
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Triangle Matters! TopDyG: Topology-aware Transformer
for Link Prediction on Dynamic Graphs

Anonymous Author(s)

Submission Id: 1108

ABSTRACT
Dynamic graph link prediction is widely utilized in the complexweb

of the real world, such as social networks, citation networks, recom-

mendation systems, etc. Recent Transformer-based link prediction

methods on dynamic graphs not only fail to model the fine-grained

structures such as triangles with the vanilla Transformers in the

graph serialization process, but also amplify the imbalanced distri-

bution of graphs because of their over-estimation of high-degree
nodes. To tackle these issues, we propose a Topology-aware Trans-
former on Dynamic Graph (TopDyG) for link prediction, consisting

of a topology injected Transformer (Ti-Transformer) and a mutual

information learning (Mi-Learning). The Ti-Transformer explores

the explicit structure of serialized graphs, capturing the topological

features. The Mi-Learning mines the relationship between nodes

by modeling the mutual information with a prior knowledge, alle-

viating the over-estimation of high-degree nodes when applying

the Transformer-based models for the dynamic graph link predic-

tion task. Extensive experiments on four public datasets containing

both transductive and inductive settings present the superiority of

our proposal. In particular, TopDyG presents an improvement of

43.27% and 28.75% against the state-of-the-art baselines in terms

of NDCG and Jaccard, respectively. The advantages are especially

obvious on the high-density graphs.
1

CCS CONCEPTS
• Information systems→Web mining.

KEYWORDS
Dynamic graphs, Transformer, Link prediction, Topology

ACM Reference Format:
Anonymous Author(s). 2025. Triangle Matters! TopDyG: Topology-aware

Transformer for Link Prediction on Dynamic Graphs. In Proceedings of ACM
Web Conference 2025 (WWW ’25). ACM, New York, NY, USA, 10 pages.

https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION
Graph structure is leveraged for representing various kinds of data

on World Wide Web, such as citation networks [4, 14], social net-

works [11, 45], and recommendation systems [3, 27]. Realistically,

1
Our code is available at: https://anonymous.4open.science/r/TopDyG-924B.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

WWW ’25, April 28– May 02, 2025, Sydney, Australia
© 2025 Association for Computing Machinery.

ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00

https://doi.org/XXXXXXX.XXXXXXX

Serialization

1-hop Subgraph

①

②③

④

⑤

⑥

Transformer①

②

③

⑤

⑥

④
Input

Vanilla Transformer

Figure 1: Graph serialization in vanilla transformer.
the graph data in the above scenarios is not always static, but con-

tinuously evolving over time, i.e., the edges between nodes or the

nodes themselves may appear or disappear over time. In reality,

forecasting the changes in interactions between nodes on dynamic

graphs, such as product clicks in e-commerce, social media follow-

ings, or mutual citations in citation networks, is quite prevalent

and can serve as a fundamental task. Therefore, we concentrate

on the task of link prediction on dynamic graphs, in the hope of

capturing the potential pattern to support real-world applications,

e.g., knowledge graph completion [26] and social analysis [35].

Recent dynamic graph link prediction works can be mainly di-

vided into two categories: GNN-based methods and Transformer-

based methods. The former approaches usually consist of two main

modules, i.e., the structural feature extractors like graph neural

networks (GNN) [41, 42] and the temporal feature extractors like

recurrent neural networks [17] as well as the attention modules

[33]. In addition, Cong et al. [4], Wu et al. [40], Yu et al. [44] propose

to leverage the Transformer architecture to model the temporal

graphs. They creatively convert the initial graphs into node se-

quences, which help model the structural and temporal relations

between nodes. Such paradigm presents a better capability on sim-

ulating the long-term temporal dependencies than the GNN-based

methods, achieving the state-of-the-art performance.

Albeit much progress, the Transformer-based methods still ex-

hibit two inherent flaws when applying to the dynamic link predic-

tion. The first flaw is graph serialization. As a naturally suited

model for Euclidean data, the vanilla Transformer can easily handle

text [2, 8], images [9] and videos [38]. As for the graph, the non-

Euclidean data has to be serialised in an occurrence order before

feeding into Transformer [40, 44] (see the upper right part of Fig. 1).

As shown in Fig. 1, each graph node as the centre only accesses its

neighbors in this way, which can be mapped into a radial structure
consisting of edges 1, 2, 3, 5, 6, resulting in a missing edge 4. Revisit-

ing the topology of 1-hop subgraph in Fig. 1, we argue that it is the
graph serialization that destructs the triangle relations formed

by edges 1, 4 and 5. Analogous to the real world, the triangular

relationship has always been an important factor in maintaining

the clique stability [24].

To quantify the significance of triangles within the graph struc-

ture, we collect the statistics related to the triangles from several

realistic datasets in Fig. 2. As shown in Fig. 2a, each node contributes

to the formation of at least 1 triangle on average, and nearly half

1

https://doi.org/XXXXXXX.XXXXXXX
https://anonymous.4open.science/r/TopDyG-924B
https://doi.org/XXXXXXX.XXXXXXX

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

WWW ’25, April 28– May 02, 2025, Sydney, Australia Anon. Submission Id: 1108

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

UCI ML-10M Hepth
Datasets

0
1
2
3
4
5
6
7
8
9

10

Av
er

ag
e

Tr
ia

ng
le

s P
er

 N
od

e

7.6249

1.0076

2.3914

Triangles
Ratios

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Ra
tio

s o
f N

od
es

 M
ak

in
g

up
 Tr

ia
ng

le
s

0.5771

0.1806

0.6244

(a) Average number of triangles each
node participates in, and ratio of
nodes making up triangles.

UCI ML-10M Hepth
Datasets

0
2000
4000
6000
8000

10000
12000
14000
16000
18000
20000

Nu
m

be
r o

f T
ria

ng
le

s 13580

15962

11328

570 25 46

Realistic Data
Random Data

(b) Number of triangles of the ran-
domly generated data and the real-
istic data.

Figure 2: Triangle-related statistics of three realistic datasets.

nodes are involved in the constructing triangles, except in ML-10M.

To overcome the random data noise in realistic graphs, we further

employ the Erdős-Rényi algorithm [10] to generate the correspond-

ing random graphs for each dataset based on the number of nodes

and edges, and plot their triangle numbers in a pair way in Fig. 2b.

Clearly, on three datasets, the number of triangles in the realis-

tic dataset is significantly greater than that in the synthetic one.

The above phenomena prove that the triangles are ubiquitous in

dynamic graphs. Therefore, modeling the triangles we argue is a

key role in capturing the commonalities between neighbors in a

1-hop subgraph [24] and further compensating the vanished edge

in graph serialization.

The second flaw in Transformer is over-estimation of high-
degree nodes. The conditional likelihood in Transformer always

make predictions in the maximum-probability way [30]. When it

comes to the sequence prediction task, the longer sequence causes

the accumulation of more high-probability nodes, e.g., Hubs nodes
in the scale-free networks. Adding insult to injury, the graph se-

rialization in Transformer converts the link prediction task into a

sequence forecasting one. Additionally, most realistic networks, e.g.,

citation networks and social networks, are scale-free [1], where the

node degrees are subject to a power-law distribution. Hence, when

the Transformer-based models are trained on the scale-free graphs,

they are inclined to predict nodes with extremely high degrees [1],

rather than the high-proposition but low-degree nodes.

In this paper, we attempt to provide solutions to above-mentioned

issues by proposing a topology-aware Transformer architecture for

dynamic graph link prediction, termed TopDyG, which consists

of two main components: the topology-injected Transformer (Ti-

Transformer) and the mutual information learning (Mi-Learning).

In particular, for the flaw of graph serialization, the Ti-Transformer

explores the structural features, especially triangles, by a simple yet

efficient way without any extra trainable networks. For the flaw of

over-estimation of high-degree nodes, inspired by the researches on

long-tail or class-imbalanced problems [6, 20–22], the Mi-learning

obtains the intrinsic correlation of nodes in sequences rather than

the high-frequency tokens (Hubs), which effectively alleviates the

bottleneck caused by the accumulation of high-probability nodes.

We conduct extensive experiments on four public datasets, in-

cluding three non-bipartite graph datasets rich in triangles and a

bipartite graph dataset devoid of triangles. TopDyG outperforms

the state-of-the-art baselines on all datasets in terms of NDCG and

Jaccard. Specifically, the experimental results illustrate that the

advantage of TopDyG over baselines is positively correlated with

the topological statistics, e.g., the graph density and the average

number of triangles each node participates in. The contributions of

our work can be condensed into the following three aspects.

(1) We give the ability of capturing the explicit topology feature

in serialized dynamic graphs to Transformer without

attaching any trainable module and complex components.

(2) We introduce a novel learning strategy based on mutual in-

formation to alleviate the effects caused by over-estimation
of high-degree nodes in dynamic graphs, thus assisting

the model to capture the intrinsic patterns.

(3) We evaluate our proposals on extensive experiments on

four real-world datasets and find that TopDyG achieves

obvious improvements over several competitive baselines.

2 RELATEDWORK
2.1 Dynamic link prediction
Recent dynamic graph researches can be classified into discrete-

time approaches and continuous time ones [7, 46].

For the discrete-time approaches [29, 33, 47], their time sets

are discrete, where the events on dynamic graphs between time

points are not be recorded completely. Computationally, such mod-

els assuming discrete-time domain are easier to manipulate. For

instance, one of the representative methods is DySAT [33], which

leverages a graph attention network and the self-attention mod-

ule as cornerstones, aiming to model the structural and temporal

features, respectively. Additionally, EvolveGCN combines graph

convolution networks with GRUs or LSTMs to learn both struc-

tural and temporal features. For the continuous-time approaches

[5, 17, 32, 36, 39, 42], they deal with data that fully records the events

on the graphs and corresponding timestamps. Therefore, they can

capture more details compared to discrete-time methods. Specifi-

cally, they always pay more attention to time encoding because of

the more abundant temporal resources compared to discrete set-

tings. Wen and Fang [39] propose to integrate both the event and

node dynamics to respectively capture the individual and collective

features, and Cong et al. [5] design a GNN-free architecture termed

GraphMixer with MLPs as well as an offline time encoding function,

aiming to capture temporal information. Furthermore, Wu et al.

[40] introduce a simple but effective Transformer-based method

to predict the future links with serialized subgraphs, which are

processed by the temporal alignment technique.

2.2 Graph Transformers
Transformers for graph data are a recent advancement in graph data

mining, offering a new type of neural network models for graph

data [34]. Inspired by the success of transformers in NLP and CV,

researchers attempt to integrate them into GNNs to develop their

potential in modeling graph structures. For instance, Ying et al. [43]

propose Graphormer framework, which is built upon the standard

Transformer architecture and can obtain satisfying capability of

graph representation with different granularity of structural encod-

ing functions. And some methods attempt to obtain global topology

by eigenvectors or eigenvalues of a matrix representation, such as

adjacency or Laplacian matrix [16, 31]. Additionally, Min et al. [25]

2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Triangle Matters! TopDyG: Topology-aware Transformer
for Link Prediction on Dynamic Graphs WWW ’25, April 28– May 02, 2025, Sydney, Australia

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

introduce a graph masking attention mechanism to assist Trans-

formers to capture the graph-related knowledge for modeling the

structural features.

When it comes to dynamic graphs, Cong et al. [4] propose a

novel but complex architecture termed DyFormer, aiming to capture

co-occurrence neighbors of different nodes and encode temporal

information. On the other hand, SimpleDyG [40] is a more concise

method for dynamic graph than previous researches since that it

only rely on the standard Transformer architecture without any

learnable attachment, preventing the complex modifications.

The differences between our proposals and the current dynamic

graph modeling methods can be summarized in the following folds.

First, although our proposals still rely on the vanilla Transformer

architecture, we inject the topological information to guide the

model capture the graph structure in an explicit way. Second, we

modify the optimization goal of Transformers from maximizing the

conditional probability of the generated sequence to the mutual

information between nodes and their history, considering the prior

structure to alleviate the imbalanced distribution problem.

3 PRELIMINARY
3.1 Problem definition
Formally, a dynamic graph G can be defined as G = {V, E,X},
whereV = {𝑣𝑖 , 𝑖 ∈ (1, 2, · · · , |V|)} is the set of nodes 𝑣𝑖 appeared
in G; E = {𝑒𝑖 𝑗 |𝑒𝑖 𝑗 = (𝑣𝑖 , 𝑣 𝑗 , 𝑡𝜏), 𝜏 ∈ [1, 2, · · · ,T]} is the edge set,
whose triplets (𝑣𝑖 , 𝑣 𝑗 , 𝑡𝜏) represent an edge 𝑒𝑖 𝑗 connecting nodes 𝑣𝑖

and 𝑣 𝑗 at timestamp 𝑡𝜏 ; X = [𝑥1, 𝑥2, · · · , 𝑥 |V |−1, 𝑥 |V |] ∈ R |V |×𝑑

denotes the 𝑑-dimension feature set matching with the node setV .

Given a dynamic graph G, our task is training a model 𝑓 (G;𝜃) with
parameter 𝜃 , to obtain the pattern of temporal evolution of G at the

next timestamp, so that predicting the new edge set E[; ; 𝑡T+1] at
the future timestamp 𝑡T+1:𝜃

∗ = argmin

𝜃 ∈Θ

∑T
𝜏=2

∥ E[; ; 𝑡𝜏] − 𝑓 (G𝑡𝜏−1 , 𝜃) ∥𝐹
E[; ; 𝑡T+1] = 𝑓 (G𝑡T , 𝜃

∗)
, (1)

where G𝑡𝜏 , E[; ; 𝑡𝜏] denote the dynamic graph G and the edge st

at timestamp 𝑡𝜏 , respectively; Θ denotes a parameter space named

hypothesis space, and ∥ · ∥𝐹 represent the Frobenius norm of matrix.

3.2 Serialization of dynamic graphs
The original graph cannot directly be fed into Transformer-based

models since that Transformer is designed for dealing with the

Euclidean structure data such as texts [2, 8], images [9] and videos

[38]. Vanilla Transformer cannot understand the topology of graph

data, therefore, traditional solution is to convert graph data into

sequence data for the Transformer to understand and utilize [40].

For example, recent study segments the given dynamic graph

into 1-hop subgraphs of each node and transforms the subgraphs

into token sequences sorted by interaction time. Suppose the node

𝑣𝑖 as the center, its serialized sequence can be represented as:{
[𝑣𝑖 , 𝑣

𝑡1,𝑣𝑖
𝑖

, 𝑣
𝑡2,𝑣𝑖
𝑖

, · · · , 𝑣𝑡 𝑗,𝑣𝑖
𝑖

, · · · , 𝑣𝑡𝑛𝑖 ,𝑣𝑖
𝑖

],
𝑠 .𝑡 . {𝑡1,𝑣𝑖 , 𝑡2,𝑣𝑖 , · · · 𝑡𝑛𝑖 ,𝑣𝑖 } ⊆ {𝑡1, 𝑡2, · · · , 𝑡T }

(2)

where 𝑣
𝑡 𝑗,𝑣𝑖
𝑖

denotes the node connected with center 𝑣𝑖 at timestamp

𝑡 𝑗,𝑣𝑖 . Furthermore, to assist Transformers understand a global time

domain across sequences and synchronize the time interval, the

timestamp sequence of center 𝑣𝑖 connection can be averagely cut

into 𝑇 subsequences with ⌈T/𝑇 ⌉ interval. Correspondingly, the
serialized sequence in Eq. (2) is also segmented into subsequences:

𝑆𝑚
𝑖

= [𝑣𝑡𝑚,1

𝑖
, 𝑣

𝑡𝑚,2

𝑖
, · · · , 𝑣

𝑡𝑚,|𝑆𝑚
𝑖

|
𝑖

],
𝑠 .𝑡 ., [𝑡𝑚,1, 𝑡𝑚, |𝑆𝑚

𝑖
|] ⊆ ((𝑚 − 1) ⌈T/𝑇 ⌉,𝑚⌈T/𝑇 ⌉] .

𝑚 ∈ 1, 2, · · · ,𝑇
(3)

To assist Transformer to capture the ego node and its temporal

pattern, some special tokens are inserted, including the start to-

kens for historical and predicted data ⟨|ℎ𝑖𝑠𝑡 |⟩ and ⟨|𝑝𝑟𝑒𝑑 |⟩, and cor-
responding end tokens ⟨|𝑒𝑛𝑑𝑜 𝑓 ℎ𝑖𝑠𝑡 |⟩ and ⟨|𝑒𝑛𝑑𝑜 𝑓 𝑝𝑟𝑒𝑑 |⟩. Besides,
⟨|𝑡𝑖𝑚𝑒 𝑚 |⟩ denotes the begin of𝑚-th time period. Hence, the input

and output sequence for center node 𝑣𝑖 can be represented as:

x𝑖 =[⟨|ℎ𝑖𝑠𝑡 |⟩, 𝑣𝑖 , ⟨|𝑡𝑖𝑚𝑒1|⟩, 𝑆1𝑖 , ⟨|𝑡𝑖𝑚𝑒2|⟩, · · · , 𝑆𝑇−1
𝑖 ,

⟨|𝑒𝑛𝑑𝑜 𝑓 ℎ𝑖𝑠𝑡 |⟩],

y𝑖 =[⟨|𝑝𝑟𝑒𝑑 |⟩, ⟨|𝑡𝑖𝑚𝑒𝑇 |⟩, 𝑆𝑇𝑖 , ⟨|𝑒𝑛𝑑𝑜 𝑓 𝑝𝑟𝑒𝑑 |⟩] .
(4)

4 APPROACHES
4.1 Overview
In this section, we detail the TopDyG model, which consists of two

main components, i.e. topology-injected Transformer (see Sec. 4.2),

and mutual information learning (see Sec. 4.3).

The workflow of TopDyG is plotted in Figure 3. First, we extract

the 1-hop subgraph for each node from the original dynamic graph

and serialize them into sequences consisting of node tokens and

special tokens. Then we capture the topology feature of each se-

quence by constructing its corresponding normalized adjacent ma-

trix. After that, we inject the topology features into the vanilla mask

matrices of Transformer model to shape the topology-injected
Transformer, which is capable of eliciting the hidden topology

information from generated representations. Finally, we utilize the

distribution of degree of each node, obtained from the original

graph, as the prior knowledge to model the mutual information

between tokens and their history, alleviating the over-estimation

bottleneck in high-degree nodes.

4.2 Topology-injected Transformer
4.2.1 Capturing the topology of input. Given a dynamic graph

G = {𝐺1,𝐺2, · · · ,𝐺 |V | } segmented by nodes, where𝐺𝑖 = {𝑉𝑖 , 𝐸𝑖 , 𝑋𝑖 }
denotes the 1-hop subgraph centered around the node 𝑣𝑖 extracted

from G. And 𝑉𝑖 , 𝐸𝑖 , 𝑋𝑖 represent the node set, edge set, and node

features of 𝐺𝑖 , respectively.

For each subgraph 𝐺𝑖 , we can construct the serialized input

sequence x(𝑖) according to Eq.(4) and abstract it as:

x(𝑖) = [ℎ (𝑖)
1

, ℎ
(𝑖)
2

, · · · , ℎ (𝑖)𝑛] ∈ R𝑛, (5)

where x(𝑖) consists of 𝑛 token ids from common node tokens or

special tokens mentioned in Section 3.2.

And then, we obtain the complete binary relation matrix 𝐴(𝑖) =
{0, 1}𝑛×𝑛 of the input sequence x(𝑖) , which not only includes the

relationships between the neighbor nodes and the ego node but

also the relationships between the neighbor nodes themselves, i.e.,

𝐴
(𝑖)
𝑝𝑞 = 1 if (ℎ (𝑖)𝑝 , ℎ

(𝑖)
𝑞) ∈ 𝐸𝑖 , otherwise 𝐴

(𝑖)
𝑝𝑞 = 0. Thus, x(𝑖) can be

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

WWW ’25, April 28– May 02, 2025, Sydney, Australia Anon. Submission Id: 1108

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

+ =

iv

jv

iG
jG

...

M ˆ
ltA *M

Masked

Multi-head

Attention

Add & Norm

Feed Forward

Add & Norm

Softmax

()p v

Segment the Dynamic Graph Inject the Topology Feature
Topology-injected

Transformer

Serialize

Mask

jx

ix

Capture the Topology

Compute Prior Distribution

Input
Linear

Mutual Information

Comparison

Special token Node token

Figure 3: The workflow of TopDyG

regarded as special version of serialized subgraph 𝐺𝑖 appending

with special tokens.

Finally, we compute the normalized relation matrix𝐴(𝑖)
of input

sequence x(𝑖) [15]:

𝐴(𝑖) = 𝐷 (𝑖) −
1

2𝐴(𝑖)𝐷 (𝑖) −
1

2 ∈ R𝑛×𝑛, (6)

where𝐷 (𝑖)
is the degree matrix of x(𝑖) and𝐷 (𝑖)

𝑝𝑝 =
∑
𝑞 𝐴

(𝑖)
𝑝𝑞 . Com-

pared to the original matrix 𝐴(𝑖)
, the normalized 𝐴(𝑖)

reduces the

weights of nodes with high degrees through the 𝐷 (𝑖) −
1

2
, assisting

the model to capture the informative pattern in x(𝑖) .

4.2.2 Injecting the topology into Transformer. Weuseh ∈ R𝑑
to represent the 𝑑−dimensional hidden feature of token ℎ in Eq.(5).

Thus, the input sequence x(𝑖) can be converted to a matrix H(𝑖)
:

H(𝑖) = [h(𝑖)
1

,h(𝑖)
2

, · · · ,h(𝑖)
𝑛] ∈ R𝑛×𝑑 . (7)

The core component in Transformer is multi-head self-attention

module Attention(·).
Firstly, it encodes H(𝑖)

to a triplet (Q(𝑖) ,K(𝑖) ,V(𝑖)):

Q(𝑖) = H(𝑖)WQ,K(𝑖) = H(𝑖)WK,V(𝑖) = H(𝑖)WV, (8)

where WQ ∈ R𝑑×𝑑Q , WK ∈ R𝑑×𝑑K , WV ∈ R𝑑×𝑑V are trainable

weights and 𝑑Q = 𝑑K = 𝑑V = 𝑑
𝑁ℎ𝑑

. 𝑁ℎ𝑑 denotes the number of

operations in the multi-head self-attention module, resulting in

(Q(𝑖)
𝑗
,K(𝑖)

𝑗
,V(𝑖)

𝑗
) for 1 ≤ 𝑗 ≤ 𝑁ℎ𝑑 .

Since that we concentrate on the prediction capability for future

connected nodes, we decide to utilize the decoder-only architecture

to simulate the scenario where only historical nodes are available

in practical applications. Therefore, a unit lower triangular mask

matrix 𝑀 ∈ R𝑛×𝑛 is utilized for preserving the historical tokens

and masking the future tokens:

𝑀 =


1

.

.

.
. . .

1 · · · 1

𝑛×𝑛 , (9)

where elements with a value of 1 indicate that the token will be

retained. Thus, each token in an input sequence can only see the

current moment and historical tokens without knowing about fu-

ture tokens, which models the temporal information. Similarly, we

fuse the structural information into the original mask matrix to

form the topology-injected mask matrix𝑀 (𝑖)∗
as follows:

𝑀 (𝑖)∗ = 𝑀 +𝐴
(𝑖)
𝑙𝑡

, (10)

where 𝐴
(𝑖)
𝑙𝑡

denotes the lower triangular part of 𝐴(𝑖)
, s.t., 𝐴

(𝑖)
𝑙𝑡

=

𝑀 ⊙ 𝐴(𝑖)
. And ⊙ denotes Hadamard product operation. With such

topology-injected mask matrix 𝑀 (𝑖)∗
, the output of Transformer

can be computed as:

ℎ𝑒𝑎𝑑
(𝑖)
𝑗

= Softmax
©­«
Q(𝑖)

𝑗
K(𝑖)

𝑗

⊤

√
𝑑K

⊙
(
𝑀 (𝑖)∗ −

(
lim

𝐶→∞
𝐶

(
1 − 𝑀 (𝑖)∗

)))ª®¬V(𝑖)
𝑗

Attention(H(𝑖)) = Concat(ℎ𝑒𝑎𝑑 (𝑖)
1

, · · · , ℎ𝑒𝑎𝑑 (𝑖)
𝑁ℎ𝑑

)W𝑂 ,

(11)

where 𝐶 is a coefficient approaching infinity, 1 ∈ R𝑛×𝑛 is a

matrix with all values of 1, W𝑂 ∈ R𝑑×𝑑 represents a trainable

matrix, and Concat(·) denotes the concatenation operation.

4.3 Mutual information learning
We designed a learning strategy based on mutual information

termed Mi-Learning, aiming to help the Ti-Transformer learn

the meaningful evolution law and alleviate the over-estimation of

high-degree nodes.

In the generative paradigm for dynamic link prediction task, the

occurrence frequency of a node token in the sequence set can be

equivalent to its degree in original graph. Thus, we can estimate

the prior distribution 𝑝 (𝑣𝑖) of node token 𝑣𝑖 by:

𝑝 (𝑣𝑖) =
Degree(𝑣𝑖)∑

𝑣∈V Degree(𝑣) , (12)

4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Triangle Matters! TopDyG: Topology-aware Transformer
for Link Prediction on Dynamic Graphs WWW ’25, April 28– May 02, 2025, Sydney, Australia

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

where Degree(𝑣) represents the degree of node 𝑣 ∈ V . Then we

introduce the strategy to coalesce the prior distribution into the

optimization goal.

Given the sequence x(𝑖) in Eq.(5), the probability of the vanilla

Transformer generating the 𝑘-th token can be formalized as:

𝑝 (ℎ (𝑖)
𝑘

|x(𝑖)
<𝑘

) = Softmax

(
LayerNorm(H(𝑖)

<𝑘)Wtoken

)
, (13)

whereℎ
(𝑖)
𝑘

is the 𝑘-th token in x(𝑖) , x(𝑖)
<𝑘

denotes the subsequence of

x(𝑖) containing the first (𝑘 − 1) tokens,H(𝑖)
<𝑘 denotes the hidden

embedding of x(𝑖)
<𝑘

, and W
token

is the learnable matrix to obtain

the probability across the node tokens. Thus, the relation between

𝑝 (ℎ (𝑖)
𝑘

|x(𝑖)
<𝑘

) and H(𝑖)
<𝑘

can be simplified as:

log 𝑝 (ℎ (𝑖)
𝑘

|x(𝑖)
<𝑘

) ∼ H(𝑖)
<𝑘

(14)

To further explore the relationship between current token ℎ
(𝑖)
𝑘

and its historical sub-sequence x(𝑖)
<𝑘

, the pointwise mutual informa-

tion (PMI) between them can be written as following form:

log

𝑝 (ℎ (𝑖)
𝑘

, x(𝑖)
<𝑘

)

𝑝 (ℎ (𝑖)
𝑘

)𝑝 (x(𝑖)
<𝑘

)
∼ H(𝑖)

<𝑘

⇐⇒ log

𝑝 (ℎ (𝑖)
𝑘

, x(𝑖)
<𝑘

)

𝑝 (x(𝑖)
<𝑘

)
− log𝑝 (ℎ (𝑖)

𝑘
) ∼ H(𝑖)

<𝑘

⇐⇒ log𝑝 (ℎ (𝑖)
𝑘

|x(𝑖)
<𝑘

) ∼ H(𝑖)
<𝑘

+ log 𝑝 (ℎ (𝑖)
𝑘

),

(15)

where 𝑝 (ℎ (𝑖)
𝑘

) is the prior distribution of token ℎ
(𝑖)
𝑘

. It is worth

noting that the 𝑝 (ℎ (𝑖)
𝑘

) of node tokens can be obtained by Eq. (12)

while the 𝑝 (ℎ (𝑖)
𝑘

) of all special tokens is set to the maximum prior

probability among node tokens, i.e., max

𝑣∈V
𝑝 (𝑣), since that the special

tokens are regarded as Hubs mentioned in Introduction. Without

loss of generality, we multiply log 𝑝 (ℎ (𝑖)
𝑘

) by a coefficient 𝜏 to adjust

the importance of log 𝑝 (ℎ (𝑖)
𝑘

). Thus, the Eq. (13) can be updated as:

𝑝∗ (ℎ (𝑖)
𝑘

|x(𝑖)
<𝑘

) = Softmax

(
LayerNorm(H(𝑖)

<𝑘
)W

token
+ 𝜏 log𝑝 (ℎ (𝑖)

𝑘
)
)
.

(16)

Thus, the final objective of training the model with parameters 𝜃

is defined as:

L = −
|V |∑︁
𝑖=1

|x(𝑖) |∑︁
𝑘=1

log𝑝∗
𝜃
(ℎ (𝑖)

𝑘
|x(𝑖)

<𝑘
) . (17)

5 EXPERIMENTS
To examine the effectiveness of our proposals, we concentrate on

answering the following research questions:

RQ1 How do our proposals perform in comparison to state-of-

the-art methods on dynamic graph link prediction tasks?

RQ2 Among our proposed components, which one contributes

the most to the performance?

RQ3 What is the impact of different loss functions on the per-

formance of link prediction?

RQ4 How does the choice of different mask matrices affect the

performance of link prediction? Does the time-based mask-

ing scheme have an impact on the performance?

RQ5 How is the performance of link prediction affected by dif-

ferent weights of the prior knowledge?

5.1 Experiments setup
5.1.1 Evaluation datasets. We utilize four real-world public data-

sets, including UCI [28], ML-10M [13], Hepth [18], and MMConv

[19], from different domains for our experiments. To ensure the

fairness of the comparative experiment and temporal alignment,

we follow the previous researches [33, 40] by re-segmenting UCI,

ML-10M, Hepth, and MMConv into 13, 13, 12, and 16 time periods,

respectively. In addition, detailed introduction and preprocessing

of four datasets are presented in Appendix A.1.

5.1.2 Model Configurations. Following the previous work [40],

we utilize the GPT-2 model [30] as the backbone. For all the four

datasets, we follow the previous setting [5, 40] by regarding the

dynamic graphs as undirected graphs. The dataset is split into

training, validation, and testing based on the predefined time steps

mentioned in Sec.5.1.1. Specifically, the data in the first (𝑇 − 2)
time steps are used as the training set to optimize models, the data

in time period (𝑇 − 1) is used as the validation set to adjust the

hyperparameters, and the data in the time period 𝑇 is used as the

test set to examine the final performance.

5.1.3 Baselines for comparison. A number of link prediction

methods have been proposed in recent years. In our modeling,

we focus on dynamic graphs. Thus, we do not make comparisons

with researches designed for static graphs such as GraphSage [12]

and GAT-AE [37, 48]. We compare our proposals with the follow-

ing baselines: (1) Two discrete-time methods, i.e., DySAT [33] and

EvolveGCN [29]; (2) Six continuous-time methods, i.e., DyRep [36],

JODIE [17], TGAT [42], TGN [32], TREND [39], and GraphMixer

[5]; (3) A Transformer-based method, i.e., SimpleDyG [40]. Addi-

tionally, the detailed introduction of the baselines is presented in

Appendix A.2.

5.2 Overall performance (RQ1)
To answer RQ1, we examine the dynamic graph link prediction

performance of our proposals as well as the baselines in Table 1.

Generally, our TopDyG outperforms all the discussed baselines

in all datasets. Specifically, it achieves up to a 43.27% performance

improvement over the optimal baseline method on the transductive

datasets including UCI, ML-10M, and MMConv. On the more chal-

lenging inductive dataset Hepth, although there is still a gap in the

absolute performance values compared to the transductive scenario,

both the NDCG and Jaccard achieve more than 20% improvement

over the state-of-the-art baseline.

Additionally, we note an interesting phenomenon: the perfor-

mance improvement of our proposal over the SOTA method is

positively correlated with density of the datasets showed in Table 3.

Specifically, the performance improvement of TopDyG over the

SOTA methods on different datasets shows a positive correlation

with the average number of triangles and the average degree for

each node in the datasets. For instance, ML-10M dataset has the least

number of average triangles per node among the four discussed

datasets. Our proposal also has the minimal advantage against Sim-

pleDyG, i.e., only 4.59% and 3.10% in terms of NDCG and Jaccard,

5

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

WWW ’25, April 28– May 02, 2025, Sydney, Australia Anon. Submission Id: 1108

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

Table 1: Performance of dynamic link prediction by our proposal and the baselines on four datasets. (In each column, the best
result is bolded and the runner-up is underlined. And all the performance data of baselines is obtained fromWu et al. [40].)

UCI ML-10M Hepth MMConv

NDCG@5 Jaccard NDCG@5 Jaccard NDCG@5 Jaccard NDCG@5 Jaccard

DySAT 0.010±0.003 0.010±0.001 0.058±0.073 0.050±0.068 0.007±0.002 0.005±0.001 0.102±0.085 0.095±0.080
EvolveGCN 0.064±0.045 0.032±0.026 0.097±0.071 0.092±0.067 0.009±0.004 0.007±0.002 0.051±0.021 0.032±0.017
DyRep 0.011±0.018 0.010±0.005 0.064±0.036 0.038±0.001 0.031±0.024 0.010±0.006 0.140±0.057 0.067±0.025
JODIE 0.022±0.023 0.012±0.009 0.059±0.016 0.020±0.004 0.031±0.021 0.011±0.008 0.041±0.016 0.032±0.022
TGAT 0.061±0.007 0.020±0.002 0.066±0.035 0.021±0.007 0.034±0.023 0.011±0.006 0.089±0.033 0.058±0.021
TGN 0.041±0.017 0.011±0.003 0.071±0.029 0.023±0.001 0.030±0.012 0.008±0.001 0.096±0.068 0.066±0.038
TREND 0.067±0.010 0.039±0.020 0.079±0.028 0.024±0.003 0.031±0.003 0.010±0.002 0.116±0.020 0.060±0.018
GraphMixer 0.104±0.013 0.042±0.005 0.081±0.033 0.043±0.022 0.011±0.008 0.010±0.003 0.172±0.029 0.085±0.016
SimpleDyG 0.104±0.010 0.092±0.014 0.138±0.009 0.131±0.008 0.035±0.014 0.013±0.006 0.184±0.012 0.169±0.010
TopDyG (Ours) 0.149±0.007 0.101±0.006 0.144±0.002 0.135±0.002 0.042±0.004 0.017±0.002 0.242±0.040 0.218±0.030
Improvement 43.27% 9.70% 4.59% 3.10% 21.14% 27.31% 31.64% 28.75%

respectively. On the other hand, MMConv dataset is a bipartite

dynamic graph without triangle, but our TopDyG still has about

30% improvement. In view of the above phenomena, we analyze

statistics of MMConv showed in Table 3 and consider that although

it misses the triangle pattern, it has an average node degree greater

than 26, the largest one in the four datasets. In such case, our topol-

ogy injection method not only does not fail, but also assist the

model to pay more attention to the relationship between neighbor

nodes and the ego node in the sequences of subgraphs, rather than

to the relationship with special tokens. It can be attributed to the

fact that the average number of triangles and node degrees are

positively correlated with density of the datasets. To sum up, the

more dense the graphs, the more obvious the topological features

contribute to the performance of TopDyG.

5.3 Ablation study (RQ2)
To answer RQ2, we perform an ablation study to get a deep insight

into each component of our proposed TopDyG model. We remove

or replace a certain component of TopDyG and examine the corre-

sponding performance of the incomplete TopDyG on all discussed

datasets, which is denoted as the notation ‘w/o’. In particular, there

are two individual TopDyG models we want to investigate, i.e.,

TopDyG𝑤/𝑜 [𝑇𝑖] that removes the topology-injected mechanism,

and TopDyG𝑤/𝑜 [𝑀𝑖] that removes the mutual information learn-

ing strategy. We compute the relative performance change rates of

incomplete TopDyG models against the integrated TopDyG model.

Each ablation result is computed with the average of relative change

rates for the NDCG and Jaccard indices. We report the detail results

in Table 2.

As shown in Table 2, removing either of the two components re-

sults in an obvious performance drop under different circumstances.

Specifically, “w/o Ti-Transformer” causes the biggest drop of both

NDCG and Jaccard on Hepth and MMconv datasets. Performance

diminish on Hepth indicates that modeling the topology feature is

an effective way to boost the dynamic graph link prediction under

the inductive setting. Furthermore, the performance degradation

of the model on different datasets after removing topology feature

UCI ML-10M Hepth MMConv
Datasets

0.00

0.05

0.10

0.15

0.20

0.25

0.30
ND

CG
@

5
TopDyG
TopDyG[CB]
TopDyG[Focal]
SimpleDyG

(a) NDCG@5

UCI ML-10M Hepth MMConv
Datasets

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Ja
cc

ar
d

TopDyG
TopDyG[CB]
TopDyG[Focal]
SimpleDyG

(b) Jaccard

Figure 4: Performance comparison to examine the impact of
loss functions.
aligns with the trend observed in Table 1. That is, the greater the

average number of triangles and the average degree of the dataset,

the more the performance is influenced by topology features, which

precisely corroborates our perspective presented in Sec 5.2.

In addition, “w/o Mi-Learning” leads to the biggest drop of both

NDCG and Jaccard on UCI and ML-10M datasets. Performance drop

on the two datasets indicates that leveraging the prior distribution

in Mi-Learning is an effective way to improve the model capabil-

ity under transductive setting. Overall, the impact of removing

different modules on transductive datasets is similar while topo-

logical features have a greater influence on Hepth than other three

datasets, indicating that priority should be given to considering the

topological structure of dynamic graphs in inductive scenarios.

5.4 Impact of optimization goals (RQ3)
To answer RQ3 to see the impact of the loss functions for dynamic

link prediction task, we compare the performance of our proposals

and several variants, i.e., TopDyG[𝐶𝐵] and TopDyG[𝐹𝑜𝑐𝑎𝑙] . Specif-
ically, TopDyG[𝐶𝐵] and TopDyG[𝐹𝑜𝑐𝑎𝑙] denote the Mi-Learning

module in TopDyG is replaced by the Class Balanced Loss [6] and Fo-
cal Loss [20], respectively. Such methods are utilized for alleviating

the class imbalanced problem.

First, we concentrate on the comparison between TopDyG based

methods and the SOTA baseline SimpleDyG. As shown in Fig. 4,

6

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Triangle Matters! TopDyG: Topology-aware Transformer
for Link Prediction on Dynamic Graphs WWW ’25, April 28– May 02, 2025, Sydney, Australia

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

Table 2: Ablation studies of TopDyG for the link prediction tasks. The biggest drop in each column is appended ↓.

UCI ML-10M Hepth MMConv

NDCG@5 Jaccard NDCG@5 Jaccard NDCG@5 Jaccard NDCG@5 Jaccard

TopDyG 0.149±0.007 0.101±0.006 0.144±0.002 0.135±0.002 0.042±0.004 0.017±0.002 0.242±0.040 0.218±0.030
w/o 0.124±0.011 0.093±0.005 0.137±0.007 0.127±0.006 0.025±0.006 0.010±0.002 0.164±0.003 0.156±0.002
Ti-Transformer -16.48% -8.33% -5.43% -6.22% -40.19% ↓ -37.76% ↓ -32.29% ↓ -28.26% ↓
w/o 0.110±0.011 0.088±0.015 0.133±0.014 0.125±0.013 0.036±0.017 0.013±0.007 0.168±0.010 0.158±0.012
Mi-Learning -25.95% ↓ -12.71% ↓ -7.93% ↓ -7.48% ↓ -15.47% -20.00% -30.85% -27.25%

UCI ML-10M Hepth MMConv
Datasets

0.00

0.05

0.10

0.15

0.20

0.25

0.30

ND
CG

@
5

TopDyG
TopDyG[Add]
TopDyG[WoT]
SimpleDyG

(a) NDCG@5

UCI ML-10M Hepth MMConv
Datasets

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Ja
cc

ar
d

TopDyG
TopDyG[Add]
TopDyG[WoT]
SimpleDyG

(b) Jaccard

Figure 5: Performance comparison to examine the impact of
topology injection techniques.
TopDyG[𝐹𝑜𝑐𝑎𝑙] only outperforms SimpleDyG onUCI datasets while

other variants of TopDyG obtains worse performance than Sim-

pleDyG on all datasets. We consider that such phenomenon is

caused by the reweighting mechanism in Focal Loss, aiming to

force the model pay attention to the difficult samples in classifi-

cation tasks. However, token prediction is more challenging than

sample classification due to the vast number of tokens from which

to choose when generating the next token. Consequently, meth-

ods designed for addressing long-tail classification are not directly

applicable to generative tasks. Such inapplicability is highlighted

by the TopDyG[𝐶𝐵] on ML-10M dataset, where the TopDyG[𝐶𝐵]
obtains the worst performance among the discussed models.

Next we zoom in on the performance of TopDyG. It is obvious

that our TopDyG maintains its advantage compared with several

variants. Specifically, not only does it have the best average per-

formance in terms of NDCG and Jaccard, but it also exhibits the

smallest standard deviation, illustrating the highest stability among

all the methods discussed. Therefore, we consider that modeling

the mutual information serves as a straightforward and effective

approach to boost the performance of the Transformer-based model

with real-world graphs.

5.5 Effect of topology injection methods (RQ4)
To investigate the effect of different types of the topology injection

technique, we modify the adjacent matrix 𝐴 of input sequence x
into two variants, i.e. the topological variant 𝐴[𝐴𝑑𝑑] and temporal

variant 𝐴[𝑊𝑜𝑇] . The results are shown in Fig. 5.

From the topological perspective, we accumulate the number of

times each edge appears in the subgraph and use it as an element

in the adjacency matrix:

𝐴[𝐴𝑑𝑑]𝑝𝑞 = Count([𝑝, 𝑞]), (18)

where Count([𝑝, 𝑞]) denotes the frequency of the edge (𝑝, 𝑞) ap-
pears in the dynamic graph. From the temporal perspective, we

consider that the importance of historical edges diminishes over

time. Thus, the corresponding matrix 𝐴[𝑊𝑜𝑇] is defined as:

𝐴[𝑊𝑜𝑇]𝑝𝑞 =

𝑇∑︁
𝑚=1

exp (𝑚 −𝑇) × 𝑔 ([𝑝, 𝑞],𝑚) , (19)

where𝑊𝑜𝑇 is the abbreviation of “weighting over time”,𝑔 ([𝑝, 𝑞],𝑚) =
{0, 1} is a function discriminating the existence of edge (𝑝, 𝑞) at
time period𝑚.

We can observe that almost all the TopDyG-based models out-

perform the SimpleDyG on all discussed datasets. However, for

ML-10M dataset, TopDyG[𝐴𝑑𝑑] obtains the best performance in

terms of NDCG while the worst in terms of Jaccard. It can be attrib-

uted to the accumulating mechanism since that it overemphasizes

the importance of nodes with high degrees, leading the model to

repeatedly generate such high-frequency nodes. Therefore, the di-

versity of prediction decreases and the Jaccard metric is reduced.

For the TopDyG[𝑊𝑜𝑇] , it outperforms TopDyG[𝐴𝑑𝑑] in terms of

the Jaccard metric for most datasets. This is mainly because that

it generally reduces the weight of high-degree nodes compared to

TopDyG[𝐴𝑑𝑑] , mitigating the model’s preference for high-degree

nodes. On the other hand, either TopDyG[𝐴𝑑𝑑] or TopDyG[𝐴𝑑𝑑]
has the worst stability on most of the datasets, indicating that the

re-weighting operation is not the best choice to assist the model

capture the features.

5.6 Impact of the prior knowledge (RQ5)
In order to investigate the impact of the weight of prior knowledge

in Mi-Learning, we test the performance of TopDyG on all datasets

by ranging the weight 𝜏 from 0 to 1.5 with a step size of 0.25. The

results are shown in Fig. 6.

The metrics, i.e., NDCG and Jaccard, reach the peaks when 𝜏 is

close to 0.75, showing an overall upward trend from 0 to 0.75, and

a general downward trend from 0.75 to 1.5. When 𝜏 = 0 or 𝜏 = 1.5,

TopDyG shows the worst performance on all the four datasets.

Specifically, 𝜏 = 0 means that the optimization goal degrades into

the conditional probability without prior knowledge of the dataset.

Thus, the model cannot be trained well to capture the evolution

pattern, and it is bothered by the imbalanced distribution of real-

world graphs.

On the other hand, setting the value of 𝜏 to 1.5 means that the

weight of the prior distribution is overemphasized in the optimiza-

tion goal, which leads to an excessive averaging of node importance,

7

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

WWW ’25, April 28– May 02, 2025, Sydney, Australia Anon. Submission Id: 1108

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

0 0.25 0.5 0.75 1.0 1.25 1.5
Value of

0.000
0.025
0.050
0.075
0.100
0.125
0.150
0.175
0.200

ND
CG

@
5

NDCG
Jaccard

0.000
0.025
0.050
0.075
0.100
0.125
0.150
0.175
0.200

Ja
cc

ar
d

(a) UCI

0 0.25 0.5 0.75 1.0 1.25 1.5
Value of

0.080
0.095
0.110
0.125
0.140
0.155
0.170
0.185
0.200

ND
CG

@
5

NDCG
Jaccard

0.080
0.095
0.110
0.125
0.140
0.155
0.170
0.185
0.200

Ja
cc

ar
d

(b) ML-10M

0 0.25 0.5 0.75 1.0 1.25 1.5
Value of

0.0000
0.0075
0.0150
0.0225
0.0300
0.0375
0.0450
0.0525
0.0600

ND
CG

@
5

NDCG
Jaccard

0.0000
0.0075
0.0150
0.0225
0.0300
0.0375
0.0450
0.0525
0.0600

Ja
cc

ar
d

(c) Hepth

0 0.25 0.5 0.75 1.0 1.25 1.5
Value of

0.100
0.125
0.150
0.175
0.200
0.225
0.250
0.275
0.300

ND
CG

@
5

NDCG
Jaccard

0.100
0.125
0.150
0.175
0.200
0.225
0.250
0.275
0.300

Ja
cc

ar
d

(d) MMConv

Figure 6: Performance of TopDyG on four datasets with the
parameter 𝜏 in Eq. (16) changing from 0 to 1.5. The dark line
represents the mean, and the light shaded area indicates the
standard deviation.

preventing the model from identifying important nodes. Further-

more, the phenomenon is particularly pronounced in the MMConv

dataset because it is a bipartite graph lacking triangles, with the

1-hop subgraph exhibiting a single radial pattern. Therefore, over-

averaging the degree features of nodes leads to impaired structural

features and the worst performance.

5.7 Case study
In this subsection, we show an example from the test set of UCI to

illustrate the different attention matrices produced by TopDyG and

the state-of-the-art baseline SimpleDyG; see Fig. 7.

Fig. 7a shows the normalized adjacency of a 1-hop subgraph

sequence with node 848 as the center, where the sequences on the

left and bottom sides are the original input sequences. The darker

the area in the plot, the more important the information is. It can

be observed from the Fig. 7b and 7c that SimpleDyG roughly fo-

cuses its attention on the first few tokens without distinguishing

between special tokens and node tokens, whereas TopDyG directs

its attention primarily to the central node token. Additionally, as

shown in Fig. 7d and 7e, TopDyG can also pay attention to the rela-

tionships between neighbors of the center node, while SimpleDyG

is poor at modeling such structural features in the input sequence.

In summary, compared to the attention matrices produced by Sim-

pleDyG, those produced by TopDyG are more similar to the original

topology shown in Fig. 7a. This confirms that TopDyG has a bet-

ter capability for modeling the inner relationships of neighboring

nodes than SimpleDyG.

6 CONCLUSION
In this paper, we propose a topology-aware Transformer archi-

tecture for dynamic graph link prediction (TopDyG), which con-

sists of a topology-injected Transformer (Ti-Transformer) and a

mutual information learning strategy (Mi-Learning). Specifically,

Ti-Transformer explores the relationship between the neighboring

<|
en

do
fte

xt
|>

<|
hi

st
or

y|
>

84
8

<|
tim

e1
|> 61
7

<|
tim

e2
|> 10
8

11
69 1

36
8

<|
tim

e3
|> 54
6

11
69

11
10

<|
tim

e4
|> 10
9

<|
tim

e5
|>

15
34

<|
tim

e6
|>

<|
tim

e7
|>

11
69

<|
tim

e8
|>

<|
tim

e9
|>

11
10

<|
tim

e1
0|

>
13

92
<|

en
do

fh
ist

or
y|

>
<|

pr
e|

>

<|endoftext|>
<|history|>

848
<|time1|>

617
<|time2|>

108
1169

1
368

<|time3|>
546

1169
1110

<|time4|>
109

<|time5|>
1534

<|time6|>
<|time7|>

1169
<|time8|>
<|time9|>

1110
<|time10|>

1392
<|endofhistory|>

<|pre|>

0.0

0.1

0.2

0.3

0.4

0.5

(a) Normalized adjacent matrix

<|
en

do
fte

xt
|>

<|
hi

st
or

y|
>

84
8

<|
tim

e1
|> 61
7

<|
tim

e2
|> 10
8

11
69 1

36
8

<|
tim

e3
|> 54
6

11
69

11
10

<|
tim

e4
|> 10
9

<|
tim

e5
|>

15
34

<|
tim

e6
|>

<|
tim

e7
|>

11
69

<|
tim

e8
|>

<|
tim

e9
|>

11
10

<|
tim

e1
0|

>
13

92
<|

en
do

fh
ist

or
y|

>
<|

pr
e|

>

<|endoftext|>
<|history|>

848
<|time1|>

617
<|time2|>

108
1169

1
368

<|time3|>
546

1169
1110

<|time4|>
109

<|time5|>
1534

<|time6|>
<|time7|>

1169
<|time8|>
<|time9|>

1110
<|time10|>

1392
<|endofhistory|>

<|pre|> 0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

(b) Attention of head 0 in SimpleDyG

<|
en

do
fte

xt
|>

<|
hi

st
or

y|
>

84
8

<|
tim

e1
|> 61
7

<|
tim

e2
|> 10
8

11
69 1

36
8

<|
tim

e3
|> 54
6

11
69

11
10

<|
tim

e4
|> 10
9

<|
tim

e5
|>

15
34

<|
tim

e6
|>

<|
tim

e7
|>

11
69

<|
tim

e8
|>

<|
tim

e9
|>

11
10

<|
tim

e1
0|

>
13

92
<|

en
do

fh
ist

or
y|

>
<|

pr
e|

>

<|endoftext|>
<|history|>

848
<|time1|>

617
<|time2|>

108
1169

1
368

<|time3|>
546

1169
1110

<|time4|>
109

<|time5|>
1534

<|time6|>
<|time7|>

1169
<|time8|>
<|time9|>

1110
<|time10|>

1392
<|endofhistory|>

<|pre|> 0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

(c) Attention of head 0 in TopDyG

<|
en

do
fte

xt
|>

<|
hi

st
or

y|
>

84
8

<|
tim

e1
|> 61
7

<|
tim

e2
|> 10
8

11
69 1

36
8

<|
tim

e3
|> 54
6

11
69

11
10

<|
tim

e4
|> 10
9

<|
tim

e5
|>

15
34

<|
tim

e6
|>

<|
tim

e7
|>

11
69

<|
tim

e8
|>

<|
tim

e9
|>

11
10

<|
tim

e1
0|

>
13

92
<|

en
do

fh
ist

or
y|

>
<|

pr
e|

>

<|endoftext|>
<|history|>

848
<|time1|>

617
<|time2|>

108
1169

1
368

<|time3|>
546

1169
1110

<|time4|>
109

<|time5|>
1534

<|time6|>
<|time7|>

1169
<|time8|>
<|time9|>

1110
<|time10|>

1392
<|endofhistory|>

<|pre|> 0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

(d) Attention of head 6 in SimpleDyG

<|
en

do
fte

xt
|>

<|
hi

st
or

y|
>

84
8

<|
tim

e1
|> 61
7

<|
tim

e2
|> 10
8

11
69 1

36
8

<|
tim

e3
|> 54
6

11
69

11
10

<|
tim

e4
|> 10
9

<|
tim

e5
|>

15
34

<|
tim

e6
|>

<|
tim

e7
|>

11
69

<|
tim

e8
|>

<|
tim

e9
|>

11
10

<|
tim

e1
0|

>
13

92
<|

en
do

fh
ist

or
y|

>
<|

pr
e|

>

<|endoftext|>
<|history|>

848
<|time1|>

617
<|time2|>

108
1169

1
368

<|time3|>
546

1169
1110

<|time4|>
109

<|time5|>
1534

<|time6|>
<|time7|>

1169
<|time8|>
<|time9|>

1110
<|time10|>

1392
<|endofhistory|>

<|pre|> 0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

(e) Attention of head 6 in TopDyG

Figure 7: An example of attention matrices generated by
TopDyG and SimpleDyG.

nodes of the center node in a serialized 1-hop subgraph, and feeds

the topological feature into Transformer model in an explicit way

without extra learnable modules. Additionally, Mi-Learning mod-

els the mutual information between nodes in a 1-hop subgraph,

alleviating the over-estimation on high-degree nodes in real-world

graphs with the prior knowledge of them. Experimental results on

four real-world public datasets exhibit the advantages of TopDyG

on improving the performance of dynamic link prediction in terms

of NDCG and Jaccard. Moreover, we find the superiority of TopDyG

is obvious when dealing with graphs with high density.

As for future work, we plan to investigate how to eliminate the

effects of the imbalanced distribution and reveal the significance of

structural features in an explainable way. Besides, we are interested

in exploring the application of our method in combining large

language models (LLMs) with graph data. Thus, we can harness the

understanding and generation capabilities of LLMs to facilitate the

completion of graph-related tasks.

8

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

Triangle Matters! TopDyG: Topology-aware Transformer
for Link Prediction on Dynamic Graphs WWW ’25, April 28– May 02, 2025, Sydney, Australia

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

REFERENCES
[1] Albert-László Barabási and Réka Albert. 1999. Emergence of Scaling in Random

Networks. Science 286, 5439 (1999), 509–512.
[2] Tom B. Brown, Benjamin Mann, Nick Ryder, and et al. 2020. Language Models

are Few-Shot Learners. In NeurIPS.
[3] Chong Chen, Weizhi Ma, Min Zhang, and et al. 2021. Graph Heterogeneous

Multi-Relational Recommendation. In AAAI. AAAI Press, 3958–3966.
[4] Weilin Cong, YanhongWu, Yuandong Tian, and et al. 2023. DyFormer : A Scalable

Dynamic Graph Transformer with Provable Benefits on Generalization Ability.

In SDM. SIAM, 442–450.

[5] Weilin Cong, Si Zhang, Jian Kang, and et al. 2023. DoWeReally Need Complicated

Model Architectures For Temporal Networks?. In ICLR. OpenReview.net.
[6] Yin Cui, Menglin Jia, Tsung-Yi Lin, and et al. 2019. Class-Balanced Loss Based

on Effective Number of Samples. In CVPR. Computer Vision Foundation / IEEE,

9268–9277.

[7] Claudio Daniel Tenorio de Barros, Matheus R. F. Mendonça, Alex Borges Vieira,

and Artur Ziviani. 2023. A Survey on Embedding Dynamic Graphs. ACMComput.
Surv. 55, 2 (2023), 10:1–10:37.

[8] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:

Pre-training of Deep Bidirectional Transformers for Language Understanding.

In NAACL-HLT (1). Association for Computational Linguistics, 4171–4186.

[9] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, and

et al. 2021. An Image is Worth 16x16 Words: Transformers for Image Recognition

at Scale. In ICLR. OpenReview.net.
[10] Paul L. Erdős and Alfréd Rényi. 1960. On the evolution of random graphs. Publ.

Math. Inst. Hung. Acad. Sci 5, 1 (1960), 17–60.
[11] Wenqi Fan, Yao Ma, Qing Li, and et al. 2019. Graph Neural Networks for Social

Recommendation. InWWW. ACM, 417–426.

[12] William L. Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive Represen-

tation Learning on Large Graphs. In NIPS. 1024–1034.
[13] F. Maxwell Harper and Joseph A. Konstan. 2016. The MovieLens Datasets:

History and Context. ACM Trans. Interact. Intell. Syst. 5, 4 (2016), 19:1–19:19.
[14] Anshul Kanakia, Zhihong Shen, Darrin Eide, and et al. 2019. A Scalable Hybrid

Research Paper Recommender System for Microsoft Academic. In WWW. ACM,

2893–2899.

[15] Thomas N. Kipf and Max Welling. 2017. Semi-Supervised Classification with

Graph Convolutional Networks. In ICLR (Poster). OpenReview.net.
[16] Devin Kreuzer, Dominique Beaini, William L. Hamilton, and et al. 2021. Rethink-

ing Graph Transformers with Spectral Attention. In NeurIPS. 21618–21629.
[17] Srijan Kumar, Xikun Zhang, and Jure Leskovec. 2019. Predicting Dynamic

Embedding Trajectory in Temporal Interaction Networks. In KDD. ACM, 1269–

1278.

[18] Jure Leskovec, Jon M. Kleinberg, and Christos Faloutsos. 2005. Graphs over time:

densification laws, shrinking diameters and possible explanations. In KDD. ACM,

177–187.

[19] Lizi Liao, Le Hong Long, Zheng Zhang, Minlie Huang, and Tat-Seng Chua.

2021. MMConv: An Environment for Multimodal Conversational Search across

Multiple Domains. In SIGIR. ACM, 675–684.

[20] Tsung-Yi Lin, Priya Goyal, Ross B. Girshick, and et al. 2020. Focal Loss for Dense

Object Detection. IEEE Trans. Pattern Anal. Mach. Intell. 42, 2 (2020), 318–327.
[21] Zhining Liu, Ruizhong Qiu, Zhichen Zeng, and et al. 2024. Class-Imbalanced

Graph Learning without Class Rebalancing. In ICML. 31747–31772.
[22] Aditya Krishna Menon, Sadeep Jayasumana, Ankit Singh Rawat, and et al. 2021.

Long-tail learning via logit adjustment. In ICLR. OpenReview.net.
[23] Tomás Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Efficient

Estimation of Word Representations in Vector Space. In ICLR (Workshop Poster).
[24] R. Milo, S. Shen-Orr, S. Itzkovitz, and et al. 2002. Network Motifs: Simple Building

Blocks of Complex Networks. Science 298, 5594 (2002), 824–827.
[25] Erxue Min, Yu Rong, Tingyang Xu, and et al. 2022. Neighbour Interaction based

Click-Through Rate Prediction via Graph-masked Transformer. In SIGIR. ACM,

353–362.

[26] Mehrnoosh Mirtaheri, Ryan A. Rossi, Sungchul Kim, and et al. 2024. Tack-

ling Long-Tail Entities for Temporal Knowledge Graph Completion. InWWW
(Companion Volume). ACM, 497–500.

[27] Zhiqiang Pan, Fei Cai,WanyuChen, and et al. 2022. Collaborative Graph Learning

for Session-based Recommendation. ACMTrans. Inf. Syst. 40, 4 (2022), 72:1–72:26.
[28] Pietro Panzarasa, Tore Opsahl, and Kathleen M. Carley. 2009. Patterns and

dynamics of users’ behavior and interaction: Network analysis of an online

community. J. Assoc. Inf. Sci. Technol. 60, 5 (2009), 911–932.
[29] Aldo Pareja, Giacomo Domeniconi, Jie Chen, Tengfei Ma, and et al. 2020.

EvolveGCN: Evolving Graph Convolutional Networks for Dynamic Graphs.

In AAAI. AAAI Press, 5363–5370.
[30] Alec Radford, Jeff Wu, Rewon Child, and et al. 2019. Language Models are

Unsupervised Multitask Learners. (2019).

[31] Ladislav Rampásek, Michael Galkin, Vijay Prakash Dwivedi, and et al. 2022.

Recipe for a General, Powerful, Scalable Graph Transformer. In NeurIPS. 14501–
14515.

[32] Emanuele Rossi, Ben Chamberlain, Fabrizio Frasca, and et al. 2020. Temporal

Graph Networks for Deep Learning on Dynamic Graphs. In ICML (Workshop).
[33] Aravind Sankar, Yanhong Wu, Liang Gou, and et al. 2020. DySAT: Deep Neural

Representation Learning on Dynamic Graphs via Self-Attention Networks. In

WSDM. ACM, 519–527.

[34] Ahsan Shehzad, Feng Xia, Shagufta Abid, and et al. 2024. Graph Transformers:

A Survey. CoRR abs/2407.09777 (2024).

[35] Xiran Song, Jianxun Lian, Hong Huang, and et al. 2023. xGCN: An Extreme

Graph Convolutional Network for Large-scale Social Link Prediction. In WWW.

ACM, 349–359.

[36] Rakshit Trivedi, Mehrdad Farajtabar, Prasenjeet Biswal, and Hongyuan Zha.

2019. DyRep: Learning Representations over Dynamic Graphs. In ICLR (Poster).
OpenReview.net.

[37] Petar Velickovic, Guillem Cucurull, Arantxa Casanova, and et al. 2018. Graph

Attention Networks. In ICLR (Poster). OpenReview.net.
[38] RuiWang, Dongdong Chen, ZuxuanWu, and et al. 2022. BEVT: BERT Pretraining

of Video Transformers. In CVPR. IEEE, 14713–14723.
[39] Zhihao Wen and Yuan Fang. 2022. TREND: TempoRal Event and Node Dynamics

for Graph Representation Learning. InWWW. ACM, 1159–1169.

[40] Yuxia Wu, Yuan Fang, and Lizi Liao. 2024. On the Feasibility of Simple Trans-

former for Dynamic Graph Modeling. InWWW. ACM, 870–880.

[41] Zonghan Wu, Shirui Pan, Fengwen Chen, and et al. 2021. A Comprehensive

Survey on Graph Neural Networks. IEEE Trans. Neural Networks Learn. Syst. 32,
1 (2021), 4–24.

[42] Da Xu, Chuanwei Ruan, Evren Körpeoglu, and et al. 2020. Inductive representa-

tion learning on temporal graphs. In ICLR. OpenReview.net.
[43] Chengxuan Ying, Tianle Cai, Shengjie Luo, and et al. 2021. Do Transformers

Really Perform Badly for Graph Representation?. In NeurIPS. 28877–28888.
[44] Le Yu, Leilei Sun, Bowen Du, and Weifeng Lv. 2023. Towards Better Dynamic

Graph Learning: New Architecture and Unified Library. In NeurIPS.
[45] Xingtong Yu, Chang Zhou, Yuan Fang, and et al. 2024. MultiGPrompt for Multi-

Task Pre-Training and Prompting on Graphs. In WWW. ACM, 515–526.

[46] Yanping Zheng, Lu Yi, and Zhewei Wei. 2024. A survey of dynamic graph neural

networks. CoRR abs/2404.18211 (2024).

[47] Yifan Zhu, Fangpeng Cong, Dan Zhang, and et al. 2023. WinGNN: Dynamic

Graph Neural Networks with Random Gradient Aggregation Window. In KDD.
ACM, 3650–3662.

[48] Marinka Zitnik, Monica Agrawal, and Jure Leskovec. 2018. Modeling polyphar-

macy side effects with graph convolutional networks. Bioinform. 34, 13 (2018),
i457–i466.

9

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

WWW ’25, April 28– May 02, 2025, Sydney, Australia Anon. Submission Id: 1108

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

A APPENDIX
A.1 Datasets

Table 3: Statistics of the datasets used in our experiments

Dataset UCI ML-10M Hepth MMConv

Domain Social Rating Citation Conversation

Paradigm Transductive Transductive Inductive Transductive

Nodes 1,781 15,841 4,737 7,415

Edges 16,743 48,561 14,831 91,986

Density 0.0105 3.87 × 10
−4

0.0013 0.0033

Triangles 13,580 15,962 11,328 0

Avg. Triangles 7.6249 1.0076 2.3914 0

Avg. Degree 18.8020 6.1311 6.2618 26.2980

Time Periods 13 13 12 16

• UCI is a social network dataset aiming at sustaining interaction

among students at University of California, Irvine and help

them enlarge their circles of friends.

• ML-10M is collected from the MovieLens website. It consists of

user-tag interactions, where the edges represent interactions,

nodes denote users and tags.

• Hepth is from the e-print arXiv and covers scientific collabora-

tions between authors papers submitted to High Energy Physics

- Theory category. It is worth noting that Hepth contains new

emerging nodes as time goes on.

• MMConv is a multi-modal conversational dataset, a fully an-

notated collection of human-to-human role-playing dialogues

spanning over multiple domains and tasks.

For Hepth dataset where text is used as node attributes, we align

with previous work [40] by employing the word2vec model [23]

to encode the text into embedding vectors. The detailed statistics

of the four datasets after preprocessing are provided in Table. 3,

where Avg. Triangle represents the average number of triangles

that can be formed directly with the nodes that are 1-hop away

from each node.

A.2 Baseline for comparison
• DySAT [33] is a neural architecture learning node represen-

tations to capture dynamic graph structural evolution along

the two dimensions of structural neighborhood and temporal

dynamics.

• EvolveGCN [29] captures the dynamism of the graph sequence

with an RNN to evolve the GCN parameters rather than resort-

ing to node representations.

• DyRep [36] is a two-time scale deep temporal point process

model that captures the interleaved dynamics of the observed

processes with an unsupervised procedure.

• JODIE [17] is a coupled recurrent neural network model, which

employs two RNNs to update the embeddings at every corre-

sponding interaction.

• TGAT [42] contains the self-attention mechanism as building

block and a novel functional time encoding technique based on

the classical Bochner’s theorem from harmonic analysis.

• TGN [32] is a generic, efficient framework for deep learning

on dynamic graphs represented as sequences of timed events.

• TREND [39] is a framework for temporal graph representation

learning, driven by temporal event and node dynamics and

built upon a Hawkes process-based GNN.

• GraphMixer [5] employs MLPs and neighbor mean-pooling

to summarize the temporal links and node representation in-

formation, respectively.

• SimpleDyG [40] is a Transformer-based simple approach for

modeling dynamic graphs with time alignment technique.

10

	Abstract
	1 Introduction
	2 Related work
	2.1 Dynamic link prediction
	2.2 Graph Transformers

	3 Preliminary
	3.1 Problem definition
	3.2 Serialization of dynamic graphs

	4 Approaches
	4.1 Overview
	4.2 Topology-injected Transformer
	4.3 Mutual information learning

	5 Experiments
	5.1 Experiments setup
	5.2 Overall performance (RQ1)
	5.3 Ablation study (RQ2)
	5.4 Impact of optimization goals (RQ3)
	5.5 Effect of topology injection methods (RQ4)
	5.6 Impact of the prior knowledge (RQ5)
	5.7 Case study

	6 Conclusion
	References
	A Appendix
	A.1 Datasets
	A.2 Baseline for comparison

