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Abstract

With the growing amount of chemical data stored digitally, it has become crucial to
represent chemical compounds consistently. Harmonized representations facilitate
the extraction of insightful information from datasets, and are advantageous for ma-
chine learning applications. Compound standardization is typically accomplished
using rule-based algorithms that modify undesirable descriptions of functional
groups, resulting in a consistent representation throughout the dataset. Here, we
present the first deep-learning model for molecular standardization. We enable
custom schemes based solely on data, which also support standardization options
that are difficult to encode into rules. Our model achieves > 98% accuracy in
learning two popular rule-based protocols. When fine-tuned on a relatively small
dataset of catalysts (for which there is currently no automated standardization
practice), the model predicts the expected standardized molecular format with a test
accuracy of 62% on average. We show that our model learns not only the grammar
and syntax of molecular representations, but also the details of atom ordering, types
of bonds, and representations of charged species. In addition, we demonstrate the
model’s ability to reproduce a canonicalization algorithm with a 95.6% success
rate.

1 Introduction

From deep learning algorithms for forward reaction prediction [1, 2, 3] and retrosynthesis [1, 4, 5], to
the prediction of yields [6] and molecular properties [7], artificial intelligence has become an integral
part of chemical discovery pipelines. This was made possible thanks to the abundance of freely
available molecular databases, with hundreds of millions of compounds relevant to drug and materials
discovery [8, 9, 10]. However, the size of the datasets makes human curation campaigns impractical,
resulting in the frequent presence of incorrect and inconsistent molecular structure representations
[11]. Because the quality of the input data limits the performance of machine learning models, the
development of tools to address this issue has received increased attention in recent years [12]. In
fact, a 2010 study [11] compiled a series of investigations which concluded that even minor structural
errors and inconsistencies within a dataset could result in significant losses in the predictive ability
of structure-activity relationship models. Standardization tools aim to correct errors in chemical
structure representation, while also generating uniform and self-consistent configurations of atoms
and bonds, charges and bond orders, aromaticity and stereochemistry.
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Figure 1: Examples of standardization transformations that cannot be performed by existing rule-
based automated protocols due to their complexity. Note that when manually standardizing these
compounds, one of many possible conventions was chosen. The language model for standardization
presented here correctly predicts all of the above transformations.

Currently, the only approach to chemical data standardization is to format compounds according
to a set of rules and conventions [13, 14, 15]. These assume the occurrence of specific patterns in
the arrangements of elements, bonds, and charges and necessitate the development of algorithms to
convert them to a standard format (which often varies across organizations). Manually crafted and
coded rules have inherent disadvantages, the most notable of which is the need for programming
expertise and time resources. Even more importantly, it is not always possible to develop a set of
rules to automate a chosen standardization protocol, even when experts design specific guidelines to
manually standardize the corresponding compounds. Figure 1 depicts a few examples of standardiza-
tion transformations that cannot be mimicked by a human-written algorithm and thus require manual
annotation as of today.

In this work, we propose a deep learning method based on the Transformer architecture [16] that
converts molecules represented using the simplified molecular-input line-entry system (SMILES)
[17, 18] from their non-standardized to their standardized format. We demonstrate the versatility
of the model by training it with two different standardization protocols and allowing the user to
select the preferred protocol when standardizing new molecules. We also leverage the pre-trained
model to fine-tune it on a dataset where the standardization process cannot be reduced to a set of
rules. Thus, when fine-tuned on a dataset consisting of few hundreds of molecules that have been
standardized based on human annotation, our model can capture commonalities in molecular structure
representation and codify a specific set of rules for consistently modifying compounds.

2 Method

2.1 Model

We repurposed the transformer architecture [16] to execute a translation task from non-standardized
to standardized molecular representations. Tokenized SMILES strings are used as source and target
inputs to the model and tokenization is performed using a custom regular expression pattern (see
Appendix A). Among other aspects, the tokenization ensures the separation of metal atoms and their
charge, which simplifies the learning of atom identity rather than its charged state.

The transformer model was implemented using the OpenNMT-py library (version 1.0.0). The parame-
ters used are reported in Appendix B.
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2.2 Data

The model was trained and tested on compounds belonging to PubChem [8], an open archive
of chemical compounds. The data (220k molecules) was acquired in non-standardized and in
standardized formats which served as source and target inputs, respectively. We performed validation
on 8k compounds and tested on 12k compounds. Upon inspection of the PubChem standardization
protocol, we observed that several compounds are subject to addition of stereochemistry based on
provided 3D information for the molecule. In absence of 3D information as input to our model, we
removed stereochemistry when comparing predictions to true values.

To evaluate the model on another standardization scheme, the source molecules extracted from
PubChem were standardized using the ChEMBL curation protocol [14]. Finally, a private dataset is
introduced in this work and comprises 866 catalyst molecules which we standardized manually. This
was further split into training (766 molecules), validation (50 molecules) and test (50 molecules) sets.
We performed 5 splits and report average performance.

3 Results and discussion

3.1 Standardization learning

The following is an analysis of the ability of the model to perform various types of molecule
standardization. We used three different datasets to train the model. The source molecules are
fixed across them and the targets are generated using: 1) the ChEMBL standardization rules, 2) the
PubChem standardization rules, and 3) a combination of the two procedures.

Table 1: Performance of standardization models tailored for different protocols. Accuracies are
reported for the whole test dataset, as well as only for compounds that get modified during rule-based
standardization.

Standardization protocol Accuracy (%) Split
overall modified

ChEMBL 98.8 94.5 Random
ChEMBL 96.7 87.8 Tanimoto
PubChem 98.0 91.5 Random
PubChem 94.9 80.1 Tanimoto

ChEMBL & PubChem 98.5 92.7 Random

First, we show that the model can be adapted to learn different standardization protocols, to accom-
modate distinct preferences in molecular formatting. Table 1 contains a summary of the results,
including accuracy on the entire test dataset as well as solely on the compounds modified during
rule-based standardization. The datasets were split in two ways: randomly and based on Tanimoto
indexes, which are a popular measure of the structural similarity between compounds [19]. As such,
we adopted the method of Kovács et al. [20] to allocate compounds to the training/test datasets so that
no compound in the test set is within Tanimoto similarity σ = 0.6 of any compound in the training
set. The intent of such a split is to avoid structural bias and to make a robust evaluation of the model’s
ability to generalise to unseen structures.

ChEMBL The results from the random split reveal that the model successfully learns the task, with
an accuracy of 94.5% for compounds standardized using the ChEMBL protocol [14]. This involves
modifications such as converting covalently drawn alkaline metals connected to O or N to ionic forms
(e.g. NaO to Na+O−), standardizing diazonium N to N+, removing explicit H atoms etc. The model
recognizes the molecules that can be standardized and achieves an overall test accuracy of 98.8%.
Hence, the model can also predict that the compounds do not require modification and leaves the
string unchanged. When using a Tanimoto split, the accuracy drops to 87.8%, which is a testament to
the scaffold bias introduced by the nature of the dataset.

PubChem Contrary to ChEMBL, PubChem standardization [13] uses a more extensive list of rules
relying on routines from the OpenEye C++ toolkits [21]. Figure 2 exemplifies a few distinctions
between the two approaches. While the ChEMBL protocol maintains the orginal stereochemistry of
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Figure 2: Distinct standardization outcomes for different protocols. All predictions are made using the
translation models trained herein. ‘PubChem’ is the deep standardization model trained on PubChem
compounds, ‘ChEMBL’ is the one trained on compounds following ChEMBL standardization and
‘Catalysts’ refers to the model fine-tuned on the humanly-curated catalyst dataset. Note that without
fine-tuning, the catalyst molecule (right) is erroneously standardized.

the double bond, PubChem standardization converts the original geometry to an unspecified config-
uration (represented by the wiggly bond). PubChem also standardizes the amine to its protonated
state. Overall, with a random split, the model learns the PubChem protocol with a test set accuracy of
98.0%. For compounds that require modification, 91.5% of the predictions match the real structure.

ChEMBL and PubChem Finally, we explored a model that combines the two different standard-
ization protocols presented previously in a prompt-based fashion. The assumption is that competing
probability distributions, modelling different standardization protocols, can mutually learn from each
other, delivering substantial benefit to the learning. In practice, a [CHEMBL] / [PUBCHEM] token was
added to the input SMILES sequence to designate the preferred type of standardization. The two
protocols were successfully learned in a combined model, with an overall test accuracy of 92.7%. We
determined the test accuracies with which specifically the ChEMBL / PubChem rules were learned
in the combined model. These remain unaltered compared to when the model was trained on one
protocol only: 94.3% for ChEMBL and 91.4% for PubChem, which is in line with the expected
cross-task benefits of multitasking [22]. This is a key finding that enables the user to train on multiple
standardization protocols and query the model effectively.

3.2 Model transferability

Transferability was assessed by fine-tuning the above trained models (see Table 1) on a private
human-curated catalyst dataset. Not only do the compounds in this set deviate from the pre-training
data in terms of class and vocabulary, but the standardization rules used here are also unique. The
performance showed a maximum test set accuracy of 62.0± 4.0% (see Table 2) on a relatively small
dataset (see Section 2.2), an increase of 18% compared to a non-pre-trained model. The learning
abilities of the model for this dataset are notable, as the performance of a null model in this case
(which always returns the input string as a prediction) is 0%. It is also worth noting the variety
and complexities of the transformations. Particularly important for catalysts, the model appears to
learn the ligation preferences of metal centres. Fig. 1 shows how distinct metals exhibit different
coordination behaviours, which are otherwise challenging to capture with rule-based algorithms.

Upon visual inspection of wrong predictions, we observed that the model is prone to fail for large
molecules, however the limited size of the test set does not allow for a proper statistical evaluation
and further investigation is needed. Fig. 3 reveals that incorrect predictions can be associated to
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Table 2: Evaluation of the model’s ability to perform standardization of catalysts. The test set
top-1 accuracies are reported. Note that the first row refers to a model which is only trained on the
catalyst dataset, whereas the next two rows refer to models pre-trained on PubChem and ChEMBL
standardized data, respectively, and fine-tuned on the catalyst dataset.

Pre-training Accuracy (%)

None 44.0± 3.8
PubChem 62.0± 4.0
ChEMBL 61.6± 2.9

Prediction

Target

Prediction

Target

SourceSource

Figure 3: Incorrect predictions of the fine-tuned catalyst model.

incomplete structures or incorrect standardization, and not to chemically invalid structures. This
finding, along with the boost in accuracy highlighted in Table 2, suggests that pre-training contributes
to preventing the violation of chemical rules, while fine-tuning is accountable for tailoring the model
to a specific set of standardization rules. At the same time, we notice that the fine-tuned model loses
its ability to standardize molecules belonging to the pre-training dataset (see Fig. 2). A multitask
learning approach could in principle overcome the issue.

3.3 Learning canonicalization

As a final experiment, we randomized SMILES strings by doing a cyclic rotation of the atomic
indices, and presented the model with the task of recovering the canonical analogues of the molecules.
This was achieved with an accuracy of 95.6% on a random test set. Canonicalization was performed
using the algorithm provided by RDKit [23].

4 Conclusions

The model for molecule standardization presented in this work is the first attempt to replace its
rule-based predecessors. We have demonstrated a robust method that accommodates the variety of
molecular representations that exist today. First, it learns two popular standardization procedures
with accuracies > 98%. For the compounds that undergo modifications during rule-based protocols,
the model predicts the correct outcome with test set accuracies > 91%. The model can be trained
on multiple procedures simultaneously, allowing the user to query it in a prompt-based fashion and
select the preferred standardization practice. Importantly, this does not reduce the standardization
accuracy. When presented with a small catalyst dataset with numerous formatting possibilities, the
model learned the preferred standardizations with an average test accuracy of 62%.

Introducing additional features to the current development may further extend the model’s capabilities.
For example, we plan to explore the effect of the representation of source molecules on the predictive
abilities of the model. This will build towards the goal to learn an even more robust standardization,
irrespective of the flavour of the input SMILES.
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A Tokenizer

SMILES strings were tokenized using the following regex expression:

(\%\([0-9]{3}\)|\[[^\]]+]|Br?|Cl?|N|O|S|P|F|I|b|c|n|o|s|p|\||\(|\)|\.|=|#|-|\+|\\|\/
|:|~|@|\?|>>?|\*|\$|\%[0-9]{2}|[0-9])

The resulting tokenized string was post-processed using the following expression, to introduce a
space between metal atoms and their charge:

\[([A-Z][a-z]?)([+-][0-9]*)?\]

B Model implementation and training

The model is based on the default transformer implementation provided by OpenNMT-py, which
was adapted through the following changes: the parameter layers was set to 4, rnn_size
to 256, word_vec_size to 256, max_generator_batches to 32, accum_count to 4 and
label_smoothing to 0. The model was trained for 120,000 steps. When fine-tuning on the
catalyst dataset, 30,000 training steps were used.
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