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Abstract

Causal machine learning (Causal ML) aims to answer “what if”” questions using
machine learning algorithms, making it a promising tool for high-stakes decision-
making. Yet, empirical evaluation practices in Causal ML remain limited. Existing
benchmarks often rely on a handful of hand-crafted or semi-synthetic datasets,
leading to brittle, non-generalizable conclusions. To bridge this gap, we introduce
CausalProfiler, a synthetic benchmark generator for Causal ML methods. Based on
a set of explicit design choices about the class of causal models, queries, and data
considered, the CausalProfiler randomly samples sets of data, assumptions, and
ground truths constituting the synthetic causal benchmarks. In this way, Causal ML
methods can be rigorously and transparently evaluated under a variety of conditions.
This work offers the first random generator of synthetic causal benchmarks with
coverage guarantees and transparent assumptions operating on the three levels of
causal reasoning—observation, intervention, and counterfactual. We demonstrate
its utility by evaluating several state-of-the-art methods under diverse conditions
and assumptions, both in and out of the identification regime, illustrating the types
of analyses and insights the CausalProfiler enables.

1 Introduction

Causal machine learning (Causal ML) seeks to estimate the effects of interventions and counterfactuals
using machine learning techniques [28]], enabling principled decision making in medicine, policy,
and other high-stakes domains. Despite its theoretical maturity and growing relevance, Causal ML
remains underutilized. A key barrier to adoption lies in the current empirical evaluation landscape,
which is unable to support meaningful and generalizable evidence of method performance [40].

Recent critiques of evaluation practices in both predictive Machine Learning (ML) [21} 13} 30] and
causal inference [[10, |14} 6] have highlighted systemic shortcomings. Lessons from predictive ML
show that narrow, static benchmarks can give a false sense of reliability [16} 21]], underscoring the
need for structured diversity: systematic variation of tasks under explicit, controllable assumptions.
In the case of causal ML, evaluation is fundamentally more challenging due to the unobservability of
counterfactual outcomes [23]. Hence, researchers can only rely on scarce real-world data sources.
Typically, randomized controlled trials, considered as the gold standard, are expensive, ethically
constrained, and often encompass a low amount of data [[18|144]]. As a result, existing benchmarks
often rely on a small number of semi-synthetic datasets (e.g., [HDP [22]], Twins [32]) or model-driven
synthetic datasets generated from fitted causal mechanisms [33},134} |3, [12]. These datasets typically
encode specific assumptions—such as structural constraints, identifiability conditions, or narrow
function classes—which are rarely made explicit and are difficult to generalize beyond the original
study context. Moreover, handcrafted synthetic datasets, where researchers explicitly define causal
models and choose evaluation queries, are frequently designed with specific hypotheses or methods
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in mind [17], risking bias through overfitting or implicit alignment. It has been argued [40] that the
problem is not synthetic evaluation itself but the lack of rigor in its design and interpretation.

In this work, we take a concrete step toward addressing these concerns by introducing a synthetic
benchmark generator, called CausalProfiler, that enables empirical evaluations grounded in transpar-
ently defined synthetic causal datasets. Central to our approach is the notion of a Space of Interest
(Sol) (Definition[5.T)), defining the domain from which causal datasets are sampled. Given a specified
Sol, our benchmark generator samples SCMs, data, and queries, and estimates the ground truth value
of the queries to enable the evaluation of Causal ML methods.

This approach departs from existing benchmarks in several key ways. Rather than evaluating
methods on a fixed or narrow set of datasets, our framework enables controlled, repeatable, and
diverse sampling over structured families of tasks. It replaces opaque or implicit design choices
with fully transparent specifications of model structure, noise, and query types. Crucially, it shifts
the focus of empirical evaluation from performance on individual datasets to trends and patterns
across a well-characterized Sol, reframing the evaluation question from “what dataset to use” to
specifying a Sol that defines the scope of evaluation. This enables researchers to evaluate not only
performance but also under which conditions—on graph density, or causal mechanisms complexity
for instance—a method succeeds or fails and helps practitioners identify methods that remain reliable
when causal assumptions are likely violated. By aggregating results over many generated datasets, the
evaluation yields more robust and reliable performance estimates, helping to uncover failure modes,
generalization limits, and assumption sensitivities that remain hidden in conventional evaluations.

Contributions. This paper offers the first open-source implementation of such an evaluation
frameworkﬂ and illustrates its utility by comparing state-of-the-art causal ML methods across
multiple synthetic causal datasets. Our contributions are twofold. First, we present a benchmark
generator (Section [5) that enables principled sampling of synthetic causal datasets over user-defined
Sols, with built-in coverage guarantees that promote transparency and reproducibility. Secondly, we
demonstrate through experiments (Section [)) how evaluation across different Sols yields richer and
more robust insights than single-dataset evaluations.

2 Related Work

Evaluating causal ML methods. Causal ML currently lacks a rigorous, systematic paradigm
for empirical evaluation. Indeed, the community has largely turned to synthetic and semi-synthetic
benchmarks. Semi-synthetic datasets, such as IHDP [22]] and Twins [32], combine real covariates
with simulated outcomes under assumed structural models. Fully synthetic datasets, in contrast, are
generated entirely from researcher-defined SCMs, allowing for greater control and access to ground
truth. Yet both synthetic and semi-synthetic approaches suffer from critical limitations.

First, synthetic evaluations often lack realism, relying on overly simplistic mechanisms such as
additive noise or linear functions, and frequently omitting robustness analyses [17} 10} 39} 40]. These
experiments rarely reflect the complexity of real-world causal processes and are insufficient to test
the limits of modern causal inference methods.

Secondly, synthetic and semi-synthetic datasets are shaped by researcher-defined design decisions,
including the structure of the causal graph, the form of the outcome function, and the noise distribution.
These decisions, often made implicitly, can unintentionally introduce hidden biases that favor certain
methods [9, 18} [14]. Such assumptions are rarely documented or systematically varied, hindering
reproducibility and fair method comparison [39, 40]].

Additionally, these benchmarks are typically small in scale and narrow in scope, often covering
only a limited range of causal settings. As a result, empirical evaluations raise concerns about
overfitting and generalization [17,|6]. For instance, it has been shown that even small changes to the
data-generating process can lead to dramatic shifts in performance rankings [9]]. Moreover, methods
are often evaluated only under the very conditions that guarantee their identifiability, offering little
insight into robustness under assumption violations, as is common in real-world settings [40, 138 [26].
In short, without broader and more transparent evaluation across diverse causal settings, the field
risks drawing conclusions that do not generalize. Addressing this gap requires moving beyond fixed
benchmarks toward frameworks that support transparent, structured, and diverse experimentation
across well-defined spaces of causal assumptions.

'The code is provided in the supplementary material and will be publicly available after the review process.
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Recent benchmarking efforts. Recent works have sought to address some of these gaps introducing
tools to generate synthetic SCMs for causal discover [29, [19}41] or support query estimation from
hand-specified models [42, 45| [1]]. However, none of these frameworks support all components
required for robust evaluation of causal machine learning methods. First, causal discovery bench-
marks [29][19]141] do not compute ground truth for intervention or counterfactual queries. Further,
query estimation frameworks [42] 45| [1]] often require manual specification of the SCM and do
not support random sampling, diversity control, or analysis of the distribution of tasks. Even in
cases where SCMs are sampled [41} 48], key properties (e.g., positivity) are neither reported nor
constrained. In addition, the absence of randomness in the graph structures limits generalization.
Our approach complements and extends these efforts by integrating SCM sampling, query ground
truth computation, and coverage guarantees into a unified framework. To the best of our knowledge,
this is the first benchmark generator that enables systematic exploration of how Causal ML methods
behave across spaces of SCMs and queries defined by user-specified constraints.

3 Background & Notation

We use capital letters for random variables (e.g., X), lowercase for realizations (e.g., ), and boldface
for vectors (e.g., x). For a more complete background, please refer to Appendix [A]and Pearl [35]].

Causal Hierarchy. The Pearl Causal Hierarchy (PCH) [36] classifies causal questions into three
levels: £, (associational), Lo (interventional), and L3 (counterfactual). While associative questions
rely only on observed data, interventional and counterfactual questions require assumptions about the
data-generating process. Importantly, lower layers are insufficient to answer higher-layer questions in
almost all causal models [4].

Structural Causal Models. A Structural Causal Model (SCM) [35] is a tuple M :=
{V,U,F,P(U)}, where V are endogenous variables, U are exogenous variables, F is a set
of structural equations V; = f;(PA(V;), Uy, ), and P(U) defines a distribution over the exogenous
variables. SCMs induce a distribution Py,(V) over the endogenous variables. In this work, we
additionally consider two types of endogenous variables: the observed variables, denoted V o, and
the unobserved variables, denoted Vg withV = Vo U Vg and Vo NVyg = 0.

Causal Graphs. We represent causal relationships using the causal graph of a Structural Causal
Model (SCM). This is a directed acyclic mixed graph over the endogenous variables. Directed edges
X — Y encode causal dependencies via structural equations, while bidirected edges X <+ Y indicate
latent confounding due to shared exogenous causes.

Interventions.  An intervention replaces one or more structural equations to model external
manipulations. A common example is a hard intervention, written do(T = t), which sets a variable
to a fixed value, disconnecting it from its natural causes. This defines a new SCM and alters the
induced distribution.

Counterfactuals. Counterfactual queries reason about what would have happened under a different
intervention, given an observed outcome called a factual realization. They are evaluated by condition-
ing on observed variables (abduction), modifying the SCM (action), and predicting outcomes under
the new distribution (prediction)—a process known as the three-step procedure [33l].

Causal Queries. A causal query refers to a probabilistic statement about the effect of hypothetical
manipulations of the data-generating process. This includes intervention queries, such as Average
Treatment Effect (ATE), and counterfactual queries, such as Counterfactual Total Effect (Ctf-TE).

Identifiability. A query is identifiable if its value can be uniquely determined from data, given a set
of assumptions (e.g., a causal sufficiency) [35]. In other words, identifiability determines whether
causal queries can be empirically estimated, and under what assumptions.

4 Problem Formulation

We consider the problem of causal inference, where the goal is to answer interventional and coun-
terfactual queries using data drawn from an unknown SCM. Let M* = (V, U, F, P(U)) denote
the unknown ground truth SCM, a causal query @ (e.g., Average Treatment Effect (ATE)) is defined
over M* and has a ground truth value Q* = Q(M*). As M* is unknown, causal estimators rely
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on causal assumptions H (e.g., causal sufficiency) and available data D drawn from M* to produce

an estimate () of the target quantity Q*. We introduce Definition4.1|to formalize the elements of a
causal dataset.

Definition 4.1 (Causal Dataset). A causal dataset is a tuple D = {Q,Q*, D,G*,H*}
constructed from a known SCM M* = (V, U, F, P(U)) where:

* (Q is a causal query defined over V;

* Q* = Q(M™) is the exact value of the query Q;

* D = {Dy ~ Pu(V | do(V}) = vi)}._, is a collection of samples under I

interventional (or observational) settings;
* G* is the causal graph associated with M*;
o H* is the set of assumptions satisfied by M*.

Given a causal dataset D = ({Q, Q*, D, G*, H*}), one can compute the estimation error E(Q7 Q")
using a chosen error metric F (e.g., squared error). As a result, one can evaluate causal ML methods
in the identification-consistent setting—where the considered causal graph and assumptions match
the ground truth ones, i.e., G* and H*—but also test robustness by introducing assumption violations.

5 Sampling Causal Datasets with the CausalProfiler

To generate causal datasets, CausalProfiler relies on a parametric specification of the sampling
domain, called the Space of Interest. Given an Sol, it samples an SCM (Section@ and generates a
corresponding causal dataset (Section[5.3). Appendices [D] and[E]contain pseudocode for the
sampling algorithms, and Appendix [H|presents a visual overview of the sampling strategy.

5.1 Defining a Space of Interest

The central abstraction of our framework is the Space of Interest (Definition [5.1]), which provides a
standardized way to specify synthetic causal datasets (Definition {.T).

Definition 5.1 (Space of Interest). A Space of Interest (Sol) is a tuple S = {M, Q, D},
where M is a class of SCMs, QQ a class of causal queries, and D a class of data.

Table in Appendix [B|lists all configurable Sol parameters

5.2 Sampling Structural Causal Models

CausalProfiler samples SCMs from a user-defined Sol in two steps: (i) sampling a causal graph, and
(ii) sampling the corresponding mechanisms.

Causal Graphs. CausalProfiler first samples a Directed Acyclic Graph over a set of endogenous
variables, which defines the causal structure of the SCM. Second, if specified in the Sol, CausalProfiler
samples a subset of endogenous variables, V7, to be treated as unobserved and excluded from the
observed dataset. To expose only the visible causal structure to the user, we apply Verma’s latent
projection algorithm [47] to the full causal graph, which produces an Acyclic Directed Mixed Graph.

Mechanisms. Given the causal graph, CausalProfiler assigns a mechanism to each endogenous
variable given its parents and an exogenous noise whose distribution is set by the Sol. We support
two types of mechanisms. First, discrete mechanisms, also called Regional Discrete mechanisms
(see Appendix [D.T|for a formal definition), are defined tabularly by associating each element of a
partition of the exogenous noise with distinct parents-to-child mappings. This allows for controllable
stochasticity and complexity, supporting highly non-linear and non-invertible behavior. Second,
continuous mechanisms are defined using parametric function families—such as neural networks or
linear functions—with randomly initialized parameters (e.g., He initialization [20]).

*While the current implementation of CausalProfiler supports only £; training data and ATE, CATE, and
CTF-TE queries, the Sol abstraction can, in principle, be defined over any class of queries, datasets, and SCMs.
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5.3 Sampling Causal Datasets

Data D. Given an SCM M* sampled from the Sol, we generate an observational dataset D by
sampling i.i.d. data points from the entailed distribution of M* over observed variables. This involves
forward-sampling from the structural equations in topological order, using the noise distributions
specified for each variable and marginalizing out any latent variables.

Query ). We first sample endogenous observable variables to play the role of treatment, outcome,
covariates, and factuals, depending on the class of queries of the Sol. To ensure that queries are well-
defined and empirically grounded, we draw realizations from a large, separately sampled observational
dataset, rather than from the theoretical variable domains. This avoids defining queries on realizations
that may be unrepresentative or impossible under the SCM. While the currently implemented queries
only involve interventions and counterfactuals, CausalProfiler also supports benchmarking causal
discovery methods as the ground-truth causal graph G* is directly provided in the causal dataset.

Query ground truth Q*. Each query is estimated by drawing samples from the (manipulated)
ground truth SCM: interventional queries via do-operations (action and prediction), and counterfactual
queries via the three-step procedure [35]. Queries that are duplicates or yield NaN estimates are
rejected and resampled to ensure valid and computable values.

Ground truth causal graph G*. As presented in Section G™ is built as the latent projection of
the ground truth SCM’s causal graph over the observed variables.

Ground truth Causal Assumptions H*. To characterize the properties of the ground-truth SCM
from the user’s perspective, we provide an analysis module that computes summary metrics related to
common causal assumptions (e.g., measuring linearity via Pearson correlation). A full list of available
metrics is provided in Appendix [F

Coverage guarantee. Theorem 5.1](proof in Appendix [I) shows that, with sufficiently expressive
discrete mechanisms, CausalProfiler’s sampling strategy can theoretically generate any causal dataset
within a given Sol, guaranteeing L3-expressivity. In addition, Appendix [G] provides an analysis
exploring the empirical distribution of the sampled datasets.

- )

Theorem 5.1 (Coverage). For a Space of Interest S = {M, Q, D}, whose class of Structural
Causal Models is a class of Regional Discrete SCMs! with the maximum number of noise
regions, denoted Mpp_scm, r=R,,...» a0y causal dataset D = {Q, Q*, D, G*, H*} has a strictly
positive probability to be generated.

VS = {M,Q,D} s.t. M g MRD—SCM,T‘:R P(D|S> >0

max )

"Formal definition can be found in Appendix

Benchmark Design. Taken together, these design choices reflect four key properties that are
considered essential for rigorous synthetic evaluation in causal ML [40]: transparency, by making
all assumptions explicit via the parametrization of the Sol, which serves as a declarative specification
of the evaluation domain; repeatability, through randomized but seed-controlled sampling procedures,
ensuring that SCMs and queries can be exactly reproduced across runs; bias awareness, supported by
the coverage guarantee and the empirical distribution analysis module and control over experiments,
by exposing a wide range of configurable parameters in the Sol that allow users to tailor the causal
dataset generation to their assumptions and research goals.

6 Experiments

6.1 Verification of Benchmark Correctness

To validate the soundness of our benchmark generator, we perform consistency checks based on the
three levels of the Pearl Causal Hierarchy [36, 4]]. Using the SCM sampler and query estimator of the
CausalProfiler, we evaluate whether sampled SCMs satisfy the Markov condition, do-calculus rules,
and structural counterfactual axioms [35]. We use discrete SCMs to enable exhaustive enumeration
of conditioning sets for statistical tests. To ensure robustness, we iterate over a Sol parameter grid
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spanning the number of variables, edge density, cardinalities, noise regions, and dataset sizes. For
each configuration, we sample five SCMs. See Appendix [J] for full details and results.

L1: Markov Property Verification. We assess whether d-separations in the causal graph imply
conditional independencies in the entailed observational distribution of the sampled SCMs. For each
SCM, we enumerate d-separated triplets (A, B, C') and test whether A | B | C holds using Pearson’s
x? test [37]. We filter low-sample strata (Koehler [31]]) and correct for multiple tests (BH [5]]). The
Markov property holds in roughly 95% of tested cases, with most violations attributable to finite-
sample variability (see Table[d Appendix [J).

L2: Do-Calculus Verification. We test whether the three rules of do-calculus hold empirically. For
each rule, we identify variable tuples that satisfy the rule’s graphical preconditions. We then use the
query estimator to generate two interventional datasets corresponding to the left- and right-hand sides
of the rule. We use these datasets to compare the two distributions using Pearson’s x? test, filtering
low-sample strata (Koehler [31]]) and correcting for multiple tests (BH [5]]). Around 5.5% of tests fail,
with discrepancies largely due to finite-sample noise (see Table[5] Appendix [J).

L3: Structural Counterfactual Axiom Verification. We verify whether the axioms of composition,
effectiveness, and reversibility hold exactly for sampled SCMs. Since the axioms involve deterministic
functional relationships, we only count exact matches of the query estimator. All axioms hold exactly
across our samples, confirming the estimator’s consistency with structural counterfactual semantics.

6.2 Setup for Experiments using the CausalProfiler

We demonstrate the utility of our benchmark framework by evaluating several recent causal inference
methods across a diverse set of Sols. Our goal is not to exhaustively benchmark each method but to
showcase the types of structured empirical investigations our framework enables — especially those
exploring robustness and violations of causal assumptions.

Evaluation Protocol. All evaluations follow the process detailed in Algorithm|[I] For each SoI, we
evaluate each method using five random seeds. For each seed, we sample 100 SCMs. For each SCM,
we generate one training set and five causal queries with ground-truth values. Results are aggregated
across SCMs and seeds, enabling a rigorous and reproducible assessment of performance.

Algorithm 1 Evaluation process for causal machine learning methods

1: Input: List of Spaces of Interest Sols, list of seeds seeds number of examples per SCM
num_examples

2: Initialize: method < CausalMLMethod()

3: for each Sol in Sols do

4:  for each seed in seeds do

5: setGlobalSeed(seed)
6: for each examples in num_examples do
7: Generate samples, queries, and targets from the profiler
8: Get estimates using the method on the generated samples and queries
9: Calculate (and store) error by comparing estimates with targets
10: end for
11: Compute performance statistics for seed
12:  end for
13:  Compute performance statistics for Sol
14: end for

15: Output: Final summary with evaluation results

Hardware. All experiments were run on a single machine equipped with an Intel Core i9-14900K
processor (24 cores, 32 threads) and 96GB of RAM. All CPU threads were utilized for parallel
processing where applicable. Some methods (e.g., DCM) would benefit from GPU acceleration,
which was not used in our evaluation.

Experiment Types. We perform two main sets of experiments: (1) ATE estimation over a set
of continuous SCMs, and (2) counterfactual query estimation on discrete-variable SCMs. An
additional experiment on ATE estimation under varying levels of hidden confounding is included in

Appendix
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Metrics and Visualization. We evaluate methods using the mean squared error between predicted
and true query values. For each method and Sol, we report mean error, standard deviation, total
runtime, and failure rate (i.e., the proportion of queries for which no valid output was returned due to
numerical issues or exceptions). Tables include all numeric summaries, while box plots visualize
error distributions via median, interquartile range (IQR), and whiskers extending to 1.5 x<IQR.

Methods. We evaluate several causal inference methods: Causal Normalizing Flows (CausalNF) [27],
Neural Causal Models (NCM) [[L1], Variational Causal Graph Autoencoder (VACA) [43], Diffusion-
based Causal Models (DCM) [[7], and Deconfounding Causal Normalizing Flows (DeCaFlow) [2]].

Additional experiment details, results, and Sol configurations are provided in Appendix [K]

6.3 Experiment 1: General Evaluation across Diverse SCMs

To showcase the flexibility of our benchmarking framework, we evaluate VACA, CausalNF, DCM,
and NCM on a set of continuous-variable SCMs. These experiments are designed to highlight how
performance can vary across diverse Sols. See Table[I]for a summary of results and Figure|[I| for a
box plot of ATE estimation errors.

Spaces of Interest. We evaluate methods on four distinct Sols: Linear-Medium, with linear SCMs
(15-20 nodes, 1000 samples); NN-Medium, with neural SCMs using a 2-layer ReL.U network (8
hidden units per layer, 15-20 nodes, 1000 samples); NN-Large, with larger neural SCMs (20-25
nodes, 1000 samples); and NN-Large-LowData, identical to NN-Large but with only 50 samples.

Table 1: Performance summary of CausalNF, DCM, NCM, and VACA on the general experiments.

Space Method Mean Error  Std Error Max Error  Runtime (s)  Fail Rate (%)
Linear-Medium CausalNF 0.4625 0.8985 9.6079 13790.4 0.00
Linear-Medium DCM 0.1530 1.5289 33.9766 16541.2 0.00
Linear-Medium NCM 0.4618 0.9001 9.6134 7384.7 0.00
Linear-Medium VACA 0.4209 0.6195 2.3807 2734.5 53.40
NN-medium CausalNF 0.0160 0.0107 0.1209 10732.7 0.00
NN-medium DCM 0.0276 0.0114 0.0746 15894.4 0.00
NN-medium NCM 0.0111 0.0121 0.1484 7322.8 0.00
NN-medium VACA 0.0090 0.0077 0.0479 5759.6 5.00
NN-Large CausalNF 0.0159 0.0105 0.1535 15114.8 0.00
NN-Large DCM 0.0267 0.0100 0.0739 19166.2 0.00
NN-Large NCM 0.0101 0.0103 0.1161 9450.6 0.00
NN-Large VACA 0.0090 0.0094 0.0535 5690.8 11.60
NN-Large-LowData CausalNF 0.0359 0.0146 0.1712 22138.2 0.00
NN-Large-LowData DCM 0.0777 0.0445 0.3701 24121 0.00
NN-Large-LowData NCM 0.0097 0.0107 0.1263 404.7 0.00
NN-Large-LowData VACA 0.0103 0.0134 0.1043 5217.4 0.00

Findings (Linear-Medium vs. NN-Medium). In the Linear-Medium setting, DCM achieves
the lowest average error (0.1530), indicating excellent performance. However, its error standard
deviation is notably high (1.5289), driven by a few extreme outliers (max error 33.98). This implies
that DCM is highly effective for most queries but may produce large errors in rare cases—potentially
problematic in safety-critical applications which match this SOI. VACA performs competitively with
lower max error and faster runtime, but suffers a high failure rate (53.4%) due to NaNs.

When moving to the NN-Medium setting, where the causal mechanisms are implemented as small
neural networks, DCM’s advantage disappears. VACA emerges as the best performer, achieving both
the lowest error mean (0.0090) and standard deviation (0.0077), while also reducing its failure rate
to 5%. Interestingly, DCM becomes the weakest performer in this setting, highlighting that method
rankings are highly sensitive to the underlying functional form of the mechanisms. This underscores
the need for practitioners to evaluate methods within the Sol most relevant to their application.

Findings (NN-Large vs. NN-Large-LowData). In the second comparison, we increase SCM size
to 20-25 nodes and investigate the effect of reducing data availability. Comparing NN-Large (1000
samples) to NN-Large-LowData (50 samples), we find that DCM is strongly affected by the data
limitation: its error nearly triples (from 0.0267 to 0.0777) and its IQR expands noticeably. CausalNF
also shows increased sensitivity to low-data regimes.
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Figure 1: Box plots showing ATE estimation errors across different Sols.

In contrast, both VACA and NCM maintain stable performance, with nearly unchanged mean and
standard deviation values between the two Sols. Notably, VACA achieves a 0% failure rate in this
setting, with unexpectedly strong robustness under limited data.

Insights. While not intended as a comprehensive benchmark, these experiments illustrate the types
of insights that can be drawn using our framework. For the selected Spaces of Interest, we observe
that DCM tends to perform well on average but can produce large outlier errors or become less stable
in low-data settings. Conversely, VACA shows promising generalization even with limited data,
though it occasionally fails on certain SCMs. These findings are specific to the Sols we explored,
and should not be taken as general conclusions about the methods. Instead, they highlight how our
framework enables structured, Sol-specific evaluations, helping practitioners assess which methods
may be more suitable for their own modeling context.

6.4 Experiment 2: Counterfactual Estimation on Discrete SCMs

This experiment shows how our framework can evaluate counterfactual estimation methods on
discrete-variable SCMs. We test CausalNF and DCM, originally designed for continuous settings,
as a robustness check—motivated by prior work showing that CausalNF can sometimes effectively
approximate discrete distributions [I1). See Table[2|for a summary of results.

Discrete Sols. We evaluate three discrete Sols: Disc-C2-Reject, with 10-15 node graphs, binary
variables, and rejection-based mechanism sampling; Disc-C4-Unbias, with the same graph size but
4-category variables and unbiased random mechanism sampling; and Disc-Large-C2-Unbias, which
uses larger graphs (20-30 nodes), binary variables, and unbiased random mechanism sampling.

Findings. On Disc-C2-Reject, both CausalNF and DCM perform well and comparably, with low
error means (~0.04) and low failure rates (8% for CausalNF, 4% for DCM). This suggests that both
methods can produce reliable estimates even outside their original assumptions when the functional
mechanisms are simple and binary.
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Table 2: Performance summary of CausalNF and DCM on the discrete experiments.

Space Method Mean Error ~ Std Error  Max Error  Runtime  Fail Rate
Disc-C2-Reject CausalNF 0.0415 0.1116 0.6240 212.8s 08.08 %
Disc-C2-Reject DCM 0.0424 0.1123 0.6240  4406.2 s 04.28 %
Disc-C4-Unbias CausalNF 0.0431 0.1270 0.7071 190.7 s 40.68 %
Disc-C4-Unbias DCM 0.0411 0.1199 0.7071  3839.4s 22.60 %
Disc-Large-C2-Unbias CausalNF NaN NaN NaN 0.0s 100.00 %
Disc-Large-C2-Unbias DCM 0.0183 0.0814 0.5000 8192.7s 11.32 %

However, when moving to Disc-C4-Unbias, where variables have 4 categories and mechanisms
are sampled with unbiased random sampling, the failure rates increase significantly, especially for
CausalNF, which fails on over 40% of SCMs (typically with NaN errors). This highlights how
sensitive certain methods can be to changes in mechanism sampling or variable cardinality, even
when mean errors remain similar.

To further probe robustness, we scale the graph size in Disc-Large-C2-Unbias while reverting to
binary variables. CausalNF fails on all runs, returning NaNs and yielding a 100% failure rate. DCM
remains functional, with an 11% failure rate, indicating greater resilience in this setting.

Insights. These results underscore the utility of our framework in systematically stress-testing
methods beyond their nominal design assumptions. While CausalNF is not built for discrete data,
prior examples suggested it could work in practice. Our benchmark can help clarify when and how it
breaks: certain function classes and discrete configurations are more likely to cause divergence or
failure. DCM appears more robust across these tests, though not immune. Importantly, this evaluation
is not meant as a definitive comparison, but as a demonstration of how failure cases can be surfaced
and studied in a principled way using the CausalProfiler.

7 Limitations and Future Work

Causal Datasets Distribution. While the coverage theorem guarantees that any causal dataset
has a strictly positive probability of being sampled within a given Sol with sufficiently expressive
discrete mechanisms, it does not give any information on the form of the distribution of the sampled
causal datasets. In particular, certain classes of SCMs remain very unlikely to be sampled unless
explicitly chosen in the Sol (e.g., linear SCMs). In addition, users should bear in mind that causal
datasets are not uniformly generated when aggregating results, to avoid misleading interpretations.
Future improvements may enable finer control over the datasets distribution and the underrepresented
attributes when defining an Sol.

Diversify Spaces of Interest. Several directions remain open for extending the supported Sol by the
CausalProfiler, such as support for mixed-variable SCMs, query identifiability diagnostics, sampling
interventional training data, and more realistic data-generating scenarios, including selection bias,
measurement noise, and partial knowledge of the causal graph.

Towards realistic causal datasets. More broadly, to increase real-world relevance, future work
could enable users to define Spaces of Interest based on patterns observed in real data (e.g., a Bayesian
approach), narrowing the gap between synthetic evaluation and practical deployment.

8 Conclusion

This work introduces CausalProfiler, a synthetic causal dataset generator for evaluating Causal
Machine Learning methods across the three levels of the Pearl Causal Hierarchy. At its core is the
notion of a Space of Interest, which replaces the ad hoc choice of a single evaluation dataset with
a principled specification of the entire evaluation scope. This shift enables transparent, repeatable,
and assumption-aware assessments under diverse causal conditions. We show that the performance
of state-of-the-art Causal ML methods varies substantially across different Sols, underscoring the
importance of rigorous, distribution-level evaluation. CausalProfiler marks a first step toward more
rigorous and systematic empirical practices in Causal ML—grounded not in fixed benchmarks, but in
explicitly defined spaces that reflect the assumptions and structural properties relevant to each setting.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The claims in the abstract and introduction clearly state the paper’s contribu-
tions and scope.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: We discuss the limitations of our method throughout the paper, but also
explicitly in Section

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]

Justification: All theoretical claims are supported by clearly stated assumptions and formal
proofs. The full proof of the coverage guarantee can be found in Appendix[I|

Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

¢ Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Yes. The paper fully specifies the steps needed to reproduce our main experi-
mental results. We include pseudocode for all the algorithms in the Appendices.

Guidelines:

» The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: All code necessary to reproduce the experimental results is included in the
supplementary material in a single zip file (allowing for double-blind reviewing), along with
clear instructions. If the paper gets accepted, we will publicly release the full codebase on
GitHub, including the URL in the camera-ready version of the paper. No data is required to
reproduce the results so we don’t provide any.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so "No" is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: All experimental configurations, including parameter settings and hyperparam-
eter choices, are detailed in the appendix. Our codebase also reflects the exact setup used in
all reported experiments.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

¢ The full details can be provided either with the code, in appendix, or as supplemental
material.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We visualize results using standard box plots with whiskers, and report means,
standard deviations, failure rates, and runtimes in summary tables. All details about the
verification statistical tests based on Pearson’s x? test are detailed in the appendix.

Guidelines:

* The answer NA means that the paper does not include experiments.
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8.

10.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CIL, if the hypothesis
of Normality of errors is not verified.

 For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We specify the hardware used for all experiments and report runtime metrics
in detail, making the computational requirements clear.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: We have reviewed the NeurIPS Code of Ethics and ensured our work complies
with its principles. Our research involves no human subjects, private data, or deployment-
related risks.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
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11.

12.

Justification: Our work focuses on a synthetic benchmark generator for evaluating causal
inference methods. As a methodological tool rather than an application-facing system, it is
unlikely to have direct societal impact or pose misuse risks.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: We do not release pretrained models or real-world datasets. Instead, we provide
code that generates fully synthetic data, which poses no known misuse risks.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All the code for the benchmark generator was developed by the paper authors
and relies only on standard open-source libraries (NumPy and PyTorch). We will release
the code under the MIT license and make it installable via pip. We will release it under the

MIT license and make it available as a pip-installable package. For external causal inference
methods used in our experiments (DeCaFlow, DCM, VACA, CausalNF, NCM), we cite
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13.

14.

15.

the original papers and respect their licensing terms. Due to license incompatibilities, the
experimental code will be released separately under the GPL-3.0 license.

Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]
Justification: Yes, we provide extensive documentation and usage examples.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper doesn’t involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
* Including this information in the supplemental material is fine, but if the main contribu-

tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
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793 Answer: [NA]

794 Justification: The paper doesn’t involve study participants.

795 Guidelines:

796 * The answer NA means that the paper does not involve crowdsourcing nor research with
797 human subjects.

798 * Depending on the country in which research is conducted, IRB approval (or equivalent)
799 may be required for any human subjects research. If you obtained IRB approval, you
800 should clearly state this in the paper.

801 * We recognize that the procedures for this may vary significantly between institutions
802 and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
803 guidelines for their institution.

804 * For initial submissions, do not include any information that would break anonymity (if
805 applicable), such as the institution conducting the review.

806 16. Declaration of LLM usage

807 Question: Does the paper describe the usage of LLMs if it is an important, original, or
808 non-standard component of the core methods in this research? Note that if the LLM is used
809 only for writing, editing, or formatting purposes and does not impact the core methodology,
810 scientific rigorousness, or originality of the research, declaration is not required.

811 Answer: [NA]

812 Justification: The core method development in this research does not involve LLMs as any
813 important, original, or non-standard component.

814 Guidelines:

815 * The answer NA means that the core method development in this research does not
816 involve LLMs as any important, original, or non-standard components.

817 * Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
818 for what should or should not be described.
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A Additional definitions & Notations

Definition A.1 (Semi-Markovian and Markovian SCMs). An SCM is said to be semi-
Markovian [33] if its set of structural equations is acyclic, meaning there exists an ordering
of the equations such that for any two functions f;, f; € F,if f; < f;, then V; ¢ PA(V;).
This condition ensures that the causal dependencies among endogenous variables form a
Directed Acyclic Graph (DAG).

An SCM is Markovian [35]] if the exogenous variables influencing different endogenous
variables are mutually independent. Formally, for all distinct V;, V; € V, we have Uy, 1L
Uy, . This implies the absence of latent confounding, allowing the model to be fully described
by a DAG with independent noise terms.

Definition A.2 (Causal Graph of a Semi-Markovian SCM). The causal graph of a Semi-
Markovian [4] SCM is n acyclic directed mixed graph (ADMG) with:

* Directed edge V; — V; if V; € PA(V)
* Bi-directed edge V; <+ V; if Uy, U Uy,

A.1 Interventional Quantities (L)
Average Treatment Effect (ATE):
ATEr_,y = E[Y|do(T = 1)] — E[Y|do(T = 0)]
Conditional Average Treatment Effect (CATE):
CATEr,yv(x) =E[Y|do(T =1),X =x] —E[Y|do(T = 0),X = x|
Controlled Direct Effect (CDE):
CDEr_y(t,c,m) =E[Y|do(T =t,M =m)] — E[Y|do(T = ¢,M = m))
Natural Direct Effect (NDE):
NDEr_,y(t,c) = E[Y|do(T =t),do(M = M.)] — E[Y|do(T = ¢),do(M = M.)]
A.2 Counterfactual Quantities (L3)

A counterfactual query such as P(Yg,(r—¢)|VF = vF) is computed by abduction (conditioning on
factual data), action (intervening), and prediction (computing the outcome) [35]].

Ctf-TE / Ctf-DE / Ctf-1E:
Ct-TE7r vy (y,t,¢,VF) = P(Yao(r=t)|VF = VF) = P(Ydo(r=¢)|VF = VF)

Ctf-DE7y (y,t, ¢, VF) = P(Yao(r=t) do(M=M.)|VF = VF) — P(Yao(7=)|VF = VF)

Ctf-IEr Ly (4,1, ¢, VF) = P(Yao(r=c) doM=M) |V F = VF) = P(Yao(r=c)|VF = VF)

B Space of Interest

Each Space of Interest is defined by a set of parameters that control the SCM space, the causal
queries of interest (Query space), and the dataset used for estimation (Data space). Table [3| provides
an overview of all configurable parameters in a Space of Interest instance, along with their default
values. Some parameters are only relevant under specific conditions—for instance, kernel parameters
are used only with continuous variables (e.g., when evaluating conditional expectations), function
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sampling strategies apply exclusively to discrete mechanisms, noise regions apply only for discrete
SCMs, and noise mode is ignored for tabular mechanisms (noise is already embedded in the table).
Note that one can use symbolic expressions involving N (the number of nodes) and V (the cardinality
of a variable) to define parameters that depend on sampled values. For example, the expected number
of edges can be set as 0.5 * N, or the number of noise regions in a discrete SCM can be set to V.

Category Parameter Default Value
Number of endogenous variables [5, 15]
Variable dimensionality [1, 1]
Expected number of edges (required) —

SCM structure Proportion of hidden variables 0.0
Markovian boolean flag True
Semi-Markovian boolean flag False
Predefined causal graph —
Mechanism family (e.g., Linear, NN, Tabular) Linear
Mechanism arguments (used to define custom NN/tabular —
mechanisms)

Mechanisms  Endogenous variable cardinality (for discrete variables only) 2
Variable type Continuous
Discrete function sampling Sample Rejection
Noise mode Additive
Noise distribution Uniform

Noise Noise distribution arguments [-1, 1]
Number of noise regions (controls stochasticity) N
Number of queries per sample 1

Query Query type ATE
Specific query (overrides random query sampling) —

Kernel type Gaussian

Kernel Kernel bandwidth 0.1
Custom kernel function —

Data Number of samples in the set of observed data 1000

Table 3: Parameters defining a Space of Interest instance and their default values. The double lines in

the table conceptually separate the SCM space, Query space, and Data space.

C

Causal Graph Sampling

We first generate a random Directed Acyclic Graph (DAG) that specifies causal relations between
variables. This structure is then extended by designating a subset of variables as hidden/unobserved,
enabling the creation of both Markovian and semi-Markovian SCMs depending on the Sol spec. We
separate these two steps in separate algorithms for clarity (algorithm [3|uses algorithm 2).

Algorithm 2 Generate a Random DAG with Expected Degree
Inputs: number of nodes IV, expected degree d
1: V+«{1,...,N}
2: E+~{}
3! Pedge %
: fori € [1, N] do
5 NPA('L) ~ B(i - 17pedge)
6:  PA(7) < Nps(;) nodes sampled without replacement from V'
7
8

N

E+~EU{j—i|jePA()}
: end for

Output: G = {V, E}
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Algorithm 3 Generate a DAG with Observed and Hidden Variables
Inputs: number of nodes IV, expected degree d, proportion of hidden variables py,
1: G = (V,E) + DAG_sampling(N, d) (see algorithm|2))
2: Nh ~ B(N,ph)
3: Vj, < N, nodes sampled without replacement from V'
4: V, +— V\W
Output: G = {V =V, V,,, E}

Because some variables in the DAG are unobserved, we expose only the observed structure to the user
in the form of an Acyclic Directed Mixed Graph. To obtain this, we apply Verma’s latent projection
algorithm to the causal graph of each sampled regional discrete SCM (see Algorithm ). If a method
requires the true SCM, including the hidden confounders, that can be accessed as well.

Algorithm 4 Projection Algorithm [47]

Input: an Acyclic-Directed Mixed Graph (ADMG) G = {V o, Vu, E}, with Vg the set of observed variables,
Vu the set of hidden variables and E the mixed edges
I: E « {}
2: for A,B € Vo do
if there is a directed path A — ... — B in G with all intermediate nodes belonging to Vg then
E' + E U{A— B}
end if
if there is a collider-free path A < ... — B in G with all intermediate nodes belonging to Vg then
E + E U{A+ B}
end if
9: end for
10: G’ + {Vo,E'}
Output: G’ the latent projection of G over Vo

A O

D Sampling Discrete SCMs

D.1 Regional Discrete SCMs

In this work, we sample discrete Markovian SCMs inspired by [49] and [48] which we refer to as
Regional discrete SCMs as presented in definition For a description of how we generate the
causal graph, check Appendix [C|

Definition D.1. Regional discrete SCM

A regional discrete SCM is a markovian SCM M = {V, U, F, P(U)} where:

* V = {W1, ..., V4} the set of finite discrete endogenous variables is divided into two
sets V, and V, respectively representing the set of observed and hidden variables
suchthat V=V,UV,and V,NV} =0

* U={Uy,...,Uy;} the set of mutually independent continuous exogenous variables
is such that Vi € [1,d], Uy, =U;

e F the structural equations are regional discrete mechanisms as defined in defini-
tion

The class of regional discrete SCMs is denoted Mpp_gcy.
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Definition D.2. Regional discrete mechanism

Given Iy = {I{, },¢1,R) a partition of R parts of Q. and my = {mj, : Qpyv)

Qv }rep1,r) a set of R distinct mappings from Qpy (v to Qy,, the regional discrete mecha-

nism of an endogenous variables V' is a function fy : Qpy(vy, Qv + Qv such that:
fv(pa(V), uy) = m,(PA(V) — V) when uy € I3,

I3, and m,. are called the r*" noise region and mapping of the regional discrete mechanism

fv.

Remark on )7, and R: In the definition of a regional discrete mechanism (definition , no
constraints are imposed on {7, . However, if Qy,, is discrete, then [Qy,, | > R is required to form
a partition of R elements of ;.. Consequently, in order to be able to constitute such a partition
for any finite R, we decided to consider continuous exogenous variables in the definition of a
regional discrete SCM (definition[D.T)). In addition, since the m7, mappings are considered distinct

and there are exactly |y ||¥» )| different mappings from V to PA(V), R < |Qy|!?ml is required.

The fact that regional discrete SCMs contains two types of endogenous variables (i.e., observed
and unobserved by the user) enables the representation of complex situations where not all
variables are observable. This induces the presence of potential hidden confounders from the user’s
perspective. As a result, the causal sufficiency assumption is no longer always respected. In our
parametric definition of a Space of Interest (Sol), this phenomenon is controlled by the parameter
specifying the proportion of unobserved variables among the endogenous variables. Thus, if this pa-
rameter is set to 0, the Sol’s class of SCMs is included in the class of causally sufficient discrete SCMs.

The complexity of discrete mechanisms can be controlled by the number of noise regions. Indeed, as
the number of noise regions increases, so does the complexity of the causal mechanism, in the sense
that it becomes a mixture of a larger number of mappings. The distribution of a variable given its
parents is, hence, more stochastic. As a result, the user-defined class of regional discrete SCMs can
be very broad. and therefore more oversimplified. This provides an additional degree of complexity
to make our synthetic causal datasets less trivial.

D.2 Discrete Mechanism Sampling strategies

We use regional discrete mechanisms (definition [D.2)), which define tabular mappings from parent
variables to a target variable, conditioned on regions of the exogenous noise space. Each region
induces a distinct mapping, enabling both stochasticity and high functional expressivity.

To generate these mechanisms, we support three sampling strategies described below. All methods
define a partition of the exogenous noise domain €2;; into R regions, and assign a parent-to-child
mapping to each region. Let C' be the cardinality of the variables, and {2p,(y) the space of parent
configurations for variable V.

Controlling complexity. The number of possible mappings from parent configurations to output
values grows as |Qy|!?»)|. To keep simulations tractable, users can control the number of noise
regions R. When R is small, sampling provides diverse but lightweight mechanisms. When R
approaches the total number of mappings, full enumeration becomes feasible but computationally
expensive.

We now describe the three supported sampling strategies.
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Exhaustive partition

This strategy enumerates all possible mappings from parent configurations to output values and
assigns each one to a distinct noise region (R = |Qy/|/?»()), ensuring complete coverage of the
function space. This method guarantees maximal functional diversity across regions and can serve as
a stress test for generalization under highly non-linear mechanisms. This is the only strategy where
the number of noise regions is not decided by the user but rather set to the maximum.

Sample rejection

This strategy samples parent-to-output mappings uniformly at random, rejecting duplicates to ensure
that each region corresponds to a distinct function. As mappings are sampled with replacement,
rejection may require several attempts when R approaches the number of possible mappings.

We provide below a pseudocode version of this strategy. Note that lines 10-12 correspond to the
rejection logic.

Algorithm 5 Generating regional discrete mechanisms with sample rejection
Inputs: set of endogenous variables V of cardinality C, causal graph G, 2y domain of exogenous variables,
number of noise regions R
1: F+{}
2: for V € Vdo
3: Qv<—{1,...,C}
4: QPAg(V) < {1,...,0}‘1%9(‘/)'
5. R < min(R, |Qy]|?mm
6: lmin < inf(QU)
7.
8
9

lmax — SUP(QU)
L= {lz ~ u[lmin, lmax] ‘ 1€ [1, R— 1]} U {lminy lmax}
Sort L in ascending order

10:.' fv < {}

11 my «~ {}

12:  forr € [1,R] do

13: It « [L,, Lyy1[ with L, the r** element of L
14: my <~ {}

15: while my, = {} or my, € my do

16: my < |Qpa(v)| elements sampled with replacement from Qv
17: end while

18: my < my Umy,

19 fy e frUimisI)

20:  end for

21:  F <« FUfy

22: end for

Output: F

Unbiased random assignment

In this strategy, each noise region is assigned a mapping sampled independently and without en-
forcing uniqueness. As a result, multiple regions may correspond to the same function from parent
configurations to outputs.

For example, suppose a variable has one binary parent taking values in {0, 1}, and the output variable
takes values in {0, 1, 2}. One randomly sampled mapping might assign output 0 to parent value 0,
and output 2 to parent value 1. Since mappings are sampled independently for each region, this same
function (0 — 0,1 — 2) may appear in multiple regions by chance.

This approach reflects scenarios where mechanisms are drawn independently from a distribution over
functions, without enforcing any requirements on uniqueness or coverage. As a result, the effective
variability in the entire system may be lower compared to other strategies, but the sampling is a lot
more computationally efficient.
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E Query Sampling and Estimation

In this work, we consider the following types of queries: ATE, Conditional Average Treatment Effect
(CATE) and Counterfactual Total Effect (Ctf-TE). Their definitions can be found in Appendix @
All the queries can be defined for sets of covariates and factuals belonging to the set of endogenous
variables. In other words, we do not implement multi-interventions, but we consider conditioning and
observing factuals on several variables. Finally, the values taken by these variables (e.g., treatment
and control values for ATE) must belong to their definition domain. The only parameter that controls
the queries class is the type of queries chosen by the user (i.e., ATE, CATE and Ctf-TE). Thus, the
class of considered queries can be defined as follows:

Oate = {ATEr vy (t,c) | T,Y C Vandt,c € Qr}
Qcate = {CATEr Ly x(t,¢,x) | T,Y €V, XCV\{T,Y}andt,c € Qr, x € Ox}

Qcte = {CH-TErv (y,t,c,vp) | T,Y,Vp C Vandt,c € Qp, y € Qy, vp € Qv,.}

Formally speaking, we have not integrated the causal graph as a causal query but rather as a hypothesis
or prior knowledge. Indeed, except for causal discovery tasks, the causal graph is most often assumed
to be known (or at least some information derived from the graph, such as the constitution of a valid
adjustment set, or a valid causal ordering). Nevertheless, one can use our random causal dataset
generator to evaluate causal discovery or causal representation learning methods. To do so, one just
needs to retrieve the causal graph from the causal dataset directly instead of using a query.

Finally, a user can also implement a specific query and use it to generate synthetic causal datasets. To
do this, the user has to use the Query class in our code base.

In the following algorithms, given a dataset D, a variable X and a realization x of X, we use the
notation D) x (resp. D|x—;) to represent the dataset D restricted to the variable X (resp. restricted
to the samples whose X realization equals z). In addition, B(n,p) denotes the Binomial law of
parameters n and p.

E.1 Query Sampling

The following algorithms detail the procedures for sampling ATE, CATE, and CTF-TE queries.

Algorithm 6 Generating sets of observed data

Inputs: causal graph G, causal mechanisms JF, distribution of the exogenous variables P(U), dataset size N

1I: D+ {}

2: Do+ {}

3: {u1,...,uN} ~ P(U)

4: for V € V following a causal order given by G do

50 {pa(V)1,...,pa(V)n} < Dpacvy

6: {UV17~~~7UVN}<_D\UV

7. Avi,...,on} < fv({pa(V)1,...,pa(V)n}, {uv,,...,uvy })
8: D(—DU{Uh...,’UN}

9: if V € V, then

10: D, + D, U{v1,...,on}

11: end if

12: end for

Output: D,

25



933

935
936
937

938

939

940

941

942

Algorithm 7 Generating ATE queries
Inputs: set of observable endogenous variables V,, training set D

1: T < one variable randomly sampled from V,
2: Y < one variable randomly sampled from V,
3: ¢ < one realization of 7' randomly sampled from D)7
4: c « one realization of T’ randomly sampled from D)7

Output: Qarr = {T,Y,t,c}

Algorithm 8 Generating CATE queries
Inputs: set of observable endogenous variables V,, training set D

1: T < one variable randomly sampled from V,

: Y < one variable randomly sampled from V,

: dx < an integer randomly sampled from [1,...,|V,| — 2]
X < dx variables randomly sampled from V,\{7, Y}

: t < one realization of T randomly sampled from D,r

: ¢ < one realization of T randomly sampled from D,r

: x < one realization of X randomly sampled from Dx
Output Qcare ={T,Y,X,t,c,x}

Algorithm 9 Generating Ctf-TE queries
Inputs: set of observable endogenous variables V,, training set D

1: T <« one variable randomly sampled from V,

: Y < one variable randomly sampled from V,

. dvj + an integer randomly samples from [1, ..., |V,|]
VF ¢ dv variables randomly sampled from V,

: t < one realization of T randomly sampled from D,p

: ¢ < one realization of T randomly sampled from D,r

e

v < one realization of V  randomly sampled from D‘V .
Olltpllt Qcrr-te ={T,Y,Vp,t,c,vp}

E.2 SCM-Based Query Estimation

Each query is evaluated by modifying the SCM, sampling the exogenous variables, and computing
expectations over the outcomes. In practice, we simulate interventions and counterfactuals by directly
manipulating structural equations and conditioning on sampled variables. Our implementation
supports efficient batch estimation using the same random seeds for reproducibility.

Counterfactual queries are estimated using the standard three-step procedure [35l:
1. Abduction: Condition on the factual realization to compute P(U|V = v)
2. Action: Modify the SCM with the desired intervention

3. Prediction: Compute the outcome using the intervened model and posterior samples

The following algorithms detail the procedures for estimating ATE, CATE, and CTF-TE queries.

26



Algorithm 10 Estimating ATE queries

Inputs: ATE query to estimate @ = {T,Y,t,c}, causal graph G, causal mechanisms F, distribution of the
exogenous variables P(U), number of samples to draw for estimation N

1: {ui,...,un} ~ P(U)

2: Dy + {ui,...,un}

3: for V € V following a causal order given by G do
4:  if V =T then

5: {U1,...71)N}<—{t7...,t}

6:  else

T {Pa(V)1,...,pa(V)n} < Dijpacvy

8: {UVI,...,UVN}<—Dt|UV

9: {v1,...,on} < fu({pa(V)1,...,pa(V)n},{uv,,. .., uvy})
10:  endif

11: D+ D:U{v1,...,on}

12: end for

13: D. + {uy,...,un}
14: for V € 'V following a causal order given by G do
15:  if V =T then

16: {vi,...,on} < {c,...,c}

17:  else

18: {pa(V)1,...,pa(V)n} < Dejpav)

19: {uvl, ceey uVN} «— DC|UV

20: {v1,...,on} < fv({pa(V)1,...,pa(V)n}, {uvi,...,uvy })
21:  endif

22: D¢+ D.U{vi,...,un}

23: end for

24: Q" «+ avg(Dyjy) — avg(Dejy)
Output: Q*
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Algorithm 11 Estimating CATE queries

Inputs: CATE query to estimate @ = {7, Y, X, ¢, ¢, x}, causal graph G, causal mechanisms F, distribution of
the exogenous variables P(U), number of samples to draw for estimation N

1: {ui,...,un} ~ P(U)

2: Dy + {ui,...,un}

3: for V € V following a causal order given by G do
4:  if V =T then

5: {U1,...71)N}<—{t7...,t}

6:  else

T {Pa(V)1,...,pa(V)n} < Dijpacvy

8: {UVI,...,UVN}<—Dt|UV

9: {v1,...,on} < fu({pa(V)1,...,pa(V)n},{uv,,. .., uvy})
10:  endif

11: D+ D:U{v1,...,on}

12: end for

13: D, + {ui,...,un}
14: for V € V following a causal order given by G do
15:  if V =T then

16: {vi,...,on} +{c,...,c}

17: else

18: {pa(V)l,...,pa(V)N} — DclpA(V)

19: {uvl,...,qu} <_DC|UV

20: {vi,...,on} < fv({pa(V)1,...,pa(V)n},{uvi,...,uvy })
21: end if

22: D. <« D.U{vy,...,on}

23: end for

24: Dt < Dt|X:x

25: D. ¢ Dejxex

26: Q" < avg(Dy)y) — avg(Dejy)
Output: Q*
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Algorithm 12 Estimating Ctf-TE queries

Inputs: Ctf-TE query to estimate @ = {7,Y, Vr, t, ¢, vr }, causal graph G, causal mechanisms J, distribution
of the exogenous variables P(U), number of samples to draw for estimation N

1: {ui,...,un} ~ P(U)

: Du,,, +{ui,...,un}

: for V € V following a causal order given by G do
pa(V)i,...,pa(V)n} < Du, 1
{UVI,. .. ,UVN} <— DUvF Uy
{vr,...,on} = fv({pa(V)s, ..., pa(V)n} {uvy, . uvy })
DUvF — DUvF U{vi,...,on}

end for

: DUvF — DUvF Vpeve

T M+ ‘DUVF‘

N {ul,...,uM} < DU"F|U

=T P A A i

—_

—_
[\

: Dt<—{u1,.4.7uM}
: for V € V following a causal order given by G do
if V =T then
{vi,...,on} < {¢t,...,t}
16:  else
17: {pa(V)l,...,pa(V)N} <_Dt|PA(V)
18: {uvl,...,uVN}<—Dt|Uv

19: {v17 s 7UN} — fV({pa(V)17 e apa(V)N}a {uVlv' .. auVN})
20:  endif

21: Dy + D U{vy,...,on}

22: end for

23: DC < {ul,...,uM}

24: for V' € V following a causal order given by G do
25:  if V =T then

— = =
TR

26: {v1,...,on} < {c,...,c}

27:  else

28: {pa(V)l, ) pa(V)N} — Dc|PA(V)

29: {uv17 ey UVN} — DC|UV

30: {vi,...,on} < fv({pa(V)i,....,pa(V)n},{uv,,...,uvy })
31:  endif

32: DC<—DCU{U1,...7UN}

33: end for

34: Q* < avg(Dy)y) — avg(Depy)
Output: Q*
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F Assumptions analysis module’s metrics

In order to analyze the characteristics of the sampled SCMs we implemented the following metrics.
Let us imagine we sampled a regional discrete SCM M = {V, U, F, P(U)} with V = (V,, V},)
and whose causal graph is denoted G. The projection of G over the observable variables V,, is
denoted Gv .

Analysis of the causal graph G:
* Average in-degree: d;,, = ﬁ Y ovev [PA(V)
* Variance of in-degree: var(d;,) = \vll Svev(PAV)| = din)?

* Average number of ancestors: |An(V)| = ﬁ Y vev |[An(V)| where An(V') denotes the
set of ancestors of V'

* Variance of number of ancestors: var(|An(V)|) = ﬁ Svev(An(V)| = [An(V)])?

* Average number of descendants: |De(V)| = ﬁ Y vev |De(V)| where De(V') denotes
the set of descendants of V'

* Variance of number of descendants: var(|De(V)|) = Wl\ S vev(De(V)| —[De(V)])?

* Average length of causal paths: L = ﬁ > PEPG |p| where pg denotes the set of directed
paths in G

* Variance length of causal paths: var(L) = >, (Ip] = L)?

* Maximum length of causal paths: Lax = maXpep, ||

Analysis of the projected causal graph Gv,:

* Average number of sibling |Si(V)| = ‘\} i > vev, [9i(V)| where Si(V) denotes the
set of siblings of V'

* Variance of number of siblings: var(|Si(V)|) = ﬁ Yvev, ([Si(V)] = [Si(V)])?

* Number of maximal confounded components (c—compsﬂ |C| where C denotes the set of
maximal c-comps in Gy,
* Average size of maximal c-comps: |C| = ﬁ YceclC|

* Variance of the size of maximal c-comps: var(|C|) = ﬁ > ceclC| - IC|)?

Analysis of the observational distribution Py(V,):

* Minimum probability of the joint distribution: pv, min = miny, eqy, Pm (Vo =v,)
* Proportion of events with a null probability: py = ﬁ Y voeoy. 1Pu(Vo=v,)=0 Where
1_ denotes the indicator function

* Minimum probability of the marginal distributions:

in = min min Py (V =v
Pmin = G307 eoy Mm( )

* Average minimum probability of the marginal distributions:

1 1
Pmin = min PM(V = U)
|V0| Vev, |Qvl vEQY

3Two variables are considered siblings if they are linked by a bi-directed edge.
“We use [46] definition of (maximal) confounded components.
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* Variance of the minimum probability of the marginal distributions:
Var(prnln |V | Z min PM = U) - ﬁmin)2

¢ Distance (L1) of the joint distributions to the uniform one:

1
d(Pp;U) = Z [Pm(Vo = vo) — m|

Vo E€Qv,
* Average distance (L) of the marginal distributions to the uniform one:

||zz|PM @'

VeV, veQy

d(Pav;U) =

* Variance of the distance (L) of the marginal distributions to the uniform one:

2
var(d(Pav;U)) = E g |Prm(V ! | = d(Prs;U)
|V | vl
VeV, \veQy

* Entropy of the joint distribution: H(P(V))
All the above-mentioned probabilities are computed from a set of 1M samples drawn from the SCM

M.

Let us note that pn,;, enables the user to check if the strong positivity assumption holds. If
pv,,min > 0, then strong positivity is respected. In addition, if strong positivity does not hold,
Pv,.min and pg indicate the extent to which the assumption is not met — the higher the metrics, the
less the hypothesis is respected. On the other hand, py,i, indicates whether the weak positivity

assumption holds. If p,,;, > 0, then weak positivity is respected. Finally, d(Pp;U), d(Pa;U) and
var(d(Pa;U)) enables the user to assess to which extent the observational distribution is imbalanced.
Analysis of the causal mechanisms F:
» Average Pearson’s correlation between the parent—child pairsﬂ
V.V
pp = |V| Z AV U] UUV| PORNIAY
V; €PA(V)UUy
* Variance of Pearson’s correlation between the parent-child pairs:
V.V)—p
var(pp) |V| Z |PA UUV| Z (pp(V,Vj) = pp)
V; EPA(V)UUy
* Average Spearman’s correlation between the parent-child pairs?
V.V
ps = |V| Z AV U] Yoo sV
V;€PA(V)UUy
* Variance of Spearman’s correlation between the parent-child pairs:
V.V;)—p
var(pg) |V\ Z \PA Ule Z (ps(V. V) = ps)
V; €PA(V)UUYy
» Average conditional entropy of a variable given its parents:

IV\Z (VIPA(V))

Vev

>pp and pg respectively denote the Pearson’s and Spearman’s correlation
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* Variance of conditional entropy of a variable given its parents:

o2
var(H IVIZ (VIPA(V)) — H)
Vev

In order to be able to use person correlations, spearman correlations, and conditional entropy as
indicators of degrees of linearity, monotonicity, and stochasticity of causal mechanisms, we do
not derive these quantities from samples drawn from the entailed distribution. Instead, for each
variable, we create a dataset resulting from the application of its causal mechanism to the cartesian
product of the values taken by its endogenous and exogenous parents. In other words, we analyze the
mechanisms’ images of their input space. This allows us to analyze each mechanism independently
of the others.

Thus, pp and var(pp) can be interpreted as the average degree of linearity of causal mechanisms and
their variance. Furthermore, pg and var(pgs) can be interpreted as the average degree of monotonicity
of causal mechanisms and their variance. Finally, H and var(H) can be interpreted as the average
level of stochasticity of causal mechanisms and its variance.

G Analysis of the empirical distribution of the generated SCMs

As we do not provide the user with an expression of the distribution of the sampled regional discrete
SCMs, we need to investigate if some SCMs classes are over/underrepresented. This analysis is
important to identify the potential biases our random causal dataset generator might create to take
them into account when using it to evaluate any Causal machine learning (Causal ML) method.
Indeed, as our goal is to provide a tool for rigorous empirical evaluation of causal methods, we need
to be transparent on the limitations of our generator such that researchers and practitioners can inter-
pret the results of their methods with full knowledge of the potential biases coming from the generator.

G.1 Experiment

To visualize the distribution of the SCMs generated, we analyze the distribution of the metrics of the
assumption analysis module characterizing the SCMs. For each SCM sampled, all the implemented
metrics (see Appendix[F) are computed.

The studied SCMs are sampled from the Sols defined by the cartesian product of the following
parameters:

* Number of endogenous variables: [3, 4, 5]

» Expected edge probability: [0.2,0.4,0.6,0.8]

* Proportion of unobserved endogenous variables: [0,0.1,0.2,0.3]
* Number of noise regions: [2, 5,10, 20, 50]

* Cardinality of endogenous variables: [2, 3,4, 7]

* Distribution of exogenous variables: set to /[0, 1]

For each Sol 10 SCMs are sampled, making a total of 9600 SCMs studied. Let us mention that we
sample more SCMs than for verification (Section for two reasons. First, it enables us to have a
better approximation of the SCMs distribution. Second, the computation of all the assumptions and
characteristics metrics is, in fact, less computationally expensive than computing all the independence
tests.
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Figure 2: Distribution of the average minimum probability of the marginal entailed distributions of
the generated SCMs depending on the number of variables and their cardinality

G.2 Results

A number of findings about the distribution of the sampled SCMs can be drawn. For instance, the
level of stochasticity of the SCMs roughly follows a long-tailed distribution whose mean increases
with the number of variables and their cardinality. This can be seen in fig. f]

Then, the levels of linearity and monotonicity (measured using Pearson and Spearman correlations
respectively) follow roughly Gaussian distributions, see fig.[3] Distribution of mean of 0.3 and a
standard deviation of 0.1 for linearity, while for monotonicity, the standard deviation increases to 0.2.
This means that, on average, the causal mechanisms are neither linear nor monotonic.

Moreover, the number and size of confounded components follow a roughly exponential distribution
(i.e., high mass close to 0, followed by exponential decay) as depicted in fig. [6} Hence, "highly
confounded" SCMs are rare.

Finally, the assumption of strong positivity is rarely respected for all kind of SCMs, whereas weak
positivity is more often respected. In addition, there does not seem to be a correlation between the
size of the SCMs (i.e., number of endogenous variables and their cardinality) and the validation of
the positivity assumption. This is illustrated in figs.[2]and 5] Failure to respect these assumptions is a
direct consequence of working with finite data where infinitesimal probabilities are rounded to 0.

As a result, the generated SCMs belong mainly to the non-identifiable domain of Causal ML
methods, as positivity is poorly respected. Users must, therefore, be careful in their interpretations
when evaluating methods, as identifiable SCMs are much less represented than non-identifiable
ones. We recommend starting the evaluation on small Sols close to the identifiable domain, before
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Figure 3: Distribution of the average Pearson’s and Spearman’s correlation between the parent-child
pairs of the generated SCMs
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SCMs depending on the number of variables and their cardinality
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causal graphs of the generated SCMs depending on the number of unobserved variables
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H Visual overview of CausalProfiler’s sampling strategy

Random causal dataset generator User
l Space of Interest parameters
Causal graph generator
Algorithms 2 & 3
DAG Latent projection ADMG Causal graph G* Causal dataset
G = ((Vo,Vn), E) Algorithm 4 g =E) AD={Q,Q".D,G" H}

Mechanisms Generator
Algorithm 5 A " A ons metrics Hypotheses H*
N Causal ML
analysis module {A1,4A2, 43, ...} hod
ScM metho

M ={U,V,F PU)
Data Data Data D Estimate @
Algorithm 6 D € RVxIVol

Evaluation

Ll Query generator framework
Algorithms 7,8 &9 X

Query Q Algorithm 1

Algorithms 10,11 & 12 measurements

Query expression l
Q= (T,XY,Vg) Query evaluator Ground truth Q* Error / Robustness
Q" =QM")

Figure 7: CausalProfiler structure. The left-hand side of the figure represents the code structure of the
causal dataset generator. The right-hand side represents the user code. It illustrates how CausalProfiler
can be used to evaluate a Causal ML method.

I Proof of Theorem 5.1 (Coverage)

This section presents the proof of Theorem stating that: For a Space of Interest S = {M, Q, D},
whose class of Structural Causal Models is a class of Regional Discrete SCMs with the maximum num-
ber of noise regions, any causal dataset D = {Q, Q*, D, G*, H*} has a strictly positive probability
to be generated.

Firstly, let us note that:
* Stating that any query () can have any ground truth value Q* given S is equivalent to
saying that the class of considered SCMs, i.e., the class of Regional Discrete SCMs with the
maximum number of noise regions, is L3-expressive with regards to the class of Markovian

discrete SCMs (i.e., any L3-distribution of the class of Markovian discrete SCMs can be
expressed with a Regional Discrete SCM).

* As the set of hypotheses H* can contain at most L3 conditions, if the class of considered
SCMs is L3-expressive, then any set of hypotheses H* can be represented.

* If the class of considered SCMs is L3-expressive, then it is also £;-expressive, hence, D
can be sampled from any distribution

As aresult, our proof consists of showing that P(Q), G*|S) > 0 and that the class of Regional Discrete
SCMs with the maximum number of noise regions, denoted Mp_scu,r=R,,.....» 1S L£3-expressive with
regards to the class of Markovian discrete SCMs given an Sol S and a causal graph §.

Let us consider a Sol S = {M, Q, D} with Ml C Mp_scu r=R,.y -
Proving P(G*|S) > 0:
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G* is built through Algorithm [3|as the latent projection of a DAG G = {(V g, Vo), E} over Vo
where G is sampled using Algorithm[2] As a result, following the steps of Algorithms [2]and 3}

P(G*8) = P{(Vu, Vo), E}|S)

= P(E|V)P(V,Vo|S) Edges are sampled independently of the
observability of the variables
= P(E|V)P(Vu,Vo||V|)P(|V]) |V| and py, are the only parameters influ-

encing the observability of the variables

= P(EIV)P(Vi, Vol V)5

max ~ Nmin

|V| ~ U[Nmina Nmax}

V! 1
= P(E|V) | |‘;|[' NN Vi C V sampled without replacement
V!

- ‘V“(Nmax - Nmin)

As E ={V, = V;| V), € PA(V;),VV; € V} and the edges are sampled along the causal order [1, N]
with probability pegge:

N
* _ |\/}¥|! : .
Petis) = [VI'(Nimax — Ninin) EP({V’“ = VilVe € PA(V)))
N
|VH|! [PA(V;)| i—1—|PA(V;)|
= Pedge Vi1 = Pedge ‘
|‘f‘!(]\2nax - ]\Gnin) !;E g ( g )

Let us note that pegge = 0 = |PA(V;)| = 0 and pegge =1 = |PA(V;)| =i — 1. As aresult,
P(G*|S) > 0.

Proving that Mgp_scy r=r,,,. IS L£3-expressive with regards to the class of Markovian discrete
SCMs: Regional discrete SCMs are, by construction, Markovian Canonical SCMs [49]. Further-
more, if the number of noise regions is chosen to be large enough (typically set to its maximum
value), any Markovian Canonical SCM can be represented using a Regional Discrete SCMﬂ Thus,
applying Zhang et al. [49] Theorem 2.4, we can assert that: for an arbitrary Markovian discrete
SCM, there exists a Regional Discrete SCM such that they both have the same causal graph and the
same L3-distribution. Consequently, the class of Regional Discrete SCMs is L3-expressive with
respect to the class of Markovian discrete SCMs given the causal graph G. Moreover, P(G) > 0 for
all G because [T pedage ™ V(1 = peage)’ 1~ PAVII > 0 (cf. previous paragraph). Thus, more
generally, the class of Regional Discrete SCMs sampled by our CausalProfiler is L£3-expressive with
respect to the class of Markovian SCMs.

Proving P(Q|G*,S) > 0: (@ is sampled given Q, D and G*. Even though we currently only
implement queries sampling for the classes Oarg, Qcare and Qcye1g (cf. AppendixE]and Algorithms
[8land 0), we can generalize our proof to any other query class (e.g., CDE, NDE). We simply
assume that these classes translate the set of constraints on the variables under consideration (e.g.,
conditioning variables have to be distinct from treatment variables or any other graphical constraints
that can be checked with G*) and express the probabilistic causal formula to be estimated. Once
such a query class Q is defined, our method randomly samples variables from V¢ in accordance
with Q constraints and by sampling realizations from D. We showed in the previous paragraph that
Mp-scM,r=R,.., 1S L3-expressive implying that it is £;-expressive too. So, any realization can be
present in D. As a result, for a given query class Q, any @ can be generated. Hence, P(Q|G*,S) > 0.

SThe distinction between Vo and V g is of no importance for £3-expressiveness. Vo and V y are only used
to determine what will be visible to the user as benchmark.
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Proving Theorem [5.1) by combining previous results: We proved that Mgp_scu r=R,, .
is L3-expressive, hence any training set D, ground truth query @* and set of hypotheses
H* can be generated given an Sol S, a causal graph G and a causal query (). In addition,
P(Q,G*|S) = P(Q|G*,S)P(G*|S) and we also prove that P(Q|G*,S) > 0 and P(G*|S) > 0.
Hence, P(Q,G*|S) > 0. As aresult, any causal dataset D has a strictly positive probability to be
generated.

Remark on continuous SCMs. The universal approximation theorem [24] states that NNs (with
non-polynomial activation functions) are dense in the space of continuous functions, meaning that
any continuous function can be approximated by a sequence of NNs converging to this function.
However, this does not guarantee that they strictly cover the space of continuous functions. In
particular, whenever the number of layers and neurons is finite, one can always build a continuous
function too complex to be represented with this finite number of parameters. Hence, Theorem [5.1]
cannot be extended to any class of continuous SCMs. However, it could potentially be adapted not to
ask for strict coverage but rather density. We leave this question for future work.

J Verfication Results
We design and run verification experiments targeting each level of the Pearl Causal Hierarchy (PCH).

J.1 L4 verification

Consistency with £ level of the Pearl Causal Hierarchy (PCH) is tested through the verification that
the Markov property holds on randomly sampled regional discrete SCMs. Below is a description of
the experimental design choices made and the associated results.

J.1.1 Experiment

For a given SCM M = {V,U,F, P(U)}, we check that the Markov property is satisfied by
assessing whether there is a statistically significant amount of d-separations not leading to conditional
independence in the entailed distribution.

To do so, we first enumerate the list of sets of variables (A, B, C) in V corresponding to d-separations
in M’s causal graph Gy, ie A 1l g,, B|C. Second, for each d-separated set (A, B, C), we test
whether A 1l p,, B|C by sampling 50k data points from the entailed distribution Py.

In practice, enumerating all the d-separations can be very costly. Moreover, as the set of variables
C increases, it becomes increasingly complicated to robustly test the conditional independence
A llp, B|C. Indeed, as the cardinality of C increases, so does the number of combinations of
values for which to test independence between variables A and B. Running the statistical test becomes
costly, and the data volume required for robust independence test results increases exponentially. This
is why we limit ourselves to listing the d-separated sets (A, B, C) such that A € V, B € V\ 4, and
C € V U V2U V3 by enumerating all the possible (A, B, C) tuples, and testing whether they are
d-separated in G .

As the sampled SCMs are regional discrete, the conditional independence A 1L p,, B|C can be tested
with Pearson’s x2 independence tests [37]. More precisely, A and B are considered independent
conditionally to C if for all values ¢ of C, the Hy hypothesis "A and B are independent” is not
rejected. Since Pearson’s y2 test is based on the assumption that the number of samples is large, we
decide to skip tests where the Koehler criterion [31] is not met. Based on empirical analyses, this
criterion indicates whether the 2 test is reliable depending on the number of samples considered.
In addition, as we conduct tests for each observed value ¢, we need to control for the expected
proportion of false positives (represented by the Type I error of the test). To do so, we apply the
Benjamini-Hochberg correction [5].

For each Sol, defined by the Cartesian product of the following parameters, we sample 5 SCMs:

* Number of endogenous variables: [4,5, 6]
» Expected edge probability: [0.1,0.4]
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* Proportion of unobserved endogenous variables: set to 0 because the Markov property
only hold for Markovian SCMs

* Number of noise regions: [5, 10]

* Cardinality of endogenous variables: [2, 3, 10]

* Distribution of exogenous variables: set to /[0, 1]
* Number of data points: 50000

J.1.2 Results

Conditioning A 1l p,, B|C tests x? independence tests
set size Total Pass Fail  Skip Total Pass Fail Skip
ICl=1 100 91.76 494 3.3 100 85.4 1.43 13.17
- (2391) (2194) (118)  (79) (9130) (7T797) (131)  (1202)
IC| =2 100 91.16 5.63 3.22 100 45.2 0.33 54.46

(2986) (2722) (168)  (96)  (53040) (23976) (177)  (28887)
100 91.08 5.67 3.25 100 18.49  0.07  81.43
(1693) (1542)  (96)  (55)  (145320) (26874) (106) (118 340)
100 91.34 540 3.25 100 28.26 0.2 71.54
(7070)  (6458) (382) (230) (207490) (58647) (414)  (148429)

IC| =3

TotAL

Table 4: Conditional independence tests based on x? independence tests to assess compliance of
sampled SCMs with the Markov property. Results are expressed as a percentage of the total of each
test type for each conditioning set size. The number of tests is also shown in brackets.

The experimental results are summarized in table 4| where it can be seen that 5.4% of the conditional
independence tests failed. Despite the use of the Koehler criterion and Benjamini-Hochberg
correction, some tests can still be rejected due to the random nature of finite data sampling, which
can produce slight artificial correlations in the data. Moreover, on closer inspection, the majority of
the failed tests (at least 350 out of 382) are unsuccessful because of a single failed x? independence
test. This reinforces our previous argument about the random nature of finite data sampling.

One can also notice that the number of skipped x? independence tests increases with the size of the
conditioning set. Such behavior is to be expected, since the number of realizations of the conditioning
set increases exponentially with its cardinality, while the number of observations sampled to perform
the independence tests remains constant. As a result, there are fewer and fewer observations available
to perform each y? test. In contrast, the number of fully skipped conditional independence tests
remains constant. This means that the x? skipped tests are relatively homogeneously distributed
across all the conditional independence tests.

Someone might argue that the number of sampled observations should simply be automatically
computed to verify the Koehler criterion. However, in general, such a calculation is complicated,
if not impossible, to automate, as causal mechanisms are randomly sampled. As a result, all kinds
of observational distributions can be induced with potentially very low probability realizations, for
which the Koehler criterion could never be validated because the number of data to be sampled would
be too large.

To conclude, these results are sufficient to conclude that the Markov property is empirically verified
by the sampled SCMs.

J.2 L verification
Consistency with £, level of the PCH is tested through the verification that the Do-calculus rules

hold on randomly sampled regional discrete SCMs. Below is a description of the experimental design
choices made (Section and the associated results (Section [l.2.2)).
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J.2.1 Experiment

7

Definition J.1. Do-Calculus rules [35]]
Given an SCM M = {V,U,F, P(U)} whose causal graph G is a DAG, and disjoint
subsets X, Y, Z, and W of V, the rules of the Do-Calculus are defined as follows:
1. Insertion/deletion of observation: if Y and Z are d-separated by X U W in G,
then P(Y|do(X =x),W,Z) = P(Y|do(X =x), W)
2. Action/observation exchange: if Y and Z are d-separated by X UW in gi z then
P(Y|do(X =x),do(Z = z), W) = P(Y|do(X =x),Z, W)
3. Insertion/deletion of action: if Y and Z are d-separated by X U W in G
then P(Y|do(X = x),do(Z =z),W) = P(Y|do(X = x), W)
where Gx (resp. Gx ) represents the graph G where the incoming edges in (resp. outgoing

edges from) X have been removed and Z (W) is the subset of nodes in Z that are not ancestors
of any node in W in G¢

Z(W)?

Theorem J.1. Soundness and Completeness of the Do-Calculus rules [25]

The rules of the do-calculus are sound and complete; that is, they hold in all causal models,
and all identifiable intervention distributions can be computed by an iterative application of
these three rules.

. J

For a given SCM, we check each rule by first enumerating the sets of d-separated variables of interest.
Second, for each d-separated set, we test whether the distributions are statistically significantly similar
by sampling 50k data points from the intervened SCMs and testing whether they are drawn from the
same distribution.

For the same computational cost reasons as for £; verification, we consider only univariate
sets of variables X,Y, 7, and W. In addition, the studied SCMs are sampled from the same
Sols as defined in the L£;-verification experiment (Section [J.I.T). Finally, to assess whether
two conditional distributions are identical, we used Pearson’s x“ goodness of fit tests [37]. As
done in Section we also use the Koehler criterion [31] and the Benjamini-Hochberg correction [5].

For each Sol, defined by the Cartesian product of the following parameters, we sample 5 SCMs:

* Number of endogenous variables: [4,5, 6]
* Expected edge probability: [0.1,0.4]

* Proportion of unobserved endogenous variables: set to 0 because the Markov property
only hold for Markovian SCMs

* Number of noise regions: [5, 100]
* Cardinality of endogenous variables: [2, 5]
* Distribution of exogenous variables: set to /[0, 1]

* Number of data points: 50000

J.2.2 Results

The experimental results are summarized in table [5| where it can be seen that they are very similar to
the £ verification ones: roughly 6% of the conditional goodness of fit tests were not validated, some
tests are rejected due to the random nature of finite data sampling but the majority them (at least 570
out of 755) are unsuccessful because of a single failed x? goodness of fit test.

One can also notice that the percentage of skipped x? goodness of fit tests is similar for rules 1 and 3
but increases by roughly 50% for rule 2. Such behavior is to be expected as rule 2 is the only rule to
have conditioning sets of size 3 on both sides of the equality. However, the number of skipped tests
remains low, with a maximum of 16%.
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Cond. goodness of fit x? goodness of fit
Do-Calculus Rule Total Pass Fail  Skip Total Pass Fail Skip
Rule 1

Insertion/deletion
of observation

Rule 2

100 96.15 3.85 0 100 88.84 0.1 11.06
(3378)  (3248) (130)  (0)  (171092) (152004) (172) (18916)

aplule2 100 9404 596 0 100 8384 0.09 16.06
N (5065) (4763) (302) (0) (259 509) (217578) (241) (41 690)
exchange
o Rule3 100 9375 625 0 100 8921  0.06  10.74
” of action (5169) (4 846) (323) (0) (282184) (251731) (157) (30 296)
TOTAL 100 9445 555 0 100 8717  0.08  12.75

(13612) (12857) (755) ) (712785) (621313) (570) (90902)

Table 5: Conditional independence tests based on x? goodness of fit tests to assess compliance of
sampled SCMs with the Do-Calculus rules. Results are expressed as a percentage of the total of each
test type for each conditioning set size. The number of tests is also shown in brackets.

As a result, we estimate that these results are sufficient to conclude that the Do-calculus rules are
respected by the sampled SCMs.

J.3 L3 verification

Consistency with L3 level of the PCH is tested through the verification that the axiomatic charac-
terization of structural counterfactuals holds on randomly sampled regional discrete SCMs. Below
is a description of the experimental design choices made (Section [J.3.T)) and the associated results

(Section[I.3.2).

Definition J.2. Axiomatic characterization of structural counterfactuals [35]]
Given an SCM M = {V, U, F, P(U)} whose causal graph G is a DAG, the axioms of
structural counterfactuals are defined as follows:
1. Composition: For any sets of endogenous variables X, Y, and W in V and any real-
ization u of U, if Wdo(X:x) (u) = w then Ydo(X:x),do(W:w) (u) = Yda(X:x) (u)
2. Effectiveness: For any disjoint sets of endogenous variables X, and W in V and
any realization u of U, Xy,(x=x).do(W=w) (1) = X
3. Reversibility: For any two distinct variables Y and W and any sets of other
variables X in V and any realization u of U, if Yo x—x).do(w=w)(1) = y and
Wdo(X:x),do(Y:y) (u) = w then }/do(X:x) (u) =Y

Note that we do not write P(W g,(x—x)|U) but rather Wy, (x—x)(u) as it is a deterministic expres-
sion. Indeed, if U is fixed, there is no stochastically anymore, so we no longer need to reason in
distributions but rather in functional forms.

Theorem J.2. Soundness and Completeness of structural counterfactual axioms [15]]
Completeness, effectiveness, and reversibility are sound and complete in structural causal
model semantics; that is they hold in all causal models and all identifiable counterfactual
distributions can be computed by an iterative application of these three axioms.

J.3.1 Experiment

For a given SCM, using definition [J. I| notations, we check that:
1. The Composition axiom is satisfied by assessing whether W 45x—) (u) = w implies

Y do(X=x) do(W=w) (1) = Y go(x—x)(u) for any sets of endogenous variables X, Y, and W
in V and any realization u of U
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2. The Effectiveness axiom is satisfied by assessing whether Xy, (x—x) do(W=w) (u) = x for
any sets of endogenous variables X, and W in V and any realization u of U

3. The Reversibility axiom is satisfied by assessing whether Y, (x—x) do(W=uw) (u) =yand
Wao(X=x) do(v —y) (1) = w implies Yox—x) (1) = y for any two (distinct) variables ¥ and
W and any sets of variables X in V and any realization u of U

For each Sol, defined by the Cartesian product of the following parameters, we sample 5 SCMs:

* Number of endogenous variables: [3, 5, 10]
» Expected edge probability: [0.1,0.5,0.7]

* Proportion of unobserved endogenous variables: set to 0 because the Markov property
only hold for Markovian SCMs

+ Number of noise regions: [3, 5, 10]
* Cardinality of endogenous variables: [2,5, 7]
* Distribution of exogenous variables: set to /[0, 1]

* Number of data points: 50000

For each SCM, instead of enumerating all the possible four sets of variables X, Y and W, we sample
a partition of three elements of a randomly sampled subset of V of a size randomly picked in [3, |V]].
This sampling strategy enables us to make sure the three sets are disjoint and of randomly varying
size. In addition, for each four sets, we sample 50k realizations of U.

Let us note that the axioms now correspond to exact realizations and not equal probabilities. As a
result, we expect no failure as no approximation is made in this experiment.

J.3.2 Results

As expected, all the tested equalities are verified in our experiments. We can, therefore, consider that
the SCMs created by our generator allows the estimation of any structural counterfactual queries.

K Extended Experimental Results

K.1 Experiment 1: Additional Information

We provide more details about the Sof used in our experiments in Table [ and present extended
performance metrics in Table [/, complementing those already shown in Table|l} Parameters not
explicitly listed for a given Sol are set to their default values as per the benchmark configuration.
Neural Networks for our experiments have two 8-neuron layers and use ReLU activation.
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Table 6: Specification of each Sol used in the general experiments. N denotes the sampled number

of nodes.
Name | Linear-Medium Name | NN-Medium
# Nodes 15-20 # Nodes 15-20
Mechanism Linear Mechanism NN
Expected Edges | 2 x N Expected Edges | 2 x N
Variable Type Continuous Variable Type Continuous
Samples 1000 Samples 1000
Query Type ATE Query Type ATE
Seeds [10, 11, 12, 13, 14] Seeds [10, 11, 12, 13, 14]
Name | NN-Large Name | NN-Large-LowData
# Nodes 20-25 # Nodes 20-25
Mechanism NN Mechanism NN
Expected Edges | 2 x N Expected Edges | 2 x N
Variable Type Continuous Variable Type Continuous
Samples 1000 Samples 50
Query Type ATE Query Type ATE
Seeds [10, 11, 12, 13, 14] Seeds [10, 11, 12, 13, 14]

Table 7: Additional performance metrics of CausalNF, DCM, NCM, and VACA on the general

experiments.
Space Method Min Error Total Fail Runtime Mean Runtime Std
Linear-Medium CausalNF 0.0024 0 27.58 s 18.33 s
Linear-Medium DCM 0.0086 0 33.08 s 9.71s
Linear-Medium NCM 0.0024 0 14.77 s 1.42s
Linear-Medium VACA 0.0038 1335 11.69 s 4.54s
NN-Medium CausalNF 0.0019 0 21.47s 19.52 s
NN-Medium DCM 0.0073 0 31.79 s 10.62 s
NN-Medium NCM 0.0014 0 14.65 s 143 s
NN-Medium VACA 0.0024 125 12.13 s 441s
NN-Large CausalNF 0.0038 0 30.23 s 2533 s
NN-Large DCM 0.0060 0 38.33s 14.02 s
NN-Large NCM 0.0018 0 18.90 s 1.38s
NN-Large VACA 0.0023 290 12.88 s 431s
NN-Large-LowData  CausalNF 0.0086 0 44.28 s 17.10 s
NN-Large-LowData DCM 0.0121 0 4825 1.34s
NN-Large-LowData NCM 0.0013 0 0.81s 0.11s
NN-Large-LowData VACA 0.0010 0 10.43 s 4.59 s

K.2 Experiment 2: Additional Information

We provide more details about the Sol used in our experiments in Table || and present extended
performance metrics in Table [0} complementing those already shown in Table[2] Parameters not

explicitly listed for a given Sol are set to their default values as per the benchmark configuration.
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Table 8: Specification of the Spaces of Interest used for evaluating discrete SCMs with CTF-TE
queries. N denotes the sampled number of nodes.

Name | Disc-C2-Reject Name | Disc-C4-Unbias
# Nodes 10-15 # Nodes 10-15
# Categories 2 # Categories 4
Mechanism Tabular Mechanism Tabular
Sampling Strategy | Rejection Sampling Strategy | Random
Edges N Edges N
Samples 500 Samples 500
Query Type Ctf-TE Query Type Ctf-TE
Seeds [1,2,3,4,5] Seeds [1,2,3,4,5]

Name | Disc-Large-C2-Unbias

# Nodes 20-30

# Categories 2

Mechanism Tabular

Sampling Strategy | Random

Edges N

Samples 500

Query Type Ctf-TE

Seeds [1,2,3,4,5]

Table 9: Additional performance metrics of CausalNF and DCM on the discrete experiments.

Space Method Min Error  Total Fail Runtime Mean Runtime Std
Disc-C2-Reject CausalNF 0.0000 202 0.46s 0.04 s
Disc-C2-Reject DCM 0.0000 107 8.81s 355s
Disc-C4-Unbias CausalNF 0.0000 1017 042s 0.03s
Disc-C4-Unbias DCM 0.0000 565 7.68 s 343
Disc-Large-C2-Unbias  CausalNF NaN 2500 0s 0s
Disc-Large-C2-Unbias DCM 0.0000 283 16.39 s 6.42 s

K.3 Experiment 3: ATE Estimation under Hidden Confounding

In this experiment, we demonstrate how our framework can be used to evaluate methods in the
presence of latent confounders — a common challenge in real-world causal inference. A key
goal here is not only to confirm theoretical limitations but to investigate how quickly and severely
performance degrades when assumptions are violated. While theory can tell us whether identification
holds, it is often agnostic to the degree of failure. See Table[IT|for a summary of results, Table [T2] for
a few additional performance metrics, and Figure [§]for a boxplot of ATE estimation errors over the
different Sol.

We focus on two linear SCM settings:

* Linear-No-Hidden: Linear SCMs with 10-15 nodes and full observability (no hidden
confounders), using 1000 data points per SCM.

* Linear-60-Hidden: Same setup as above, but with 60% of the variables unobserved
(hidden).

We provide more details about the Sol used in our experiments in Table[I0} Parameters not explicitly
listed for a given Sol are set to their default values as per the benchmark configuration.
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Table 10: Specification of the Sols used to evaluate performance under hidden confounding. N
denotes the sampled number of nodes.

Name | Linear-No-Hidden Name | Linear-60-Hidden
# Nodes 10-15 # Nodes 10-15

Mechanism Linear Mechanism Linear

Expected Edges 2x N Expected Edges 2xX N

Variable Type Continuous Variable Type Continuous

Prop. Hidden Nodes | 0% Prop. Hidden Nodes | 60%

Samples 1000 Samples 1000

Query Type ATE Query Type ATE

Seeds [42, 43, 44, 45, 46] Seeds [42, 43, 44, 45, 46]

Setup. We evaluate three methods: CausalNF, DCM, and DeCaFlow. The first two methods assume
causal sufficiency, and therefore cannot, in theory, handle hidden confounding. DeCaFlow, in contrast,
is explicitly designed for this setting but requires access to the full causal graph (including hidden
variables) and does not run when all variables are observed. Thus, we include it only in the hidden
confounding Sol.

Results (Linear-No-Hidden). As expected, both CausalNF and DCM perform well when all
variables are observed. DCM achieves lower mean error (0.0845) and standard deviation (0.1515),
with a maximum error of 2.89. The upper whisker of DCM’s box plot lies below the median of
CausalNF, indicating consistent superior performance. These results serve as a reference point for
comparison when introducing hidden variables.

Results (Linear-60-Hidden). With 60% of variables hidden, method performance degrades signif-
icantly. DeCaFlow performs reliably, with an error mean of 0.3405 and low variance. In contrast,
CausalNF—despite a box plot that visually appears well-behaved—has a massive error mean of
2.67 x 10'2 and a maximum error exceeding 10'°. This is due to a small subset of SCMs producing
extremely large errors (14 with error > 1000), illustrating that, when assumptions are violated, error
can become arbitrarily large. While DCM does not show such instability on this particular sample, its
theoretical limitations under hidden confounding still hold — the expectation is that if we evaluate
over enough SCMs we will eventually also get arbitrarily large errors due to the violation of the
causal sufficiency assumption.

175 Method
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1.50 o
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Error

Figure 8: Box plots of ATE estimation errors in the presence and absence of hidden confounding.
Each box shows the interquartile range and median, with whiskers extending to 1.5x IQR. CausalNF
and DCM are shown for both Sols; DeCaFlow is shown only for the hidden setting.
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Table 11: Performance summary of CausalNF, DCM, and DeCaFlow on the hidden confounder
experiments.

Space Method Mean Error Std Error  Max Error  Runtime (s)
Linear-No-Hidden CausalNF 0.5538 0.9866 14.2495 8570.0
Linear-No-Hidden DCM 0.0845 0.1515 2.8954 12144.6
Linear-60-Hidden CausalNF 2.667e+12  5.497e+13  1.225e+15 293.2
Linear-60-Hidden DCM 0.5584 1.2122 17.2049 4187.6
Linear-60-Hidden DeCaFlow 0.3405 0.6799 5.9435 2264.0

Table 12: Additional performance metrics of CausalNF, DCM, and DeCaFlow on the hidden con-
founder experiments.

Space Method Min Error  Total Fail Runtime Mean Runtime Std
Linear-No-Hidden CausalNF 0.0036 0 17.14 s 10.61 s
Linear-No-Hidden DCM 0.0068 0 24.29 s 7.64s
Linear-60-Hidden  CausalNF 0.0029 0 0.59s 0.02s
Linear-60-Hidden = DCM 0.0000 0 8.38 s 345s
Linear-60-Hidden = DeCaFlow 0.0108 0 4.53 s 1.27 s
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