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Abstract001

Small language models (SLMs) have attracted002
considerable attention from both academia and003
industry due to their broad range of applica-004
tions in edge devices. To obtain SLMs with005
strong performance, conventional approaches006
either pre-train the models from scratch, which007
incurs substantial computational costs, or com-008
press/prune existing large language models009
(LLMs), which results in performance drops010
and falls short in comparison to pre-training.011
In this paper, we investigate the family of ac-012
celeration methods that involve both structured013
pruning and model training. We found 1) layer-014
wise adaptive pruning (Adapt-Pruner) is quite015
effective in LLMs and yields significant im-016
provements over existing pruning techniques,017
2) adaptive pruning equipped with further train-018
ing leads to models comparable to those pre-019
training from scratch, 3) incremental pruning020
brings non-trivial performance gain by inter-021
leaving pruning with training and only remov-022
ing a small portion of neurons (∼5%) at a023
time. Experimental results on LLaMA-3.1-024
8B demonstrate that Adapt-Pruner outperforms025
conventional pruning methods, such as LLM-026
Pruner, FLAP, and SliceGPT, by an average of027
1%-7% in accuracy on commonsense bench-028
marks. Additionally, Adapt-Pruner restores the029
performance of MobileLLM-125M to 600M030
on the MMLU benchmark with 200× fewer031
tokens via pruning from its larger counterparts,032
and discovers a new 1B model that surpasses033
LLaMA-3.2-1B-Instruct in multiple common-034
sense reasoning benchmarks.035

1 Introduction036

Large language models (LLMs) (Kalyan, 2024;037

OpenAI, 2023) have demonstrated remarkable per-038

formance across a wide range of benchmarks.039

As their size increases, these models exhibit en-040

hanced capabilities in understanding natural lan-041

guage and solving complex tasks through text gen-042

eration (Zhao et al., 2023). However, achieving043

such performance requires models with billions of 044

parameters, which presents significant challenges 045

for practical deployment. The sheer scale of LLMs 046

leads to high computational costs, making infer- 047

ence both resource-intensive and slow, and poten- 048

tially introducing issues such as increased latency. 049

Consequently, there is a growing demand for meth- 050

ods to compress LLMs (Zhu et al., 2024), aiming 051

to reduce the number of parameters and improve 052

inference speed, all while preserving the original 053

model performance. Effective compression tech- 054

niques hold the potential to create more efficient 055

and deployable LLMs. 056

Several techniques have been proposed to com- 057

press LLMs, most of which fall into one of 058

four categories: structured and unstructured prun- 059

ing (Cheng et al., 2024), quantization (Gholami 060

et al., 2022), low-rank factorization (Sainath et al., 061

2013), and knowledge distillation (Gou et al., 062

2021). In this paper, we primarily focus on struc- 063

tured pruning, which can be combined together 064

with further training to obtain strong Small Lan- 065

guage Models. Structured pruning removes entire 066

filters, layers, or specific model components from 067

neural networks, enabling both compression and 068

realistic acceleration. On top of that, it does not 069

require specialized hardware or library support to 070

achieve these benefits (He and Xiao, 2023) in con- 071

trast to unstructured pruning. 072

While many works on structured pruning focus 073

on removing a fixed number of filters from weight 074

matrices with minimal performance degradation, 075

these methods often either skip important layers 076

or apply uniform sparsity across all layers. How- 077

ever, as shown in Figure 1, the importance of each 078

decoder layer—and by extension, each weight ma- 079

trix—varies significantly. To leverage this phe- 080

nomenon, we introduce a novel approach called 081

Adapt-Pruner. Unlike traditional pruning methods 082

that enforce the same sparsity across all decoder 083

layers, Adapt-Pruner operates in multiple steps. At 084
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Figure 1: Layer sensitivity and pruned Models. The first row of figures shows the increase in perplexity when a
single decoder layer is pruned at 50% sparsity, compared to the dense LLaMA-3.1-8B model, as well as models
uniformly pruned across all layers at 10% and 20% sparsity. The second row of figures illustrates the architecture of
the pruned models, with each decoder layer represented by its corresponding number of parameters.

each step, it calculates the relative importance of085

each decoder layer and applies varying sparsity lev-086

els, assigning higher sparsity to less important lay-087

ers and lower sparsity to more critical ones. After088

determining the sparsity for each layer, the impor-089

tance of each weight group is accessed using both090

magnitude and first-order information, leaving the091

least important groups for pruning.092

Furthermore, when computational resources al-093

low, structural pruning methods can be combined094

together with additional post-training stages, recov-095

ering the performance hurt by pruning. Multiple096

approaches (Xia et al., 2024; Sreenivas et al., 2024)097

have investigated this fashion of training to ob-098

tain SLMs efficiently. Nonetheless, their methods099

fixate too much on the prune-the-train paradigm,100

which hinders them from further boosting the tar-101

get SLM’s performance. In contrast, a different102

paradigm is explored in this paper, offering new103

opportunities for structural-pruning-based acceler-104

ation methods.105

Our main contributions are summarized as fol-106

lows:107

1. A strong structured pruning method called108

Adapt-Pruner is proposed, which exploits109

the skewed importance distribution across110

LLM layers and significantly outperforms con-111

ventional pruning methods in commonsense112

benchmarks.113

2. A new acceleration paradigm called Adapt-114

Accel is presented, which interleaves the prun-115

ing with training in a highly frequent manner116

and demonstrates non-trivial improvements117

compared to past methods (Xia et al., 2024; 118

Sreenivas et al., 2024). 119

3. A novel family of models called Adapt- 120

LLMs, which is obtained through Adapt- 121

Accel, achieves superior performance over 122

strong open-sourced models. In partic- 123

ular, Adapt-Pruner recovers the perfor- 124

mance of MobileLLM (Liu et al., 2024) 125

in MMLU (Hendrycks et al., 2020) with 126

200× less tokens via pruning from its larger 127

counterparts. On top of that, a strong 128

1B model is discovered by pruning from 129

DeepSeek-R1-Distill-Qwen-1.5B (DeepSeek- 130

AI et al., 2025), outperforming Llama-3.2- 131

1B (AI@Meta, 2024) in multiple benchmarks, 132

including MMLU, TruthfulQA (Lin et al., 133

2021), and AGIEval (Zhong et al., 2023). 134

2 Related Work 135

Pruning Pruning removes weights and modi- 136

fies the model’s architecture. Formally, given 137

a neural network f(x;W ), pruning produces a 138

new model f(x;M ⊙W ), where M ∈ {0, 1}|W | 139

is a binary mask that sets certain parameters to 140

zero, and ⊙ denotes element-wise multiplication. 141

Pruning typically hurts the network’s performance, 142

so post-training is often employed to recover the 143

loss (Blalock et al., 2020). Overall, pruning meth- 144

ods can be categorized into two types, unstructured 145

pruning and structured pruning. Unstructured prun- 146

ing removes individual weights, resulting in sparsi- 147

fied weight matrices, but normally face difficulties 148

in inference speedups when specialized hardware 149
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is unavailable (Dery et al., 2024). In contrast, struc-150

tured pruning operates at a larger granularity, re-151

moving entire weight groups. This includes width152

pruning (Ma et al., 2023; Ashkboos et al., 2024),153

which removes groups of coupled weights, and154

depth pruning (Kim et al., 2024; Siddiqui et al.,155

2024), which eliminates entire layers. Our focus156

is on post-training structured pruning, balancing157

generality and hardware efficiency.158

Adaptive Sparsity for Pruning Several works159

have explored adaptive compression. Dong et al.160

(2024) selects transformer feedforward experts and161

removes feedforward neurons during inference162

based on their high activation magnitudes from163

input prompts. While this method is effective, we164

seek an approach that can reduce model size with-165

out depending on specific input prompts. An et al.166

(2023) computes the sample variance of each in-167

put feature and weights it by the squared norm of168

the corresponding column in the weight matrix to169

determine a layer’s importance and assign sparsity170

accordingly. Wang and Kindratenko (2024) deter-171

mines the optimal layer-wise sparsity distribution172

through reinforcement learning, where different173

sparsity patterns are sampled and updated based on174

their performance rewards. However, all aforemen-175

tioned methods failed to take into account the loss176

on the functional aspect of models, where the over-177

all mapping X → Y of the LLM is expected to be178

preserved during the pruning process to minimize179

the performance drop. Here X and Y are input180

and output tensors of the model. Our method uti-181

lizes the mapping information to assign an adaptive182

sparsity across different decoder layers.183

Knowledge Distillation Knowledge distillation184

is a technique used to transfer the advanced capabil-185

ities of high-performing LLMs to smaller models186

(Xu et al., 2024). Combining knowledge distil-187

lation with pruning can yield strong performance,188

where the original model acts as the teacher and the189

compressed model serves as the student (Sreenivas190

et al., 2024). Conventionally, knowledge distilla-191

tion can be categorized into black-box (Ho et al.,192

2022; Hsieh et al., 2023) and white-box distilla-193

tion (Gu et al., 2023; Latif et al., 2023; Agarwal194

et al., 2023; Zhou et al., 2023; Shum et al., 2024),195

depending on whether the model weights and pre-196

diction logits of the teacher model can be accessed.197

In that sense, structural-pruning-based accelera-198

tion methods can be roughly viewed as white-box199

knowledge distillation. However, in this paper, we200

focus on the adaptive pruning algorithm with su- 201

pervised fine-tuning only. Though it is expected to 202

achieve even better performance when integrated 203

with state-of-the-art knowledge distillation tech- 204

niques in post-training, it normally incurs more 205

complexity and training cost, hence we leave that 206

for future exploration. 207

Accelerating Small Language Model Training 208

Training small language models from scratch de- 209

mands substantial computational resources, mak- 210

ing pruning of larger models with recovery post- 211

training an attractive alternative. Recent works 212

have explored various approaches to this chal- 213

lenge. Xia et al. (2024) proposes a systematic prun- 214

ing framework that optimizes across four architec- 215

tural dimensions (layer count, hidden dimension, 216

attention heads, and MLP size) towards target ar- 217

chitectures, followed by a continual post-training 218

phase phase with dynamic batch loading. Sreeni- 219

vas et al. (2024) leverages knowledge distillation, 220

first fine-tuning the original model as a teacher 221

and then transferring its knowledge to the pruned 222

student model. However, these methods rely on 223

single-phase post-training and do not exploit the 224

potential benefits of incremental pruning with in- 225

terleaved recovery phases, which is demonstrated 226

to be effective in the experiments. 227

3 Method 228

3.1 Adapt-Pruner: Layer-wise Adaptive 229

Pruning aim for Mapping-Preserving 230

Given a large language modelM, represented as 231

a sequence of embedded layers with N decoder 232

layers, denoted as LN , along with a final output 233

layer, our method leverages the insight that each 234

decoder layer contributes differently to the model’s 235

overall performance. Furthermore, the contribu- 236

tion of each layer is measured by its importance of 237

maintaining the original functional mapping of the 238

model after pruning. 239

Specifically, Adapt-Pruner compresses the 240

model through multiple iterations, with each itera- 241

tion comprising two steps: 242

1. Evaluating layer importance: Quantitatively 243

computing the importance of each decoder 244

layer and assigning a corresponding pruning 245

sparsity. 246

2. Pruning coupled weights: Grouping the 247

weights within each decoder layer, evaluating 248
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Figure 2: Adapt-Pruner: measuring the distance between each decoder layer’s input and output tensors to assess its
importance and assigning a corresponding sparsity. Based on this assigned sparsity, the coupled weights in each
decoder layer are pruned accordingly.

the importance of each coupled structure, and249

pruning the least important structures based250

on the assigned sparsity251

Figure 2 gives an illustration of our method.252

3.1.1 Assign Sparsity based on Importance253

Let Li denote the i-th decoder layer, Ii and Si254

represent the importance and sparsity of the i-th255

decoder layer, and Liin and Liout denote the input256

and output tensors of the i-th decoder layer, respec-257

tively. Our goal is to estimate the importance of258

each decoder layer.259

Estimate Decoder Layer’s Importance Our260

pruning method targets only the multi-head atten-261

tion and multilayer perceptron components within262

the self-attention layers, leaving the hidden size263

unchanged. Consequently, the input and output ten-264

sors for each decoder layer have identical shapes:265

∀i = 0, 1, . . . , N − 1,Shape(Liin) = Shape(Liout)
(1)

266

= (B,L,H)
(2)

267

where B,L,H denote the batch size, sequence268

length, and hidden size, respectively. Based on this,269

we use a function that measures the vector simi-270

larity or distance between Liin and Liout to assess271

the changes in the tensor caused by each decoder272

layer. The greater the similarity or the smaller the273

distance between Liin and Liout, the less important274

that decoder layer is. This intuition derives from Li275

et al. (2024), where it is observed that top self-276

attention layers have diminished gradient norms277

and those layers serve similar purposes as identity 278

functions. 279

A practical choice for this distance measurement 280

is cosine similarity, where ∀i = 0, 1, . . . , N − 1 a 281

decoder layer’s importance is computed as follows: 282

Ii = −cosine_similarity(Liin,Liout) (3) 283

This method can easily be extended to alternative 284

similarity or distance functions, such as Euclidean 285

or Manhattan distance. To ensure consistency, we 286

normalize the decoder layer’s importance to the 287

range [−1, 1] with a mean of 0, as follows: 288

Ii ← Ii − Imean (4) 289

Ii ← Ii

max |abs(I)|
(5) 290

Assign Sparsity After obtaining the importance 291

of each layer, an ad-hoc approach is adopted to link 292

a layer’s importance to its sparsity, which decides 293

the number of neurons it will be pruned. Let A 294

being any constants, the targeted sparsity Si for 295

each layer i can be: 296

∀i = 0, 1, . . . , N − 1,Si = Sbase −A · Ii (6) 297

where Sbase is the targeted overall sparsity of the 298

model. This formula ensures that each decoder 299

layer’s sparsity is inversely proportional to its im- 300

portance, and the averaged sparsity is consistent 301

with the intended overall model sparsity. We call 302

the hyperparameter A as the amplitude of sparsity. 303

In addition, since the importance distribution 304

of each layer varies throughout the pruning pro- 305

cess according to the observations from Figure 1, 306

progressive adjustment during pruning becomes 307

necessary for good performance. This leads to the 308

multi-stage-pruning design in Adapt-Pruner. 309
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Figure 3: Adapt-Accel: Incremental pruning with interleaved training. NP number of interleaves are adopted in the
whole process. Given a model with size |Llarge| and target size |Lsmall|, this leads to an incremental pruning ratio of
P = (|Lsmall|/|Llarge|)1/NP each time, where the training set is randomly split into NP subsets for NP interleaved
trainings separately. Notice that the number of training samples gradually increases according to Algorithm 1, as
more important weights are expected to be pruned in later phases.

Algorithm 1 Adaptive Pruning Algorithm
Require: Number of decoder layer in the LLM N , decoder

layer instances in the LLM {Li}Ni=1, overall sparsity after
pruning S , iteration times to prune T , pruning ratio thresh-
old to apply post-train P , training data D, amplitude of
sparsity between decoder layers A, similarity function,
use cos in default Simfunc ← cosine_similarity()

1: for i← 1 . . . T do
2: Scur ← (S · i/T )
3: I ← {0}N , S ← {0}N
4: for j ← 1 . . . N do
5: Ij ← Simfunc(Lj

in,L
j
out)

6: end for
7: Normalize IN to have 0 mean value, limit range to [-1,

1] and times -1 if lower is better
8: for j ← 1 . . . N do
9: Sj ← Scur −A · Ij

10: end for
11: while Current sparsity > P do
12: Adaptively prune the LLM based on Sj

13: end while
14: end for

3.1.2 Pruning Weight Groups Inside Decoder310

Layer311

To enable structure-aware pruning in Adapt-Pruner,312

methods from Ma et al. (2023); Fang et al. (2023)313

are employed to build dependency graphs for314

LLMs, which facilitates automatic identification315

and extraction of coupled structures in LLMs.316

Weight Group Importance With coupled struc-317

tures and target sparsity defined for each group,318

the next step is selecting weight matrices to prune319

with minimized performance degradation. For any320

grouped weight structure G = W k, containing k321

weight matrices, a calibration dataset D is adopted322

to assess the relative importance of each matrix.323

Following (LeCun et al., 1989; Ma et al., 2023),324

the importance of the i-th weight matrix in layer L325

is defined as: 326

IWi = |∆L(D)| (7) 327

= |LWi(D)− LWi=0(D)| (8) 328

=

∣∣∣∣∂L⊤(D)∂Wi
Wi −

1

2
Wi

⊤HWi +O
(
∥Wi∥3

)∣∣∣∣
(9)

329

where H = ∂L2(D)
∂W 2

i
is the Hessian matrix. Calcu- 330

lating the Hessian requires O(N2) computational 331

resources, so only first-order terms are retained 332

for acceleration purposes. This simplifies the esti- 333

mated weight matrix importance to: 334

ÎWi =

∣∣∣∣∂L⊤(D)∂Wi
Wi

∣∣∣∣ (10) 335

Thus, each weight matrix’s importance can be ap- 336

proximated by taking the l1 norm of the element- 337

wise product between its gradient (derived from the 338

calibration dataset) and its weight value. After com- 339

puting importance scores, the matrices are sorted, 340

where the ones with the lowest scores are pruned 341

to achieve the desired sparsity level. The complete 342

pruning procedure is detailed in Algorithm 1. 343

3.2 Adapt-Accel: Incremental Pruning with 344

Interleaved Recovery Training 345

To achieve the target overall sparsity, our model 346

undergoes multiple rounds of pruning, which in- 347

evitably leads to performance degradation. In- 348

spired by neuroplasticity in biological neural net- 349

works (Walløe et al., 2014), periodic interleaved re- 350

covery phases are introduced through post-training 351

after each pruning. 352

In addition, it is observed that different pruning 353

phases lead to different levels of performance de- 354

terioration. Specifically, pruning in later phases is 355
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Model Method ARC-e ARC-c HellaSwag OBQA PIQA SIQA Winogrande Average↑ WikiText2 ppl. ↓

Ratio =
20% w/o
tune

LLM-Pruner 63.92 39.53 64.85 38.47 76.64 42.80 62.85 55.58 14.78
FLAP 61.01 37.37 58.43 35.40 73.27 43.40 64.46 53.33 16.73
SliceGPT 52.27 29.01 56.37 32.00 69.84 41.85 59.46 48.69 19.61
Adapt-Pruner 66.43 39.65 66.71 38.93 76.87 44.10 66.19 56.98 14.54

Ratio =
40% w/o
tune

LLM-Pruner 33.90 21.79 30.00 25.40 57.02 35.45 51.30 36.41 162.81
FLAP 25.53 26.25 26.49 25.73 52.36 34.12 50.59 34.44 6987.58
SliceGPT 33.94 21.79 33.72 26.27 57.73 36.44 49.72 37.09 85.60
Adapt-Pruner 45.16 25.97 44.88 30.40 66.74 39.03 56.75 44.13 33.75

Ratio =
60% w/o
tune

LLM-Pruner 26.94 24.43 26.67 27.93 51.22 34.14 49.43 34.39 2501.76
FLAP 26.60 26.53 26.00 27.07 51.63 33.95 49.62 34.49 141572.73
SliceGPT 28.95 21.61 28.12 26.13 53.01 34.49 49.01 34.48 218.96
Adapt-Pruner 32.49 23.64 30.84 26.40 56.66 35.59 49.43 36.44 119.95

Table 1: Comparison of structured pruning methods across different sparsity levels in Llama-3.1-8B over three
trials.

more likely to remove important neurons. Based356

on this intuition, a linear growth schedule is intro-357

duced for training data allocation: For i-th post-358

training of T total pruning and post-training it-359

erations, |Di| tokens are sampled from |D| total360

training tokens where361

|Di| =
2(i+ 1)

|D|(|D|+ 1)
(11)362

This linear growth schedule for data allocation363

serves two key purposes:364

• It enables more frequent parameter updates365

during later phases when the model requires366

more extensive recovery.367

• And it preserves knowledge acquired in ear-368

lier phases from being pruned in subsequent369

iterations.370

This recovery phase is further optimized by split-371

ting and distributing the learning rate schedule372

across post-training phases, ensuring efficient373

restoration of model performance after each prun-374

ing step.375

4 Experiment376

4.1 Adapt-Pruner as Effective LLM Pruners377

Adapt-Pruner exploits the skewness of importance378

across layers in a mapping-preserved manner,379

which allows the pruning process to automatically380

identify prunable layers that least affect the func-381

tionality of the target LLM.382

Setup To demonstrate the effectiveness of Adapt-383

Pruner, different pruners are evaluated and com-384

pared on Llama-3.1-8B (AI@Meta, 2024). For385

task-agnostic performance evaluation of the pruned 386

models, zero-shot classification is performaned on 387

popular common-sense reasoning datasets: ARC- 388

easy and ARC-challenge (Clark et al., 2018), Hel- 389

laSwag (Zellers et al., 2019), OpenBookQA (Mi- 390

haylov et al., 2018), PIQA (Bisk et al., 2020), SIQA 391

(Sap et al., 2019) and WinoGrande (Sakaguchi 392

et al., 2021), where the averaged accuracy is re- 393

ported. In particular, length-normalized accuracy 394

is reported for any benchmarks that require length- 395

dependent accuracy. Additionally, we supplement 396

our evaluation with a generation task using Wiki- 397

Text2 (Merity et al., 2016). Following prior work 398

(Ma et al., 2023; An et al., 2023; Ashkboos et al., 399

2024), we employ the LM Evaluation Harness (Gao 400

et al., 2024) with default parameters, except that 401

all models use the bfloat16 data type, and the batch 402

size is set to ‘auto’ during evaluation. 403

Results As shown in Table 1, Adapt-Pruner out- 404

performs all baselines by a non-trivial margin. In 405

particular, Adapt-Pruner excels at preserving com- 406

monsense knowledge in LLMs during the prun- 407

ing process. This is highly relevant to the skewed 408

knowledge distribution across LLM layers, where 409

the bottom layers are observed to be more impor- 410

tant than the top layers (Pan et al., 2024; Li et al., 411

2024). 412

4.2 Adapt-Accel as Efficient LLM Trainers 413

Built on top of Adapt-Pruner, Adapt-Accel incorpo- 414

rates interleaved pruning and training to accelerate 415

the optimization of SLMs, which is shown to be 416

a better strategy compared to past methods (Xia 417

et al., 2024; Sreenivas et al., 2024). 418
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Dataset #Tokens

Open-Orca/OpenOrca 1.80B
allenai/WildChat-1M 0.66B
lmsys/lmsys-chat-1m 0.49B
teknium/OpenHermes-2.5 0.49B
HuggingFaceH4/ultrachat_200k 0.20B
openbmb/UltraInteract_sft 0.18B
O1-OPEN/OpenO1-SFT 74M
yahma/alpaca-cleaned 12M
databricks/databricks-dolly-15k 3.6M

Total 3.87B

Table 2: Dataset for training or interleaved training after
pruning.

Setup As the training of language models re-419

quires a non-trivial amount of computational re-420

sources, a smaller family of models are adopted for421

this section of experiments. MobileLLM (Liu et al.,422

2024) is a series of SLMs developed by Meta for423

on-device deployment purposes and stands for one424

of the strongest SLMs on the scale of 125M/350M.425

To demonstrate the superiority of Adapt-Accel,426

three benchmarks are employed for evaluation,427

including BBH (Srivastava et al., 2022), Truth-428

fulQA (Lin et al., 2021), AGIEval (Zhong et al.,429

2023), which assess all methods performance in430

different aspects beyond commonsense reasoning.431

A hybrid dataset with 3.87B tokens is utilized for432

training, where the data source is available in Ta-433

ble 2.434

For the interleaved training in Adapt-Accel, a435

total number of NP = 20 interleavings are adopted436

in Adapt-Accel, which leads to a pruning ratio437

of (125/300)1/NP ≈ 95.7% per training. In438

other words, the pruning and training will be ap-439

plied alternatively for 20 times, where each prun-440

ing will remove ∼ 95.7% of the current models’441

weights, along with a follow-up recovery training442

in a |Di| = 2(i+1)/(|D|2+ |D|) random samples443

(without replacement) from the training set at the444

i-th iteration.445

Results As shown in Table 3, Adapt-Accel out-446

performs both ShearedLLaMA (Xia et al., 2024)447

and NVIDIA’s Minitron Approach (Sreenivas et al.,448

2024) by a non-trivial margin. This demonstrates449

that the adaptively pruned models have preserved450

essential components in the original SLMs, and are451

still capable of learning new knowledge from the452

Method
BBH

(3-shot)
TruthfulQA

(1-shot)
AGIEval
(0-shot)

ShearedLLaMA
(Xia et al., 2024)

12.29 34.88 30.53

Minitron
(Sreenivas et al., 2024)

12.56 34.13 30.36

Adapt-Accel 13.75 36.18 31.34

Table 3: Comparison of different structural-pruning-
based acceleration methods on MobileLLM-350M→
125M.

training set effectively. 453

4.3 Adapt-LLMs as Strong LLMs 454

Adapt-Accel is a favorable tool for fast and flexi- 455

ble customization of model sizes depending on the 456

practical use cases. Specifically, once the large ver- 457

sion of LLMs has been obtained from pre-training 458

or other sources, Adapt-Accel can be utilized to in- 459

herit the capabilities from the target LLM and accel- 460

erate the training of its smaller versions. The family 461

of SLMs obtained in this fashion, named Adapt- 462

LLMs, not only reduces costs during its training 463

process, but also exhibits significant performance 464

improvements. 465

Setup To provide evidence in support of the 466

claimed strengths of Adapt-LLM, two types of 467

experiments are conducted, individually demon- 468

strating the acceleration and performance bene- 469

fits of Adapt-LLM. The first branch of experi- 470

ments focuses on the acceleration aspect of Adapt- 471

Accel, where different sizes of MobileLLMs, rang- 472

ing from 350M to 1B, are employed. The sec- 473

ond branch of experiments emphasizes perfor- 474

mance, where Adapt-Accel is applied to Qwen- 475

2.5-0.5B (Team, 2024) and Deepseek-R1-Distill- 476

Qwen-1.5B (DeepSeek-AI et al., 2025), proving 477

that the pruned Adapt-LLMs can still match or 478

even surpass popular strong open-source models 479

without the heavy cost of pretraining. The same 480

benchmarks and datasets of Section 4.2 are adopted 481

here. 482

Results As shown in Table 4, Adapt-LLM pruned 483

from the larger version of MobileLLMs recovers 484

its performance across all model sizes in all bench- 485

marks for models larger than 350M, at a reduced 486

cost of 200× less training tokens. This offers 487

strong evidence that Adapt-Accel is a promising 488

acceleration technique especially suitable for cus- 489
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Model #Training Tokens BBH (3-shot) TruthfulQA (1-shot) AGIEval (0-shot) MMLU (5-shot)

MobileLLM-125M ∼ 1012 18.45 32.88 31.19 24.65
MobileLLM-350M→ 125M 3.87× 109 13.75 36.18 31.34 25.20

MobileLLM-350M ∼ 1012 19.98 29.86 30.85 26.11
MobileLLM-600M→ 350M 3.87× 109 23.61 34.22 31.93 32.50

MobileLLM-600M ∼ 1012 23.99 29.29 30.53 26.46
MobileLLM-1B→ 600M 3.87× 109 26.60 32.35 34.24 36.77

Table 4: Recovering MobileLLM’s performance with much 200× less tokens. Here MobileLLM-X→ Y means to
prune the model from size X to size Y with Adapt-Accel.

Model #Training Tokens BBH (3-shot) TruthfulQA (1-shot) AGIEval (0-shot) MMLU (5-shot)

MobileLLM-350M ∼ 1012 19.98 29.86 30.85 26.11
Qwen-2.5-0.5B→ 350M 3.87× 109 26.97 34.86 33.23 38.48

MobileLLM-1B ∼ 1012 25.88 30.26 31.34 24.98
LLaMA-3.2-1B ∼ 9× 1012 31.01 30.41 31.68 31.27
Deepseek-R1-Distill-Qwen-1.5B→ 1B 3.87× 109 30.46 37.50 34.34 34.62

Table 5: Surpassing popular open-sourced SLMs via pruning from strong LLMs.

tomizing model sizes flexibly.490

Table 5 further demonstrates the performance491

gain brought by Adapt-Accel via pruning from492

strong LLMs. It is worth noticing that Deepseek-493

R1-Distill-Qwen-1.5B (DeepSeek-AI et al., 2025)494

→ 1B leads to a 1B model even stronger than495

LLaMA-3.2-1B (AI@Meta, 2024) in MMLU, de-496

livering three orders of magnitude cost reduction497

in terms of training tokens. This indicates that498

Adapt-Accel can serve as a favorable tool for inher-499

iting performance from strong open-source LLMs,500

allowing researchers and engineers with limited501

computational resources to still keep up with the502

fast iteration speed of state-of-the-art LLMs.503

Computation Cost An 8B-sized model can be504

pruned adaptively in 2 to 5 minutes on a single505

NVIDIA A40 GPU, and in 15 to 30 minutes on an506

Intel(R) Xeon(R) Gold 6346 CPU. After applying507

iterative post-training, the full compression pro-508

cess takes between 3 and 18 hours. Benchmark509

evaluation of the compressed models requires an510

additional 15 to 30 minutes. In the experiments511

of Qwen2.5-0.5B → 350M, the training process512

costs ∼ 72 GH200 GPU hours. Compared with513

the ∼ 4608 A100 GPU hours pretraining cost of514

MobileLLM-350M, it is at least 15× more effi-515

cient.516

5 Conclusion517

In this paper, a system called Adapt-Pruner is in-518

troduced to enable flexible LLM model size cus-519

tomization via adaptive pruning. Adapt-Pruner is 520

motivated by 1) the skewness of importance across 521

decoder layers and 2) the goal of preserving the 522

input-output mapping for all the layers. These 523

two properties of AdaptPruner lead to significant 524

improvement over conventional pruning methods. 525

On top of that, Adapt-Pruner gives rise to a novel 526

acceleration paradigm called Adapt-Accel, which 527

combines Adapt-Pruner with interleaved training, 528

a technique shown to provide non-trivial perfor- 529

mance gain over the traditional prune-then-train 530

framework, including ShearedLLaMA and Mini- 531

tron. Adapt-Accel further enables efficient and 532

flexible customization of model sizes by pruning 533

from larger-sized LLMs. Specifically, it is capa- 534

ble of recovering MobileLLMs’ performance from 535

their larger counterparts, and discovers a 1B-sized 536

model with better performance than LLaMA-3.2- 537

1B in multiple benchmarks. 538

Limitations 539

Adaptive Pruning has been shown to be effective 540

in improving the commonsense reasoning perfor- 541

mance of large language models (LLMs). By reduc- 542

ing unnecessary computations, it allows models to 543

operate more efficiently without significantly com- 544

promising accuracy. However, the current software 545

and hardware stack needed to accelerate the infer- 546

ence of such pruned models is still underdeveloped 547

and lacks widespread support, which is expected to 548

be advanced in the near future. 549
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A Experimental Details860

Basic Setup We extend the LLM-Pruner frame-861

work (Ma et al., 2023; Fang et al., 2023) as our862

baseline, which incorporates modules for comput-863

ing similarity scores and adaptive pruning using864

PyTorch (Paszke et al., 2019). Our experiments uti-865

lize both NVIDIA GH200 and H100 GPUs, where866

a single GPU (either GH200 or H100) is utilized867

for pruning and evaluation tasks while 4 additional868

GPUs are employed in parallel for post-training.869

The metrics and the number of shots used for each870

benchmark are available in Table ??.871

Benchmark Metric n-shot

ARC-e acc_norm 0
ARC-c acc_norm 0
BoolQ acc 0
HellaSwag acc_norm 0
OBQA acc_norm 0
PIQA acc_norm 0
SIQA acc 0
Winogrande acc 0
WikiText2 word_perplexity 0
BBH exact_match 3
TruthfulQA acc 1
AGIEval acc_norm 0
MMLU acc 5

Table 6: Details for Evaluation Benchmarks.

Experimental Settings for Adapt-Pruner For872

Adapt-Pruner, we set A = 0.02 in Equation 6 based873

on Ablation study B.2. We evaluate three models874

with three sparsity choices for each model. All the875

methods are aligned using Slimpajama (Soboleva876

et al., 2023) as the calibration dataset, which com-877

prises 512 sequences with a maximum length of 64878

tokens.879

Experimental Settings for Adapt-Accel and880

Adapt-LLMs For Adapt-Accel and Adapt-881

LLMs, we keep the same choice of sparsity am-882

plitude A = 0.02 in Equation 6. The global batch883

size is set to 128, with maximal learning rate of884

2× 10−5, and minimal learning rate of 2× 10−6.885

WSD scheduler (Hu et al., 2024) is applied, where886

the combination of learning rate in all interleaved887

training iterations forms a WSD scheduler, with888

5% warmup steps and 10% linear decay steps at889

the end. For the ShearedLLaMA (Xia et al., 2024)890

comparison, we keep these hyperparameters while 891

allocating 10% of tokens for pruning optimization 892

and 90% for post-training. Similarly, for Minitron 893

comparison (Sreenivas et al., 2024), we keep the 894

same settings and fine-tune the teacher model for 895

one epoch on the dataset. 896

B Additional Experimental Results 897

B.1 Adapt-Pruner as Strong Pruners 898

We evaluate various structured pruning methods 899

on three LLaMA-series models: LLaMA-3.1-8B, 900

LLaMA-3.2-3B, and LLaMA-3.2-1B (AI@Meta, 901

2024). For each model, we test sparsity levels of 902

20%, 40%, and 60% over three trials to assess our 903

method’s effectiveness across different model sizes. 904

As shown in Table 7, Adapt-Pruner demonstrates 905

significant improvements in commonsense bench- 906

marks, especially at 40% sparsity level. We conjec- 907

ture the sparsity of ∼60% to be the ceiling of the 908

redundancy information in LLaMA-series models, 909

since further pruning incurs severe performance 910

degradation, with closing gaps across different 911

pruning methods. 912

B.2 More Ablation Study 913

Optimal Interleaving Frequency Interleaved 914

training is shown to be quite beneficial compared 915

to the traditional prune-then-train paradigm. To 916

further investigate the optimal frequency for inter- 917

leaved training during the pruning process, addi- 918

tional experiments are conducted on MobileLLM- 919

350M→125M. 920

All experiments are conducted on MobileLLM- 921

350M, with 1B tokens sampled from Slimpa- 922

jama (Soboleva et al., 2023) and 1/6 ran- 923

dom samples in the aforementioned dataset 924

(Table 2). Two types of benchmarks are 925

adopted, including the commonsense benchmarks 926

in Section 4.1 and MMLU benchmark in Sec- 927

tion 4.2. Pruning ratios per training, ranging 928

from {0.36, 0.90, 0.925, 0.95, 0.975, 0.99}, are 929

searched to decide the optimal value, which cor- 930

responds to the number of interleaves NP ∈ 931

{1, 9, 12, 20, 38, 96} separately. 932

As shown in Figure 4, the optimal interleave fre- 933

quency is around 95% pruning ratio per training, 934

i.e. every recovery training after ∼ 5% removal 935

of weights or neurons. It is worth noticing that 936

the performance degrades significantly when the 937

interleave frequency is too low or too high, imply- 938

ing the occurrence of knowledge loss caused by 939
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Model Pruning Sparsity Method #Param. ARC-e ARC-c HellaSwag OBQA PIQA SIQA Winogrande Average↑ WikiText2 ppl.↓

LLaMA-3.1-
8B

Ratio =
20%

LLM-Pruner 6.73B±0.00 63.92±0.76 39.53±1.48 64.85±0.99 38.47±1.11 76.64±0.47 42.80±0.47 62.85±0.81 55.58±0.54 14.78±0.25
FLAP 6.48B±0.00 61.01±1.35 37.37±0.12 58.43±0.88 35.40±0.57 73.27±1.05 43.40±0.58 64.46±0.60 53.33±0.23 16.73±0.35
SliceGPT 7.22B±0.00 52.27±0.33 29.01±0.12 56.37±0.58 32.00±0.71 69.84±0.56 41.85±0.57 59.46±0.55 48.69±0.17 19.61±0.14
Adapt-Pruner 6.66B±0.00 66.43±0.85 39.65±0.67 66.71±0.49 38.93±0.34 76.87±0.16 44.10±0.32 66.19±1.41 56.98±0.35 14.54±0.51

Ratio =
40%

LLM-Pruner 5.27B±0.00 33.90±0.48 21.79±0.11 30.00±0.29 25.40±1.28 57.02±0.08 35.45±0.09 51.30±0.73 36.41±0.19 162.81±33.99
FLAP 4.98B±0.00 25.53±0.55 26.25±0.41 26.49±0.12 25.73±0.57 52.36±0.86 34.12±0.61 50.59±0.42 34.44±0.18 6987.58±3502.55
SliceGPT 5.44B±0.00 33.94±0.46 21.79±0.44 33.72±0.32 26.27±0.41 57.73±0.74 36.44±0.25 49.72±0.95 37.09±0.20 85.60±1.84
Adapt-Pruner 5.25B±0.00 45.16±0.21 25.97±0.26 44.88±0.72 30.40±0.85 66.74±0.40 39.03±0.24 56.75±0.11 44.13±0.26 33.75±0.25

Ratio =
60%

LLM-Pruner 3.98B±0.00 26.94±1.39 24.43±1.65 26.67±0.69 27.93±1.59 51.22±0.69 34.14±0.26 49.43±1.31 34.39±0.07 2501.76±2400.07
FLAP 3.71B±0.00 26.60±0.36 26.53±0.54 26.00±0.17 27.07±1.84 51.63±0.41 33.95±0.81 49.62±1.27 34.49±0.20 141572.73±70694.04
SliceGPT 3.73B±0.00 28.95±0.42 21.61±0.53 28.12±0.23 26.13±0.66 53.01±0.34 34.49±0.33 49.01±0.29 34.48±0.07 218.96±2.34
Adapt-Pruner 3.96B±0.00 32.49±0.26 23.64±0.43 30.84±0.17 26.40±0.49 56.66±0.29 35.59±0.36 49.43±1.24 36.44±0.13 119.95±12.88

LLaMA-3.2-
3B

Ratio =
20%

LLM-Pruner 2.70B±0.00 56.65±2.38 32.14±1.33 55.94±0.97 33.60±0.28 73.14±1.07 41.79±0.65 56.70±0.39 50.00±0.79 20.89±1.83
FLAP 2.58B±0.00 50.42±0.70 29.75±0.77 48.87±0.83 31.47±0.25 67.99±0.53 41.21±0.80 58.04±0.14 46.82±0.30 19.90±0.26
SliceGPT 3.31B±0.00 44.77±1.70 27.25±1.22 49.57±1.15 29.27±0.66 66.07±0.40 38.26±0.49 56.09±0.65 44.47±0.81 23.12±0.13
Adapt-Pruner 2.68B±0.00 54.70±1.50 31.43±0.22 55.37±0.28 33.73±1.20 71.69±0.40 42.67±0.32 59.14±0.54 49.82±0.48 17.41±0.07

Ratio =
40%

LLM-Pruner 2.10B±0.00 32.41±1.22 21.84±1.39 29.44±0.20 25.93±0.90 55.10±0.78 34.18±0.55 50.78±1.07 35.67±0.66 409.38±51.28
FLAP 2.00B±0.00 27.06±0.59 24.34±1.28 26.15±0.25 27.53±1.05 50.36±0.44 35.21±0.45 50.49±0.49 34.45±0.34 89300.67±12876.34
SliceGPT 2.52B±0.00 31.86±0.24 21.33±0.35 31.90±0.23 26.47±0.98 56.07±1.04 36.06±0.25 49.28±0.89 36.14±0.14 89.82±0.87
Adapt-Pruner 2.06B±0.00 40.67±0.19 24.57±0.18 36.89±0.31 26.27±0.77 61.37±0.42 37.10±0.23 51.83±0.21 39.82±0.24 45.13±0.50

Ratio =
60%

LLM-Pruner 1.59B±0.00 28.59±0.73 23.04±0.42 27.11±0.16 27.20±0.71 51.91±0.80 33.86±0.17 49.72±2.09 34.49±0.48 2032.20±48.33
FLAP 1.50B±0.00 25.26±0.33 26.00±0.78 26.62±0.23 30.07±0.82 51.61±0.29 33.54±0.61 49.14±0.43 34.61±0.22 347771.12±79021.97
SliceGPT 1.78B±0.00 28.27±0.21 22.12±0.21 28.08±0.13 26.13±0.50 52.83±0.16 35.38±0.02 50.20±0.84 34.72±0.06 257.56±4.96
Adapt-Pruner 1.54B±0.03 31.09±0.73 22.13±0.45 29.99±0.45 27.60±0.65 54.62±0.62 34.78±0.29 49.25±0.91 35.64±0.15 259.39±64.54

LLaMA-3.2-
1B

Ratio =
20%

LLM-Pruner 1.05B±0.00 49.34±0.52 28.53±0.28 47.15±0.43 29.60±1.18 68.57±0.72 38.55±0.82 52.25±0.34 44.85±0.38 28.39±1.38
FLAP 0.94B±0.00 28.73±0.09 24.89±0.40 27.38±0.15 26.73±0.09 52.03±0.72 34.09±0.18 49.12±1.19 34.71±0.23 766.81±86.10
SliceGPT 1.34B±0.00 39.97±1.53 24.86±0.16 42.02±0.53 28.60±0.43 62.62±0.40 37.22±0.54 52.09±0.22 41.06±0.47 31.12±0.40
Adapt-Pruner 1.04B±0.00 49.62±0.57 28.44±0.81 47.36±0.25 31.47±0.25 68.97±0.14 41.03±0.21 55.06±0.85 45.99±0.13 22.50±0.34

Ratio =
40%

LLM-Pruner 0.85B±0.00 34.58±0.56 22.18±0.66 28.88±0.24 23.47±0.62 57.98±0.59 34.85±0.07 51.59±1.58 36.22±0.37 214.73±33.60
FLAP 0.77B±0.00 25.87±0.62 26.82±0.61 26.80±0.08 27.20±0.33 50.87±0.19 34.48±0.33 48.75±0.64 34.40±0.19 96346.37±6993.27
SliceGPT 1.06B±0.00 30.42±0.04 21.78±0.16 29.64±0.10 25.27±0.77 54.79±0.16 36.08±0.25 49.51±0.65 35.36±0.22 116.33±3.77
Adapt-Pruner 0.84B±0.00 36.70±1.39 23.29±1.17 33.87±0.51 25.27±0.57 60.08±0.13 36.79±0.44 51.84±0.66 38.26±0.44 64.91±0.92

Ratio =
60%

LLM-Pruner 0.67B±0.00 28.39±0.32 24.29±0.29 26.27±0.28 25.13±0.57 51.83±0.51 34.02±0.46 49.33±0.55 34.18±0.17 1859.01±191.57
FLAP 0.62B±0.00 26.61±0.19 26.79±0.46 26.53±0.21 31.27±0.90 50.80±0.71 34.08±0.15 49.93±0.16 35.14±0.17 122310.98±25718.08
SliceGPT 0.79B±0.00 28.16±0.33 22.98±0.18 27.90±0.17 26.33±0.25 53.28±0.19 35.19±0.30 48.09±0.82 34.56±0.14 380.60±9.94
Adapt-Pruner 0.66B±0.00 32.57±0.18 22.35±0.86 29.14±0.12 25.00±0.33 54.92±0.35 35.28±0.15 50.09±1.04 35.62±0.35 295.87±31.63

Table 7: Experiment details of comparing structured pruning methods across different sparsity levels and models
over three trials.

large-portion pruning, or unstable learning due to940

too-frequent pruning. This phenomenon is quite941

intriguing as it resembles the disappearance of neu-942

rons in human brains.943

Sensitivity Analysis of Sparsity Amplitude Pa-944

rameter A We empirically investigate the impact945

of amplitude parameter A in Equation 6 on our al-946

gorithm’s performance. The amplitude A directly947

influences the architectural search space of the com-948

pressed model: insufficient amplitude constrains949

the exploration of potential architectural configura-950

tions, while excessive amplitude can lead to struc-951

tural imbalances that degrade model performance.952

To systematically analyze this relationship, we con-953

duct experiments on LLaMA-3.1-8B using a con-954

trolled setup with consistent parameters (50% over-955

all sparsity ratio and 50 pruning iterations) while956

varying the amplitude A across pruning steps. This957

experimental design allows us to isolate and quan-958

tify the specific effects of amplitude variation on959

model compression outcomes.960

As demonstrated in Table 8, the baseline case of961

A = 0 represents uniform pruning without our pro-962

posed adaptive mechanism. Notably, varying the963

amplitude A yields different final parameter counts964

due to its influence on architectural decisions dur-965

ing compression. Our experimental results reveal966

that A = 0.02 achieves optimal performance, max- 967

imizing the benchmark average while minimizing 968

model complexity on WikiText2. The performance 969

exhibits a non-monotonic relationship with A: as 970

amplitude increases, model performance initially 971

improves before degrading, consistent with the the- 972

oretical trade-off between exploration capacity and 973

architectural stability. 974

C Broader Impacts 975

This paper presents work whose goal is to advance 976

the field of Machine Learning. Specifically, we ex- 977

pect the proposed methods can greatly reduce the 978

pre-training cost of SLMs, leading to less computa- 979

tional resource consumption, less carbon dioxide 980

emissions, and faster development of SLMs. 981

To the best of our knowledge, the only risk of 982

the technique is that the LLM may lose certain 983

abilities during pruning, which may lead to halluci- 984

nation. Alignment methods can be further applied 985

to compensate for this risk. 986

D Licenses 987

OpenOrca (Lian et al., 2023; Mukherjee et al., 988

2023; Longpre et al., 2023; Touvron et al., 989

2023a,b), WildChat-1M (Zhao et al., 2024; Deng 990

et al., 2024), ultrachat-200k (Ding et al., 2023), 991
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Figure 4: Ablation over pruning ratio per interleaved training, which shows the optimal value is ∼ 95%, meaning it
is best to interleave the training of SLM after every ∼ 5% weight/neuron removals.

Amplitude A Para. Num. ARC-e ARC-c BoolQ HellaSwag OBQA PIQA Winogrande Average↑ WikiText2 ppl.↓

0 4.54B 29.04 21.84 45.47 28.22 27.00 53.81 48.30 36.24 621.03
0.005 4.62B 37.25 22.87 55.90 33.89 27.80 59.52 52.64 41.41 122.04
0.01 4.61B 37.29 25.17 60.73 35.60 28.80 60.77 52.09 42.92 95.59
0.02 4.43B 40.61 26.45 62.05 35.18 28.20 62.30 53.67 44.07 90.80
0.04 4.04B 34.51 24.06 56.21 31.17 26.40 57.34 51.78 40.21 314.90

Table 8: Sensitivity analysis of amplitude parameter A in progressive pruning, with 50% sparsity and 50 pruning
steps.

and UltraInteract-sft (Yuan et al., 2024) are992

released under MIT license. OpenO1-SFT (Xia993

et al., 2025) is released under Apache-2.0994

license. yahma/alpaca-cleaned (Taori et al.,995

2023) is released under cc-by-4.0 license.996

Dolly-15K (Conover et al., 2023) is released997

under cc-by-sa-3.0 license. OpenHermes-998

2.5 (Teknium, 2023) is released under FAFO999

license, where the source of each independent1000

sub-dataset is unidentifiable, but the research-1001

purpose usage is in accordance with its intend1002

usage. LMSYS-Chat-1M (Zheng et al., 2023)1003

is released under LMSYS-Chat-1M Dataset1004

License Agreement (https://huggingface.1005

co/datasets/lmsys/lmsys-chat-1m#1006

lmsys-chat-1m-dataset-license-agreement),1007

which potentially contains unsafe conversations1008

that may be perceived as offensive or unsettling.1009

To avoid negative impacts to society, we will not1010

release the model until it is fully aligned and in1011

compliance with all pertinent laws and regulations.1012

E AI Usage1013

ChatGPT is used to correct grammatical errors and1014

polish the paper writing.1015
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