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Abstract

Causal machine learning (Causal ML) aims to answer “what if” questions using1

machine learning algorithms, making it a promising tool for high-stakes decision-2

making. Yet, empirical evaluation practices in Causal ML remain limited. Existing3

benchmarks often rely on a handful of hand-crafted or semi-synthetic datasets,4

leading to brittle, non-generalizable conclusions. To bridge this gap, we introduce5

CausalProfiler, a synthetic benchmark generator for Causal ML methods. Based on6

a set of explicit design choices about the class of causal models, queries, and data7

considered, the CausalProfiler randomly samples sets of data, assumptions, and8

ground truths constituting the synthetic causal benchmarks. In this way, Causal ML9

methods can be rigorously and transparently evaluated under a variety of conditions.10

This work offers the first random generator of synthetic causal benchmarks with11

coverage guarantees and transparent assumptions operating on the three levels of12

causal reasoning—observation, intervention, and counterfactual. We demonstrate13

its utility by evaluating several state-of-the-art methods under diverse conditions14

and assumptions, both in and out of the identification regime, illustrating the types15

of analyses and insights the CausalProfiler enables.16

1 Introduction17

Causal machine learning (Causal ML) seeks to estimate the effects of interventions and counterfactuals18

using machine learning techniques [28], enabling principled decision making in medicine, policy,19

and other high-stakes domains. Despite its theoretical maturity and growing relevance, Causal ML20

remains underutilized. A key barrier to adoption lies in the current empirical evaluation landscape,21

which is unable to support meaningful and generalizable evidence of method performance [40].22

Recent critiques of evaluation practices in both predictive Machine Learning (ML) [21, 13, 30] and23

causal inference [10, 14, 6] have highlighted systemic shortcomings. Lessons from predictive ML24

show that narrow, static benchmarks can give a false sense of reliability [16, 21], underscoring the25

need for structured diversity: systematic variation of tasks under explicit, controllable assumptions.26

In the case of causal ML, evaluation is fundamentally more challenging due to the unobservability of27

counterfactual outcomes [23]. Hence, researchers can only rely on scarce real-world data sources.28

Typically, randomized controlled trials, considered as the gold standard, are expensive, ethically29

constrained, and often encompass a low amount of data [18, 44]. As a result, existing benchmarks30

often rely on a small number of semi-synthetic datasets (e.g., IHDP [22], Twins [32]) or model-driven31

synthetic datasets generated from fitted causal mechanisms [33, 34, 3, 12]. These datasets typically32

encode specific assumptions—such as structural constraints, identifiability conditions, or narrow33

function classes—which are rarely made explicit and are difficult to generalize beyond the original34

study context. Moreover, handcrafted synthetic datasets, where researchers explicitly define causal35

models and choose evaluation queries, are frequently designed with specific hypotheses or methods36
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in mind [17], risking bias through overfitting or implicit alignment. It has been argued [40] that the37

problem is not synthetic evaluation itself but the lack of rigor in its design and interpretation.38

In this work, we take a concrete step toward addressing these concerns by introducing a synthetic39

benchmark generator, called CausalProfiler, that enables empirical evaluations grounded in transpar-40

ently defined synthetic causal datasets. Central to our approach is the notion of a Space of Interest41

(SoI) (Definition 5.1), defining the domain from which causal datasets are sampled. Given a specified42

SoI, our benchmark generator samples SCMs, data, and queries, and estimates the ground truth value43

of the queries to enable the evaluation of Causal ML methods.44

This approach departs from existing benchmarks in several key ways. Rather than evaluating45

methods on a fixed or narrow set of datasets, our framework enables controlled, repeatable, and46

diverse sampling over structured families of tasks. It replaces opaque or implicit design choices47

with fully transparent specifications of model structure, noise, and query types. Crucially, it shifts48

the focus of empirical evaluation from performance on individual datasets to trends and patterns49

across a well-characterized SoI, reframing the evaluation question from “what dataset to use” to50

specifying a SoI that defines the scope of evaluation. This enables researchers to evaluate not only51

performance but also under which conditions—on graph density, or causal mechanisms complexity52

for instance—a method succeeds or fails and helps practitioners identify methods that remain reliable53

when causal assumptions are likely violated. By aggregating results over many generated datasets, the54

evaluation yields more robust and reliable performance estimates, helping to uncover failure modes,55

generalization limits, and assumption sensitivities that remain hidden in conventional evaluations.56

Contributions. This paper offers the first open-source implementation of such an evaluation57

framework1, and illustrates its utility by comparing state-of-the-art causal ML methods across58

multiple synthetic causal datasets. Our contributions are twofold. First, we present a benchmark59

generator (Section 5) that enables principled sampling of synthetic causal datasets over user-defined60

SoIs, with built-in coverage guarantees that promote transparency and reproducibility. Secondly, we61

demonstrate through experiments (Section 6) how evaluation across different SoIs yields richer and62

more robust insights than single-dataset evaluations.63

2 Related Work64

Evaluating causal ML methods. Causal ML currently lacks a rigorous, systematic paradigm65

for empirical evaluation. Indeed, the community has largely turned to synthetic and semi-synthetic66

benchmarks. Semi-synthetic datasets, such as IHDP [22] and Twins [32], combine real covariates67

with simulated outcomes under assumed structural models. Fully synthetic datasets, in contrast, are68

generated entirely from researcher-defined SCMs, allowing for greater control and access to ground69

truth. Yet both synthetic and semi-synthetic approaches suffer from critical limitations.70

First, synthetic evaluations often lack realism, relying on overly simplistic mechanisms such as71

additive noise or linear functions, and frequently omitting robustness analyses [17, 10, 39, 40]. These72

experiments rarely reflect the complexity of real-world causal processes and are insufficient to test73

the limits of modern causal inference methods.74

Secondly, synthetic and semi-synthetic datasets are shaped by researcher-defined design decisions,75

including the structure of the causal graph, the form of the outcome function, and the noise distribution.76

These decisions, often made implicitly, can unintentionally introduce hidden biases that favor certain77

methods [9, 8, 14]. Such assumptions are rarely documented or systematically varied, hindering78

reproducibility and fair method comparison [39, 40].79

Additionally, these benchmarks are typically small in scale and narrow in scope, often covering80

only a limited range of causal settings. As a result, empirical evaluations raise concerns about81

overfitting and generalization [17, 6]. For instance, it has been shown that even small changes to the82

data-generating process can lead to dramatic shifts in performance rankings [9]. Moreover, methods83

are often evaluated only under the very conditions that guarantee their identifiability, offering little84

insight into robustness under assumption violations, as is common in real-world settings [40, 38, 26].85

In short, without broader and more transparent evaluation across diverse causal settings, the field86

risks drawing conclusions that do not generalize. Addressing this gap requires moving beyond fixed87

benchmarks toward frameworks that support transparent, structured, and diverse experimentation88

across well-defined spaces of causal assumptions.89

1The code is provided in the supplementary material and will be publicly available after the review process.
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Recent benchmarking efforts. Recent works have sought to address some of these gaps introducing90

tools to generate synthetic SCMs for causal discover [29, 19, 41] or support query estimation from91

hand-specified models [42, 45, 1]. However, none of these frameworks support all components92

required for robust evaluation of causal machine learning methods. First, causal discovery bench-93

marks [29, 19, 41] do not compute ground truth for intervention or counterfactual queries. Further,94

query estimation frameworks [42, 45, 1] often require manual specification of the SCM and do95

not support random sampling, diversity control, or analysis of the distribution of tasks. Even in96

cases where SCMs are sampled [41, 48], key properties (e.g., positivity) are neither reported nor97

constrained. In addition, the absence of randomness in the graph structures limits generalization.98

Our approach complements and extends these efforts by integrating SCM sampling, query ground99

truth computation, and coverage guarantees into a unified framework. To the best of our knowledge,100

this is the first benchmark generator that enables systematic exploration of how Causal ML methods101

behave across spaces of SCMs and queries defined by user-specified constraints.102

3 Background & Notation103

We use capital letters for random variables (e.g., X), lowercase for realizations (e.g., x), and boldface104

for vectors (e.g., x). For a more complete background, please refer to Appendix A and Pearl [35].105

Causal Hierarchy. The Pearl Causal Hierarchy (PCH) [36] classifies causal questions into three106

levels: L1 (associational), L2 (interventional), and L3 (counterfactual). While associative questions107

rely only on observed data, interventional and counterfactual questions require assumptions about the108

data-generating process. Importantly, lower layers are insufficient to answer higher-layer questions in109

almost all causal models [4].110

Structural Causal Models. A Structural Causal Model (SCM) [35] is a tuple M :=111

{V,U,F , P (U)}, where V are endogenous variables, U are exogenous variables, F is a set112

of structural equations Vi = fi(PA(Vi),UVi), and P (U) defines a distribution over the exogenous113

variables. SCMs induce a distribution PM(V) over the endogenous variables. In this work, we114

additionally consider two types of endogenous variables: the observed variables, denoted VO, and115

the unobserved variables, denoted VH with V = VO ∪VH and VO ∩VH = ∅.116

Causal Graphs. We represent causal relationships using the causal graph of a Structural Causal117

Model (SCM). This is a directed acyclic mixed graph over the endogenous variables. Directed edges118

X → Y encode causal dependencies via structural equations, while bidirected edges X ↔ Y indicate119

latent confounding due to shared exogenous causes.120

Interventions. An intervention replaces one or more structural equations to model external121

manipulations. A common example is a hard intervention, written do(T = t), which sets a variable122

to a fixed value, disconnecting it from its natural causes. This defines a new SCM and alters the123

induced distribution.124

Counterfactuals. Counterfactual queries reason about what would have happened under a different125

intervention, given an observed outcome called a factual realization. They are evaluated by condition-126

ing on observed variables (abduction), modifying the SCM (action), and predicting outcomes under127

the new distribution (prediction)—a process known as the three-step procedure [35].128

Causal Queries. A causal query refers to a probabilistic statement about the effect of hypothetical129

manipulations of the data-generating process. This includes intervention queries, such as Average130

Treatment Effect (ATE), and counterfactual queries, such as Counterfactual Total Effect (Ctf-TE).131

Identifiability. A query is identifiable if its value can be uniquely determined from data, given a set132

of assumptions (e.g., a causal sufficiency) [35]. In other words, identifiability determines whether133

causal queries can be empirically estimated, and under what assumptions.134

4 Problem Formulation135

We consider the problem of causal inference, where the goal is to answer interventional and coun-136

terfactual queries using data drawn from an unknown SCM. LetM⋆ = (V,U,F , P (U)) denote137

the unknown ground truth SCM, a causal query Q (e.g., Average Treatment Effect (ATE)) is defined138

overM⋆ and has a ground truth value Q⋆ = Q(M⋆). AsM⋆ is unknown, causal estimators rely139
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on causal assumptions H (e.g., causal sufficiency) and available data D drawn fromM⋆ to produce140

an estimate Q̂ of the target quantity Q⋆. We introduce Definition 4.1 to formalize the elements of a141

causal dataset.142

Definition 4.1 (Causal Dataset). A causal dataset is a tuple D = {Q,Q⋆, D,G⋆,H⋆}
constructed from a known SCMM⋆ = (V,U,F , P (U)) where:

• Q is a causal query defined over V;
• Q⋆ = Q(M⋆) is the exact value of the query Q;
• D = {Dk ∼ PM⋆(V | do(Vk) = vk)}Ik=1 is a collection of samples under I

interventional (or observational) settings;
• G⋆ is the causal graph associated withM⋆;
• H⋆ is the set of assumptions satisfied byM⋆.

143

Given a causal dataset D = ({Q,Q⋆, D,G⋆,H⋆}), one can compute the estimation error E(Q̂,Q⋆)144

using a chosen error metric E (e.g., squared error). As a result, one can evaluate causal ML methods145

in the identification-consistent setting—where the considered causal graph and assumptions match146

the ground truth ones, i.e., G⋆ and H⋆—but also test robustness by introducing assumption violations.147

5 Sampling Causal Datasets with the CausalProfiler148

To generate causal datasets, CausalProfiler relies on a parametric specification of the sampling149

domain, called the Space of Interest. Given an SoI, it samples an SCM (Section 5.2) and generates a150

corresponding causal dataset (Section 5.3). Appendices B, C, D, and E contain pseudocode for the151

sampling algorithms, and Appendix H presents a visual overview of the sampling strategy.152

5.1 Defining a Space of Interest153

The central abstraction of our framework is the Space of Interest (Definition 5.1), which provides a154

standardized way to specify synthetic causal datasets (Definition 4.1).155

Definition 5.1 (Space of Interest). A Space of Interest (SoI) is a tuple S = {M,Q,D},
where M is a class of SCMs, Q a class of causal queries, and D a class of data.

156

Table 3 in Appendix B lists all configurable SoI parameters.2157

5.2 Sampling Structural Causal Models158

CausalProfiler samples SCMs from a user-defined SoI in two steps: (i) sampling a causal graph, and159

(ii) sampling the corresponding mechanisms.160

Causal Graphs. CausalProfiler first samples a Directed Acyclic Graph over a set of endogenous161

variables, which defines the causal structure of the SCM. Second, if specified in the SoI, CausalProfiler162

samples a subset of endogenous variables, VH , to be treated as unobserved and excluded from the163

observed dataset. To expose only the visible causal structure to the user, we apply Verma’s latent164

projection algorithm [47] to the full causal graph, which produces an Acyclic Directed Mixed Graph.165

Mechanisms. Given the causal graph, CausalProfiler assigns a mechanism to each endogenous166

variable given its parents and an exogenous noise whose distribution is set by the SoI. We support167

two types of mechanisms. First, discrete mechanisms, also called Regional Discrete mechanisms168

(see Appendix D.1 for a formal definition), are defined tabularly by associating each element of a169

partition of the exogenous noise with distinct parents-to-child mappings. This allows for controllable170

stochasticity and complexity, supporting highly non-linear and non-invertible behavior. Second,171

continuous mechanisms are defined using parametric function families—such as neural networks or172

linear functions—with randomly initialized parameters (e.g., He initialization [20]).173

2While the current implementation of CausalProfiler supports only L1 training data and ATE, CATE, and
CTF-TE queries, the SoI abstraction can, in principle, be defined over any class of queries, datasets, and SCMs.
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5.3 Sampling Causal Datasets174

Data D. Given an SCMM⋆ sampled from the SoI, we generate an observational dataset D by175

sampling i.i.d. data points from the entailed distribution ofM⋆ over observed variables. This involves176

forward-sampling from the structural equations in topological order, using the noise distributions177

specified for each variable and marginalizing out any latent variables.178

Query Q. We first sample endogenous observable variables to play the role of treatment, outcome,179

covariates, and factuals, depending on the class of queries of the SoI. To ensure that queries are well-180

defined and empirically grounded, we draw realizations from a large, separately sampled observational181

dataset, rather than from the theoretical variable domains. This avoids defining queries on realizations182

that may be unrepresentative or impossible under the SCM. While the currently implemented queries183

only involve interventions and counterfactuals, CausalProfiler also supports benchmarking causal184

discovery methods as the ground-truth causal graph G⋆ is directly provided in the causal dataset.185

Query ground truth Q⋆. Each query is estimated by drawing samples from the (manipulated)186

ground truth SCM: interventional queries via do-operations (action and prediction), and counterfactual187

queries via the three-step procedure [35]. Queries that are duplicates or yield NaN estimates are188

rejected and resampled to ensure valid and computable values.189

Ground truth causal graph G⋆. As presented in Section 5.2, G⋆ is built as the latent projection of190

the ground truth SCM’s causal graph over the observed variables.191

Ground truth Causal Assumptions H⋆. To characterize the properties of the ground-truth SCM192

from the user’s perspective, we provide an analysis module that computes summary metrics related to193

common causal assumptions (e.g., measuring linearity via Pearson correlation). A full list of available194

metrics is provided in Appendix F.195

Coverage guarantee. Theorem 5.1 (proof in Appendix I) shows that, with sufficiently expressive196

discrete mechanisms, CausalProfiler’s sampling strategy can theoretically generate any causal dataset197

within a given SoI, guaranteeing L3-expressivity. In addition, Appendix G provides an analysis198

exploring the empirical distribution of the sampled datasets.199

Theorem 5.1 (Coverage). For a Space of Interest S = {M,Q,D}, whose class of Structural
Causal Models is a class of Regional Discrete SCMs1 with the maximum number of noise
regions, denoted MRD-SCM,r=Rmax

, any causal dataset D = {Q,Q⋆, D,G⋆,H⋆} has a strictly
positive probability to be generated.

∀S = {M,Q,D} s.t. M ⊆MRD-SCM,r=Rmax
, P (D|S) > 0

1Formal definition can be found in Appendix D.1.
200

Benchmark Design. Taken together, these design choices reflect four key properties that are201

considered essential for rigorous synthetic evaluation in causal ML [40]: transparency, by making202

all assumptions explicit via the parametrization of the SoI, which serves as a declarative specification203

of the evaluation domain; repeatability, through randomized but seed-controlled sampling procedures,204

ensuring that SCMs and queries can be exactly reproduced across runs; bias awareness, supported by205

the coverage guarantee and the empirical distribution analysis module and control over experiments,206

by exposing a wide range of configurable parameters in the SoI that allow users to tailor the causal207

dataset generation to their assumptions and research goals.208

6 Experiments209

6.1 Verification of Benchmark Correctness210

To validate the soundness of our benchmark generator, we perform consistency checks based on the211

three levels of the Pearl Causal Hierarchy [36, 4]. Using the SCM sampler and query estimator of the212

CausalProfiler, we evaluate whether sampled SCMs satisfy the Markov condition, do-calculus rules,213

and structural counterfactual axioms [35]. We use discrete SCMs to enable exhaustive enumeration214

of conditioning sets for statistical tests. To ensure robustness, we iterate over a SoI parameter grid215
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spanning the number of variables, edge density, cardinalities, noise regions, and dataset sizes. For216

each configuration, we sample five SCMs. See Appendix J for full details and results.217

L1: Markov Property Verification. We assess whether d-separations in the causal graph imply218

conditional independencies in the entailed observational distribution of the sampled SCMs. For each219

SCM, we enumerate d-separated triplets (A,B,C) and test whether A ⊥ B | C holds using Pearson’s220

χ2 test [37]. We filter low-sample strata (Koehler [31]) and correct for multiple tests (BH [5]). The221

Markov property holds in roughly 95% of tested cases, with most violations attributable to finite-222

sample variability (see Table 4, Appendix J).223

L2: Do-Calculus Verification. We test whether the three rules of do-calculus hold empirically. For224

each rule, we identify variable tuples that satisfy the rule’s graphical preconditions. We then use the225

query estimator to generate two interventional datasets corresponding to the left- and right-hand sides226

of the rule. We use these datasets to compare the two distributions using Pearson’s χ2 test, filtering227

low-sample strata (Koehler [31]) and correcting for multiple tests (BH [5]). Around 5.5% of tests fail,228

with discrepancies largely due to finite-sample noise (see Table 5, Appendix J).229

L3: Structural Counterfactual Axiom Verification. We verify whether the axioms of composition,230

effectiveness, and reversibility hold exactly for sampled SCMs. Since the axioms involve deterministic231

functional relationships, we only count exact matches of the query estimator. All axioms hold exactly232

across our samples, confirming the estimator’s consistency with structural counterfactual semantics.233

6.2 Setup for Experiments using the CausalProfiler234

We demonstrate the utility of our benchmark framework by evaluating several recent causal inference235

methods across a diverse set of SoIs. Our goal is not to exhaustively benchmark each method but to236

showcase the types of structured empirical investigations our framework enables — especially those237

exploring robustness and violations of causal assumptions.238

Evaluation Protocol. All evaluations follow the process detailed in Algorithm 1. For each SoI, we239

evaluate each method using five random seeds. For each seed, we sample 100 SCMs. For each SCM,240

we generate one training set and five causal queries with ground-truth values. Results are aggregated241

across SCMs and seeds, enabling a rigorous and reproducible assessment of performance.242

Algorithm 1 Evaluation process for causal machine learning methods

1: Input: List of Spaces of Interest SoIs, list of seeds seeds number of examples per SCM
num_examples

2: Initialize: method← CausalMLMethod()
3: for each SoI in SoIs do
4: for each seed in seeds do
5: setGlobalSeed(seed)
6: for each examples in num_examples do
7: Generate samples, queries, and targets from the profiler
8: Get estimates using the method on the generated samples and queries
9: Calculate (and store) error by comparing estimates with targets

10: end for
11: Compute performance statistics for seed
12: end for
13: Compute performance statistics for SoI
14: end for
15: Output: Final summary with evaluation results

Hardware. All experiments were run on a single machine equipped with an Intel Core i9-14900K243

processor (24 cores, 32 threads) and 96GB of RAM. All CPU threads were utilized for parallel244

processing where applicable. Some methods (e.g., DCM) would benefit from GPU acceleration,245

which was not used in our evaluation.246

Experiment Types. We perform two main sets of experiments: (1) ATE estimation over a set247

of continuous SCMs, and (2) counterfactual query estimation on discrete-variable SCMs. An248

additional experiment on ATE estimation under varying levels of hidden confounding is included in249

Appendix K.3.250
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Metrics and Visualization. We evaluate methods using the mean squared error between predicted251

and true query values. For each method and SoI, we report mean error, standard deviation, total252

runtime, and failure rate (i.e., the proportion of queries for which no valid output was returned due to253

numerical issues or exceptions). Tables include all numeric summaries, while box plots visualize254

error distributions via median, interquartile range (IQR), and whiskers extending to 1.5×IQR.255

Methods. We evaluate several causal inference methods: Causal Normalizing Flows (CausalNF) [27],256

Neural Causal Models (NCM) [11], Variational Causal Graph Autoencoder (VACA) [43], Diffusion-257

based Causal Models (DCM) [7], and Deconfounding Causal Normalizing Flows (DeCaFlow) [2].258

Additional experiment details, results, and SoI configurations are provided in Appendix K.259

6.3 Experiment 1: General Evaluation across Diverse SCMs260

To showcase the flexibility of our benchmarking framework, we evaluate VACA, CausalNF, DCM,261

and NCM on a set of continuous-variable SCMs. These experiments are designed to highlight how262

performance can vary across diverse SoIs. See Table 1 for a summary of results and Figure 1 for a263

box plot of ATE estimation errors.264

Spaces of Interest. We evaluate methods on four distinct SoIs: Linear-Medium, with linear SCMs265

(15-20 nodes, 1000 samples); NN-Medium, with neural SCMs using a 2-layer ReLU network (8266

hidden units per layer, 15-20 nodes, 1000 samples); NN-Large, with larger neural SCMs (20-25267

nodes, 1000 samples); and NN-Large-LowData, identical to NN-Large but with only 50 samples.268

Table 1: Performance summary of CausalNF, DCM, NCM, and VACA on the general experiments.
Space Method Mean Error Std Error Max Error Runtime (s) Fail Rate (%)

Linear-Medium CausalNF 0.4625 0.8985 9.6079 13790.4 0.00
Linear-Medium DCM 0.1530 1.5289 33.9766 16541.2 0.00
Linear-Medium NCM 0.4618 0.9001 9.6134 7384.7 0.00
Linear-Medium VACA 0.4209 0.6195 2.3807 2734.5 53.40
NN-medium CausalNF 0.0160 0.0107 0.1209 10732.7 0.00
NN-medium DCM 0.0276 0.0114 0.0746 15894.4 0.00
NN-medium NCM 0.0111 0.0121 0.1484 7322.8 0.00
NN-medium VACA 0.0090 0.0077 0.0479 5759.6 5.00
NN-Large CausalNF 0.0159 0.0105 0.1535 15114.8 0.00
NN-Large DCM 0.0267 0.0100 0.0739 19166.2 0.00
NN-Large NCM 0.0101 0.0103 0.1161 9450.6 0.00
NN-Large VACA 0.0090 0.0094 0.0535 5690.8 11.60
NN-Large-LowData CausalNF 0.0359 0.0146 0.1712 22138.2 0.00
NN-Large-LowData DCM 0.0777 0.0445 0.3701 2412.1 0.00
NN-Large-LowData NCM 0.0097 0.0107 0.1263 404.7 0.00
NN-Large-LowData VACA 0.0103 0.0134 0.1043 5217.4 0.00

Findings (Linear-Medium vs. NN-Medium). In the Linear-Medium setting, DCM achieves269

the lowest average error (0.1530), indicating excellent performance. However, its error standard270

deviation is notably high (1.5289), driven by a few extreme outliers (max error 33.98). This implies271

that DCM is highly effective for most queries but may produce large errors in rare cases—potentially272

problematic in safety-critical applications which match this SOI. VACA performs competitively with273

lower max error and faster runtime, but suffers a high failure rate (53.4%) due to NaNs.274

When moving to the NN-Medium setting, where the causal mechanisms are implemented as small275

neural networks, DCM’s advantage disappears. VACA emerges as the best performer, achieving both276

the lowest error mean (0.0090) and standard deviation (0.0077), while also reducing its failure rate277

to 5%. Interestingly, DCM becomes the weakest performer in this setting, highlighting that method278

rankings are highly sensitive to the underlying functional form of the mechanisms. This underscores279

the need for practitioners to evaluate methods within the SoI most relevant to their application.280

Findings (NN-Large vs. NN-Large-LowData). In the second comparison, we increase SCM size281

to 20-25 nodes and investigate the effect of reducing data availability. Comparing NN-Large (1000282

samples) to NN-Large-LowData (50 samples), we find that DCM is strongly affected by the data283

limitation: its error nearly triples (from 0.0267 to 0.0777) and its IQR expands noticeably. CausalNF284

also shows increased sensitivity to low-data regimes.285
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Figure 1: Box plots showing ATE estimation errors across different SoIs.

In contrast, both VACA and NCM maintain stable performance, with nearly unchanged mean and286

standard deviation values between the two SoIs. Notably, VACA achieves a 0% failure rate in this287

setting, with unexpectedly strong robustness under limited data.288

Insights. While not intended as a comprehensive benchmark, these experiments illustrate the types289

of insights that can be drawn using our framework. For the selected Spaces of Interest, we observe290

that DCM tends to perform well on average but can produce large outlier errors or become less stable291

in low-data settings. Conversely, VACA shows promising generalization even with limited data,292

though it occasionally fails on certain SCMs. These findings are specific to the SoIs we explored,293

and should not be taken as general conclusions about the methods. Instead, they highlight how our294

framework enables structured, SoI-specific evaluations, helping practitioners assess which methods295

may be more suitable for their own modeling context.296

6.4 Experiment 2: Counterfactual Estimation on Discrete SCMs297

This experiment shows how our framework can evaluate counterfactual estimation methods on298

discrete-variable SCMs. We test CausalNF and DCM, originally designed for continuous settings,299

as a robustness check—motivated by prior work showing that CausalNF can sometimes effectively300

approximate discrete distributions [27, 11]. See Table 2 for a summary of results.301

Discrete SoIs. We evaluate three discrete SoIs: Disc-C2-Reject, with 10-15 node graphs, binary302

variables, and rejection-based mechanism sampling; Disc-C4-Unbias, with the same graph size but303

4-category variables and unbiased random mechanism sampling; and Disc-Large-C2-Unbias, which304

uses larger graphs (20-30 nodes), binary variables, and unbiased random mechanism sampling.305

Findings. On Disc-C2-Reject, both CausalNF and DCM perform well and comparably, with low306

error means (∼0.04) and low failure rates (8% for CausalNF, 4% for DCM). This suggests that both307

methods can produce reliable estimates even outside their original assumptions when the functional308

mechanisms are simple and binary.309

8



Table 2: Performance summary of CausalNF and DCM on the discrete experiments.
Space Method Mean Error Std Error Max Error Runtime Fail Rate

Disc-C2-Reject CausalNF 0.0415 0.1116 0.6240 212.8 s 08.08 %
Disc-C2-Reject DCM 0.0424 0.1123 0.6240 4406.2 s 04.28 %
Disc-C4-Unbias CausalNF 0.0431 0.1270 0.7071 190.7 s 40.68 %
Disc-C4-Unbias DCM 0.0411 0.1199 0.7071 3839.4 s 22.60 %
Disc-Large-C2-Unbias CausalNF NaN NaN NaN 0.0 s 100.00 %
Disc-Large-C2-Unbias DCM 0.0183 0.0814 0.5000 8192.7 s 11.32 %

However, when moving to Disc-C4-Unbias, where variables have 4 categories and mechanisms310

are sampled with unbiased random sampling, the failure rates increase significantly, especially for311

CausalNF, which fails on over 40% of SCMs (typically with NaN errors). This highlights how312

sensitive certain methods can be to changes in mechanism sampling or variable cardinality, even313

when mean errors remain similar.314

To further probe robustness, we scale the graph size in Disc-Large-C2-Unbias while reverting to315

binary variables. CausalNF fails on all runs, returning NaNs and yielding a 100% failure rate. DCM316

remains functional, with an 11% failure rate, indicating greater resilience in this setting.317

Insights. These results underscore the utility of our framework in systematically stress-testing318

methods beyond their nominal design assumptions. While CausalNF is not built for discrete data,319

prior examples suggested it could work in practice. Our benchmark can help clarify when and how it320

breaks: certain function classes and discrete configurations are more likely to cause divergence or321

failure. DCM appears more robust across these tests, though not immune. Importantly, this evaluation322

is not meant as a definitive comparison, but as a demonstration of how failure cases can be surfaced323

and studied in a principled way using the CausalProfiler.324

7 Limitations and Future Work325

Causal Datasets Distribution. While the coverage theorem guarantees that any causal dataset326

has a strictly positive probability of being sampled within a given SoI with sufficiently expressive327

discrete mechanisms, it does not give any information on the form of the distribution of the sampled328

causal datasets. In particular, certain classes of SCMs remain very unlikely to be sampled unless329

explicitly chosen in the SoI (e.g., linear SCMs). In addition, users should bear in mind that causal330

datasets are not uniformly generated when aggregating results, to avoid misleading interpretations.331

Future improvements may enable finer control over the datasets distribution and the underrepresented332

attributes when defining an SoI.333

Diversify Spaces of Interest. Several directions remain open for extending the supported SoI by the334

CausalProfiler, such as support for mixed-variable SCMs, query identifiability diagnostics, sampling335

interventional training data, and more realistic data-generating scenarios, including selection bias,336

measurement noise, and partial knowledge of the causal graph.337

Towards realistic causal datasets. More broadly, to increase real-world relevance, future work338

could enable users to define Spaces of Interest based on patterns observed in real data (e.g., a Bayesian339

approach), narrowing the gap between synthetic evaluation and practical deployment.340

8 Conclusion341

This work introduces CausalProfiler, a synthetic causal dataset generator for evaluating Causal342

Machine Learning methods across the three levels of the Pearl Causal Hierarchy. At its core is the343

notion of a Space of Interest, which replaces the ad hoc choice of a single evaluation dataset with344

a principled specification of the entire evaluation scope. This shift enables transparent, repeatable,345

and assumption-aware assessments under diverse causal conditions. We show that the performance346

of state-of-the-art Causal ML methods varies substantially across different SoIs, underscoring the347

importance of rigorous, distribution-level evaluation. CausalProfiler marks a first step toward more348

rigorous and systematic empirical practices in Causal ML—grounded not in fixed benchmarks, but in349

explicitly defined spaces that reflect the assumptions and structural properties relevant to each setting.350
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NeurIPS Paper Checklist476

1. Claims477

Question: Do the main claims made in the abstract and introduction accurately reflect the478

paper’s contributions and scope?479

Answer: [Yes]480

Justification: The claims in the abstract and introduction clearly state the paper’s contribu-481

tions and scope.482

Guidelines:483

• The answer NA means that the abstract and introduction do not include the claims484

made in the paper.485

• The abstract and/or introduction should clearly state the claims made, including the486

contributions made in the paper and important assumptions and limitations. A No or487

NA answer to this question will not be perceived well by the reviewers.488

• The claims made should match theoretical and experimental results, and reflect how489

much the results can be expected to generalize to other settings.490

• It is fine to include aspirational goals as motivation as long as it is clear that these goals491

are not attained by the paper.492

2. Limitations493

Question: Does the paper discuss the limitations of the work performed by the authors?494

Answer: [Yes]495

Justification: We discuss the limitations of our method throughout the paper, but also496

explicitly in Section 7.497

Guidelines:498

• The answer NA means that the paper has no limitation while the answer No means that499

the paper has limitations, but those are not discussed in the paper.500

• The authors are encouraged to create a separate "Limitations" section in their paper.501

• The paper should point out any strong assumptions and how robust the results are to502

violations of these assumptions (e.g., independence assumptions, noiseless settings,503

model well-specification, asymptotic approximations only holding locally). The authors504

should reflect on how these assumptions might be violated in practice and what the505

implications would be.506

• The authors should reflect on the scope of the claims made, e.g., if the approach was507

only tested on a few datasets or with a few runs. In general, empirical results often508

depend on implicit assumptions, which should be articulated.509

• The authors should reflect on the factors that influence the performance of the approach.510

For example, a facial recognition algorithm may perform poorly when image resolution511

is low or images are taken in low lighting. Or a speech-to-text system might not be512

used reliably to provide closed captions for online lectures because it fails to handle513

technical jargon.514

• The authors should discuss the computational efficiency of the proposed algorithms515

and how they scale with dataset size.516

• If applicable, the authors should discuss possible limitations of their approach to517

address problems of privacy and fairness.518

• While the authors might fear that complete honesty about limitations might be used by519

reviewers as grounds for rejection, a worse outcome might be that reviewers discover520

limitations that aren’t acknowledged in the paper. The authors should use their best521

judgment and recognize that individual actions in favor of transparency play an impor-522

tant role in developing norms that preserve the integrity of the community. Reviewers523

will be specifically instructed to not penalize honesty concerning limitations.524

3. Theory assumptions and proofs525

Question: For each theoretical result, does the paper provide the full set of assumptions and526

a complete (and correct) proof?527
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Answer: [Yes]528

Justification: All theoretical claims are supported by clearly stated assumptions and formal529

proofs. The full proof of the coverage guarantee can be found in Appendix I.530

Guidelines:531

• The answer NA means that the paper does not include theoretical results.532

• All the theorems, formulas, and proofs in the paper should be numbered and cross-533

referenced.534

• All assumptions should be clearly stated or referenced in the statement of any theorems.535

• The proofs can either appear in the main paper or the supplemental material, but if536

they appear in the supplemental material, the authors are encouraged to provide a short537

proof sketch to provide intuition.538

• Inversely, any informal proof provided in the core of the paper should be complemented539

by formal proofs provided in appendix or supplemental material.540

• Theorems and Lemmas that the proof relies upon should be properly referenced.541

4. Experimental result reproducibility542

Question: Does the paper fully disclose all the information needed to reproduce the main ex-543

perimental results of the paper to the extent that it affects the main claims and/or conclusions544

of the paper (regardless of whether the code and data are provided or not)?545

Answer: [Yes]546

Justification: Yes. The paper fully specifies the steps needed to reproduce our main experi-547

mental results. We include pseudocode for all the algorithms in the Appendices.548

Guidelines:549

• The answer NA means that the paper does not include experiments.550

• If the paper includes experiments, a No answer to this question will not be perceived551

well by the reviewers: Making the paper reproducible is important, regardless of552

whether the code and data are provided or not.553

• If the contribution is a dataset and/or model, the authors should describe the steps taken554

to make their results reproducible or verifiable.555

• Depending on the contribution, reproducibility can be accomplished in various ways.556

For example, if the contribution is a novel architecture, describing the architecture fully557

might suffice, or if the contribution is a specific model and empirical evaluation, it may558

be necessary to either make it possible for others to replicate the model with the same559

dataset, or provide access to the model. In general. releasing code and data is often560

one good way to accomplish this, but reproducibility can also be provided via detailed561

instructions for how to replicate the results, access to a hosted model (e.g., in the case562

of a large language model), releasing of a model checkpoint, or other means that are563

appropriate to the research performed.564

• While NeurIPS does not require releasing code, the conference does require all submis-565

sions to provide some reasonable avenue for reproducibility, which may depend on the566

nature of the contribution. For example567

(a) If the contribution is primarily a new algorithm, the paper should make it clear how568

to reproduce that algorithm.569

(b) If the contribution is primarily a new model architecture, the paper should describe570

the architecture clearly and fully.571

(c) If the contribution is a new model (e.g., a large language model), then there should572

either be a way to access this model for reproducing the results or a way to reproduce573

the model (e.g., with an open-source dataset or instructions for how to construct574

the dataset).575

(d) We recognize that reproducibility may be tricky in some cases, in which case576

authors are welcome to describe the particular way they provide for reproducibility.577

In the case of closed-source models, it may be that access to the model is limited in578

some way (e.g., to registered users), but it should be possible for other researchers579

to have some path to reproducing or verifying the results.580

5. Open access to data and code581
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Question: Does the paper provide open access to the data and code, with sufficient instruc-582

tions to faithfully reproduce the main experimental results, as described in supplemental583

material?584

Answer: [Yes]585

Justification: All code necessary to reproduce the experimental results is included in the586

supplementary material in a single zip file (allowing for double-blind reviewing), along with587

clear instructions. If the paper gets accepted, we will publicly release the full codebase on588

GitHub, including the URL in the camera-ready version of the paper. No data is required to589

reproduce the results so we don’t provide any.590

Guidelines:591

• The answer NA means that paper does not include experiments requiring code.592

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/593

public/guides/CodeSubmissionPolicy) for more details.594

• While we encourage the release of code and data, we understand that this might not be595

possible, so "No" is an acceptable answer. Papers cannot be rejected simply for not596

including code, unless this is central to the contribution (e.g., for a new open-source597

benchmark).598

• The instructions should contain the exact command and environment needed to run to599

reproduce the results. See the NeurIPS code and data submission guidelines (https:600

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.601

• The authors should provide instructions on data access and preparation, including how602

to access the raw data, preprocessed data, intermediate data, and generated data, etc.603

• The authors should provide scripts to reproduce all experimental results for the new604

proposed method and baselines. If only a subset of experiments are reproducible, they605

should state which ones are omitted from the script and why.606

• At submission time, to preserve anonymity, the authors should release anonymized607

versions (if applicable).608

• Providing as much information as possible in supplemental material (appended to the609

paper) is recommended, but including URLs to data and code is permitted.610

6. Experimental setting/details611

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-612

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the613

results?614

Answer: [Yes]615

Justification: All experimental configurations, including parameter settings and hyperparam-616

eter choices, are detailed in the appendix. Our codebase also reflects the exact setup used in617

all reported experiments.618

Guidelines:619

• The answer NA means that the paper does not include experiments.620

• The experimental setting should be presented in the core of the paper to a level of detail621

that is necessary to appreciate the results and make sense of them.622

• The full details can be provided either with the code, in appendix, or as supplemental623

material.624

7. Experiment statistical significance625

Question: Does the paper report error bars suitably and correctly defined or other appropriate626

information about the statistical significance of the experiments?627

Answer: [Yes]628

Justification: We visualize results using standard box plots with whiskers, and report means,629

standard deviations, failure rates, and runtimes in summary tables. All details about the630

verification statistical tests based on Pearson’s χ2 test are detailed in the appendix.631

Guidelines:632

• The answer NA means that the paper does not include experiments.633
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• The authors should answer "Yes" if the results are accompanied by error bars, confi-634

dence intervals, or statistical significance tests, at least for the experiments that support635

the main claims of the paper.636

• The factors of variability that the error bars are capturing should be clearly stated (for637

example, train/test split, initialization, random drawing of some parameter, or overall638

run with given experimental conditions).639

• The method for calculating the error bars should be explained (closed form formula,640

call to a library function, bootstrap, etc.)641

• The assumptions made should be given (e.g., Normally distributed errors).642

• It should be clear whether the error bar is the standard deviation or the standard error643

of the mean.644

• It is OK to report 1-sigma error bars, but one should state it. The authors should645

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis646

of Normality of errors is not verified.647

• For asymmetric distributions, the authors should be careful not to show in tables or648

figures symmetric error bars that would yield results that are out of range (e.g. negative649

error rates).650

• If error bars are reported in tables or plots, The authors should explain in the text how651

they were calculated and reference the corresponding figures or tables in the text.652

8. Experiments compute resources653

Question: For each experiment, does the paper provide sufficient information on the com-654

puter resources (type of compute workers, memory, time of execution) needed to reproduce655

the experiments?656

Answer: [Yes]657

Justification: We specify the hardware used for all experiments and report runtime metrics658

in detail, making the computational requirements clear.659

Guidelines:660

• The answer NA means that the paper does not include experiments.661

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,662

or cloud provider, including relevant memory and storage.663

• The paper should provide the amount of compute required for each of the individual664

experimental runs as well as estimate the total compute.665

• The paper should disclose whether the full research project required more compute666

than the experiments reported in the paper (e.g., preliminary or failed experiments that667

didn’t make it into the paper).668

9. Code of ethics669

Question: Does the research conducted in the paper conform, in every respect, with the670

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?671

Answer: [Yes]672

Justification: We have reviewed the NeurIPS Code of Ethics and ensured our work complies673

with its principles. Our research involves no human subjects, private data, or deployment-674

related risks.675

Guidelines:676

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.677

• If the authors answer No, they should explain the special circumstances that require a678

deviation from the Code of Ethics.679

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-680

eration due to laws or regulations in their jurisdiction).681

10. Broader impacts682

Question: Does the paper discuss both potential positive societal impacts and negative683

societal impacts of the work performed?684

Answer: [NA]685

16

https://neurips.cc/public/EthicsGuidelines


Justification: Our work focuses on a synthetic benchmark generator for evaluating causal686

inference methods. As a methodological tool rather than an application-facing system, it is687

unlikely to have direct societal impact or pose misuse risks.688

Guidelines:689

• The answer NA means that there is no societal impact of the work performed.690

• If the authors answer NA or No, they should explain why their work has no societal691

impact or why the paper does not address societal impact.692

• Examples of negative societal impacts include potential malicious or unintended uses693

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations694

(e.g., deployment of technologies that could make decisions that unfairly impact specific695

groups), privacy considerations, and security considerations.696

• The conference expects that many papers will be foundational research and not tied697

to particular applications, let alone deployments. However, if there is a direct path to698

any negative applications, the authors should point it out. For example, it is legitimate699

to point out that an improvement in the quality of generative models could be used to700

generate deepfakes for disinformation. On the other hand, it is not needed to point out701

that a generic algorithm for optimizing neural networks could enable people to train702

models that generate Deepfakes faster.703

• The authors should consider possible harms that could arise when the technology is704

being used as intended and functioning correctly, harms that could arise when the705

technology is being used as intended but gives incorrect results, and harms following706

from (intentional or unintentional) misuse of the technology.707

• If there are negative societal impacts, the authors could also discuss possible mitigation708

strategies (e.g., gated release of models, providing defenses in addition to attacks,709

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from710

feedback over time, improving the efficiency and accessibility of ML).711

11. Safeguards712

Question: Does the paper describe safeguards that have been put in place for responsible713

release of data or models that have a high risk for misuse (e.g., pretrained language models,714

image generators, or scraped datasets)?715

Answer: [NA]716

Justification: We do not release pretrained models or real-world datasets. Instead, we provide717

code that generates fully synthetic data, which poses no known misuse risks.718

Guidelines:719

• The answer NA means that the paper poses no such risks.720

• Released models that have a high risk for misuse or dual-use should be released with721

necessary safeguards to allow for controlled use of the model, for example by requiring722

that users adhere to usage guidelines or restrictions to access the model or implementing723

safety filters.724

• Datasets that have been scraped from the Internet could pose safety risks. The authors725

should describe how they avoided releasing unsafe images.726

• We recognize that providing effective safeguards is challenging, and many papers do727

not require this, but we encourage authors to take this into account and make a best728

faith effort.729

12. Licenses for existing assets730

Question: Are the creators or original owners of assets (e.g., code, data, models), used in731

the paper, properly credited and are the license and terms of use explicitly mentioned and732

properly respected?733

Answer: [Yes]734

Justification: All the code for the benchmark generator was developed by the paper authors735

and relies only on standard open-source libraries (NumPy and PyTorch). We will release736

the code under the MIT license and make it installable via pip. We will release it under the737

MIT license and make it available as a pip-installable package. For external causal inference738

methods used in our experiments (DeCaFlow, DCM, VACA, CausalNF, NCM), we cite739
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the original papers and respect their licensing terms. Due to license incompatibilities, the740

experimental code will be released separately under the GPL-3.0 license.741

Guidelines:742

• The answer NA means that the paper does not use existing assets.743

• The authors should cite the original paper that produced the code package or dataset.744

• The authors should state which version of the asset is used and, if possible, include a745

URL.746

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.747

• For scraped data from a particular source (e.g., website), the copyright and terms of748

service of that source should be provided.749

• If assets are released, the license, copyright information, and terms of use in the750

package should be provided. For popular datasets, paperswithcode.com/datasets751

has curated licenses for some datasets. Their licensing guide can help determine the752

license of a dataset.753

• For existing datasets that are re-packaged, both the original license and the license of754

the derived asset (if it has changed) should be provided.755

• If this information is not available online, the authors are encouraged to reach out to756

the asset’s creators.757

13. New assets758

Question: Are new assets introduced in the paper well documented and is the documentation759

provided alongside the assets?760

Answer: [Yes]761

Justification: Yes, we provide extensive documentation and usage examples.762

Guidelines:763

• The answer NA means that the paper does not release new assets.764

• Researchers should communicate the details of the dataset/code/model as part of their765

submissions via structured templates. This includes details about training, license,766

limitations, etc.767

• The paper should discuss whether and how consent was obtained from people whose768

asset is used.769

• At submission time, remember to anonymize your assets (if applicable). You can either770

create an anonymized URL or include an anonymized zip file.771

14. Crowdsourcing and research with human subjects772

Question: For crowdsourcing experiments and research with human subjects, does the paper773

include the full text of instructions given to participants and screenshots, if applicable, as774

well as details about compensation (if any)?775

Answer: [NA]776

Justification: The paper doesn’t involve crowdsourcing nor research with human subjects.777

Guidelines:778

• The answer NA means that the paper does not involve crowdsourcing nor research with779

human subjects.780

• Including this information in the supplemental material is fine, but if the main contribu-781

tion of the paper involves human subjects, then as much detail as possible should be782

included in the main paper.783

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,784

or other labor should be paid at least the minimum wage in the country of the data785

collector.786

15. Institutional review board (IRB) approvals or equivalent for research with human787

subjects788

Question: Does the paper describe potential risks incurred by study participants, whether789

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)790

approvals (or an equivalent approval/review based on the requirements of your country or791

institution) were obtained?792
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Answer: [NA]793

Justification: The paper doesn’t involve study participants.794

Guidelines:795

• The answer NA means that the paper does not involve crowdsourcing nor research with796

human subjects.797

• Depending on the country in which research is conducted, IRB approval (or equivalent)798

may be required for any human subjects research. If you obtained IRB approval, you799

should clearly state this in the paper.800

• We recognize that the procedures for this may vary significantly between institutions801

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the802

guidelines for their institution.803

• For initial submissions, do not include any information that would break anonymity (if804

applicable), such as the institution conducting the review.805

16. Declaration of LLM usage806

Question: Does the paper describe the usage of LLMs if it is an important, original, or807

non-standard component of the core methods in this research? Note that if the LLM is used808

only for writing, editing, or formatting purposes and does not impact the core methodology,809

scientific rigorousness, or originality of the research, declaration is not required.810

Answer: [NA]811

Justification: The core method development in this research does not involve LLMs as any812

important, original, or non-standard component.813

Guidelines:814

• The answer NA means that the core method development in this research does not815

involve LLMs as any important, original, or non-standard components.816

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)817

for what should or should not be described.818
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A Additional definitions & Notations819

Definition A.1 (Semi-Markovian and Markovian SCMs). An SCM is said to be semi-
Markovian [35] if its set of structural equations is acyclic, meaning there exists an ordering
of the equations such that for any two functions fi, fj ∈ F , if fi < fj , then Vj /∈ PA(Vi).
This condition ensures that the causal dependencies among endogenous variables form a
Directed Acyclic Graph (DAG).
An SCM is Markovian [35] if the exogenous variables influencing different endogenous
variables are mutually independent. Formally, for all distinct Vi, Vj ∈ V, we have UVi

⊥⊥
UVj

. This implies the absence of latent confounding, allowing the model to be fully described
by a DAG with independent noise terms.

820

Definition A.2 (Causal Graph of a Semi-Markovian SCM). The causal graph of a Semi-
Markovian [4] SCM is n acyclic directed mixed graph (ADMG) with:

• Directed edge Vi → Vj if Vi ∈ PA(Vj)

• Bi-directed edge Vi ↔ Vj if UVi
⊥̸⊥ UVj

821

A.1 Interventional Quantities (L2)822

Average Treatment Effect (ATE):

ATET→Y = E[Y |do(T = 1)]− E[Y |do(T = 0)]

Conditional Average Treatment Effect (CATE):

CATET→Y (x) = E[Y |do(T = 1),X = x]− E[Y |do(T = 0),X = x]

Controlled Direct Effect (CDE):

CDET→Y (t, c,m) = E[Y |do(T = t,M = m)]− E[Y |do(T = c,M = m)]

Natural Direct Effect (NDE):

NDET→Y (t, c) = E[Y |do(T = t), do(M = Mc)]− E[Y |do(T = c), do(M = Mc)]

A.2 Counterfactual Quantities (L3)823

A counterfactual query such as P (Ydo(T=t)|VF = vF ) is computed by abduction (conditioning on824

factual data), action (intervening), and prediction (computing the outcome) [35].825

Ctf-TE / Ctf-DE / Ctf-IE:

Ctf-TET→Y (y, t, c,vF ) = P (ydo(T=t)|VF = vF )− P (ydo(T=c)|VF = vF )

Ctf-DET→Y (y, t, c,vF ) = P (ydo(T=t),do(M=Mc)|VF = vF )− P (ydo(T=c)|VF = vF )

Ctf-IET→Y (y, t, c,vF ) = P (ydo(T=c),do(M=Mt)|VF = vF )− P (ydo(T=c)|VF = vF )

B Space of Interest826

Each Space of Interest is defined by a set of parameters that control the SCM space, the causal827

queries of interest (Query space), and the dataset used for estimation (Data space). Table 3 provides828

an overview of all configurable parameters in a Space of Interest instance, along with their default829

values. Some parameters are only relevant under specific conditions—for instance, kernel parameters830

are used only with continuous variables (e.g., when evaluating conditional expectations), function831

20



sampling strategies apply exclusively to discrete mechanisms, noise regions apply only for discrete832

SCMs, and noise mode is ignored for tabular mechanisms (noise is already embedded in the table).833

Note that one can use symbolic expressions involving N (the number of nodes) and V (the cardinality834

of a variable) to define parameters that depend on sampled values. For example, the expected number835

of edges can be set as 0.5 * N, or the number of noise regions in a discrete SCM can be set to V.836

Category Parameter Default Value

SCM structure

Number of endogenous variables [5, 15]
Variable dimensionality [1, 1]
Expected number of edges (required) —
Proportion of hidden variables 0.0
Markovian boolean flag True
Semi-Markovian boolean flag False
Predefined causal graph —

Mechanisms

Mechanism family (e.g., Linear, NN, Tabular) Linear
Mechanism arguments (used to define custom NN/tabular
mechanisms)

—

Endogenous variable cardinality (for discrete variables only) 2
Variable type Continuous
Discrete function sampling Sample Rejection
Noise mode Additive

Noise
Noise distribution Uniform
Noise distribution arguments [-1, 1]
Number of noise regions (controls stochasticity) N

Query
Number of queries per sample 1
Query type ATE
Specific query (overrides random query sampling) —

Kernel
Kernel type Gaussian
Kernel bandwidth 0.1
Custom kernel function —

Data Number of samples in the set of observed data 1000

Table 3: Parameters defining a Space of Interest instance and their default values. The double lines in
the table conceptually separate the SCM space, Query space, and Data space.

C Causal Graph Sampling837

We first generate a random Directed Acyclic Graph (DAG) that specifies causal relations between838

variables. This structure is then extended by designating a subset of variables as hidden/unobserved,839

enabling the creation of both Markovian and semi-Markovian SCMs depending on the SoI spec. We840

separate these two steps in separate algorithms for clarity (algorithm 3 uses algorithm 2).841

Algorithm 2 Generate a Random DAG with Expected Degree
Inputs: number of nodes N , expected degree d

1: V ←− {1, . . . , N}
2: E ←− {}
3: pedge ←− 2d

N−1

4: for i ∈ [1, N ] do
5: NPA(i) ∼ B(i− 1, pedge)

6: PA(i)←− NPA(i) nodes sampled without replacement from V

7: E ←− E ∪ {j −→ i | j ∈ PA(i)}
8: end for

Output: G = {V,E}
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Algorithm 3 Generate a DAG with Observed and Hidden Variables
Inputs: number of nodes N , expected degree d, proportion of hidden variables ph
1: G = (V,E)←− DAG_sampling(N, d) (see algorithm 2)
2: Nh ∼ B(N, ph)

3: Vh ←− Nh nodes sampled without replacement from V

4: Vo ←− V \Vh

Output: G = {V = VoVh, E}

Because some variables in the DAG are unobserved, we expose only the observed structure to the user842

in the form of an Acyclic Directed Mixed Graph. To obtain this, we apply Verma’s latent projection843

algorithm to the causal graph of each sampled regional discrete SCM (see Algorithm 4). If a method844

requires the true SCM, including the hidden confounders, that can be accessed as well.845

Algorithm 4 Projection Algorithm [47]
Input: an Acyclic-Directed Mixed Graph (ADMG) G = {VO,VH,E}, with VO the set of observed variables,
VH the set of hidden variables and E the mixed edges

1: E′ ←− {}
2: for A,B ∈ VO do
3: if there is a directed path A→ . . .→ B in G with all intermediate nodes belonging to VH then
4: E′ ←− E′ ∪ {A→ B}
5: end if
6: if there is a collider-free path A← . . .→ B in G with all intermediate nodes belonging to VH then
7: E′ ←− E′ ∪ {A↔ B}
8: end if
9: end for

10: G′ ←− {VO, E′}
Output: G′ the latent projection of G over VO

D Sampling Discrete SCMs846

D.1 Regional Discrete SCMs847

In this work, we sample discrete Markovian SCMs inspired by [49] and [48] which we refer to as848

Regional discrete SCMs as presented in definition D.1. For a description of how we generate the849

causal graph, check Appendix C.850

851

Definition D.1. Regional discrete SCM

A regional discrete SCM is a markovian SCMM := {V,U,F , P (U)} where:
• V = {V1, ..., Vd} the set of finite discrete endogenous variables is divided into two

sets Vo and Vh respectively representing the set of observed and hidden variables
such that V = Vo ∪Vh and Vo ∩Vh = ∅

• U = {U1, ..., Ud} the set of mutually independent continuous exogenous variables
is such that ∀i ∈ [1, d], UVi

= Ui

• F the structural equations are regional discrete mechanisms as defined in defini-
tion D.2

The class of regional discrete SCMs is denoted MRD-SCM.
852
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Definition D.2. Regional discrete mechanism

Given IV = {IrV }r∈[1,R] a partition of R parts of ΩUV
and mV = {mr

V : ΩPA(V ) 7→
ΩV }r∈[1,R] a set of R distinct mappings from ΩPA(V ) to ΩV , the regional discrete mecha-
nism of an endogenous variables V is a function fV : ΩPA(V ),ΩUV

7→ ΩV such that:

fV (pa(V ), uV ) = mr(PA(V ) 7→ V ) when uV ∈ IrV

IrV and mr are called the rth noise region and mapping of the regional discrete mechanism
fV .

853

Remark on ΩUV
and R: In the definition of a regional discrete mechanism (definition D.2), no854

constraints are imposed on ΩUV
. However, if ΩUV

is discrete, then |ΩUV
| ≥ R is required to form855

a partition of R elements of ΩUV
. Consequently, in order to be able to constitute such a partition856

for any finite R, we decided to consider continuous exogenous variables in the definition of a857

regional discrete SCM (definition D.1). In addition, since the mr
V mappings are considered distinct858

and there are exactly |ΩV ||ΩPA(V )| different mappings from V to PA(V ), R ≤ |ΩV ||ΩPA(V )| is required.859

860

The fact that regional discrete SCMs contains two types of endogenous variables (i.e., observed861

and unobserved by the user) enables the representation of complex situations where not all862

variables are observable. This induces the presence of potential hidden confounders from the user’s863

perspective. As a result, the causal sufficiency assumption is no longer always respected. In our864

parametric definition of a Space of Interest (SoI), this phenomenon is controlled by the parameter865

specifying the proportion of unobserved variables among the endogenous variables. Thus, if this pa-866

rameter is set to 0, the SoI’s class of SCMs is included in the class of causally sufficient discrete SCMs.867

868

The complexity of discrete mechanisms can be controlled by the number of noise regions. Indeed, as869

the number of noise regions increases, so does the complexity of the causal mechanism, in the sense870

that it becomes a mixture of a larger number of mappings. The distribution of a variable given its871

parents is, hence, more stochastic. As a result, the user-defined class of regional discrete SCMs can872

be very broad. and therefore more oversimplified. This provides an additional degree of complexity873

to make our synthetic causal datasets less trivial.874

875

D.2 Discrete Mechanism Sampling strategies876

We use regional discrete mechanisms (definition D.2), which define tabular mappings from parent877

variables to a target variable, conditioned on regions of the exogenous noise space. Each region878

induces a distinct mapping, enabling both stochasticity and high functional expressivity.879

To generate these mechanisms, we support three sampling strategies described below. All methods880

define a partition of the exogenous noise domain ΩU into R regions, and assign a parent-to-child881

mapping to each region. Let C be the cardinality of the variables, and ΩPa(V ) the space of parent882

configurations for variable V .883

Controlling complexity. The number of possible mappings from parent configurations to output884

values grows as |ΩV ||ΩPa(V )|. To keep simulations tractable, users can control the number of noise885

regions R. When R is small, sampling provides diverse but lightweight mechanisms. When R886

approaches the total number of mappings, full enumeration becomes feasible but computationally887

expensive.888

We now describe the three supported sampling strategies.889
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Exhaustive partition890

This strategy enumerates all possible mappings from parent configurations to output values and891

assigns each one to a distinct noise region (R = |ΩV ||ΩPa(V )|), ensuring complete coverage of the892

function space. This method guarantees maximal functional diversity across regions and can serve as893

a stress test for generalization under highly non-linear mechanisms. This is the only strategy where894

the number of noise regions is not decided by the user but rather set to the maximum.895

Sample rejection896

This strategy samples parent-to-output mappings uniformly at random, rejecting duplicates to ensure897

that each region corresponds to a distinct function. As mappings are sampled with replacement,898

rejection may require several attempts when R approaches the number of possible mappings.899

We provide below a pseudocode version of this strategy. Note that lines 10–12 correspond to the900

rejection logic.901

Algorithm 5 Generating regional discrete mechanisms with sample rejection
Inputs: set of endogenous variables V of cardinality C, causal graph G, ΩU domain of exogenous variables,
number of noise regions R
1: F ←− {}
2: for V ∈ V do
3: ΩV ←− {1, . . . , C}
4: ΩPAG(V ) ←− {1, . . . , C}|PAG(V )|

5: R←− min(R, |ΩV ||ΩPA(V )|)
6: lmin ←− inf(ΩU )
7: lmax ←− sup(ΩU )
8: L = {li ∼ U [lmin, lmax] | i ∈ [1, R− 1]} ∪ {lmin, lmax}
9: Sort L in ascending order

10: fV ←− {}
11: mV ←− {}
12: for r ∈ [1, R] do
13: IrV ←− [Lr,Lr+1[ with Lr the rth element of L
14: mr

V ←− {}
15: while mr

V = {} or mr
V ∈ mV do

16: mr
V ←− |ΩPA(V )| elements sampled with replacement from ΩV

17: end while
18: mV ←− mV ∪mr

V

19: fV ←− fV ∪ {mr
V ; IrV }

20: end for
21: F ←− F ∪ fV
22: end for
Output: F

Unbiased random assignment902

In this strategy, each noise region is assigned a mapping sampled independently and without en-903

forcing uniqueness. As a result, multiple regions may correspond to the same function from parent904

configurations to outputs.905

For example, suppose a variable has one binary parent taking values in {0, 1}, and the output variable906

takes values in {0, 1, 2}. One randomly sampled mapping might assign output 0 to parent value 0,907

and output 2 to parent value 1. Since mappings are sampled independently for each region, this same908

function (0→ 0, 1→ 2) may appear in multiple regions by chance.909

This approach reflects scenarios where mechanisms are drawn independently from a distribution over910

functions, without enforcing any requirements on uniqueness or coverage. As a result, the effective911

variability in the entire system may be lower compared to other strategies, but the sampling is a lot912

more computationally efficient.913
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E Query Sampling and Estimation914

In this work, we consider the following types of queries: ATE, Conditional Average Treatment Effect
(CATE) and Counterfactual Total Effect (Ctf-TE). Their definitions can be found in Appendix A.
All the queries can be defined for sets of covariates and factuals belonging to the set of endogenous
variables. In other words, we do not implement multi-interventions, but we consider conditioning and
observing factuals on several variables. Finally, the values taken by these variables (e.g., treatment
and control values for ATE) must belong to their definition domain. The only parameter that controls
the queries class is the type of queries chosen by the user (i.e., ATE, CATE and Ctf-TE). Thus, the
class of considered queries can be defined as follows:

QATE = {ATET→Y (t, c) | T, Y ⊆ V and t, c ∈ ΩT }

QCATE = {CATET→Y |X(t, c,x) | T, Y ⊆ V, X ⊆ V\{T, Y } and t, c ∈ ΩT , x ∈ ΩX}

QCtf-TE = {Ctf-TET→Y (y, t, c,vF ) | T, Y,V F ⊆ V and t, c ∈ ΩT , y ∈ ΩY , vF ∈ ΩV F
}

915

916

Formally speaking, we have not integrated the causal graph as a causal query but rather as a hypothesis917

or prior knowledge. Indeed, except for causal discovery tasks, the causal graph is most often assumed918

to be known (or at least some information derived from the graph, such as the constitution of a valid919

adjustment set, or a valid causal ordering). Nevertheless, one can use our random causal dataset920

generator to evaluate causal discovery or causal representation learning methods. To do so, one just921

needs to retrieve the causal graph from the causal dataset directly instead of using a query.922

Finally, a user can also implement a specific query and use it to generate synthetic causal datasets. To923

do this, the user has to use the Query class in our code base.924

925

In the following algorithms, given a dataset D, a variable X and a realization x of X , we use the926

notation D|X (resp. D|X=x) to represent the dataset D restricted to the variable X (resp. restricted927

to the samples whose X realization equals x). In addition, B(n, p) denotes the Binomial law of928

parameters n and p.929

930

E.1 Query Sampling931

The following algorithms detail the procedures for sampling ATE, CATE, and CTF-TE queries.932

Algorithm 6 Generating sets of observed data
Inputs: causal graph G, causal mechanisms F , distribution of the exogenous variables P (U), dataset size N

1: D ←− {}
2: Do ←− {}
3: {u1, . . . ,uN} ∼ P (U)

4: for V ∈ V following a causal order given by G do
5: {pa(V )1, . . . ,pa(V )N} ←− D|PA(V )

6: {uV1 , . . . , uVN } ←− D|UV

7: {v1, . . . , vN} ←− fV ({pa(V )1, . . . ,pa(V )N}, {uV1 , . . . , uVN })
8: D ←− D ∪ {v1, . . . , vN}
9: if V ∈ Vo then

10: Do ←− Do ∪ {v1, . . . , vN}
11: end if
12: end for
Output: Do
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Algorithm 7 Generating ATE queries
Inputs: set of observable endogenous variables Vo, training set D

1: T ←− one variable randomly sampled from Vo

2: Y ←− one variable randomly sampled from Vo

3: t←− one realization of T randomly sampled from D|T

4: c←− one realization of T randomly sampled from D|T

Output: QATE = {T, Y, t, c}

Algorithm 8 Generating CATE queries
Inputs: set of observable endogenous variables Vo, training set D

1: T ←− one variable randomly sampled from Vo

2: Y ←− one variable randomly sampled from Vo

3: dX ←− an integer randomly sampled from [1, . . . , |Vo| − 2]

4: X←− dX variables randomly sampled from Vo\{T, Y }
5: t←− one realization of T randomly sampled from D|T

6: c←− one realization of T randomly sampled from D|T

7: x←− one realization of X randomly sampled from D|X

Output: QCATE = {T, Y,X, t, c,x}

Algorithm 9 Generating Ctf-TE queries
Inputs: set of observable endogenous variables Vo, training set D

1: T ←− one variable randomly sampled from Vo

2: Y ←− one variable randomly sampled from Vo

3: dVF ←− an integer randomly samples from [1, . . . , |Vo|]
4: VF ←− dVF variables randomly sampled from Vo

5: t←− one realization of T randomly sampled from D|T

6: c←− one realization of T randomly sampled from D|T

7: vF ←− one realization of VF randomly sampled from D|VF

Output: QCTF−TE = {T, Y,VF , t, c,vF }

E.2 SCM-Based Query Estimation933

Each query is evaluated by modifying the SCM, sampling the exogenous variables, and computing934

expectations over the outcomes. In practice, we simulate interventions and counterfactuals by directly935

manipulating structural equations and conditioning on sampled variables. Our implementation936

supports efficient batch estimation using the same random seeds for reproducibility.937

Counterfactual queries are estimated using the standard three-step procedure [35]:938

1. Abduction: Condition on the factual realization to compute P (U|VF = vF )939

2. Action: Modify the SCM with the desired intervention940

3. Prediction: Compute the outcome using the intervened model and posterior samples941

The following algorithms detail the procedures for estimating ATE, CATE, and CTF-TE queries.942
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Algorithm 10 Estimating ATE queries
Inputs: ATE query to estimate Q = {T, Y, t, c}, causal graph G, causal mechanisms F , distribution of the
exogenous variables P (U), number of samples to draw for estimation N

1: {u1, . . . ,uN} ∼ P (U)

2: Dt ←− {u1, . . . ,uN}
3: for V ∈ V following a causal order given by G do
4: if V = T then
5: {v1, . . . , vN} ←− {t, . . . , t}
6: else
7: {pa(V )1, . . . ,pa(V )N} ←− Dt|PA(V )

8: {uV1 , . . . , uVN } ←− Dt|UV

9: {v1, . . . , vN} ←− fV ({pa(V )1, . . . ,pa(V )N}, {uV1 , . . . , uVN })
10: end if
11: Dt ←− Dt ∪ {v1, . . . , vN}
12: end for
13: Dc ←− {u1, . . . ,uN}
14: for V ∈ V following a causal order given by G do
15: if V = T then
16: {v1, . . . , vN} ←− {c, . . . , c}
17: else
18: {pa(V )1, . . . ,pa(V )N} ←− Dc|PA(V )

19: {uV1 , . . . , uVN } ←− Dc|UV

20: {v1, . . . , vN} ←− fV ({pa(V )1, . . . ,pa(V )N}, {uV1 , . . . , uVN })
21: end if
22: Dc ←− Dc ∪ {v1, . . . , vN}
23: end for
24: Q⋆ ←− avg(Dt|Y )− avg(Dc|Y )

Output: Q⋆
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Algorithm 11 Estimating CATE queries
Inputs: CATE query to estimate Q = {T, Y,X, t, c,x}, causal graph G, causal mechanisms F , distribution of
the exogenous variables P (U), number of samples to draw for estimation N

1: {u1, . . . ,uN} ∼ P (U)

2: Dt ←− {u1, . . . ,uN}
3: for V ∈ V following a causal order given by G do
4: if V = T then
5: {v1, . . . , vN} ←− {t, . . . , t}
6: else
7: {pa(V )1, . . . ,pa(V )N} ←− Dt|PA(V )

8: {uV1 , . . . , uVN } ←− Dt|UV

9: {v1, . . . , vN} ←− fV ({pa(V )1, . . . ,pa(V )N}, {uV1 , . . . , uVN })
10: end if
11: Dt ←− Dt ∪ {v1, . . . , vN}
12: end for
13: Dc ←− {u1, . . . ,uN}
14: for V ∈ V following a causal order given by G do
15: if V = T then
16: {v1, . . . , vN} ←− {c, . . . , c}
17: else
18: {pa(V )1, . . . ,pa(V )N} ←− Dc|PA(V )

19: {uV1 , . . . , uVN } ←− Dc|UV

20: {v1, . . . , vN} ←− fV ({pa(V )1, . . . ,pa(V )N}, {uV1 , . . . , uVN })
21: end if
22: Dc ←− Dc ∪ {v1, . . . , vN}
23: end for
24: Dt ←− Dt|X=x

25: Dc ←− Dc|X=x

26: Q⋆ ←− avg(Dt|Y )− avg(Dc|Y )

Output: Q⋆
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Algorithm 12 Estimating Ctf-TE queries
Inputs: Ctf-TE query to estimate Q = {T, Y,VF , t, c,vF }, causal graph G, causal mechanisms F , distribution
of the exogenous variables P (U), number of samples to draw for estimation N

1: {u1, . . . ,uN} ∼ P (U)

2: DUvF
←− {u1, . . . ,uN}

3: for V ∈ V following a causal order given by G do
4: {pa(V )1, . . . ,pa(V )N} ←− DUvF |PA(V )

5: {uV1 , . . . , uVN } ←− DUvF |UV

6: {v1, . . . , vN} ←− fV ({pa(V )1, . . . ,pa(V )N}, {uV1 , . . . , uVN })
7: DUvF

←− DUvF
∪ {v1, . . . , vN}

8: end for
9: DUvF

←− DUvF |VF=vF

10: M ←− |DUvF
|

11: {u1, . . . ,uM} ←− DUvF |U

12: Dt ←− {u1, . . . ,uM}
13: for V ∈ V following a causal order given by G do
14: if V = T then
15: {v1, . . . , vN} ←− {t, . . . , t}
16: else
17: {pa(V )1, . . . ,pa(V )N} ←− Dt|PA(V )

18: {uV1 , . . . , uVN } ←− Dt|UV

19: {v1, . . . , vN} ←− fV ({pa(V )1, . . . ,pa(V )N}, {uV1 , . . . , uVN })
20: end if
21: Dt ←− Dt ∪ {v1, . . . , vN}
22: end for
23: Dc ←− {u1, . . . ,uM}
24: for V ∈ V following a causal order given by G do
25: if V = T then
26: {v1, . . . , vN} ←− {c, . . . , c}
27: else
28: {pa(V )1, . . . ,pa(V )N} ←− Dc|PA(V )

29: {uV1 , . . . , uVN } ←− Dc|UV

30: {v1, . . . , vN} ←− fV ({pa(V )1, . . . ,pa(V )N}, {uV1 , . . . , uVN })
31: end if
32: Dc ←− Dc ∪ {v1, . . . , vN}
33: end for
34: Q⋆ ←− avg(Dt|Y )− avg(Dc|Y )

Output: Q⋆
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F Assumptions analysis module’s metrics943

In order to analyze the characteristics of the sampled SCMs we implemented the following metrics.944

Let us imagine we sampled a regional discrete SCMM := {V,U,F , P (U)} with V = (Vo,Vh)945

and whose causal graph is denoted G. The projection of G over the observable variables Vo is946

denoted GVo .947

948

Analysis of the causal graph G:949

• Average in-degree: d̄in = 1
|V|
∑

V ∈V |PA(V )|950

• Variance of in-degree: var(din) = 1
|V|
∑

V ∈V(|PA(V )| − d̄in)
2951

• Average number of ancestors: |An(V )| = 1
|V|
∑

V ∈V |An(V )| where An(V ) denotes the952

set of ancestors of V953

• Variance of number of ancestors: var(|An(V )|) = 1
|V|
∑

V ∈V(|An(V )| − |An(V )|)2954

• Average number of descendants: |De(V )| = 1
|V|
∑

V ∈V |De(V )| where De(V ) denotes955

the set of descendants of V956

• Variance of number of descendants: var(|De(V )|) = 1
|V|
∑

V ∈V(|De(V )| − |De(V )|)2957

• Average length of causal paths: L = 1
|pG |

∑
p∈pG

|p| where pG denotes the set of directed958

paths in G959

• Variance length of causal paths: var(L) = 1
|pG |

∑
p∈pG

(|p| − L)2960

• Maximum length of causal paths: Lmax = maxp∈pG |p|961

Analysis of the projected causal graph GVo
:962

• Average number of siblings3: |Si(V )| = 1
|Vo|

∑
V ∈Vo

|Si(V )| where Si(V ) denotes the963

set of siblings of V964

• Variance of number of siblings: var(|Si(V )|) = 1
|Vo|

∑
V ∈Vo

(|Si(V )| − |Si(V )|)2965

• Number of maximal confounded components (c-comps)4: |C| where C denotes the set of966

maximal c-comps in GVo
967

• Average size of maximal c-comps: |C| = 1
|C|
∑

C∈C |C|968

• Variance of the size of maximal c-comps: var(|C|) = 1
|C|
∑

C∈C(|C| − |C|)2969

Analysis of the observational distribution PM(Vo):970

• Minimum probability of the joint distribution: pVo,min = minvo∈ΩVo
PM(Vo = vo)971

• Proportion of events with a null probability: p0 = 1
|ΩVo |

∑
vo∈ΩVo

1PM(Vo=vo)=0 where972

1− denotes the indicator function973

• Minimum probability of the marginal distributions:

pmin = min
V ∈Vo

min
v∈ΩV

PM(V = v)

• Average minimum probability of the marginal distributions:

p̄min =
1

|Vo|
∑

V ∈Vo

1

|ΩV |
min
v∈ΩV

PM(V = v)

3Two variables are considered siblings if they are linked by a bi-directed edge.
4We use [46] definition of (maximal) confounded components.
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• Variance of the minimum probability of the marginal distributions:

var(pmin) =
1

|Vo|
∑

V ∈Vo

( min
v∈ΩV

PM(V = v)− p̄min)
2

• Distance (L1) of the joint distributions to the uniform one:

d(PM;U) =
∑

vo∈ΩVo

|PM(Vo = vo)−
1

|ΩVo
|
|

• Average distance (L1) of the marginal distributions to the uniform one:

d(PM;U) = 1

|Vo|
∑

V ∈Vo

∑
v∈ΩV

|PM(V = v)− 1

|ΩV |
|

• Variance of the distance (L1) of the marginal distributions to the uniform one:

var(d(PM;U)) = 1

|Vo|
∑

V ∈Vo

( ∑
v∈ΩV

|PM(V = v)− 1

|ΩV |
| − d(PM;U)

)2

• Entropy of the joint distribution: H(PM(V))974

All the above-mentioned probabilities are computed from a set of 1M samples drawn from the SCM975

M.976

977

Let us note that pmin enables the user to check if the strong positivity assumption holds. If978

pVo,min > 0, then strong positivity is respected. In addition, if strong positivity does not hold,979

pVo,min and p0 indicate the extent to which the assumption is not met – the higher the metrics, the980

less the hypothesis is respected. On the other hand, pmin indicates whether the weak positivity981

assumption holds. If pmin > 0, then weak positivity is respected. Finally, d(PM;U), d(PM;U) and982

var(d(PM;U)) enables the user to assess to which extent the observational distribution is imbalanced.983

984

Analysis of the causal mechanisms F :985

• Average Pearson’s correlation between the parent-child pairs5:

ρ̄P =
1

|V|
∑
V ∈V

1

|PA(V ) ∪ UV |
∑

Vj∈PA(V )∪UV

ρP (V, Vj)

• Variance of Pearson’s correlation between the parent-child pairs:

var(ρP ) =
1

|V|
∑
V ∈V

1

|PA(V ) ∪ UV |
∑

Vj∈PA(V )∪UV

(ρP (V, Vj)− ρ̄P )

• Average Spearman’s correlation between the parent-child pairs3

ρ̄S =
1

|V|
∑
V ∈V

1

|PA(V ) ∪ UV |
∑

Vj∈PA(V )∪UV

ρS(V, Vj)

• Variance of Spearman’s correlation between the parent-child pairs:

var(ρS) =
1

|V|
∑
V ∈V

1

|PA(V ) ∪ UV |
∑

Vj∈PA(V )∪UV

(ρS(V, Vj)− ρ̄S)

• Average conditional entropy of a variable given its parents:

H =
1

|V|
∑
V ∈V

H(V |PA(V ))

5ρP and ρS respectively denote the Pearson’s and Spearman’s correlation
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• Variance of conditional entropy of a variable given its parents:

var(H) =
1

|V|
∑
V ∈V

(H(V |PA(V ))− H)2

In order to be able to use person correlations, spearman correlations, and conditional entropy as986

indicators of degrees of linearity, monotonicity, and stochasticity of causal mechanisms, we do987

not derive these quantities from samples drawn from the entailed distribution. Instead, for each988

variable, we create a dataset resulting from the application of its causal mechanism to the cartesian989

product of the values taken by its endogenous and exogenous parents. In other words, we analyze the990

mechanisms’ images of their input space. This allows us to analyze each mechanism independently991

of the others.992

993

Thus, ρ̄P and var(ρP ) can be interpreted as the average degree of linearity of causal mechanisms and994

their variance. Furthermore, ρ̄S and var(ρS) can be interpreted as the average degree of monotonicity995

of causal mechanisms and their variance. Finally, H and var(H) can be interpreted as the average996

level of stochasticity of causal mechanisms and its variance.997

998

G Analysis of the empirical distribution of the generated SCMs999

As we do not provide the user with an expression of the distribution of the sampled regional discrete1000

SCMs, we need to investigate if some SCMs classes are over/underrepresented. This analysis is1001

important to identify the potential biases our random causal dataset generator might create to take1002

them into account when using it to evaluate any Causal machine learning (Causal ML) method.1003

Indeed, as our goal is to provide a tool for rigorous empirical evaluation of causal methods, we need1004

to be transparent on the limitations of our generator such that researchers and practitioners can inter-1005

pret the results of their methods with full knowledge of the potential biases coming from the generator.1006

1007

G.1 Experiment1008

To visualize the distribution of the SCMs generated, we analyze the distribution of the metrics of the1009

assumption analysis module characterizing the SCMs. For each SCM sampled, all the implemented1010

metrics (see Appendix F) are computed.1011

1012

The studied SCMs are sampled from the SoIs defined by the cartesian product of the following1013

parameters:1014

• Number of endogenous variables: [3, 4, 5]1015

• Expected edge probability: [0.2, 0.4, 0.6, 0.8]1016

• Proportion of unobserved endogenous variables: [0, 0.1, 0.2, 0.3]1017

• Number of noise regions: [2, 5, 10, 20, 50]1018

• Cardinality of endogenous variables: [2, 3, 4, 7]1019

• Distribution of exogenous variables: set to U [0, 1]1020

For each SoI 10 SCMs are sampled, making a total of 9600 SCMs studied. Let us mention that we1021

sample more SCMs than for verification (Section 6.1 for two reasons. First, it enables us to have a1022

better approximation of the SCMs distribution. Second, the computation of all the assumptions and1023

characteristics metrics is, in fact, less computationally expensive than computing all the independence1024

tests.1025

1026
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(a) Pearson

(b) Spearman

Figure 2: Distribution of the average minimum probability of the marginal entailed distributions of
the generated SCMs depending on the number of variables and their cardinality

G.2 Results1027

A number of findings about the distribution of the sampled SCMs can be drawn. For instance, the1028

level of stochasticity of the SCMs roughly follows a long-tailed distribution whose mean increases1029

with the number of variables and their cardinality. This can be seen in fig. 4.1030

Then, the levels of linearity and monotonicity (measured using Pearson and Spearman correlations1031

respectively) follow roughly Gaussian distributions, see fig. 3. Distribution of mean of 0.3 and a1032

standard deviation of 0.1 for linearity, while for monotonicity, the standard deviation increases to 0.2.1033

This means that, on average, the causal mechanisms are neither linear nor monotonic.1034

Moreover, the number and size of confounded components follow a roughly exponential distribution1035

(i.e., high mass close to 0, followed by exponential decay) as depicted in fig. 6. Hence, "highly1036

confounded" SCMs are rare.1037

Finally, the assumption of strong positivity is rarely respected for all kind of SCMs, whereas weak1038

positivity is more often respected. In addition, there does not seem to be a correlation between the1039

size of the SCMs (i.e., number of endogenous variables and their cardinality) and the validation of1040

the positivity assumption. This is illustrated in figs. 2 and 5. Failure to respect these assumptions is a1041

direct consequence of working with finite data where infinitesimal probabilities are rounded to 0.1042

1043

As a result, the generated SCMs belong mainly to the non-identifiable domain of Causal ML1044

methods, as positivity is poorly respected. Users must, therefore, be careful in their interpretations1045

when evaluating methods, as identifiable SCMs are much less represented than non-identifiable1046

ones. We recommend starting the evaluation on small SoIs close to the identifiable domain, before1047
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progressively increasing the complexity of the causal datasets generated.1048

1049

(a) Pearson

(b) Spearman

Figure 3: Distribution of the average Pearson’s and Spearman’s correlation between the parent-child
pairs of the generated SCMs
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(a) Entropy distribution depending on the number of noise regions

(b) Entropy distribution depending on the number of variables

(c) Entropy distribution depending on the cardinality of variables

Figure 4: Distribution of the entropy of the entailed distribution of the generated SCMs depending on
the number of noise regions, the number of variables and their cardinality
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(a) Pearson

(b) Spearman

Figure 5: Distribution of the minimum probability of the joint entailed distribution of the generated
SCMs depending on the number of variables and their cardinality

(a) Number of components (b) Average size of the components

Figure 6: Distribution of the number and average size of maximal confounded components in the
causal graphs of the generated SCMs depending on the number of unobserved variables
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H Visual overview of CausalProfiler’s sampling strategy1050

𝓖 = ((𝑉𝑜, 𝑉ℎ), 𝐸) 𝓖∗ = (𝑉𝑜, 𝐸
∗)

𝓜∗ = {𝑼, 𝑽, 𝓕, 𝑃 𝑼 }

𝑄 = (𝑇, 𝑋, 𝑌, 𝑉𝐹)
𝑄∗ = 𝑄 𝑀∗

𝐷 ∈ ℝ𝑁×|𝑉𝑜|

{𝐴1, 𝐴2, 𝐴3, … }

𝑄

𝓖∗

𝐷

𝑯∗

𝑄∗

෠𝑄

𝓓 = {𝑄,𝑄∗, 𝐷, 𝓖∗, 𝑯∗}

Figure 7: CausalProfiler structure. The left-hand side of the figure represents the code structure of the
causal dataset generator. The right-hand side represents the user code. It illustrates how CausalProfiler
can be used to evaluate a Causal ML method.

I Proof of Theorem 5.1 (Coverage)1051

This section presents the proof of Theorem 5.1 stating that: For a Space of Interest S = {M,Q,D},1052

whose class of Structural Causal Models is a class of Regional Discrete SCMs with the maximum num-1053

ber of noise regions, any causal dataset D = {Q,Q⋆, D,G⋆,H⋆} has a strictly positive probability1054

to be generated.1055

Firstly, let us note that:1056

• Stating that any query Q can have any ground truth value Q⋆ given S is equivalent to1057

saying that the class of considered SCMs, i.e., the class of Regional Discrete SCMs with the1058

maximum number of noise regions, is L3-expressive with regards to the class of Markovian1059

discrete SCMs (i.e., any L3-distribution of the class of Markovian discrete SCMs can be1060

expressed with a Regional Discrete SCM).1061

• As the set of hypotheses H⋆ can contain at most L3 conditions, if the class of considered1062

SCMs is L3-expressive, then any set of hypotheses H⋆ can be represented.1063

• If the class of considered SCMs is L3-expressive, then it is also L1-expressive, hence, D1064

can be sampled from any distribution1065

As a result, our proof consists of showing that P (Q,G⋆|S) > 0 and that the class of Regional Discrete1066

SCMs with the maximum number of noise regions, denoted MRD-SCM,r=Rmax , is L3-expressive with1067

regards to the class of Markovian discrete SCMs given an SoI S and a causal graph G.1068

1069

Let us consider a SoI S = {M,Q,D} with M ⊆MRD-SCM,r=Rmax
.1070

1071

Proving P (G⋆|S) > 0:1072
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G⋆ is built through Algorithm 3 as the latent projection of a DAG G = {(VH ,VO), E} over VO1073

where G is sampled using Algorithm 2. As a result, following the steps of Algorithms 2 and 3:1074

P (G⋆|S) = P ({(VH ,VO), E}|S)
= P (E|V)P (VH ,VO|S) Edges are sampled independently of the

observability of the variables
= P (E|V)P (VH ,VO| |V|)P (|V|) |V| and ph are the only parameters influ-

encing the observability of the variables

= P (E|V)P (VH ,VO| |V|)
1

Nmax −Nmin
|V| ∼ U [Nmin, Nmax]

= P (E|V)
|VH |!
|V|!

1

Nmax −Nmin
VH ⊆ V sampled without replacement

=
|VH |!

|V|!(Nmax −Nmin)
P (E|V)

As E = {Vk −→ Vi |Vk ∈ PA(Vi),∀Vi ∈ V} and the edges are sampled along the causal order [1, N ]1075

with probability pedge:1076

P (G⋆|S) = |VH |!
|V|!(Nmax −Nmin)

N∏
i=1

P ({Vk −→ Vi |Vk ∈ PA(Vi)})

=
|VH |!

|V|!(Nmax −Nmin)

N∏
i=1

pedge
|PA(Vi)|(1− pedge)

i−1−|PA(Vi)|

Let us note that pedge = 0 =⇒ |PA(Vi)| = 0 and pedge = 1 =⇒ |PA(Vi)| = i − 1. As a result,1077

P (G⋆|S) > 0.1078

1079

Proving that MRD-SCM,r=Rmax is L3-expressive with regards to the class of Markovian discrete1080

SCMs: Regional discrete SCMs are, by construction, Markovian Canonical SCMs [49]. Further-1081

more, if the number of noise regions is chosen to be large enough (typically set to its maximum1082

value), any Markovian Canonical SCM can be represented using a Regional Discrete SCM6. Thus,1083

applying Zhang et al. [49] Theorem 2.4, we can assert that: for an arbitrary Markovian discrete1084

SCM, there exists a Regional Discrete SCM such that they both have the same causal graph and the1085

same L3-distribution. Consequently, the class of Regional Discrete SCMs is L3-expressive with1086

respect to the class of Markovian discrete SCMs given the causal graph G. Moreover, P (G) > 0 for1087

all G because
∏N

i=1 pedge
|PA(Vi)|(1− pedge)

i−1−|PA(Vi)| > 0 (cf. previous paragraph). Thus, more1088

generally, the class of Regional Discrete SCMs sampled by our CausalProfiler is L3-expressive with1089

respect to the class of Markovian SCMs.1090

1091

Proving P (Q|G⋆,S) > 0: Q is sampled given Q, D and G⋆. Even though we currently only1092

implement queries sampling for the classesQATE,QCATE andQCtf-TE (cf. Appendix E and Algorithms1093

7, 8 and 9), we can generalize our proof to any other query class (e.g., CDE, NDE). We simply1094

assume that these classes translate the set of constraints on the variables under consideration (e.g.,1095

conditioning variables have to be distinct from treatment variables or any other graphical constraints1096

that can be checked with G⋆) and express the probabilistic causal formula to be estimated. Once1097

such a query class Q is defined, our method randomly samples variables from VO in accordance1098

with Q constraints and by sampling realizations from D. We showed in the previous paragraph that1099

MRD-SCM,r=Rmax
is L3-expressive implying that it is L1-expressive too. So, any realization can be1100

present in D. As a result, for a given query class Q, any Q can be generated. Hence, P (Q|G⋆,S) > 0.1101

1102

6The distinction between VO and VH is of no importance for L3-expressiveness.VO and VH are only used
to determine what will be visible to the user as benchmark.
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Proving Theorem 5.1 by combining previous results: We proved that MRD-SCM,r=Rmax1103

is L3-expressive, hence any training set D, ground truth query Q⋆ and set of hypotheses1104

H⋆ can be generated given an SoI S, a causal graph G and a causal query Q. In addition,1105

P (Q,G⋆|S) = P (Q|G⋆,S)P (G⋆|S) and we also prove that P (Q|G⋆,S) > 0 and P (G⋆|S) > 0.1106

Hence, P (Q,G⋆|S) > 0. As a result, any causal dataset D has a strictly positive probability to be1107

generated.1108

1109

Remark on continuous SCMs. The universal approximation theorem [24] states that NNs (with1110

non-polynomial activation functions) are dense in the space of continuous functions, meaning that1111

any continuous function can be approximated by a sequence of NNs converging to this function.1112

However, this does not guarantee that they strictly cover the space of continuous functions. In1113

particular, whenever the number of layers and neurons is finite, one can always build a continuous1114

function too complex to be represented with this finite number of parameters. Hence, Theorem 5.11115

cannot be extended to any class of continuous SCMs. However, it could potentially be adapted not to1116

ask for strict coverage but rather density. We leave this question for future work.1117

1118

J Verfication Results1119

We design and run verification experiments targeting each level of the Pearl Causal Hierarchy (PCH).1120

J.1 L1 verification1121

Consistency with L1 level of the Pearl Causal Hierarchy (PCH) is tested through the verification that1122

the Markov property holds on randomly sampled regional discrete SCMs. Below is a description of1123

the experimental design choices made and the associated results.1124

1125

J.1.1 Experiment1126

For a given SCM M := {V,U,F , P (U)}, we check that the Markov property is satisfied by1127

assessing whether there is a statistically significant amount of d-separations not leading to conditional1128

independence in the entailed distribution.1129

To do so, we first enumerate the list of sets of variables (A,B,C) in V corresponding to d-separations1130

inM’s causal graph GM, ie A ⊥⊥GM B|C. Second, for each d-separated set (A,B,C), we test1131

whether A ⊥⊥PM B|C by sampling 50k data points from the entailed distribution PM.1132

In practice, enumerating all the d-separations can be very costly. Moreover, as the set of variables1133

C increases, it becomes increasingly complicated to robustly test the conditional independence1134

A ⊥⊥PM B|C. Indeed, as the cardinality of C increases, so does the number of combinations of1135

values for which to test independence between variables A and B. Running the statistical test becomes1136

costly, and the data volume required for robust independence test results increases exponentially. This1137

is why we limit ourselves to listing the d-separated sets (A,B,C) such that A ∈ V, B ∈ V\A, and1138

C ∈ V ∪V2 ∪V3 by enumerating all the possible (A,B,C) tuples, and testing whether they are1139

d-separated in GM.1140

As the sampled SCMs are regional discrete, the conditional independence A ⊥⊥PM B|C can be tested1141

with Pearson’s χ2 independence tests [37]. More precisely, A and B are considered independent1142

conditionally to C if for all values c of C, the H0 hypothesis "A and B are independent" is not1143

rejected. Since Pearson’s χ2 test is based on the assumption that the number of samples is large, we1144

decide to skip tests where the Koehler criterion [31] is not met. Based on empirical analyses, this1145

criterion indicates whether the χ2 test is reliable depending on the number of samples considered.1146

In addition, as we conduct tests for each observed value c, we need to control for the expected1147

proportion of false positives (represented by the Type I error of the test). To do so, we apply the1148

Benjamini-Hochberg correction [5].1149

For each SoI, defined by the Cartesian product of the following parameters, we sample 5 SCMs:1150

• Number of endogenous variables: [4, 5, 6]1151

• Expected edge probability: [0.1, 0.4]1152
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• Proportion of unobserved endogenous variables: set to 0 because the Markov property1153

only hold for Markovian SCMs1154

• Number of noise regions: [5, 10]1155

• Cardinality of endogenous variables: [2, 3, 10]1156

• Distribution of exogenous variables: set to U [0, 1]1157

• Number of data points: 500001158

J.1.2 Results1159

Conditioning
set size

A ⊥⊥PM B|C tests χ2 independence tests

Total Pass Fail Skip Total Pass Fail Skip

|C| = 1
100

(2 391)
91.76
(2 194)

4.94
(118)

3.3
(79)

100
(9 130)

85.4
(7 797)

1.43
(131)

13.17
(1 202)

|C| = 2
100

(2 986)
91.16
(2 722)

5.63
(168)

3.22
(96)

100
(53 040)

45.2
(23 976)

0.33
(177)

54.46
(28 887)

|C| = 3
100

(1 693)
91.08
(1 542)

5.67
(96)

3.25
(55)

100
(145 320)

18.49
(26 874)

0.07
(106)

81.43
(118 340)

TOTAL
100

(7 070)
91.34
(6 458)

5.40
(382)

3.25
(230)

100
(207 490)

28.26
(58 647)

0.2
(414)

71.54
(148 429)

Table 4: Conditional independence tests based on χ2 independence tests to assess compliance of
sampled SCMs with the Markov property. Results are expressed as a percentage of the total of each
test type for each conditioning set size. The number of tests is also shown in brackets.

The experimental results are summarized in table 4, where it can be seen that 5.4% of the conditional1160

independence tests failed. Despite the use of the Koehler criterion and Benjamini-Hochberg1161

correction, some tests can still be rejected due to the random nature of finite data sampling, which1162

can produce slight artificial correlations in the data. Moreover, on closer inspection, the majority of1163

the failed tests (at least 350 out of 382) are unsuccessful because of a single failed χ2 independence1164

test. This reinforces our previous argument about the random nature of finite data sampling.1165

1166

One can also notice that the number of skipped χ2 independence tests increases with the size of the1167

conditioning set. Such behavior is to be expected, since the number of realizations of the conditioning1168

set increases exponentially with its cardinality, while the number of observations sampled to perform1169

the independence tests remains constant. As a result, there are fewer and fewer observations available1170

to perform each χ2 test. In contrast, the number of fully skipped conditional independence tests1171

remains constant. This means that the χ2 skipped tests are relatively homogeneously distributed1172

across all the conditional independence tests.1173

Someone might argue that the number of sampled observations should simply be automatically1174

computed to verify the Koehler criterion. However, in general, such a calculation is complicated,1175

if not impossible, to automate, as causal mechanisms are randomly sampled. As a result, all kinds1176

of observational distributions can be induced with potentially very low probability realizations, for1177

which the Koehler criterion could never be validated because the number of data to be sampled would1178

be too large.1179

To conclude, these results are sufficient to conclude that the Markov property is empirically verified1180

by the sampled SCMs.1181

1182

J.2 L2 verification1183

Consistency with L2 level of the PCH is tested through the verification that the Do-calculus rules1184

hold on randomly sampled regional discrete SCMs. Below is a description of the experimental design1185

choices made (Section J.2.1) and the associated results (Section J.2.2).1186

1187
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J.2.1 Experiment1188

Definition J.1. Do-Calculus rules [35]
Given an SCM M := {V,U,F , P (U)} whose causal graph G is a DAG, and disjoint
subsets X,Y,Z, and W of V, the rules of the Do-Calculus are defined as follows:

1. Insertion/deletion of observation: if Y and Z are d-separated by X ∪W in GX,
then P (Y|do(X = x),W,Z) = P (Y|do(X = x),W)

2. Action/observation exchange: if Y and Z are d-separated by X∪W in GX,Z, then
P (Y|do(X = x), do(Z = z),W) = P (Y|do(X = x),Z,W)

3. Insertion/deletion of action: if Y and Z are d-separated by X ∪W in G
X,Z(W)

,
then P (Y|do(X = x), do(Z = z),W) = P (Y|do(X = x),W)

where GX (resp. GX) represents the graph G where the incoming edges in (resp. outgoing
edges from) X have been removed and Z(W) is the subset of nodes in Z that are not ancestors
of any node in W in GX

1189

Theorem J.1. Soundness and Completeness of the Do-Calculus rules [25]
The rules of the do-calculus are sound and complete; that is, they hold in all causal models,
and all identifiable intervention distributions can be computed by an iterative application of
these three rules.

1190

For a given SCM, we check each rule by first enumerating the sets of d-separated variables of interest.1191

Second, for each d-separated set, we test whether the distributions are statistically significantly similar1192

by sampling 50k data points from the intervened SCMs and testing whether they are drawn from the1193

same distribution.1194

For the same computational cost reasons as for L1 verification, we consider only univariate1195

sets of variables X,Y, Z, and W . In addition, the studied SCMs are sampled from the same1196

SoIs as defined in the L1-verification experiment (Section J.1.1). Finally, to assess whether1197

two conditional distributions are identical, we used Pearson’s χ2 goodness of fit tests [37]. As1198

done in Section J.1, we also use the Koehler criterion [31] and the Benjamini-Hochberg correction [5].1199

1200

For each SoI, defined by the Cartesian product of the following parameters, we sample 5 SCMs:1201

• Number of endogenous variables: [4, 5, 6]1202

• Expected edge probability: [0.1, 0.4]1203

• Proportion of unobserved endogenous variables: set to 0 because the Markov property1204

only hold for Markovian SCMs1205

• Number of noise regions: [5, 100]1206

• Cardinality of endogenous variables: [2, 5]1207

• Distribution of exogenous variables: set to U [0, 1]1208

• Number of data points: 500001209

J.2.2 Results1210

The experimental results are summarized in table 5 where it can be seen that they are very similar to1211

the L1 verification ones: roughly 6% of the conditional goodness of fit tests were not validated, some1212

tests are rejected due to the random nature of finite data sampling but the majority them (at least 5701213

out of 755) are unsuccessful because of a single failed χ2 goodness of fit test.1214

One can also notice that the percentage of skipped χ2 goodness of fit tests is similar for rules 1 and 31215

but increases by roughly 50% for rule 2. Such behavior is to be expected as rule 2 is the only rule to1216

have conditioning sets of size 3 on both sides of the equality. However, the number of skipped tests1217

remains low, with a maximum of 16%.1218
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Cond. goodness of fit χ2 goodness of fit

Do-Calculus Rule Total Pass Fail Skip Total Pass Fail Skip

Rule 1
Insertion/deletion

of observation

100
(3 378)

96.15
(3 248)

3.85
(130)

0
(0)

100
(171 092)

88.84
(152 004)

0.1
(172)

11.06
(18 916)

Rule 2
Action/observation

exchange

100
(5 065)

94.04
(4 763)

5.96
(302)

0
(0)

100
(259 509)

83.84
(217 578)

0.09
(241)

16.06
(41 690)

Rule 3
Insertion/deletion

of action

100
(5 169)

93.75
(4 846)

6.25
(323)

0
(0)

100
(282 184)

89.21
(251 731)

0.06
(157)

10.74
(30 296)

TOTAL 100
(13 612)

94.45
(12 857)

5.55
(755)

0
(0)

100
(712 785)

87.17
(621 313)

0.08
(570)

12.75
(90 902)

Table 5: Conditional independence tests based on χ2 goodness of fit tests to assess compliance of
sampled SCMs with the Do-Calculus rules. Results are expressed as a percentage of the total of each
test type for each conditioning set size. The number of tests is also shown in brackets.

As a result, we estimate that these results are sufficient to conclude that the Do-calculus rules are1219

respected by the sampled SCMs.1220

J.3 L3 verification1221

Consistency with L3 level of the PCH is tested through the verification that the axiomatic charac-1222

terization of structural counterfactuals holds on randomly sampled regional discrete SCMs. Below1223

is a description of the experimental design choices made (Section J.3.1) and the associated results1224

(Section J.3.2).1225

Definition J.2. Axiomatic characterization of structural counterfactuals [35]
Given an SCMM := {V,U,F , P (U)} whose causal graph G is a DAG, the axioms of
structural counterfactuals are defined as follows:

1. Composition: For any sets of endogenous variables X,Y, and W in V and any real-
ization u of U, if Wdo(X=x)(u) = w then Ydo(X=x),do(W=w)(u) = Ydo(X=x)(u)

2. Effectiveness: For any disjoint sets of endogenous variables X, and W in V and
any realization u of U, Xdo(X=x),do(W=w)(u) = x

3. Reversibility: For any two distinct variables Y and W and any sets of other
variables X in V and any realization u of U, if Ydo(X=x),do(W=w)(u) = y and
Wdo(X=x),do(Y=y)(u) = w then Ydo(X=x)(u) = y

1226

Note that we do not write P (Wdo(X=x)|U) but rather Wdo(X=x)(u) as it is a deterministic expres-1227

sion. Indeed, if U is fixed, there is no stochastically anymore, so we no longer need to reason in1228

distributions but rather in functional forms.1229

Theorem J.2. Soundness and Completeness of structural counterfactual axioms [15]
Completeness, effectiveness, and reversibility are sound and complete in structural causal
model semantics; that is they hold in all causal models and all identifiable counterfactual
distributions can be computed by an iterative application of these three axioms.

1230

J.3.1 Experiment1231

For a given SCM, using definition J.1 notations, we check that:1232

1. The Composition axiom is satisfied by assessing whether Wdo(X=x)(u) = w implies1233

Ydo(X=x),do(W=w)(u) = Ydo(X=x)(u) for any sets of endogenous variables X,Y, and W1234

in V and any realization u of U1235
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2. The Effectiveness axiom is satisfied by assessing whether Xdo(X=x),do(W=w)(u) = x for1236

any sets of endogenous variables X, and W in V and any realization u of U1237

3. The Reversibility axiom is satisfied by assessing whether Ydo(X=x),do(W=w)(u) = y and1238

Wdo(X=x),do(Y=y)(u) = w implies Ydo(X=x)(u) = y for any two (distinct) variables Y and1239

W and any sets of variables X in V and any realization u of U1240

For each SoI, defined by the Cartesian product of the following parameters, we sample 5 SCMs:1241

• Number of endogenous variables: [3, 5, 10]1242

• Expected edge probability: [0.1, 0.5, 0.7]1243

• Proportion of unobserved endogenous variables: set to 0 because the Markov property1244

only hold for Markovian SCMs1245

• Number of noise regions: [3, 5, 10]1246

• Cardinality of endogenous variables: [2, 5, 7]1247

• Distribution of exogenous variables: set to U [0, 1]1248

• Number of data points: 500001249

For each SCM, instead of enumerating all the possible four sets of variables X,Y and W, we sample1250

a partition of three elements of a randomly sampled subset of V of a size randomly picked in [3, |V|].1251

This sampling strategy enables us to make sure the three sets are disjoint and of randomly varying1252

size. In addition, for each four sets, we sample 50k realizations of U.1253

Let us note that the axioms now correspond to exact realizations and not equal probabilities. As a1254

result, we expect no failure as no approximation is made in this experiment.1255

J.3.2 Results1256

As expected, all the tested equalities are verified in our experiments. We can, therefore, consider that1257

the SCMs created by our generator allows the estimation of any structural counterfactual queries.1258

K Extended Experimental Results1259

K.1 Experiment 1: Additional Information1260

We provide more details about the SoI used in our experiments in Table 6 and present extended1261

performance metrics in Table 7, complementing those already shown in Table 1. Parameters not1262

explicitly listed for a given SoI are set to their default values as per the benchmark configuration.1263

Neural Networks for our experiments have two 8-neuron layers and use ReLU activation.1264
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Table 6: Specification of each SoI used in the general experiments. N denotes the sampled number
of nodes.

Name Linear-Medium

# Nodes 15-20
Mechanism Linear
Expected Edges 2×N
Variable Type Continuous
Samples 1000
Query Type ATE
Seeds [10, 11, 12, 13, 14]

Name NN-Medium

# Nodes 15-20
Mechanism NN
Expected Edges 2×N
Variable Type Continuous
Samples 1000
Query Type ATE
Seeds [10, 11, 12, 13, 14]

Name NN-Large

# Nodes 20-25
Mechanism NN
Expected Edges 2×N
Variable Type Continuous
Samples 1000
Query Type ATE
Seeds [10, 11, 12, 13, 14]

Name NN-Large-LowData

# Nodes 20-25
Mechanism NN
Expected Edges 2×N
Variable Type Continuous
Samples 50
Query Type ATE
Seeds [10, 11, 12, 13, 14]

Table 7: Additional performance metrics of CausalNF, DCM, NCM, and VACA on the general
experiments.

Space Method Min Error Total Fail Runtime Mean Runtime Std

Linear-Medium CausalNF 0.0024 0 27.58 s 18.33 s
Linear-Medium DCM 0.0086 0 33.08 s 9.71 s
Linear-Medium NCM 0.0024 0 14.77 s 1.42 s
Linear-Medium VACA 0.0038 1335 11.69 s 4.54 s
NN-Medium CausalNF 0.0019 0 21.47 s 19.52 s
NN-Medium DCM 0.0073 0 31.79 s 10.62 s
NN-Medium NCM 0.0014 0 14.65 s 1.43 s
NN-Medium VACA 0.0024 125 12.13 s 4.41 s
NN-Large CausalNF 0.0038 0 30.23 s 25.33 s
NN-Large DCM 0.0060 0 38.33 s 14.02 s
NN-Large NCM 0.0018 0 18.90 s 1.38 s
NN-Large VACA 0.0023 290 12.88 s 4.31 s
NN-Large-LowData CausalNF 0.0086 0 44.28 s 17.10 s
NN-Large-LowData DCM 0.0121 0 4.82 s 1.34 s
NN-Large-LowData NCM 0.0013 0 0.81 s 0.11 s
NN-Large-LowData VACA 0.0010 0 10.43 s 4.59 s

K.2 Experiment 2: Additional Information1265

We provide more details about the SoI used in our experiments in Table 8 and present extended1266

performance metrics in Table 9, complementing those already shown in Table 2. Parameters not1267

explicitly listed for a given SoI are set to their default values as per the benchmark configuration.1268
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Table 8: Specification of the Spaces of Interest used for evaluating discrete SCMs with CTF-TE
queries. N denotes the sampled number of nodes.

Name Disc-C2-Reject

# Nodes 10–15
# Categories 2
Mechanism Tabular
Sampling Strategy Rejection
Edges N
Samples 500
Query Type Ctf-TE
Seeds [1, 2, 3, 4, 5]

Name Disc-C4-Unbias

# Nodes 10–15
# Categories 4
Mechanism Tabular
Sampling Strategy Random
Edges N
Samples 500
Query Type Ctf-TE
Seeds [1, 2, 3, 4, 5]

Name Disc-Large-C2-Unbias

# Nodes 20–30
# Categories 2
Mechanism Tabular
Sampling Strategy Random
Edges N
Samples 500
Query Type Ctf-TE
Seeds [1, 2, 3, 4, 5]

Table 9: Additional performance metrics of CausalNF and DCM on the discrete experiments.
Space Method Min Error Total Fail Runtime Mean Runtime Std

Disc-C2-Reject CausalNF 0.0000 202 0.46 s 0.04 s
Disc-C2-Reject DCM 0.0000 107 8.81 s 3.55 s
Disc-C4-Unbias CausalNF 0.0000 1017 0.42 s 0.03 s
Disc-C4-Unbias DCM 0.0000 565 7.68 s 3.43 s
Disc-Large-C2-Unbias CausalNF NaN 2500 0 s 0 s
Disc-Large-C2-Unbias DCM 0.0000 283 16.39 s 6.42 s

K.3 Experiment 3: ATE Estimation under Hidden Confounding1269

In this experiment, we demonstrate how our framework can be used to evaluate methods in the1270

presence of latent confounders — a common challenge in real-world causal inference. A key1271

goal here is not only to confirm theoretical limitations but to investigate how quickly and severely1272

performance degrades when assumptions are violated. While theory can tell us whether identification1273

holds, it is often agnostic to the degree of failure. See Table 11 for a summary of results, Table 12 for1274

a few additional performance metrics, and Figure 8 for a boxplot of ATE estimation errors over the1275

different SoI.1276

We focus on two linear SCM settings:1277

• Linear-No-Hidden: Linear SCMs with 10-15 nodes and full observability (no hidden1278

confounders), using 1000 data points per SCM.1279

• Linear-60-Hidden: Same setup as above, but with 60% of the variables unobserved1280

(hidden).1281

We provide more details about the SoI used in our experiments in Table 10. Parameters not explicitly1282

listed for a given SoI are set to their default values as per the benchmark configuration.1283
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Table 10: Specification of the SoIs used to evaluate performance under hidden confounding. N
denotes the sampled number of nodes.

Name Linear-No-Hidden

# Nodes 10-15
Mechanism Linear
Expected Edges 2×N
Variable Type Continuous
Prop. Hidden Nodes 0%
Samples 1000
Query Type ATE
Seeds [42, 43, 44, 45, 46]

Name Linear-60-Hidden

# Nodes 10-15
Mechanism Linear
Expected Edges 2×N
Variable Type Continuous
Prop. Hidden Nodes 60%
Samples 1000
Query Type ATE
Seeds [42, 43, 44, 45, 46]

Setup. We evaluate three methods: CausalNF, DCM, and DeCaFlow. The first two methods assume1284

causal sufficiency, and therefore cannot, in theory, handle hidden confounding. DeCaFlow, in contrast,1285

is explicitly designed for this setting but requires access to the full causal graph (including hidden1286

variables) and does not run when all variables are observed. Thus, we include it only in the hidden1287

confounding SoI.1288

Results (Linear-No-Hidden). As expected, both CausalNF and DCM perform well when all1289

variables are observed. DCM achieves lower mean error (0.0845) and standard deviation (0.1515),1290

with a maximum error of 2.89. The upper whisker of DCM’s box plot lies below the median of1291

CausalNF, indicating consistent superior performance. These results serve as a reference point for1292

comparison when introducing hidden variables.1293

Results (Linear-60-Hidden). With 60% of variables hidden, method performance degrades signif-1294

icantly. DeCaFlow performs reliably, with an error mean of 0.3405 and low variance. In contrast,1295

CausalNF—despite a box plot that visually appears well-behaved—has a massive error mean of1296

2.67× 1012 and a maximum error exceeding 1015. This is due to a small subset of SCMs producing1297

extremely large errors (14 with error > 1000), illustrating that, when assumptions are violated, error1298

can become arbitrarily large. While DCM does not show such instability on this particular sample, its1299

theoretical limitations under hidden confounding still hold — the expectation is that if we evaluate1300

over enough SCMs we will eventually also get arbitrarily large errors due to the violation of the1301

causal sufficiency assumption.1302

Figure 8: Box plots of ATE estimation errors in the presence and absence of hidden confounding.
Each box shows the interquartile range and median, with whiskers extending to 1.5× IQR. CausalNF
and DCM are shown for both SoIs; DeCaFlow is shown only for the hidden setting.
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Table 11: Performance summary of CausalNF, DCM, and DeCaFlow on the hidden confounder
experiments.

Space Method Mean Error Std Error Max Error Runtime (s)

Linear-No-Hidden CausalNF 0.5538 0.9866 14.2495 8570.0
Linear-No-Hidden DCM 0.0845 0.1515 2.8954 12144.6
Linear-60-Hidden CausalNF 2.667e+12 5.497e+13 1.225e+15 293.2
Linear-60-Hidden DCM 0.5584 1.2122 17.2049 4187.6
Linear-60-Hidden DeCaFlow 0.3405 0.6799 5.9435 2264.0

Table 12: Additional performance metrics of CausalNF, DCM, and DeCaFlow on the hidden con-
founder experiments.

Space Method Min Error Total Fail Runtime Mean Runtime Std

Linear-No-Hidden CausalNF 0.0036 0 17.14 s 10.61 s
Linear-No-Hidden DCM 0.0068 0 24.29 s 7.64 s
Linear-60-Hidden CausalNF 0.0029 0 0.59 s 0.02 s
Linear-60-Hidden DCM 0.0000 0 8.38 s 3.45 s
Linear-60-Hidden DeCaFlow 0.0108 0 4.53 s 1.27 s
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