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ABSTRACT

Spatio-temporal forecasting is crucial in various fields and requires a careful bal-
ance between identifying subtle patterns and filtering out noise. Vector quantization
(VQ) appears well-suited for this purpose, as it quantizes input vectors into a set
of codebook vectors or patterns. Although VQ has shown promise in various
computer vision tasks, it surprisingly falls short in enhancing the accuracy of
spatio-temporal forecasting. We attribute this to two main issues: inaccurate op-
timization due to non-differentiability and limited representation power in hard
VQ. To tackle these challenges, we introduce Differentiable Sparse Soft-Vector
Quantization (SVQ), the first VQ method to enhance spatio-temporal forecasting.
SVQ balances detail preservation with noise reduction, offering full differen-
tiability and a solid foundation in sparse regression. Our approach employs a
two-layer MLP and an extensive codebook to streamline the sparse regression
process, significantly cutting computational costs while simplifying training and
improving performance. Empirical studies on five spatio-temporal benchmark
datasets show SVQ achieves state-of-the-art results, including a 7.9% improvement
on the WeatherBench-S temperature dataset and an average MAE reduction of
9.4% in video prediction benchmarks (Human3.6M, KTH, and KittiCaltech), along
with a 17.3% enhancement in image quality (LPIPS). Code is publicly available at
https://anonymous.4open.science/r/SVQ-Forecasting.

1 INTRODUCTION

Spatio-temporal forecasting is pivotal in numerous domains ranging from environmental monitoring
to urban planning, where precisely predicting future dynamics is crucial. The journey to refine
forecasting methods has spanned from traditional feature engineering to the latest explorations in
deep learning. Among various methodologies explored, Vector Quantization (VQ) has distinguished
itself primarily in computer vision tasks, showcasing its ability to compress high-dimensional
vectors into a compact, discrete form that maintains significant fidelity to the original information.
Historically rooted in signal processing, VQ’s breakthrough came with its application in image
processing advancements like the Vector Quantised-Variational AutoEncoder (VQ-VAE) van den
Oord et al. (2017), which set a precedent in generating high-quality images by learning efficient
representations of complex distributions.

While VQ has proven effective and has become a nearly default approach in computer vision
generation tasks, its potential applications in spatio-temporal forecasting remain less explored.
Considering the noise reduction capabilities of VQ, along with the similarities between image/video
generation and spatio-temporal forecasting, one could infer that VQ would positively impact the latter.
However, our review of existing studies reveals that few have successfully enhanced spatio-temporal
forecasting performance using VQ techniques. Our empirical analysis of recent state-of-the-art VQ
methods discovered that all of them fell short of expectations, often degrading the performance
of baseline forecasting models rather than providing the anticipated improvements, as illustrated
in Figure 1 and detailed in Table 4. They consistently exert a significant negative influence on the
final MSE or MAE regression accuracy.
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Figure 1: Limitations of VQ in spatio-temporal
forecasting: An experiment study evaluating mean
squared error (MSE) improvement percentage on
the WeatherBench-S temperature dataset.

We believe that the similarity between image/video
generation and spatio-temporal forecasting under-
scores the potential of VQ, but the problem lies in the
inherent dynamic nature of spatio-temporal data. The
complex temporal evolutions and spatial distributions
introduce a level of complexity that traditional VQ
methods are not equipped to handle. Specifically, the
unsatisfactory results of traditional VQ methods are
caused by two reasons:

Inaccurate model optimization caused by non-
differentiability. The discrete nature of the quan-
tization step prevents gradients from being directly
passed through this operation. VQ methods typically
employ the straight-through (or stop-gradient) estimator, as described in VQVAE van den Oord et al.
(2017). This estimator approximates the gradient by copying gradients from the quantized outputs to
the input vectors, introducing errors in the optimization process.

Limited representation power of hard-VQ. VQ methods typically assign each input vector to a
single nearest codebook vector, which limits the modeling of detailed spatio-temporal dynamics
required for forecasting.

In response to these limitations, this work presents Differentiable Sparse Soft-Vector Quantization
(SVQ), a novel technique designed to strike a balance between noise reduction and detail preservation
for spatio-temporal forecasting tasks. We solve the aforementioned challenges by:

• Introducing a differentiable VQ that simplifies gradient computations. This is achieved by
approximating sparse regression with an MLP layer, coupled with a codebook, retaining
the differentiability crucial for modern deep learning pipelines. A two-layer MLP generates
regression coefficients through nonlinear projections of input vectors. The quantized outputs
are derived from the dot product of these coefficients and the codebook matrix. Since the
coefficients are generated from input vectors, gradients can flow directly from the quantized
outputs to the input vectors. This straightforward yet effective approach not only enables
differentiable VQ, enhancing accuracy, but also addressing the computational challenges
often associated with sparse regression in VQ.

• Using Soft-VQ with sparse regression to combine vectors from a large codebook. As shown
in Figure 2, SVQ innovatively integrates sparse regression and allows for the allocation of
input vectors with multiple codebook vectors. This significantly enhances the model’s ability
to capture intricate patterns and effectively filter out noise. Compared to hard-VQ, SVQ
exhibits a more uniform distribution of codebook vectors, indicating that SVQ is able to
preserve more diverse and fine-grained information from the original inputs. Our empirical
studies reveal that SVQ possesses intriguing properties, such as effectively utilizing a
completely frozen, randomly initialized codebook without sacrificing performance, thereby
significantly reducing learning parameters and showcasing its efficiency and robustness.

Figure 2: Hard-VQ vs Soft-VQ: Using t-SNE, we visualize the codebook vectors on WeatherBench-S
temperature dataset with the same codebook size (1024). We provide examples of codebook allocation, where
hard-VQ typically assigns each input vector to a single codebook vector as described in VQ-VAE van den Oord
et al. (2017), whereas soft-VQ assigns each input vector to multiple codebook vectors.

Through rigorous testing on a variety of real-world datasets, SVQ has proven to be the first VQ
method to achieve significant enhancements in spatio-temporal forecasting tasks. Notably, SVQ
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surpassed the leading model in the WeatherBench-S temperature forecasting benchmark by 7.9%. In
video prediction tasks—Human3.6M, KTH, and KittiCaltech, SVQ systematically lowered the Mean
Absolute Error (MAE) by 9.4%, while also marking a significant improvement in perceptual quality,
as indicated by a 17.3% reduction in the LPIPS score. These results underscore SVQ’s remarkable
capability across a wide range of spatio-temporal forecasting tasks.

2 RELATED WORK

Due to space limitations, here we provide a brief overview of vector quantization, the lineage of
sparse coding techniques, and the latest developments in spatio-temporal forecasting algorithms. An
extensive review can be found in the Appendix B.

Vector Quantization and Sparse Coding. Instead of using continuous latent, VQ-VAE van den
Oord et al. (2017), a seminal work, incorporates vector quantization to learn discrete latent represen-
tations, typically assigning each vector to the nearest code in a codebook. Subsequent enhancements
include Residual VQ Zeghidour et al. (2022), which quantizes the residuals recursively, and Multi-
headed VQ Mama et al. (2021b), which adopts multiple heads for each vector. While these methods
are effective, they often rely on a relatively small number of codes to represent the original vectors.
To address this, SCVAE Xiao et al. (2023) employs sparse coding, allowing vectors to be represented
through sparse linear combinations of multiple codes, and achieves end-to-end training via the
Learnable Iterative Shrinkage Thresholding Algorithm (LISTA) Gregor & LeCun (2010). However, a
significant drawback of the sparse coding method using LISTA (referred to as SVQ-raw here) is its
high computational complexity, which scales quadratically with codebook size.

Building on these insights and limitations, our work proposes a soft-VQ method applicable to spatio-
temporal forecasting tasks. Although it is closely related to a simultaneous research work Tschannen
et al. (2023), which employs an infinite cookbook with a linear layer for continuous vector quantization
applied in image generation, our approach is largely inspired by sparse regression, as clearly evidenced
by our analysis. Specifically, our work focuses on the challenges arising from spatio-temporal
forecasting, providing a strong theoretical foundation and effectively addressing the challenges.

Spatio-Temporal Forecasting Models. Recent advancements in spatio-temporal forecasting have
highlighted a shift from recurrent to non-recurrent frameworks. Despite the forecasting capabilities of
models like ConvLSTM SHI et al. (2015), PredRNN Wang et al. (2017), and PredRNNV2Wang et al.
(2022), this shift is largely due to the high computational demands of sequential processing in recurrent
models. Non-recurrent models, such as MMVP Zhong et al. (2023) and the SimVP family Gao et al.
(2022); Tan et al. (2022), have become benchmarks in video prediction by decoupling spatial and
temporal learning through an efficient encoder-translator-decoder structure. This transition is further
enhanced by innovative features like visual attention in TAU Tan et al. (2023a) and MetaFormers
in OpenSTL Tan et al. (2023b), showcasing the continuous improvements towards more effective
forecasting solutions. Our proposed method is designed for seamless integration as a plugin with the
majority of these spatio-temporal forecasting models.

3 DIFFERENTIABLE SPARSE SOFT-VECTOR QUANTIZATION (SVQ)

In this section, we will first outline the mathematical foundation of sparse soft-vector quantization,
followed by a detailed implementation within a spatio-temporal forecasting model. Our proposed
method effectively addresses the optimization problem through differentiation, and the subsequent
theoretical analysis of cookbook utilization demonstrates its substantial representational capacity.

3.1 VECTOR QUANTIZATION BY SPARSE REGRESSION

Let {zi ∈ Rd}mi=1 be the set of codes. A typical vector quantization method assigns a data point
x ∈ Rd to the nearest code in {zi}mi=1. The main problem with such an approach is that a significant
part of the information in x will be lost due to quantization. Sparse regression turns the code
assignment problem into an optimization problem

w = argmin
w∈Rm

+

1

2

∣∣∣∣∣x−
m∑
i=1

wizi

∣∣∣∣∣
2

+ λ|w|1, (1)
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where w = (w1, . . . , wm) ∈ Rm
+ is the weight for combining codes {zi}mi=1 to approximate x. λ

refers to the regularization parameter. By introducing L1 regularizer in the optimization problem, we
effectively enforce x to be associated with a small number of codes. Compared to classic VQ methods
where codes have to be learned through clustering, according to Chiu et al. (2022), it is sufficient to
use randomly sampled vectors as codes as long as its number is large enough, thus avoiding the need
of computing and adjusting codes. The theoretical guarantee of sparse regression is closely related to
the property of subspace clustering, as revealed in Theorem 4.1.

Figure 3: Effect of SVQ approxima-
tion: Floating point operations per second
(FLOPS) and mean squared error (MSE) on
WeatherBench-S temperature dataset with
SVQ-raw and SVQ. The computational com-
plexity of SVQ-raw increases quadratically
with the size of codebook, making it suffer
from out-of-memory (OOM) issue when scal-
ing codebook size up to 212.

As shown in Figure 3, the obvious downside of sparse
regression for VQ is its high computational cost, as it
needs to solve the optimization problem in (1) for EVERY
data point. Below, we will show that sparse regression can
be approximated by a two-layer MLP and a randomly fixed
or learnable matrix, making it computationally attractive.

To solve the optimization problem (1), we consider the
composite optimization method whose iteration is given
as follows

w′
t+1 = wt − ηZ⊤(Zwt − x), (2)

[wt+1]i = sgn
([
w′

t+1

]
i

) (∣∣[w′
t+1

]
i

∣∣− λη
)
+
, (3)

where Z = (z1, . . . , zm), [z]i is the ith element
of vector z, sgn denotes the sign function, and (a)+
outputs 0 if a < 0 and a otherwise. We con-
sider the first step of the iteration where w0 = 0
and have w = ηsgn

(
Z⊤x− λ1)

[
Z⊤x − λ1]+ =

ηsgn
(
ZTx− λ

)
σ
(
ZTx− λ

)
and the resulting output

for x is given as

x′ =

m∑
i=1

wizi = ηZsgn
(
ZTx− λ

)
σ
(
ZTx− λ

)
. (4)

By generalizing ηZ into another matrix B, we have output vector x′ exactly expressed as a matrix
and a two-layer MLP over x. We finally note that although it is convenient to form the codebook by
randomly sampling vectors, we found empirically that tuning codebook does bring slight additional
gains in some cases.

3.2 SPATIO-TEMPORAL FORECASTING MODEL ENHANCED BY QUANTIZATION

Architecture of backbone model. As depicted in Figure 4, SimVP Tan et al. (2022) is employed as
the backbone model, which encompasses an encoder for spatial feature extraction, a translator for
temporal dependency learning, and a decoder for frame reconstruction. The quantization module is
integrated between the encoder and translator. The input data is a 4D tensor X ∈ RH∗W∗T∗C , repre-
senting height (H), width (W ), time step (T ), and channel (C). The encoder En condenses X into
downsampled latent representation En(X) ∈ RH′∗W ′∗T∗C′

, maintaining temporal dimensionality
while altering spatial and channel dimensions. This latent space, composed of H ′ ∗W ′ ∗ T tokens,
each represented by a C ′-dimensional vector, undergoes vector quantization.

Quantization module. The SVQ comprises a two-layer MLP and an extensive codebook. The
codebook is a randomly initialized matrixM ∈ RN∗C′

, where N denotes the size of codebook.
To achieve automatic selection of codes, a weight matrix W ∈ RH′∗W ′∗T∗N is generated via
nonlinear projection from the latent representation En(X). This projection is formally expressed
asW = MLP(En(X)), wherein the MLP comprises two linear layers and an intermediate ReLU
activation function. The quantized output Q is then obtained by computing the dot product of weight
matrixW and codebook matrixM, a process that can be conceptualized as a selection operation
as shown in Figure 4. To encourage sparsity within the generated weight matrix, we apply a Mean
Absolute Error (MAE) loss to the output as a surrogate form of regularization.

4
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Figure 4: Top: Architecture of backbone model and the proposed quantization module. The
encoder, translator, decoder are inherited from SimVP. A quantization module is added between the
encoder and translator to effectively ensure a good generalized performance. Bottom: Quantization
process of traditional VQ (Left) and our proposed SVQ (Right). In contrast, SVQ select multiple
codes (red dots) from a huge codebook (gray dots), and the codebook can be either learnable or
frozen.

4 EFFICIENT UTILIZE OF COOKBOOK USING SPARSE REGRESSION

To understand the difference between sparse regression-based quantization scheme and clustering-
based quantization scheme, we measure the number of codes required to approximate any vector
within a unit ball B with error less than δ. This number is denoted by T (B, δ). Intriguingly, as
the theorem below reveals, using sparse regression allows T (B, δ) to be significantly reduced from
O(1/δd) to O(1/δp), where p≪ d for high-dimensional vectors.
Theorem 4.1. For the clustering-based method, T (B, δ) is at least 1/δd. In contrast, for sparse
regression, T (B, δ) can be formulated as (4d/δ)p, where

p ≥ max

(
3,

log(4/δ)

log log(2d/ε)

)
, (5)

given that the number of non-zero elements utilized by sparse regression is at least
4d

δ (logC + p log(4d)− (p+ 1) log δ)
. (6)

Proof. To estimate T (B, δ) for the clustering method, we consider the covering number for a unit
ball B which necessitates at least 1/δd code vectors to approximate any vector within an acceptable
error margin of δ. With U = (u1, . . . , um) where uk ∼ N (0, Id/m), and g ∈ ∆s an s-sparse unit
vector, we discern:

Pr
(
∥UU⊤ − I∥2 ≥ γ

)
≤ 2d exp

(
−mγ2

3d

)
, (7)

which implies

∥UU⊤ − I∥2 ≤ ∆ :=

√
d

m
log

2d

ε
(8)

with probability at least 1− ε. Therefore, ∥g′ − g∥2 ≥ (1 + ∆)−1∥Ug − Ug′∥2. Since the s-sparse
unit vector covering number is bounded by (Cm/sδ)s, we establish:(

Cm

sδ

)s

≥
(
1 +

2

δ

)d

(1 + ∆)d, (9)

Setting m = (4d/δ)p yields

(1 + ∆)d ≤ exp(d∆) ≤ e, (10)

therefore, s log(C ′m/δ) ≥ d(2/δ + log(1 + ∆)), where C ′ = Ce. As long as s ≥
4d

δ(logC+p log(4d)−(p+1) log δ) , it follows that s log s ≤ 2d/δ, affirming that m ≥ (4d/δ)p.
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5 EXPERIMENTS

We extensively evaluate SVQ on a wide range of real-world spatio-temporal forecasting datasets
under the unified framework of OpenSTL Tan et al. (2023b). Given that SimVP holds leading
performance across almost all benchmarks, it serves as our primary baseline.

Dataset. We conduct extensive experiments on five real-world spatio-temporal forecasting tasks,
including weather (WeatherBench Rasp et al. (2020)), traffic flow (TaxiBJ Zhang et al. (2017)), human
pose dynamics (Human3.6M Ionescu et al. (2014)), driving scenes (KittiCaltech Geiger et al. (2013);
Dollár et al. (2009)), and human actions (KTH Action Schüldt et al. (2004)). The above datasets have
relatively few channels. As the number of channels increases, it becomes more challenging to apply
VQ, requiring a more diverse codebook. Therefore, to validate the performance on high-dimensional
data, additional experiments were conducted using the WeatherBench dataset in a High-dimensional
Multi-Variable (HMV) setting, which includes a total of 110 meteorological factors. Details about
datasets are provided in Appendix A.1.

Experimental details. During deployment, we found SVQ to be quite robust to codebook size, as
its performance remains consistently strong when using a sufficiently large codebook. Therefore, we
fix the codebook size at 10,000 for WeatherBench, TaxiBJ, and Human3.6M datasets, and at 6,000
for KittiCaltech and KTH datasets. The hidden dimension of nonlinear projection layer is fixed at
128. Experiments are conducted on either 1 or 4 NVIDIA V100 32GB GPUs, with a total batch size
of 16. More details about backbone architectures, VQ parameters, computational costs, and metrics
are described in Appendix A.2, A.3, D.1, and A.5, respectively.

5.1 BENCHMARKS ON VARIOUS FORECASTING TASKS

We explore both fixed (frozen) and learnable versions of SVQ on various forecasting tasks. Interest-
ingly, our findings reveal that with a large codebook size, the performance of a frozen, randomly-
initialized codebook is on par with that of a carefully learned codebook. This observation aligns
with our intuition: when allowed to choose a very large number of representative vectors to form
a codebook, a random choice is often as good as the one that is carefully chosen, which has al-
ready been studied in the column subset selection problem in matrix theory Drineas et al. (2008);
Deshpande & Rademacher (2010). The comparison baselines consist of two categories: 1) Non-
recurrent models including SimVP Tan et al. (2022) and TAU Tan et al. (2023a); 2) Recurrent-based
models including ConvLSTM SHI et al. (2015), PredNet Lotter et al. (2017), PredRNN Wang et al.
(2017), PredRNN++ Wang et al. (2018), MIM Wang et al. (2019b), E3D-LSTM Wang et al. (2019a),
PhyDNet Guen & Thome (2020), MAU Chang et al. (2021), PredRNNv2 Wang et al. (2022), and
DMVFN Hu et al. (2023). Baseline results are copied from the original OpenSTL paper Tan et al.
(2023b). To preclude ambiguity, we select the best MetaFormer of SimVP for each dataset, detailed
in Appendix A.2.

The benchmark results of WeatherBench and three video prediction datasets (Human3.6M, KTH, and
KittiCaltech) are presented in Tables 1 and 2, respectively. Due to page limit, results of WeatherBench-
HMV and TaxiBJ datasets are provided in Appendix D.8 and D.7. These datasets have different
characteristics. WeatherBench and TaxiBJ are macro forecasting tasks with low-frequency collection
(30min or 1-6h). Human3.6M features subtle, low-frequency frame differences. KittiCaltech is
challenging due to rapidly changing backgrounds and limited training data. The KTH dataset tests
long-horizon forecasting, requiring the prediction of 20 future frames from 10 observed frames.

However, despite the distinct characteristics among datasets, a common thread is the need for
improved noise reduction coupled with enhanced representational capabilities, which can universally
benefit their respective forecasting tasks. Notably, the SimVP+SVQ model achieves either the best
or comparable performance across all datasets. For instance, on the WeatherBench-S temperature
dataset, SVQ significantly improves the best baseline by 7.9% (1.105 → 1.018). On these three
popular video prediction tasks, SVQ not only delivers a reduction in forecasting errors (average 9.4%
decrease in MAE), but also significantly improves subjective image quality (average 17.3% decrease
in LPIPS). On the WeatherBench-HMV dataset, SVQ continues to demonstrate a reduction in MAEs
in 110 channels, with an average of 8.9%. The results affirm that SVQ maintains good performance
when applied to high-dimensional datasets. Additional visualizations of forecasting samples can be
found in Appendix F.
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Table 1: WeatherBench results: Performance comparison for SVQ module and baseline models on Weather-
Bench. WeatherBench-S is single-variable, one-hour interval forecasting setup trained on data from 2010-2015,
validated on 2016, and tested on 2017-2018. WeatherBench-M targets broader application, which is multi-
variable, six-hour interval forecasting setup trained on data from 1979-2015, validated on 2016, and tested on
2017-2018. The best and the second best results are highlighted by bold and underlined.

Dataset Variable Temperature Humidity Wind Component Total Cloud Cover

Model MSE↓ MAE↓ MSE↓ MAE↓ MSE↓ MAE↓ MSE↓ MAE↓

WeatherBench-S

ConvLSTMSHI et al. (2015) 1.521 0.7949 35.146 4.012 1.8976 0.9215 0.0494 0.1542
E3D-LSTMWang et al. (2019a) 1.592 0.8059 36.534 4.100 2.4111 1.0342 0.0573 0.1529

PredRNNWang et al. (2017) 1.331 0.7246 37.611 4.096 1.8810 0.9068 0.0550 0.1588
MIMWang et al. (2019b) 1.784 0.8716 36.534 4.100 3.1399 1.1837 0.0573 0.1529
MAUChang et al. (2021) 1.251 0.7036 34.529 4.004 1.9001 0.9194 0.0496 0.1516

PredRNN++Wang et al. (2018) 1.634 0.7883 35.146 4.012 1.8727 0.9019 0.0547 0.1543
PredRNN.V2Wang et al. (2022) 1.545 0.7986 36.508 4.087 2.0072 0.9413 0.0505 0.1587

TAUTan et al. (2023a) 1.162 0.6707 31.831 3.818 1.5925 0.8426 0.0472 0.1460
SimVP (w/o VQ)Tan et al. (2022) 1.105 0.6567 31.332 3.776 1.4996 0.8145 0.0466 0.1469
SimVP+SVQ (Frozen codebook) 1.023 0.6131 30.863 3.661 1.4337 0.7861 0.0456 0.1456

SimVP+SVQ (Learnable codebook) 1.018 0.6109 30.611 3.657 1.4186 0.7858 0.0458 0.1463
Improvement ↑7.9% ↑7.0% ↑2.3% ↑3.2% ↑5.4% ↑3.5% ↑2.1% ↑0.9%

WeatherBench-M

Variable Temperature Humidity Wind U Component Wind V Component

ConvLSTMSHI et al. (2015) 6.303 1.7695 368.15 13.490 30.002 3.8923 30.789 3.8238
PredRNNWang et al. (2017) 5.596 1.6411 354.57 13.169 27.484 3.6776 28.973 3.6617

MIMWang et al. (2019b) 7.515 1.9650 408.24 14.658 35.586 4.2842 36.464 4.2066
MAUChang et al. (2021) 5.628 1.6810 363.36 13.503 27.582 3.7409 27.929 3.6700

PredRNN++Wang et al. (2018) 5.647 1.6433 363.15 13.246 28.396 3.7322 29.872 3.7067
PredRNN.V2Wang et al. (2022) 6.307 1.7770 368.52 13.594 29.833 3.8870 31.119 3.8406

TAUTan et al. (2023a) 4.904 1.5341 342.63 12.801 24.719 3.5060 25.456 3.4723
SimVP (w/o VQ)Tan et al. (2022) 4.833 1.5246 340.06 12.738 24.535 3.4882 25.232 3.4509
SimVP+SVQ (Frozen codebook) 4.427 1.4160 360.15 12.445 23.915 3.4078 24.968 3.4117

SimVP+SVQ (Learnable codebook) 4.433 1.4164 360.53 12.449 23.908 3.4060 24.983 3.4095
Improvement ↑8.4% ↑7.1% ↓5.9% ↑2.3% ↑2.6% ↑2.4% ↑1.0% ↑1.2%

Table 2: Video prediction results: Performance comparison for SVQ module and baseline models on Hu-
man3.6M, KTH, and KittiCaltech. The best and the second best results are highlighted by bold and underlined.

Dataset Human3.6M KittiCaltech KTH

Metric MAE↓ SSIM↑ PSNR↑ LPIPS↓ MAE↓ SSIM↑ PSNR↑ LPIPS↓ MAE↓ SSIM↑ PSNR↑ LPIPS↓
ConvLSTMSHI et al. (2015) 1583.3 0.9813 33.40 0.03557 1583.3 0.9345 27.46 0.08575 445.5 0.8977 26.99 0.26686

E3D-LSTMWang et al. (2019a) 1442.5 0.9803 32.52 0.04133 1946.2 0.9047 25.45 0.12602 892.7 0.8153 21.78 0.48358
PredNetLotter et al. (2017) 1625.3 0.9786 31.76 0.03264 1568.9 0.9286 27.21 0.11289 783.1 0.8094 22.45 0.32159

PhyDNetGuen & Thome (2020) 1614.7 0.9804 39.84 0.03709 2754.8 0.8615 23.26 0.32194 765.6 0.8322 23.41 0.50155
MAUChang et al. (2021) 1577.0 0.9812 33.33 0.03561 1800.4 0.9176 26.14 0.09673 471.2 0.8945 26.73 0.25442
MIMWang et al. (2019b) 1467.1 0.9829 33.97 0.03338 1464.0 0.9409 28.10 0.06353 380.8 0.9025 27.78 0.18808

PredRNNWang et al. (2017) 1458.3 0.9831 33.94 0.03245 1525.5 0.9374 27.81 0.07395 380.6 0.9097 27.95 0.21892
PredRNN++Wang et al. (2018) 1452.2 0.9832 34.02 0.03196 1453.2 0.9433 28.02 0.13210 370.4 0.9124 28.13 0.19871
PredRNN.V2Wang et al. (2022) 1484.7 0.9827 33.84 0.03334 1610.5 0.9330 27.12 0.08920 368.8 0.9099 28.01 0.21478

TAUTan et al. (2023a) 1390.7 0.9839 34.03 0.02783 1507.8 0.9456 27.83 0.05494 421.7 0.9086 27.10 0.22856
DMVFN Hu et al. (2023) - - - - 1531.1 0.9314 26.95 0.04942 413.2 0.8976 26.65 0.12842

SimVP (w/o VQ)Tan et al. (2022) 1441.0 0.9834 34.08 0.03224 1507.7 0.9453 27.89 0.05740 397.1 0.9065 27.46 0.26496
SimVP+SVQ (Frozen codebook) 1264.9 0.9851 34.07 0.02380 1408.6 0.9469 28.10 0.05535 364.6 0.9109 27.28 0.20988

SimVP+SVQ (Learnable codebook) 1265.1 0.9851 34.06 0.02367 1414.9 0.9458 28.10 0.05776 360.2 0.9116 27.37 0.20658
Improvement ↑12.2% ↑0.2% ↓0.0% ↑26.2% ↑6.6% ↑0.2% ↑0.8% ↑3.6% ↑9.3% ↑0.6% ↓0.3% ↑22.0%

5.2 BOOSTING PERFORMANCE AS A VERSATILE PLUG-IN

Table 3: Boosting performance: The effect of
SVQ for various MetaFormers on WeatherBench-
S temperature dataset.

MetaFormer MSE MAE
w/o SVQ w SVQ w/o SVQ w SVQ

SimVPv1(IncepU)Gao et al. (2022) 1.238 1.216 0.7037 0.6831
SimVPv2(gSTA)Tan et al. (2022) 1.105 1.018 0.6567 0.6109

ConvMixerTrockman & Kolter (2023) 1.267 1.257 0.7073 0.6780
ConvNeXtLiu et al. (2022b) 1.277 1.159 0.7220 0.6568

HorNetRao et al. (2022) 1.201 1.130 0.6906 0.6472
MogaNetLi et al. (2022) 1.152 1.067 0.6665 0.6271

ViTDosovitskiy et al. (2021) 1.146 1.111 0.6712 0.6375
SwinLiu et al. (2021) 1.143 1.088 0.6735 0.6320

UniformerLi et al. (2023) 1.204 1.110 0.6885 0.6400
PoolformerYu et al. (2022b) 1.156 1.097 0.6715 0.6297

VANGuo et al. (2023) 1.150 1.083 0.6803 0.6342
MLP-MixerTolstikhin et al. (2021) 1.255 1.120 0.7011 0.6455

Average improvement ↑ 4.8% ↑ 6.0%

In this section, SVQ serves as a versa-
tile plug-in module applicable to various
MetaFormers Yu et al. (2022a). The adopted
MetaFormers include three types. 1) CNN-
based: SimVPv1(IncepU) Gao et al. (2022),
SimVPv2(gSTA) Tan et al. (2022), Con-
vMixer Trockman & Kolter (2023), Con-
vNeXt Liu et al. (2022b), HorNet Rao et al.
(2022), and MogaNet Li et al. (2022). 2)
Transformer-based: ViT Dosovitskiy et al.
(2021), Swin Transformer Liu et al. (2021), Uni-
former Li et al. (2023), Poolformer Yu et al.
(2022b), and VAN Guo et al. (2023). 3) MLP-
based: MLPMixer Tolstikhin et al. (2021). We
conduct experiments on WeatherBench-S tem-
perature dataset because it is lightweight and
fast for training.
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As shown in Table 3, SVQ consistently improves the performance across all MetaFormers, showcasing
its universality across diverse backbone types. We observe an average reduction in MSE and MAE
by 4.8% and 6.0%, respectively. In detail, SVQ leads to an average MSE reduction of 4.1%
for CNN-based backbones, 5.1% for transformer-based, and 10.7% for MLP-based. The more
pronounced enhancement in transformer-based and MLP-based models indicates that our approach is
especially effective with architectures that prioritize global interactions. Notably, SimVPv2(gSTA)
is the best backbone, while our SVQ further improves it by 7.9%. These findings also aligns with
our motivation that mitigating noise in the learning process significantly benefits spatio-temporal
forecasting, irrespective of model architecture. By integrating SVQ to constrain the diversity of
predicted patterns and cut out noise, researchers can focus on crafting high-quality and general base
models.

5.3 DELICATE BALANCE BETWEEN DETAIL PRESERVATION AND NOISE REDUCTION

Table 4: Comparison of vector quantization methods:
All methods share identical backbone, with the recom-
mended setting in Appendix A.3. The results better than
baseline are highlighted in bold.

Method MSE↓ MAE↓
Baseline (SimVP w/o VQ) 1.105 0.6567

VQ van den Oord et al. (2017) 1.854 0.8963
Residual VQ (RVQ) Zeghidour et al. (2022) 1.213 0.6910

Grouped Residual VQ (GRVQ) Yang et al. (2023) 1.174 0.6747
Multi-headed VQ (MHVQ) Mama et al. (2021b) 1.211 0.6994
Stochastic Residual VQ (SRVQ) Lee et al. (2022) 1.888 0.9237

Residual Finite Scalar Quantization (RFSQ) Mama et al. (2021a) 1.319 0.7505
Lookup Free Quantization (LFQ) Yu et al. (2023a) 2.988 1.1103

Residual LFQ (RLFQ) Yu et al. (2023a) 1.281 0.7281
SVQ-raw Xiao et al. (2023) 1.123 0.6456

SVQ 1.018 0.6109

To study the role of VQ in spatio-temporal fore-
casting, we evaluated several cutting-edge VQ
methods akin to the SVQ framework, imple-
mented as plug-in modules alongside the back-
bone forecasting model. Table 4 shows that
SVQ significantly improves forecasting as a
plug-in, whereas other VQ methods result in
increased prediction errors. Enhanced detail re-
tention within the representational capacity is
associated with lower forecasting errors. Clas-
sic VQ methods suffer from notable information
losses, as evidenced by a higher MSE of 1.854.
In contrast, both residual VQ and grouped resid-
ual VQ outperform traditional VQ with lower
MSEs of 1.213 and 1.174, respectively, affirming their ability to preserve intricate details due to
recursive quantization.

Figure 5: Predition MSE curves on
WeatherBench-S temperature dataset with
Grouped Residual VQ (GRVQ) and SVQ.

It is commonly understood that the codebook size in
clustering-based VQ is critical: larger codebooks cap-
ture more details, whereas smaller ones enhance noise
reduction. To explore this trade-off, we compared how the
codebook size influences the prediction MSE in Grouped
Residual VQ (GRVQ) and SVQ. As Figure 5 indicates,
the MSE of GRVQ initially decreases but increases with
overly large codebooks, echoing findings from Yu et al.
(2023b) that an excessively large codebook may degrade
image generation performance. This underscores the ne-
cessity for dataset-specific tuning in clustering-based VQ
approaches. In contrast, SVQ naturally achieves a balance
between preserving detail and reducing noise through sparse regression, eliminating the need for
extensive fine-tuning. The codebook size in SVQ exhibits a low-maintenance profile: using a default
large codebook can produce robust results without extensive tuning. We are not suggesting that our
SVQ outperforms other VQ methods in general image generation tasks, as it is beyond the scope
of our current objective. Rather, we emphasize SVQ’s effectiveness as a noise reduction tool that
directly enhances real-world spatio-temporal forecasting tasks, while the application to general image
generation remains a topic for future exploration.

5.4 TRAIN STABILITY ISSUE

Although it is feasible to place the quantization module either before or after the translator, we found
that for post-translator placement, the traditional VQ method van den Oord et al. (2017) suffers
pronounced instability and codebook collapse issues, as shown in Figure 6. It is essential to highlight
that the backbones without VQ maintain their MSE within the acceptable range of approximately 1 to
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2 (refer to Table 3). Yet, integrating traditional VQ causes a substantial rise in MSE values, exceeding
10 for different backbones—a level considered excessively high. We hypothesize that this instability
is attributed to the non-differentiability of the straight-through estimator, which introduces errors into
the gradient flow for preceding modules. In contrast, our SVQ module never encounters such issues
and remains highly stable throughout training. To maintain the integrity of all VQ methods, we opt
for the pre-translator design in our main experiments, wherein quantization is executed preceding the
translator module. The difference between two designs is detailed in Appendix D.3.

(a) Classic VQ after translator

(b) SVQ after translator

Figure 6: VQ (Top) and SVQ (Bottom) training curves: We perform post-translator quantization
on various backbones, with the same codebook size (1024), employing early stopping (patience of
10) on the WeatherBench-S temperature dataset. Perplexity for SVQ is averaged over different θ
values, detailed in Appendix A.4.

5.5 ABLATION STUDY

We conduct a series of ablation studies on WeatherBench-S temperature dataset to understand the
contribution of important designs based on the default setting: SVQ with a codebook size of 10,000,
learnable codebook, and MAE loss. An additional ablation study on the frozen module is provided in
Appendix D.5.

Self-learned sparse regression structure. The original SimVP model adopts MSE as prediction loss.
We individually replace it with MAE loss and add the SVQ module. As shown in Table 5, the joint
use of SVQ and MAE loss is crucial for significantly improving the model’s performance. We suggest
that the sparsity of the weight matrix W impacts vector representation learning and use kurtosis
to quantify this after normalizing W . Figure 7 demonstrates that both a learnable codebook and
MAE loss contribute to increased sparsity. Analyzing four codebook initialization methods in both
learnable and fixed settings (Table 6), we find that a learnable codebook promotes sparsity irrespective
of the initialization, indicating that sparsity is a self-learned property that enhances intermediate
representation learning.

Table 5: Ablation of SVQ Compoments.

Module MSE↓ MAE↓
SimVP (MSE loss) 1.105 0.6567
SimVP (MAE loss) 1.126 0.6509

SimVP+SVQ (Learnable, MSE loss) 1.099 0.6527
SimVP+SVQ (Learnable, MAE loss) 1.018 0.6109

Table 6: Ablation of Codebook Initianlization.
Initialization Learnability MSE↓ MAE↓ Kurtosis

kaiming uniform Frozen 1.023 0.6131 1.596
Learnable 1.018 0.6109 7.213

sparse(sparsity=0.9) Frozen 1.050 0.6183 4.165
Learnable 1.034 0.6160 41.558

trunc normal Frozen 1.049 0.6166 1.582
Learnable 1.031 0.6161 4.236

orthogonal Frozen 1.034 0.6170 1.561
Learnable 1.030 0.6131 35.774

9
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Figure 7: Distribution of regression weight W and codebook M: Higher kurtosis represents more
compact and concentrate distribution near zero, as well as sparser regression weights. Left: Learnable
SVQ with MAE loss. Middle: Learnable SVQ with MSE loss. Right: Frozen SVQ with MAE loss.
Learnable setting and MAE loss encourage sparser weights and a more structured codebook.

Table 7: Ablation of Model Structure.
Learnability Projection dim Codebook size MSE↓ MAE↓

Frozen
128 10 1.070 0.6227
128 1000 1.044 0.6198
128 10000 1.023 0.6131

Learnable

128 10 1.060 0.6194
128 1000 1.048 0.6182
128 10000 1.018 0.6109

1280 (Bucket-shape) 1280 1.035 0.6149
None (One-layer) 10000 1.043 0.6144
128 (Post-ReLU) 10000 1.032 0.6136

Codebook size and learnability. Table 7
compares the effects of codebook size—both
learnable and frozen. Results show that
increasing codebook size consistently en-
hances performance. However, when the
size reaches 10,000, the performance gap be-
tween frozen and learnable codebooks nar-
rows to just 0.5% (1.023 → 1.018). A larger
codebook provides comprehensive coverage
of the latent space through random codes,
minimizing the need for meticulous learning.
Consequently, models with randomly initial-
ized codebooks perform similarly to those with learned ones. Additionally, our optimized SVQ
structure outperforms alternative designs, including single-layer, bucket-shaped, and post-ReLU
variants, while keeping a similar parameter count.

5.6 ROBUSTNESS TO NOISE, ERROR-BAR, CONVERGENCE BEHAVIOUR, VISUALIZATIONS OF
PREDICTIONS AND LATENT VECTORS, AND HIGH-DIMENSIONAL BENCHMARK RESULTS.

We conducted additional experiments by introducing artificial noise to the training data, confirming
that our method effectively mitigates noise by constraining latent patterns through quantization, as
detailed in Appendix D.2. The statistical significance of the error bars is provided in Appendix D.6.
We further analyzed the convergence behavior of SVQ and traditional VQ in Appendix C. Additionally,
we included supplementary experiments to understand the impact of SVQ on latent representation and
to compare various VQ methods in Appendices E, and D.4, respectively. A benchmark experiment
for high-dimensional spatio-temporal forecasting is also included in Appendix D.8.

6 CONCLUSIONS

In this work, we present Differentiable Sparse Soft-Vector Quantization (SVQ), a concise yet effective
method for spatio-temporal forecasting enhancement. Unlike other state-of-the-art VQ methods, this
is the first approach that demonstrates a boosting effect in spatio-temporal forecasting tasks.SVQ
elegantly tackles the inaccuracies in the optimization problem arising from non-differentiability and
the restricted representational capabilities associated with hard-VQ.Tested across diverse benchmarks,
from weather to traffic and video prediction, SVQ consistently outperforms pure baseline methods,
setting new performance standards without complex priors. Its differentiability and seamless inte-
gration with baseline models highlight SVQ as a significant advancement for efficient and effective
spatio-temporal forecasting.
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Supplemental Materials

The supplementary material for our work Does Vector Quantization Fail in Spatio-Temporal Forecast-
ing? Exploring a Differentiable Sparse Soft-Vector Quantization Approach is organized as follows:
Appendix A provides implementation details of SimVP model and VQ methods. Appendix B gives
an extensive review of related work. Appendix C analyzes the convergence behaviour of SVQ and
traditional VQ. Appendix D present extended quantitative results. Appendix E delves deeper into the
effect of SVQ on latent representation. Finally, Appendix F shows additional qualitative results of
forecasting samples and errors.

A IMPLEMENTATION DETAILS

A.1 DATASET DETAILS

WeatherBench Rasp et al. (2020) and TaxiBJ Zhang et al. (2017) are two macro forecasting tasks
collected at low frequencies (30min or 1-6h). Human3.6M Ionescu et al. (2014), KittiCaltech Geiger
et al. (2013); Dollár et al. (2009), and KTH Action Schüldt et al. (2004) are three popular video
prediction tasks. A summary of dataset statistics is provided in Table 8.

Table 8: The detailed statistics of benchmark datasets.

Dataset Size Seq. Len. Img. Shape Intervaltrain test in out H ×W × C

WeatherBench-S 2,167 706 12 12 32 × 64 × 1 1 hour
WeatherBench-M 54,019 2,883 4 4 32 × 64 × 4 6 hour

TaxiBJ 20,461 500 4 4 32 × 32 × 2 30 min
KittiCaltech 3,160 3,095 10 1 128 × 160 × 3 Frame
Human3.6M 73,404 8,582 4 4 256 × 256 × 3 Frame
KTH Action 4,940 3,030 10 20 128 × 128 × 1 Frame

WeatherBench-HMV 52,559 2,883 4 4 32 × 64 × 110 6 hour

A.2 ARCHITECTURE CONFIGURATION OF SIMVP

Table 9 reports the architectures of SimVP on all datasets. We select the best MetaFormer to
replace the translator module based on OpenSTL benchmarks123. The parameters remain unchanged,
following the original configurations. It is noteworthy that due to reproducibility issues of ConvNeXt
on the TaxiBJ dataset, we have opted to utilize gSTA as our backbone model.

Table 9: Detailed configuration of SimVP backbone.

Dataset MetaFormer (Translator) spatio kernel hid S hid T N T N S drop path LR scheduler

WeatherBench-S temperature gSTA enc=3, dec=3 32 256 8 2 0.1 cosine
WeatherBench-S humidity Swin enc=3, dec=3 32 256 8 2 0.2 cosine

WeatherBench-S wind component Swin enc=3, dec=3 32 256 8 2 0.2 cosine
WeatherBench-S total cloud cover gSTA enc=3, dec=3 32 256 8 2 0.1 cosine

WeatherBench-M MogaNet enc=3, dec=3 32 256 8 2 0.1 cosine
TaxiBJ gSTA enc=3, dec=3 32 256 8 2 0.1 cosine

Human3.6M gSTA enc=3, dec=3 64 512 6 4 0.1 cosine
KTH IncepU enc=3, dec=3 64 256 6 2 0.1 onecycle

KittiCaltech gSTA enc=3, dec=3 64 256 6 2 0.2 onecycle
WeatherBench-HMV gSTA enc=3, dec=3 32 256 8 2 0.1 cosine

1https://openstl.readthedocs.io/en/latest/model_zoos/video_benchmarks.
html

2https://openstl.readthedocs.io/en/latest/model_zoos/weather_benchmarks.
html

3https://openstl.readthedocs.io/en/latest/model_zoos/traffic_benchmarks.
html
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A.3 PARAMETERS OF COMPARED VQ METHODS

Table 4 presents a comparison of SVQ with several well-known VQ methods, reproduced using source
code from the GitHub repository4. The parameters were kept consistent with the recommended
settings to ensure performance, as detailed in Table 10. It should be noted that we found that
increasing the codebook size for previous VQ methods, such as Residual VQ and Multi-headed VQ,
led to a considerable increase in GPU memory usage and extended the training time to impractical
levels. This issue is one of the reasons these methods recommend adopting a default codebook size
of 1024. To ensure fairness, we conducted an extensive experiment for VQ methods using the same
codebook size (1024) in Appendix D.4.

Table 10: Parameters of the compared VQ methods.
Vector quantization method codebook size num quantizers groups heads shared codebook Specific parameters

VQ 512 - - - - -
Residual VQ 1024 8 - - ✓ -

Grouped Residual VQ 1024 8 2 - ✓ -
Multi-headed VQ 1024 - - 8 ✓ -

Residual VQ (Stochastic) 1024 8 - - ✓ stochastic sample codes=True
Residual Finite Scalar Quantization - 8 - - - levels=[8, 5, 5, 3]
Lookup Free Quantization (LFQ) 8192 - - - - entropy loss weight=0.1

Residual LFQ 256 8 - - - -

A.4 EVALUATION OF PERPLEXITY

Unlike other VQ methods that rely on a single code, our SVQ generates multiple regression weights
to merge several codes. To evaluate its perplexity, we first normalize the regression weights and then
convert them into binary form using a threshold set at θ times the standard deviation, where θ serves
as the threshold value. We utilize two thresholds (2 and 3) to obtain reasonable perplexity.

A.5 METRICS

Forecasting accuracy is evaluated using mean squared error (MSE) and mean absolute error (MAE),
while the image quality of predicted frames is assessed using structural similarity index measure
(SSIM) Wang et al. (2004), peak signal-to-noise ratio (PSNR), and learned perceptual image patch
similarity (LPIPS) Zhang et al. (2018). The training process is early stopped with a patience of 10,
and the models with the minimal loss are saved for subsequent evaluation.

B EXTENSIVE REVIEW OF RELATED WORK

B.1 RECURRENT-BASED FORECASTING MODEL

The majority of spatio-temporal forecasting models leverage techniques such as Conv2D Xu et al.
(2018), Conv3D Wang et al. (2019a), and attention mechanisms Liu et al. (2022a) for spatial
modeling. Distinctions among these models primarily arise from how they incorporate temporal
information. Recurrent-based models, exemplified by ConvLSTM SHI et al. (2015), have been
widely used to capture motion dynamics by iteratively processing multi-frame predictions. Variants
like PredRNN Wang et al. (2017) introduce the Spatio-Temporal LSTM (ST-LSTM) unit, integrating
spatial appearances and temporal variations within a single memory pool. Further advancements
include PredRNN++ Wang et al. (2018) and PredRNNV2 Wang et al. (2022), which deepen the model
and expand the receptive field through a cascading LSTM mechanism and a memory decoupling
strategy, respectively. MIM Wang et al. (2019b) network utilizes a self-renewed memory module to
exploit differential signals by decomposing non-stationary dynamics. PredNet Lotter et al. (2017)
improves performance by estimating prediction errors in forward propagation.

B.2 NON-RECURRENT FORECASTING MODEL

Despite the effectiveness of recurrent-based methods, they suffer from high computational cost caused
by their inherent unparallelizable architecture. Recent efforts in spatio-temporal forecasting have
shifted towards non-recurrent models that decouple the forecasting task from autoregressive processes.

4https://github.com/lucidrains/vector-quantize-pytorch/tree/master
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Notably, SimVPv1 Gao et al. (2022) and SimVPv2 Tan et al. (2022) separate spatial and temporal
learning into distinct phases within an encoder-translator-decoder structure, consistently surpassing
recurrent counterparts in video prediction tasks. TAU Tan et al. (2023a) refines the architecture by
incorporating a visual attention mechanism into the translator. OpenSTL Tan et al. (2023b) further
enhances the translator by MetaFormers.

B.3 VECTOR QUANTIZATION

By partitioning a continuous vector space into a discrete collection of vectors, VQ effectively reduces
the data required to characterize a set of values, thereby achieving noise reduction. Following the
introduction of VQ-VAE van den Oord et al. (2017), many variants such as VQGAN Esser et al.
(2021), Residual VQ Zeghidour et al. (2022), Multi-headed VQ Mama et al. (2021b), Grouped
Residual VQ Yang et al. (2023), Finite Scalar Quantization (FSQ) Mama et al. (2021a), and Lookup
Free Quantization Yu et al. (2023a) have been developed to enhance the representational capabilities
of VQ. For instance, FSQ Mama et al. (2021a) simplifies VQ in generative modeling by discretizing
scalar values. However, to the best of our knowledge, VQ has seen limited application in spatio-
temporal forecasting, which has inspired our research. Traditional hard-VQ tends to eliminate
excessive detail, thus impairing forecasting accuracy. While the sparse coding-based variational
autoencoder (SC-VAE) Xiao et al. (2023) incorporates sparse coding into the variational autoencoder
framework, its application is primarily targeted at image reconstruction and segmentation tasks.
Furthermore, in the main text, our experiments have demonstrated that the implementation of the
LISTA algorithm Gregor & LeCun (2010) within SC-VAE leads to out-of-memory issues when a
large codebook size is employed.

C CONVERGENCE BEHAVIOR OF SVQ AND TRADITIONAL VQ

SVQ and traditional VQ are based on sparse regression and clustering, respectively. Since SVQ is
fully differentiable, their convergence behaviors can be considered analogous to Backpropagation
(BP) and K-Nearest Neighbors (KNN), respectively. We prove that BP’s optimization is smoother
than KNN’s due to continuous gradient descent.

Backpropagation. The decision function is directly related to the weights and activation functions,
which tend to evolve smoothly under gradient descent.

f(x) = σ(Wn(σ(Wn−1(. . . σ(W1x+ b1) . . .) + bn−1)) + bn), (11)

with the gradient updates affecting Wi and bi:

Wi ←Wi − η∇Wi
J, (12)

bi ← bi − η∇biJ. (13)

The gradient ∇L(W) is typically smooth and continuous if the loss function L and the activation
functions are smooth. Hence, the weights update in a relatively smooth manner, and the path to the
minimum of the loss function is traversed in small, continuous steps.

K-Nearest Neighbors. Being a non-parametric method, KNN directly relies on the training data to
make its predictions. For a new input x, the prediction y is made based on the majority vote among
its k nearest neighbors:

y = argmax
k∑

i=1

δ(yi, y), (14)

where δ is the Kronecker delta function.

The decision boundary of KNN is piecewise linear and can change abruptly with small changes in
the input data. Consider the case where the input x moves slightly from one side of the decision
boundary to the other:
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x→ x′|x ≈ x′. (15)

In this case, the set of k nearest neighbors might change abruptly, leading to a discontinuous jump in
the prediction y.

We can conclude that the optimization process for backpropagation is smoother as compared to KNN
due to the continuous nature of gradient descent, which updates the weights in small, incremental
steps:

Wt+1 = Wt − η∇L(Wt). (16)

In contrast, KNN’s decision boundary can lead to discontinuous predictions with small perturbations
in the input data, illustrating the non-smooth nature of the optimization process in KNN.

D ADDITIONAL QUANTITATIVE RESULTS

D.1 COMPUTATIONAL COST

Table 11 presents the computational costs of SVQ module and forecasting models. It shows that
recurrent-based models have significantly higher FLOPS requirements, while non-recurrent models
are more efficient. The proposed SVQ module is not only effective but also computationally cheap.
Across all datasets, SVQ only slightly adds the number of parameters and FLOPS. The computational
burden of SimVP+SVQ remains significantly smaller than recurrent-based models.

Table 11: Number of parameters and computing performances for all forecasting models.

Model type Dataset Human3.6M KTH KittiCaltech WeatherBench-S TaxiBJ

Model Params FLOPS Params FLOPS Params FLOPS Params FLOPS Params FLOPS

Recurrent-based

ConvLSTM 15.5M 347.0G 14.9M 1368.0G 15.0M 595.0G 14.98M 136G 14.98M 20.74G
E3D-LSTM 60.9M 542.0G 53.5M 217.0G 54.9M 1004G 51.09M 169G 50.99M 98.19G

PredNet 12.5M 13.7G 12.5M 3.4G 12.5M 12.5M - - 12.5M 0.85G
PhyDNet 4.2M 19.1G 3.1M 93.6G 3.1M 40.4G 3.09M 36.8G 3.09M 5.60G

MAU 20.2M 105.0G 20.1M 399.0G 24.3M 172.0G 5.46M 39.6G 4.41M 6.02G
MIM 47.6M 1051.0G 39.8M 1099.0G 49.2M 1858G 37.75M 109G 37.86M 64.10G

PredRNN 24.6M 704.0G 23.6M 2800.0G 23.7M 1216G 23.57M 278G 23.66M 42.40G
PredRNN++ 39.3M 1033.0G 38.3M 4162.0G 38.5M 1803G 38.31M 413G 38.40M 62.95G
PredRNN.V2 24.6M 708.0G 23.6M 2815.0G 23.8M 1223G 23.59M 279G 23.67M 42.63G

DMVFN - - 3.5M 0.88G 3.6M 1.2G - - 3.54M 0.057G

Non-recurrent
TAU 37.6M 182.0G 15.0M 73.8G 44.7M 80.0G 12.22M 6.70G 9.55M 2.49G

SimVP (w/o VQ) 28.8M 146.0G 12.2M 62.8G 15.6M 96.3G 12.76M 7.01G 7.84M 2.08G
SimVP+SVQ 30.7M 178.0G 13.3M 110.0G 16.8M 156G 14.37M 16.8G 9.45M 3.72G

D.2 ROBUSTNESS TO ARTIFICIAL NOISE INJECTION

To clearly demonstrate the noise reduction effect of SVQ, we conduct a series of experiments by
introducing controlled noise to training data in order to simulate perturbations. The fraction of the
data to be perturbed is determined by η. The noise to be added is generated with uniform random
values scaled to the range [-2,2]. Table 12 shows that the SVQ-equiped model experiences a much
lower rise in MSE and MAE relative to the model without SVQ, regardless of the proportion of
injected noise. For instance, when the proportion of injected noise is 10%, the MSE of the model
without SVQ rises by 25.4%, whereas the model with SVQ shows a modest increase of just 3.2%.
These results confirm the effect of SVQ on helping the forecasting model handle noise better through
vector quantization.
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Table 12: Noise injection analysis: The proportion of injected noise is indicated by η. We present
MSE and MAE, and their percentage increase over baseline without artificial noise.

Noise proportion MSE MAE

w/o SVQ w SVQ w/o SVQ w SVQ

η=0 1.105 1.018 0.6567 0.6109
η=10% 1.386(+25.4%) 1.051(+3.2%) 0.7702(+17.3%) 0.6269(+2.6%)
η=20% 1.554(+40.7%) 1.196(+17.5%) 0.8282(+26.1%) 0.6710(+9.8%)
η=30% 1.750(+58.4%) 1.255(+23.2%) 0.8821(+34.3%) 0.6953(+13.8%)
η=40% 2.081(+88.3%) 1.568(+54.0%) 1.0031(+52.7%) 0.7973(+30.5%)
η=50% 2.646(+139.4%) 1.529(+50.2%) 1.1339(+72.7%) 0.7881(+29.0%)

D.3 POSITION OF QUANTIZATION MODULE

To illustrate how the position of quantization module affects representation learning, we consider two
designs as shown in Figure 8. In our main experiments, we adopt the first design where quantization
is performed before the translator. In Section 5.4, we also investigate an alternative design where
quantization is performed after the translator. Two designs only differ in the placement order of
quantization module and translator module, while the other settings are kept the same.

T

Multi-frame input Downsampled latent Multi-frame target

Translator

Quantization module
H’

W’
Encoder Decoder

H

W

T
H

W

To

MAE loss

T

Multi-frame input Downsampled latent
Multi-frame target

Translator

Quantization module
H’

W’
Encoder Decoder

H

W

T
H

W

To

MAE loss

Figure 8: Comparison of two quantization designs with different positions. Top: Quantization before
translator. Bottom: Quantization after translator.

D.4 COMPREHENSIVE COMPARISON OF VQ METHODS USING THE SAME CODEBOOK SIZE

To make a fair comparison, we extend Table 4 by setting the codebook size to the same value (1024)
for compared VQ methods. They are comprehensively evaluated from different aspects including
downstream performance (prediction MSE), codebook usage (perplexity), and computational com-
plexity (FLOPS, inference FPS, and training time per epoch). The quantitative results are shown in
Table 13. The convergence performance is shown in Figure 9, where SVQ quickly converges to the
lowest prediction error and satisfactory utilization of the codebook. Residual VQ with stochastic
sampling has the highest codebook usage. However, its prediction MSE is worse than residual VQ
without stochastic sampling. This demonstrates that forcibly improving codebook usage does not
guarantee better downstream performance. SVQ generally outperforms the other VQ methods in
computational efficiency, due to the simplified approximation described in Section 3.1.

Table 13: Quantitative comparison of VQ methods with the same codebook size (1024) on
WeatherBench-S temperature dataset.

Vector quantization method Prediction MSE↓ Perplexity↑ FLOPS↓ Inference FPS↑ Training time per epoch(min)↓
VQ 1.8544 51.95 7.207G 21.1 7.11

Residual VQ 1.2131 142.47 8.616G 7.7 13.25
Residual VQ (Stochastic) 1.8882 817.91 8.616G 8.1 17.27

Grouped Residual VQ 1.1737 132.57 8.616G 4.8 19.98
Multi-headed VQ 1.2113 16.36 8.717G 6.2 13.15

SVQ (Frozen) 1.0393 335.72(θ=3)/438.39(θ=2) 8.037G 24.6 7.27
SVQ (Learnable) 1.0403 246.44(θ=3)/331.41(θ=2) 8.037G 24.9 7.30
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Figure 9: Prediction error and codebook usage of different VQ methods during the training process.
All methods adopt the same codebook size (1024) and are early stopped with a patience of 10,
trained on WeatherBench-S temperature dataset. For simplicity, the perplexity of SVQ is averaged on
different θ.

D.5 ABLATION OF FROZEN MODULE

The SVQ module consists of a two-layer MLP and a large codebook. The MLP can be seen as a
projection from the input vector to the regression weights. In Section 5.5, we have already examined
the impact of freezing the codebook on forecasting performance. To further investigate the effect of
freezing the two-layer MLP, we conducted an ablation study in this section. The results, presented in
Table 14, show that freezing the codebook only has a slight impact on forecasting performance, while
freezing the MLP significantly impairs the performance. The MLP is essential for sparse regression
and must be learned from the data, as it generates the weights needed to combine codes from the
codebook.

Table 14: Ablation of frozen modules on WeatherBench-S temperature dataset.

Metric Frozen module

None (All learnable) Codebook Two-layer MLP projection Both

MSE 1.018 1.023 1.060 1.093
MAE 0.6109 0.6131 0.6194 0.6387

D.6 EXPERIMENT STATISTICAL SIGNIFICANCE

To get more robust experimental results and evaluate the statistical significance, we rerun SimVP
and SimVP+SVQ models five times under identical conditions. The results are presented without
standard deviations in the main text due to space constraints. The results with standard deviations on
the WeatherBench-S temperature, TaxiBJ, and WeatherBench-M datasets are reported in Tables 15,
16, and 17, respectively. The standard deviations of the SimVP+SVQ model are generally smaller
than or comparable to those of the SimVP model.

Table 15: Statistical significance of
models on the WeatherBench-S tem-
perature dataset.

Model MSE↓ MAE↓
SimVP (w/o VQ) 1.105±0.043 0.6567±0.0185

SimVP+SVQ (Frozen) 1.023±0.007 0.6131±0.0050
SimVP+SVQ (Learnable) 1.018±0.009 0.6109±0.0064

Table 16: Statistical significance of models on the TaxiBJ
dataset.

Model MSE↓ MAE↓ SSIM↑ PSNR↑
SimVP (w/o VQ) 0.3246±0.0173 15.03±0.26 0.9844±0.0008 39.71±0.11

SimVP+SVQ (Frozen) 0.3171±0.0056 14.68±0.03 0.9848±0.0001 39.83±0.01
SimVP+SVQ (Learnable) 0.3191±0.0020 14.64±0.02 0.9849±0.0002 39.86±0.02
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Table 17: Statistical significance of models on the WeatherBench-M dataset.

Variable Temperature Humidity Wind Component Total Cloud Cover

Model MSE↓ MAE↓ MSE↓ MAE↓ MSE↓ MAE↓ MSE↓ MAE↓
SimVP (w/o VQ) 4.833±0.031 1.5246±0.0077 340.06±0.44 12.738±0.030 24.535±0.076 3.4882±0.0086 25.332±0.052 3.4509±0.0052

SimVP+SVQ (Frozen) 4.427±0.017 1.4160±0.0051 360.15±0.55 12.445±0.024 23.915±0.098 3.4078±0.0033 24.968±0.126 3.4117±0.0032
SimVP+SVQ (Learnable) 4.433±0.021 1.4164±0.0054 360.53±0.81 12.449±0.013 23.908±0.062 3.4060±0.0029 24.983±0.115 3.4095±0.0038

D.7 BENCHMARK ON TAXIBJ DATASET

Table 18: Performance comparison for SVQ and baseline models on TaxiBJ.

Model MSE↓ MAE↓ SSIM↑ PSNR↑
ConvLSTMSHI et al. (2015) 0.3358 15.32 0.9836 39.45

E3D-LSTMWang et al. (2019a) 0.3427 14.98 0.9842 39.64
PhyDNetGuen & Thome (2020) 0.3622 15.53 0.9828 39.46

PredNetLotter et al. (2017) 0.3516 15.91 0.9828 39.29
PredRNNWang et al. (2017) 0.3194 15.31 0.9838 39.51

MIMWang et al. (2019b) 0.3110 14.96 0.9847 39.65
MAUChang et al. (2021) 0.3268 15.26 0.9834 39.52
DMVFNHu et al. (2023) 3.3954 45.52 0.8321 31.14

PredRNN++Wang et al. (2018) 0.3348 15.37 0.9834 39.47
PredRNN.V2Wang et al. (2022) 0.3834 15.55 0.9826 39.49

TAUTan et al. (2023a) 0.3108 14.93 0.9848 39.74
SimVP (w/o VQ)Tan et al. (2022) 0.3246 15.03 0.9844 39.71

SimVP+SVQ (Frozen) 0.3171 14.68 0.9848 39.83
SimVP+SVQ (Learnable) 0.3191 14.64 0.9849 39.86

Improvement ↑1.7% ↑2.6% ↑0.1% ↑0.4%

D.8 BENCHMARK ON WEATHERBENCH-HMV DATASET

To evaluate the performance of SVQ on high-dimensional data, we conducted additional experiments
utilizing the WeatherBench dataset Rasp et al. (2020) in a High-dimensional Multi-Variable (HMV)
setting. This dataset, related to real-world weather forecasting, consists of various meteorological
variables that contribute to a total of 110 channels. These include temperature at 2 m height above
surface (t2m), wind in x/longitude-direction at 10 m height (u10), accumulated hourly incident solar
radiation (tisr), fractional cloud cover (tcc), hourly precipitation (tp), potential vorticity (pv), etc.
Notably, several variables are structured across multiple vertical layers. For instance, pv 50 denotes
the potential vorticity at 50 hPa. The WeatherBench-HMV dataset is similar to WeatherBench-M but
includes significantly more channels (increasing from 4 to 110). It is designed for multi-variable,
six-hour interval forecasting, trained on data from 1980-2015, validated on data from 2016, and tested
on data from 2017-2018. Owing to constraints on page length, we divided the performance metrics
of SimVP and SVQ across these 110 channels into two separate tables, as detailed in Tables 19 and
20. We observed that SVQ achieved an average enhancement of 11.7% on the initial 55 channels,
while the improvement on the subsequent 55 channels was 6.1%. Consequently, the cumulative
average improvement across all 110 channels was 8.9%. These findings underscore that, despite the
complexities introduced by high-dimensional datasets, SVQ effectively adapts to and enhances the
predictive capabilities of the backbone model.
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Table 19: MAE comparison for SimVP and SVQ on WeatherBench-HMV (The first 55 channels).

Channel SimVP (w/o VQ) SimVP+SVQ (Frozen) SimVP+SVQ (Learnable) Improvement

u10 2.1557 2.0849 2.0757 3.7%
v10 2.1613 2.1101 2.1117 2.4%
t2m 2.5603 2.4089 2.2799 11.0%
tisr 1.13E+05 32640 30756 72.7%
tcc 0.22906 0.22028 0.22316 3.8%
tp 0.000147 9.96E-05 9.96E-05 32.1%

z 50 371.19 268.81 269.45 27.6%
z 100 333.31 243.12 245.07 27.1%
z 150 339.15 265.88 267.14 21.6%
z 200 376.12 303.11 302.84 19.5%
z 250 404.46 340.07 338.73 16.3%
z 300 404.8 347.96 347.64 14.1%
z 400 357.33 314.15 313.48 12.3%
z 500 309.93 272.9 270.52 12.7%
z 600 276.35 241.09 237.15 14.2%
z 700 252.58 218.67 215.86 14.5%
z 850 229.2 203.88 203.05 11.4%
z 925 229 208.52 206.46 9.8%
z 1000 242.2 220.18 219.18 9.5%
pv 50 3.97E-06 2.93E-06 2.92E-06 26.3%
pv 100 1.44E-06 1.32E-06 1.33E-06 7.8%
pv 150 9.72E-07 8.42E-07 8.44E-07 13.4%
pv 200 1.00E-06 8.64E-07 8.50E-07 15.0%
pv 250 1.05E-06 9.77E-07 9.73E-07 7.7%
pv 300 8.51E-07 7.88E-07 8.00E-07 7.4%
pv 400 3.61E-07 3.42E-07 3.41E-07 5.6%
pv 500 2.35E-07 2.28E-07 2.28E-07 3.1%
pv 600 3.89E-07 3.31E-07 3.32E-07 14.8%
pv 700 6.97E-07 5.30E-07 5.27E-07 24.4%
pv 850 8.81E-07 7.70E-07 7.62E-07 13.6%
pv 925 1.00E-06 9.66E-07 9.58E-07 4.6%

pv 1000 1.40E-06 1.35E-06 1.34E-06 4.5%
r 50 1.9046 1.2558 1.391 34.1%

r 100 7.6728 6.0793 6.3087 20.8%
r 150 9.6361 8.4854 8.7663 11.9%
r 200 14.653 13.175 14.435 10.1%
r 250 19.433 18.728 18.964 3.6%
r 300 20.066 19.791 19.851 1.4%
r 400 19.78 19.375 19.356 2.1%
r 500 19.155 18.876 18.825 1.7%
r 600 18.208 17.981 17.938 1.5%
r 700 17.216 17.041 17.055 1.0%
r 850 14.586 15.379 14.691 -0.7%
r 925 10.086 9.613 9.6737 4.7%

r 1000 7.5008 8.0927 7.2911 2.8%
q 50 9.03E-08 7.40E-08 7.55E-08 18.1%

q 100 1.97E-07 1.87E-07 1.87E-07 5.3%
q 150 1.10E-06 1.10E-06 1.08E-06 2.1%
q 200 6.68E-06 6.48E-06 6.39E-06 4.3%
q 250 2.38E-05 2.24E-05 2.26E-05 5.7%
q 300 5.61E-05 5.30E-05 5.40E-05 5.5%
q 400 0.000181 0.000174 0.000177 3.9%
q 500 0.000375 0.000364 0.000362 3.4%
q 600 0.000592 0.000557 0.000553 6.6%
q 700 0.000826 0.000775 0.000784 6.2%

Average improvement 11.7%
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Table 20: MAE comparison for SimVP and SVQ on WeatherBench-HMV (The last 55 channels).

Channel SimVP (w/o VQ) SimVP+SVQ (Frozen) SimVP+SVQ (Learnable) Improvement

q 850 0.001054 0.000989 0.000994 6.1%
q 925 0.0009 0.000757 0.00075 16.7%
q 1000 0.001024 0.000776 0.000767 25.1%

t 50 1.7426 1.2564 1.3594 27.9%
t 100 1.5365 1.2852 1.3544 16.4%
t 150 1.5825 1.3185 1.3377 16.7%
t 200 1.7535 1.6099 1.6243 8.2%
t 250 1.7895 1.5499 1.5571 13.4%
t 300 1.5555 1.3903 1.3658 12.2%
t 400 1.6055 1.4029 1.3737 14.4%
t 500 1.6277 1.4652 1.4493 11.0%
t 600 1.693 1.5669 1.5636 7.6%
t 700 1.8961 1.7623 1.7412 8.2%
t 850 2.1494 2.0246 1.8345 14.6%
t 925 2.2241 1.8933 1.8747 15.7%

t 1000 2.2335 1.891 1.834 17.9%
u 50 2.9882 2.5862 2.5981 13.5%

u 100 3.4492 3.3665 3.3759 2.4%
u 150 3.9731 3.7005 3.7262 6.9%
u 200 4.8379 4.597 4.5959 5.0%
u 250 5.725 5.5288 5.5195 3.6%
u 300 5.9494 5.7551 5.7492 3.4%
u 400 5.1291 4.9461 4.9373 3.7%
u 500 4.2227 4.0826 4.0643 3.8%
u 600 3.7165 3.6228 3.5999 3.1%
u 700 3.4591 3.3916 3.3759 2.4%
u 850 3.0929 3.0253 3.0211 2.3%
u 925 2.9711 2.8879 2.8847 2.9%
u 1000 2.3824 2.298 2.2888 3.9%

v 50 2.4844 2.3521 2.346 5.6%
v 100 3.0661 2.9852 2.9837 2.7%
v 150 3.8109 3.6697 3.6702 3.7%
v 200 4.7779 4.6044 4.5961 3.8%
v 250 5.6621 5.5064 5.4953 2.9%
v 300 5.8984 5.7684 5.7591 2.4%
v 400 5.0538 4.9421 4.9351 2.3%
v 500 4.1298 4.0279 4.0228 2.6%
v 600 3.612 3.5264 3.5224 2.5%
v 700 3.3112 3.2528 3.2485 1.9%
v 850 3.0267 2.9877 2.9857 1.4%
v 925 2.9499 2.8942 2.8931 1.9%
v 1000 2.3969 2.3354 2.3381 2.6%
vo 50 8.64E-06 8.50E-06 8.50E-06 1.6%

vo 100 1.16E-05 1.15E-05 1.15E-05 0.5%
vo 150 1.59E-05 1.58E-05 1.58E-05 0.9%
vo 200 2.26E-05 2.24E-05 2.24E-05 0.8%
vo 250 3.24E-05 3.22E-05 3.22E-05 0.6%
vo 300 3.85E-05 3.82E-05 3.82E-05 0.9%
vo 400 3.61E-05 3.58E-05 3.57E-05 1.0%
vo 500 2.99E-05 2.96E-05 2.96E-05 0.8%
vo 600 2.69E-05 2.67E-05 2.68E-05 0.8%
vo 700 2.68E-05 2.65E-05 2.65E-05 1.1%
vo 850 2.76E-05 2.76E-05 2.76E-05 0.2%
vo 925 2.64E-05 2.63E-05 2.63E-05 0.2%
vo 1000 2.08E-05 2.08E-05 2.08E-05 0.1%

Average improvement 6.1%
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E EFFECT OF SVQ ON LATENT REPRESENTATION

We investigated the impact of SVQ on the sparsity of regression weights in Figure 7. To further
investigate its effect on the latent representation, we compared the distribution of batch tensors before
and after applying SVQ. The tensors were transformed into normalized vectors, and their density
distributions were estimated. As depicted in Figure 10, the representation after SVQ demonstrates a
more compact distribution, indicating improved robustness to noise. These results further prove that
SVQ can enhance forecasting performance by effectively handling noise in the data.

Figures 11, 12, 14, 15, and 13 present the comparison of latent feature maps before and after applying
SVQ. These figures illustrate that the difference between foreground and background in the feature
maps increases after SVQ. For example, in the KittiCaltech dataset, a clear distinction is observed
between road conditions and sky (Figure 11). Similarly, in the WeatherBench-S temperature dataset,
distinctive regions are identified between high and low latitudes (Figure 12). These findings suggest
that SVQ helps in enhancing the discriminative power of the latent representations, which in turn
contributes to improved downstream forecasting performance.

Figure 10: Distribution of latent vector on WeatherBench-S temperature dataset.

(a) Before SVQ (b) After SVQ

Figure 11: Latent feature map on the KittiCaltech dataset: (a) feature map before SVQ, and (b)
feature map after SVQ.
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(a) Before SVQ (b) After SVQ

Figure 12: Latent feature map on the WeatherBench-S temperature dataset: (a) feature map before
SVQ, and (b) feature map after SVQ.

(a) Before SVQ (b) After SVQ

Figure 13: Latent feature map on the TaxiBJ dataset: (a) feature map before SVQ, and (b) feature
map after SVQ.

(a) Before SVQ (b) After SVQ

Figure 14: Latent feature map on the KTH dataset: (a) feature map before SVQ, and (b) feature map
after SVQ.
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(a) Before SVQ (b) After SVQ

Figure 15: Latent feature map on the Human3.6M dataset: (a) feature map before SVQ, and (b)
feature map after SVQ.

F ADDITIONAL QUALITATIVE RESULTS

F.1 FORECASTING ERRORS ON WEATHERBENCH AND TAXIBJ DATASETS

Input (12 Frames)

Target (12 Frames)

ConvLSTM Error

PredRNN Error

MAU Error

PredRNN.V2 Error

SimVP Error

E3D-LSTM Error

PredRNN++ Error

Ours Error

Figure 16: The qualitative forecasting errors on WeatherBench-S temperature dataset.
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Input (4 Frames) Target (4 Frames)

ConvLSTM Error 
Error

PredRNN Error 
Error

MAU Error

PredRNN.V2 Error 
Error

SimVP Error

E3D-LSTM Error 
Error

PhyDNet Error

DMVFN Error

PredRNN++ Error 
Error

Ours Error

Figure 17: The qualitative forecasting errors on TaxiBJ dataset.
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F.2 ADDITIONAL FORECASTING SAMPLES

Input (4 Frames) Target (4 Frames)TaxiBJ Predicted (4 Frames)

WeatherBench
Input (12 Frames)

Target (12 Frames)

Predicted (12 Frames)

KittiCaltech Input (10 Frames) Target Predicted

KTH Input (10 Frames)

Target (20 Frames)

Predicted (20 Frames)

Input (10 Frames)

Target (20 Frames)

Predicted (20 Frames)

Human3.6M Target (4 Frames)

Predicted (4 Frames)

Target (4 Frames)

Predicted (4 Frames)

Target (4 Frames)

Predicted (4 Frames)

Figure 18: Forecasting samples of SimVP+SVQ model on the test set of TaxiBJ (32×32), Weather-
Bench (64×32), KittiCaltech (160×128), KTH (128×128), and Human3.6M (256×256). Zoom in
for details. Our model produces accurate predicted frames for different tasks.
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