes in a 1-hop subgraph,

alleviating the over-estimation on high-degree nodes in real-world

graphs with the prior knowledge of them. Experimental results on

four real-world public datasets exhibit the advantages of TopDyG

on improving the performance of dynamic link prediction in terms

of NDCG and Jaccard. Moreover, we find the superiority of TopDyG

is obvious when dealing with graphs with high density.

As for future work, we plan to investigate how to eliminate the

effects of the imbalanced distribution and reveal the significance of

structural features in an explainable way. Besides, we are interested

in exploring the application of our method in combining large

language models (LLMs) with graph data. Thus, we can harness the

understanding and generation capabilities of LLMs to facilitate the

completion of graph-related tasks.
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A APPENDIX
A.1 Datasets

Table 3: Statistics of the datasets used in our experiments

Dataset UCI ML-10M Hepth MMConv

Domain Social Rating Citation Conversation

Paradigm Transductive Transductive Inductive Transductive

# Nodes 1,781 15,841 4,737 7,415

# Edges 16,743 48,561 14,831 91,986

# Density 0.0105 3.87 × 10
−4

0.0013 0.0033

# Triangles 13,580 15,962 11,328 0

# Avg. Triangles 7.6249 1.0076 2.3914 0

# Avg. Degree 18.8020 6.1311 6.2618 26.2980

# Time Periods 13 13 12 16

• UCI is a social network dataset aiming at sustaining interaction

among students at University of California, Irvine and help

them enlarge their circles of friends.

• ML-10M is collected from the MovieLens website. It consists of

user-tag interactions, where the edges represent interactions,

nodes denote users and tags.

• Hepth is from the e-print arXiv and covers scientific collabora-

tions between authors papers submitted to High Energy Physics

- Theory category. It is worth noting that Hepth contains new

emerging nodes as time goes on.

• MMConv is a multi-modal conversational dataset, a fully an-

notated collection of human-to-human role-playing dialogues

spanning over multiple domains and tasks.

For Hepth dataset where text is used as node attributes, we align

with previous work [40] by employing the word2vec model [23]

to encode the text into embedding vectors. The detailed statistics

of the four datasets after preprocessing are provided in Table. 3,

where Avg. Triangle represents the average number of triangles

that can be formed directly with the nodes that are 1-hop away

from each node.

A.2 Baseline for comparison
• DySAT [33] is a neural architecture learning node represen-

tations to capture dynamic graph structural evolution along

the two dimensions of structural neighborhood and temporal

dynamics.

• EvolveGCN [29] captures the dynamism of the graph sequence

with an RNN to evolve the GCN parameters rather than resort-

ing to node representations.

• DyRep [36] is a two-time scale deep temporal point process

model that captures the interleaved dynamics of the observed

processes with an unsupervised procedure.

• JODIE [17] is a coupled recurrent neural network model, which

employs two RNNs to update the embeddings at every corre-

sponding interaction.

• TGAT [42] contains the self-attention mechanism as building

block and a novel functional time encoding technique based on

the classical Bochner’s theorem from harmonic analysis.

• TGN [32] is a generic, efficient framework for deep learning

on dynamic graphs represented as sequences of timed events.

• TREND [39] is a framework for temporal graph representation

learning, driven by temporal event and node dynamics and

built upon a Hawkes process-based GNN.

• GraphMixer [5] employs MLPs and neighbor mean-pooling

to summarize the temporal links and node representation in-

formation, respectively.

• SimpleDyG [40] is a Transformer-based simple approach for

modeling dynamic graphs with time alignment technique.
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