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ABSTRACT

We propose a theoretical framework to analyze semi-supervised classification
under the low density separation assumption in a high-dimensional regime. In
particular, we introduce QLDS, a linear classification model, where the low density
separation assumption is implemented via quadratic margin maximization. The
algorithm has an explicit solution with rich theoretical properties, and we show
that particular cases of our algorithm are the least-square support vector machine
in the supervised case, the spectral clustering in the fully unsupervised regime, and
a class of semi-supervised graph-based approaches. As such, QLDS establishes
a smooth bridge between these supervised and unsupervised learning methods.
Using recent advances in the random matrix theory, we formally derive a theoretical
evaluation of the classification error in the asymptotic regime. As an application,
we derive a hyperparameter selection policy that finds the best balance between the
supervised and the unsupervised terms of our learning criterion. Finally, we provide
extensive illustrations of our framework, as well as an experimental study on
several benchmarks to demonstrate that QLDS, while being computationally more
efficient, improves over cross-validation for hyperparameter selection, indicating
a high promise of the usage of random matrix theory for semi-supervised model
selection.

1 INTRODUCTION

Semi-supervised learning (SSL, Chapelle et al., 2010; van Engelen and Hoos, 2019) aims to learn
using both labeled and unlabeled data at once. This machine learning approach received a lot
of attention over the past decade due to its relevance to many real-world applications, where the
annotation of data is costly and performed manually (Imran et al., 2020), while the data acquisition
is cheap and may result in an abundance of unlabeled data (Fergus et al., 2009). As such, semi-
supervised learning could be seen as a learning framework that lies in between the supervised and
the unsupervised settings, where the former occurs when all the data is labeled, and the latter is
restored when only unlabeled data is available. Generally, a semi-supervised algorithm is expected
to outperform its supervised counterpart trained only on labeled data by efficiently extracting the
information valuable to the prediction task from unlabeled examples.

In practice, integration of unlabeled observations to the learning process does not always affect the
performance (Singh et al., 2008), since the marginal data distribution p(x) must contain information
on the prediction task p(y|x). Consequently, most semi-supervised approaches rely on specific
assumptions about how p(x) and p(y|x) are linked with each other. It is principally assumed that
examples similar to each other tend to share the same class labels (van Engelen and Hoos, 2019), and
implementation of this assumption results in different families of semi-supervised learning models.
The first approaches aim to capture the intrinsic geometry of the data using a graph Laplacian (Chong
et al., 2020; Song et al., 2022) and suppose that high-dimensional data points with the same label lie
on the same low-dimensional manifold (Belkin and Niyogi, 2004). Another family of semi-supervised
algorithms suggests that examples from a dense region belong to the same class. While some methods
explicitly look for such regions by relying on a clustering algorithm (Rigollet, 2007; Peikari et al.,
2018), another idea is to directly restrict the classification model to have a decision boundary that
only passes through low density regions. This latter approach is said to rely on the Low Density
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Separation (LDS) assumption (Chapelle and Zien, 2005; van Engelen and Hoos, 2019), and it has
been widely used in practice in recent decades, combined with the support vector machine (Bennett
and Demiriz, 1998; Joachims, 1999), ensemble methods (d’Alché-Buc et al., 2001; Feofanov et al.,
2019) and deep learning methods (Sajjadi et al., 2016; Berthelot et al., 2019).

Despite its popularity, the study of the low density separation assumption still has many open
questions. First, there is a deficiency of works devoted to theoretical analysis of the algorithm’s
performance under this assumption, and most approaches focus on the methodological part (van
Engelen and Hoos, 2019). Second, in real applications, it always remains unclear how a semi-
supervised algorithm should balance the importance of the labeled and the unlabeled examples in
order to not degrade the performance with respect to supervised and unsupervised baselines. This
implies in particular that the hyperparameter selection for a semi-supervised classification model is
crucial, and it is known that using the cross-validation for model selection may be suboptimal in the
semi-supervised case due to the lack of labeled examples (Madani et al., 2005).

Motivated by the aforementioned reasons, this paper proposes a framework to analyze semi-supervised
classification under the low density separation assumption using the power of the random matrix
theory (Paul and Aue, 2014; Marchenko and Pastur, 1967). We consider a simple yet insightful
quadratic margin maximization problem, QLDS, that seeks for an optimal balance between the
labeled part represented by the Least Square Support Vector Machine (LS-SVM, Suykens and
Vandewalle, 1999) and the unlabeled part represented by the spectral clustering (Ng et al., 2001). In
addition, the considered algorithm recovers the graph-based approach proposed by Mai and Couillet
(2021) as a particular case.

The main contributions of this paper may be summarized as follows:

• We propose a large dimensional analysis of QLDS and derive a theoretical evaluation of the
classification error in the asymptotic regime under the data concentration assumption (Louart
and Couillet, 2018). The results allow a strong understanding of the interplay between the
data statistics and the hyperparameters of the model.
• Based on the proposed theoretical result, we propose a hyperparameter selection approach to

optimally balance the supervised and unsupervised term of QLDS. We empirically validate
this approach on synthetic and real-world data showing that it outperforms a hyperparameter
selection by the cross-validation both in terms of performance and running time.

The remainder of the article is structured as follows. In Section 2, we review the related work. Section
3 introduces the semi-supervised framework as well as the optimization problem of QLDS. Under
mild conditions on the data distribution, Section 4 provides the large dimensional analysis of the
proposed algorithm along with several insights and discusses its application for hyperparameter
selection. Section 5 provides various numerical experiments to corroborate the pertinence of the
theoretical analysis and to hyperparameter selection policy. Section 6 concludes the article.

2 RELATED WORK

LDS in Semi-supervised Learning. Formally introduced by Chapelle and Zien (2005), the LDS
assumption imposes the optimal class boundary to lie in a low density region. This assumption is
usually implemented by margin maximization, which underlies either explicitly or implicitly many
semi-supervised algorithms such as the Transductive SVM (TSVM) (Joachims, 1999; Ding et al.,
2017), self-training (Tür et al., 2005; Feofanov et al., 2019) or entropy minimization approaches
(Grandvalet and Bengio, 2004; Sajjadi et al., 2016). As the margin’s signs for unlabeled data are
unknown, various unsigned alternatives have been proposed (d’Alché-Buc et al., 2001; Grandvalet
and Bengio, 2004), where the classical approach is to consider the margin’s absolute value (Joachims,
1999; Amini et al., 2008). In practice, the latter is usually replaced by an exponential surrogate
function for gradient-based optimization of TSVM (Chapelle and Zien, 2005; Gieseke et al., 2014).
In this paper, we will consider TSVM with the quadratic margin that is both differentiable and convex,
which allows us to perform theoretical analysis and obtain a graph-based semi-supervised learning as
a particular case. A similar framework of the quadratic margins was considered by Belkin et al. (2006)
whose work considered a more general case with a kernel-based SVM and the Laplacian matrix
integrated to the objective, for which they proved a Representer theorem. While our work focuses on
explicitly deriving a theoretical expression of the classification error, their paper may complement
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us from the algorithmic point of view showing a direct extension of QLDS to a non-linear case. It
is important to mention other theoretical studies of approaches based on the low density separation,
including upper-bounds of the classification error of TSVM (Derbeko et al., 2004; Wang et al., 2007)
and analysis of the self-training algorithm (Feofanov et al., 2021; Zhang et al., 2022).

Graph-based Semi-Supervised Learning. The principle of a graph-based approach is to 1) build a
suitable graph with all the labeled and the unlabeled examples as the nodes connected by the weighted
edges measuring the pairwise similarities (graph construction step), 2) search for a function f over
the graph that is close as possible to the given labels, and that is smooth on the entire constructed
graph (label inference step). The graph structure can be naturally used as a reflection for the manifold
assumption in SSL that suggests that samples located near to each other on a low-dimensional
manifold should share similar labels. Among the graph construction methods, the K-nearest neighbor
(KNN) graph (Ozaki et al., 2011; Vega-Oliveros et al., 2014) and b-Matching methods (Jebara et al.,
2009; Dhillon et al., 2010), along with their extensions, are the most popular ones. Several extensions
have considered labeled samples as prior knowledge to refine the generated graph (Rohban and
Rabiee, 2012; Berton and Lopes, 2014). Depending on the particular choice of loss functions, the
label inference methods can be divided in label propagation approaches (Xiaojin and Zoubin, 2002;
Zhou et al., 2003), manifold regularization (Belkin et al., 2006; Xu et al., 2010), Poisson learning
(Calder et al., 2020) and deformed Laplacian regularization (Gong et al., 2015). Recently, Mai and
Couillet (2021) proposed a theoretical analysis of a unified framework for label inference in a graph
that encompasses label propagation, manifold, and Laplacian regularization as special cases. In this
paper, we recover (Mai and Couillet, 2021) as a special case of QLDS.

Large Dimensional Analysis for Machine Learning. Recently, Random Matrix Theory (RMT)
has received particular attention in the machine learning community for studying the asymptotic
performance in a regime when the dimension is of the same order of magnitude as the sample size.
Recent advances include analysis of the linear discriminant (Niyazi et al., 2021), spectral clustering
(Couillet and Benaych-Georges, 2016), least square SVM (Liao and Couillet, 2019), graph-based
semi-supervised learning (Mai and Couillet, 2021). In this paper, we show that theoretical findings of
the last three aforementioned works are recovered from our theoretical analysis of QLDS provided in
Section 4. We derive our theoretical results under the assumption that observations follow a vector-
concentration inequality (Louart and Couillet, 2018), which can be particularly interesting for deep
learning representations that preserve concentration property (Seddik et al., 2020). It is interesting
to mention that a number of machine learning algorithms have been theoretically analyzed using
methods from theoretical physics, especially glassy physics (Agliari et al., 2020; Carleo et al., 2019;
Loureiro et al., 2021; Cui et al., 2021; d’Ascoli et al., 2020). To continue with physical statistics-based
methods, we highlight the work of Lelarge and Miolane (2019) who derived Asymptotic Bayes risk
using information theory and the cavity method (Mézard et al., 1987). Although statistical physics
and RMT-based approaches share the same objectives, the techniques used and the interpretations
make them two different but complementary methods. To the best of our knowledge, we are not
aware of any analysis of the algorithm studied in this paper using a statistical physics approach, which
we believe is however possible and could be an interesting future work. For completeness, let us also
mention the works based on the Convex Gaussian MinMax Theorem (Thrampoulidis et al., 2015;
2016) that allows the analysis of many machine learning algorithms but is mathematically different
from the approach used in this paper.

3 FRAMEWORK

Notations Matrices will be represented by bold capital letters (e.g., matrix A). Vectors will be
represented in bold minuscule letters (e.g., vector v) and scalars will be represented without bold
letters (e.g., variable a). The canonical vector of size n is denoted by e

[n]
m ∈ Rn, 1 ≤ m ≤ n, where

the i-th element is 1 if i = m, and 0 otherwise. The diagonal matrix with diagonal x and 0 elsewhere
is denoted by Dx, while Ai: denotes the i-th line of the matrix A.

Semi-supervised Setting We consider binary classification problems, where an observation x ∈ Rd

is described by d features and belongs either to the class C1 with a label y=−1 or to the class C2
with a label y = +1. We assume that training data consists of nl labeled examples (X`,y`) =
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(xi, yi)
n`
i=1 ∈ Rd×n` × {−1,+1}n` and nu unlabeled examples Xu = (xi)

n`+nu

i=n`+1 ∈ Rd×nu given
without labels. Following the transductive setting (Vapnik, 1982), we formulate the goal of semi-
supervised learning as to learn a classification model Rd → {−1,+1} that yields the minimal error
on the unlabeled data Xu. For convenience, we denote the concatenation of labeled and unlabeled
observations by X = [X`,Xu]. For each class Cj , j∈{1, 2}, we denote the observations from this
class as X

(j)
` = [x

(j)
1 , . . . ,x

(j)
n`j ], where X` = [X

(1)
` ,X

(2)
` ] and n`1+n`2 =n`. The same convention

is used for the unlabeled data Xu. By nj=n`j+nuj we denote the total number of samples in class
Cj , j ∈ {1, 2}.

QLDS Based on the training set [X`,Xu], we seek for a separating hyperplane (linear decision
boundary) ω? that is a solution of the following optimization problem:

ω? = arg min
ω

α`
2

n∑̀
i=1

(
yi −

x>i ω√
n

)2

︸ ︷︷ ︸
label fidelity term

− αu
2

n`+nu∑
i=n`+1

(
ω>

xi√
n

)2

︸ ︷︷ ︸
low density separation

+
λ

2
‖ω‖2︸ ︷︷ ︸

regularization

. (1)

The first term is the label fidelity term that involves the labeled data only, and it represents the classical
least-square loss used in the LS-SVM. The second term implements the low density separation
regularization by maximizing the square of the margin of each unlabeled example, thereby pushing
the decision boundary away from the unlabeled points. The third term is the classical Tikhonov
regularization although we do fix λ to the maximum eigenvalue of X = [X`,Xu] (for more details,
see Appendix C.2 and E.6). The first two terms are considered up to a (1/

√
n) factor in order to ease

the notations of the theoretical derivations of Section 4.

Note that the label fidelity term can be alternatively represented by the hinge loss or the log-loss,
which slightly alters the overall behavior of the algorithm. Our choice of the least square loss is
primarily motivated by the possibility of obtaining more explicit, tractable and insightful results, let
alone numerically cheaper implementation. The question of the optimal choice for the loss of the
supervised part is a highly interesting question in the literature. Although it is difficult to formulate a
strong statement valid for all practical situations, some asymptotic attempts have been made such
as (Aubin et al., 2020; Mai and Liao, 2019). More related to our hypothesis, (Mai and Liao, 2019)
shows that for isotropic Gaussian mixture models in the high dimensional regime, quadratic cost
functions are optimal and outperform alternatives costs such as SVM or logistic approaches. Table
4 in Appendix summarizes the classification error by using three losses for labelled parts (hinge,
logistic, and quadratic) and two losses for unlabelled parts (quadratic and absolute value). This table
shows that the selection of losses presented in the article has a competitive performance.

The optimization problem in Equation (1) is convex (as soon as λ > λmax where λmax is the
maximum eigenvalue of

(
αu

XuX
>
u

n − α`X`X
>
`

n

)
) and admits a unique solution (all details are given

in the supplementary material, Section A) given by

ω? =
1√
n

(
λId − αu

XuX
>
u

n
+ α`

X`X
>
`

n

)−1

X`y` . (2)

It is worth remarking that for the fully-supervised case (α`, αu) = (1, 0), we recover the Least Square
SVM (Suykens and Vandewalle, 1999). Another extreme case is to take (α`, αu) = (0, 1) that leads
to the optimal decision boundary of the graph-based approach proposed by Mai and Couillet (2021)
(further denoted by GB-SSL). Moreover, if additionally to (α`, αu) = (0, 1) take λ as the maximum
eigenvalue of the unlabeled data (1/n) XuX

>
u , we recover spectral clustering (See Section B of the

supplementary material for a complete derivation).

Given the optimal decision boundary as per Equation (2), the decision score function for any example
x ∈ Rd is given as

f(x) =
1√
n
ω?>x =

1

n
y>` X>`

(
λId − αu

XuX
>
u

n
+ α`

X`X
>
`

n

)−1

x . (3)
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4 THEORETICAL ANALYSIS AND ITS APPLICATION

In this section, we theoretically analyze the statistical behavior of QLDS and its decision function
f(x). First, we state the assumptions used for theoretical analysis. Then, we present the main results
and describe an application for hyperparameter selection.

4.1 ASSUMPTIONS

In the following, we assume the following classical concentration property.

Assumption 1 (Concentration of D(X)) For two classes Cj , j∈{1, 2}, we assume that all vectors
x

(j)
1 , . . . ,x

(j)
nj ∈ Cj are i.i.d. and in particular Cov(x

(j)
i ) = Id. Moreover we assume that there exist

two constants C, c > 0 (independent of n, d) such that, for any 1-Lipschitz function f : Rd → R,

∀t > 0, Px∼D(X)

(
|f(x)−mf(x)| ≥ t

)
≤ Ce−(t/c)2

where mZ is a median of the random variable Z.

Assumption 1 notably encompasses the following scenarios: the columns of X are (a) indepen-
dent Gaussian random vectors with identity covariance, (b) independent random vectors uniformly
distributed on the Rd sphere of radius

√
d, and, most importantly, (c) any Lipschitz continuous

transformation thereof, such as GAN as it has been recently theoretically shown in (Seddik et al.,
2020). In the appendix (Section D), we have further explained the concentrated vector assumption
and complemented its relevance and generality for the study of machine learning algorithms. In
Assumption 1, we only consider identity covariance matrix to keep this presentation simple. The
more general case of arbitrary covariance matrix Σj is fully derived in the supplementary material,
Section C. We should mention that it is convenient to “center” the data X for the sake of simplicity.
This centering operation is performed on the whole data set X by substracting the global mean from
the training points i.e., X← X− E[X]. Furthermore, we place ourselves into the following large
dimensional regime:

Assumption 2 (High-dimensional asymptotics)) As n → ∞, we consider the regime where d =
O(n) and assume d/n → c0 > 0. Furthermore, for j = 1, 2, n`j/n → c`j and nuj/n → cuj . We
denote by c` = [c`1, c`2] and cu = [cu1, cu2].

This assumption of the commensurable relationship between the number of samples and their
dimension corresponds to a realistic regime and differs from classical asymptotic where the number
of samples is often assumed to be exponentially larger than the feature size. Note that this chosen
asymptotic regime classical in Random Matrix Theory fits most real-life applications and has been
successfully applied in telecommunications (Couillet and Debbah, 2011), finance (Potters et al., 2005)
and more recently in machine learning (Liao, 2019; Mai and Couillet, 2021; Tiomoko et al., 2020).

4.2 MAIN RESULTS

We introduce the mean matrix M = [µ1,µ2] ∈ Rd×2, where µj = Ex∈Cj [x] ∈ Rd is the theoretical
mean of the class Cj , j ∈ {1, 2}. Further, we define matricesM and G that will play an important
role at the core formulation of the statistics of f(x).

Definition 1 (Data statistics matricesM and G) We define data matricesM and G as

M =
(
D−1
κ + δM>M

)−1
, G = −

(
nu

n(1− αuδ)
+ a>d

)
δM>M,

where the vectors a, d and κ are the unique positive solution of the following fixed point equations

aj =
c`jα

2
`

(1 + α`δ)2
+

cujα
2
u

(1− αuδ)2
, dj = − δ2

(1− αuδ)2

c0nu
n(1− c0δ2aj)

,

δ =
1

λ+ κ1 + κ2
, κj =

c`jα`
1 + α`δ

− cujαu
1− αuδ

.
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The existence of a,d,κ, δ are a direct application of (Louart and Couillet, 2018, Proposition 3.8)).
These quantities are common in Random Matrix Theory in order to correct large biases in high
dimensions (for more details, we refer to the supplementary material, Section D). We are now in
position to introduce the asymptotic theoretical analysis of the score f(x) of any unlabeled sample x.

Theorem 1 Let X ∈ Rd×n be a data set that follows Assumptions 1 and 2. For any x ∈ Xu with
x ∈ Cj and f(x) = 1√

n
ω?>x defined by Equation (3), we have almost surely for both classes j

f(x|x ∈ Cj)− fj
a.s.−→ 0, where fj ∼ N

(
mj , σ

2
)
.

The mean mj and the variance σ2 are defined as

mj =
(−1)j

(
c`j − (e

[2]
1 − e

[2]
2 )>Dc`

D−1
κ Me

[2]
j

)
κj(1− αuδ)(1 + α`δ)

,

σ2 =
(
e

[2]
1 − e

[2]
2

)>
(DsMGMDs +DdDc`

)
(
e

[2]
1 − e

[2]
2

)
,

with s = [c`1/(κ1(1 + α`δ)), c`2/(κ2(1 + α`δ)].

Finally, the theoretical classification error is asymptotically given by

ε? =
1

2

(
1− erf

(
m1 −m2

2
√

2σ

))
, (4)

where erf(z) = 2/
√
π
∫ z

0
e−t

2

dt is the Gauss error function.

A fundamental aspect of Theorem 1 is that the performance of the large dimensional (large n, large
d) classification problem under consideration merely concentrates into two-dimensional sufficient
statistics, as all objects defined in the theorem are at most of size 2. All quantities defined in Theorem 1
are a priori known, apart from the proportion of classes in Xu and the matrix M>M ∈ R2×2,
whose (i, j)-entries are the inner products µ>i µj that have to be estimated from data. From a
practical perspective, these inner products are easily amenable to fast and efficient estimation as per
Proposition 2, requiring a few training data samples.

Proposition 2 (On the estimation of mj and σ) The following estimates holds:

[
M>M

]
ij

=


(
4/n2

`i

)
1>n`i

X
(i)
`;1

>
X

(i)
`;21n`i

+O
(

1/
√
d n`i

)
if i = j ,

(1/ (n`i n`j)) 1>n`i
X

(i)
`

>
X

(j)
` 1n`j

+O
(

(dmin{n`i, n`j})−
1
2

)
otherwise.

with X
(j)
` = [X

(j)
`;1 ,X

(j)
`;2 ] an even-sized division of X

(j)
` .

Note that a single sample (two when i = j) per class is sufficient to obtain a consistent estimate for
all quantities as long as d is large. In the semi-supervised setting, when only few labeled examples
are available, it is thus still possible to estimate M>M. It is important to remark that the convergence
rate of the estimation is a quadratic improvement over the convergence rate of the usual central-limit
theorem. Finally, to estimate the proportion of classes in the unlabeled set, not known a priori, we
assume that the distribution of classes to be the same for the labeled and unlabeled data, so that
we have cuj = c`j

nu

n`
for j ∈ {1, 2}. We show in the supplementary material (Section E) that this

assumption has little impact on the theoretical insights as well as in the experiments.

As an application of Theorem 1, we provide in Figure 5 of the Appendix a "phase diagram" (relative
gain with respect to supervised learning as a function of the labeled sample size and the task difficulty)
which shows that a non-trivial gain with respect to a fully supervised case is obtained when few
labeled samples are available and when the task is difficult. This conclusion is similar to existing
conclusion from (Mai and Couillet, 2021; Lelarge and Miolane, 2019).

4.3 APPLICATION TO HYPERPARAMETER SELECTION

Following the discussion in Section 3, we obtain that the theorem allows us to recover the asymptotic
performance of the spectral clustering, the graph-based approach GB-SSL of Mai and Couillet (2021)
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Table 1: Running time comparison between theory-based hyperparameter selector and cross-validation
based with 10 folds, with n`j = nuj = d for j ∈ {1, 2}.

dimension 5 8 16 32 64 128 256 512 1024 2048

QLDS(th) .01 s .01 s .01 s .01 s .017 s .02 s .04 s .17 s .95 s 8.58 s
QLDS(cv) .32 s .38 s .43 s .64 s 1.02 s 2.71 s 14 s 95 s 587 s 4970 s

and the LS-SVM (Suykens and Vandewalle, 1999). This generality of the theorem represents an
important asset in the unification of some SSL learning schemes. In particular, as the theoretical error
can be regarded as a function of α` and αu, below we propose to use Equation (4) as a criterion to
automatically select α` and αu through the grid search over different values. This leads to Algorithm 1.
Note that the classification error is invariant to a scaling of λ (see Equation (3)). Thus, we fix the
value of λ in our experiments to be λmax with λmax the maximum eigenvalue of X = [X`,Xu], and
optimize only α` and αu. The fixed value corresponds to the one also proposed in (Mai and Couillet,
2021). We give more details about this choice for λ and its numerical stability in Appendix C.2.

Our proposition to select α` and αu by the theorem is motivated by several practical reasons. Firstly,
the importance of labeled and unlabeled examples varies, making the graph-based learning more
effective in some cases, and the LS-SVM more effective in the others. By properly choosing α`
and αu, one can find the best balance between the GB-SSL and LS-SVM. Secondly, the classical
approach of selecting hyperparameters by cross-validation suffers from high computational time and
prone to bias in the semi-supervised setting due to the scarcity of the labeled set (Madani et al., 2005).

Algorithm 1 QLDS algorithm with optimal selection of α` and αu
Input: labeled data X` and unlabeled data Xu

grid of hyperparameter values {(α(t)
` , α

(t)
u )}Tt=1

Preprocessing: center data X← X− E[X], where X = [X`,Xu]
Output: estimated label ŷ ∈ {−1, 1} for each unlabeled example x ∈ Xu

estimate inner product M>M using Proposition 2
choose λ as the maximum eigenvalue of 1

nXuX
>
u

for t = 1, . . . , T grid-search steps do
take α(t)

` and α(t)
u

estimate classification error ε(t)
? by Theorem 1 with αu = α

(t)
u and α` = α

(t)
`

end for
select α?u and α?` by finding t that yields minimal classification error ε(t)

?

compute the decision score f(x) using Equation (3) with αu = α?u and α` = α?`

return label ŷ =

{
−1 if f(x) < 0
1 otherwise

Complexity analysis. Algorithm 1 or QLDS(th) may be sequentially described as in 1) training
of QLDS, 2) estimation of M>M, 3) selection of α` and αu over the grid. As QLDS has an explicit
solution, its complexity is equivalent to the computation of the decision scores f(x) which requires
solving a system of n linear equations, yielding complexity O(n3). The computation of M>M is
of complexity O(dn+ d) (estimation + product). Hyperparameter selection consists of iterating T
times the error estimation from Theorem 1 and its complexity isO(T ). Finally, the global complexity
of QLDS(th) is O(n3) in the regime of Assumption 2.

It is important to mention that an alternative way to optimize α` and αu is cross-validation
(QLDS(cv), which requires optimizing QLDS for each candidate (αt`, α

t
u) for K folds, leading

to a complexity of O(TKn3). This indicates a clear advantage of using Theorem 1 in terms of time
complexity as highlighted in Table 1.
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5 EXPERIMENTAL RESULTS

In this section, we illustrate the robustness of the different algorithms and the optimization of
the hyperparameters α` and αu proposed in the previous section. More specifically, Section 5.1
confirms empirically the robustness of the concentrated random vector assumption on real data
by comparing the empirical distribution of the decision score with the theoretical prediction of
Theorem 1. Section 5.2 analyzes the performance of QLDS when increasing the number of labeled
examples, and Section 5.3 is a benchmark with several baselines for a wide range of real data sets.
We perform comparison between the following methods:

• QLDS(0,1) with α` = 0, αu = 1 which stands for the graph-based approach proposed in
(Mai and Couillet, 2021);
• QLDS(1,0) with α` = 1, αu = 0 which stands for LS-SVM;
• Self-training with the Least-Square SVM as the base classifier, where the confidence

threshold is optimized as proposed by Feofanov et al. (2019) denoted ST(LS-SVM);
• QLDS(cv) with model selection of α` and αu by the 10-fold cross-validation;
• QLDS(th) with model selection of α` and αu performed theoretically using Theorem 1;
• QLDS(or) Oracle to measure the efficiency of the proposed algorithm: QLDS, where

model selection of α` and αu is performed on the ground truth (as if the labels for the
unlabeled examples would be known). It represents the error-classification lower-bound for
the previous approaches.

Through the experimental part, we will use several data sets described as follows (see more details in
Section E of the supplementary material):

• Synthetic: Gaussian mixture model with x
(j)
i ∼ N (µj , Id) with µ1 = −µ2;

• Amazon Review data set (McAuley et al., 2015; He and McAuley, 2016) from tex-
tual user reviews, positive or negative, on books (books), DVDs (dvd), electronics
(electronics), and kitchen (kitchen) items respectively. The data is encoded as
d = 400-dimensional tf-idf feature vectors of bag-of-words unigrams and bigrams;
• Adult data set (Kohavi et al., 1996) which consists in predicting whether income exceeds

50 000 per year based on census data;
• Mushrooms data set from UCI Machine Learning repository (Dua and Graff, 2017) which

classifies between poisonous and edible mushrooms based on their physical characteristics;
• Splice data set from UCI Machine Learning repository (Dua and Graff, 2017) which aims

to recognize two types of splice junctions in DNA sequences.

5.1 ROBUSTNESS OF THEORETICAL ANALYSIS TO REAL DATA

This section illustrates the close fit of the theoretical performance (i.e., Theorem 1) on the synthetic
and two real-life data sets. To do so, we compare the empirical decision function represented by the
histograms on Figure 1 versus the Gaussian statistics mj and σ2 from Theorem 1.

5.2 ANALYSIS OF SAMPLE SIZE

Figure 2 represents the classification error as a function of the number of labeled examples. The
picture shows that the theoretical model selection outperforms the cross-validation scheme and
is close to the oracle selection (which uses the ground truth labels). In general, we observe that
QLDS(th) is very stable in comparison with the cross-validation selector QLDS(cv).

5.3 COMPARATIVE PERFORMANCE ON SEVERAL DATA SETS

This section compares through Table 2 the performance obtained by fixing the number of labeled and
unlabeled data on several data sets to analyze the performance of the hyperparameter selection and
also to validate the theoretical intuitions formulated in this article.

The experimental results show that

8
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Figure 1: Empirical versus theoretical density of decision score f(x) for (Left) Synthetic data set
with d = 100, n`1 = n`2 = 100, nu1 = nu2 = 1 000 (Center) Review-kitchen classification
d = 400, n`1 = n`2 = 100 (Right) Review-books classification d = 400, n`1 = n`2 = 100. For
both review data sets, the empirical histogram is computed using 400 unlabeled samples.
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Figure 2: Classification error depending on the number of labeled examples on different data sets.
Positive vs. negative review for different products (Left) kitchen (Center) dvd and (Right)
electronics with nu1 = nu2 = 200, d = 400.

Table 2: The classification error of different methods under consideration on the real benchmark data
sets. ↓ indicates statistically significantly worse performance than the best result (shown in bold),
according to the Mann-Whitney U test (p < 0.01) (Mann and Whitney, 1947).

Data set
Baselines Model Selection Oracle

QLDS(1,0) QLDS(0,1)
QLDS(1,1) ST(LS-SVM) QLDS(cv) QLDS(th) QLDS(or)

(LS-SVM) (GB-SSL)

books 37.47↓ ± 2.25 26.47 ± 0.72 49.13↓ ± 0.65 35.83↓ ± 2.48 27.91 ± 3.32 26.03 ± 0.79 25.7 ± 0.93
dvd 38.33↓ ± 1.72 29.12 ± 1.35 49.25↓ ± 0.68 36.46↓ ± 1.94 29.53 ± 3.48 28.53 ± 1.33 26.94 ± 1.47
electronics 34.15↓ ± 3.25 19.4 ± 0.29 48.67↓ ± 1.05 31.69↓ ± 3.56 20.1↓ ± 1.03 19.41 ± 0.46 19.11 ± 0.58
kitchen 32.39↓ ± 3.02 19.31 ± 0.16 49.07↓ ± 0.64 29.62↓ ± 3.03 19.98↓ ± 2.28 19.11 ± 0.32 18.67 ± 0.43
splice 39.81↓ ± 2.93 35.48 ± 0.86 44.36↓ ± 2.3 39.36↓ ± 3.12 37.02 ± 3.04 35.35 ± 1.26 33.63 ± 1.75
adult 33.35 ± 0.68 36.28↓ ± 0.06 32.55 ± 1.47 35.45↓ ± 0.75 32.25 ± 1.92 32.88 ± 2.46 31.9 ± 1.74
mushrooms 6.55↓ ± 2.07 11.33↓ ± 0.04 33.94↓ ± 10.67 6.62↓ ± 2.39 2.57 ± 1.86 8.49↓ ± 3.63 1.75 ± 1.31

• QLDS benefits from both labelled and unlabelled data and significantly outperforms
LS-SVM and GB-SSL on datasets 5 and 2 respectively.

• Fine tunning of α` and αu provides better results than setting them to the default values.

• Hyperparameter selection using Theorem 1 outperforms or is comparable to cross-validation,
at the same time being more robust according to the error’s standard deviation.

• There is still room for improvement when we compare QLDS(or) with QLDS(th).

6 CONCLUDING REMARKS

In this paper, we proposed a theoretical analysis of a simple yet powerful linear semi-supervised
classifier that relies on the low density separation assumption. Moreover, our approach builds a bridge
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between several existing approaches such as the least square support vector machine, the spectral
clustering, and graph-based semi-supervised learning. The key approach to our analysis was to use
modern large dimensional statistics to quantify the classification error through the data statistics of
the decision function. Based on this result, we proposed a hyperparameter selection criterion that
demonstrated promising experimental results compared to the time-consuming cross-validation. The
proposed theoretical study opens broad perspectives for analysis of the LDS assumption in more
challenging settings such as the multi-class classification, the non-linear case, or fully unsupervised
domain adaptation.
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A APPENDIX

B SOLUTION OF QLDS

We recall the optimization problem of QLDS without bias as

ω? = arg min
ω

L(ω), (5)

where L(ω) =
λ

2
‖ω‖2 +

α`
2

n∑̀
i=1

(yi −
x>i√
n
ω)2 − αu

2

n`+nu∑
i=n`+1

(ω>
xi√
n

)2 . (6)

The loss L(ω) can be rewritten in a more convenient and compact matrix formulation

L(ω) =
λ

2
ω>ω +

α`
2
‖y` −

X>`√
n
ω‖22 −

αu
2
ω>

XuX
>
u

n
ω . (7)

Taking the derivative of the loss function L(ω) with respect to ω leads to

∂L(ω)

∂ω
= λω − α`
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The optimal value of ω (up to a scaling of α`) is found by setting the gradient to zero

ω? =

(
λId + α`

X`X
>
`

n
− αu

XuX
>
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n

)−1
X`√
n

y`.

The decision function for the unlabeled data Xu is given as

fu = ω?>
Xu√
n

(8)

= y>`
X>`√
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X`X
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We would like to mention importantly that the hessian of the loss reads as

∇L(ω) =

(
λId + α`

X`X
>
`

n
− αu

XuX
>
u

n

)
Note that∇L(ω) > 0 if and only if λ > λmax

(
−α`X`X

>
`

n + αu
XuX

>
u

n

)
where λmax(M) denotes

the maximum eigenvalue of the matrix M . Therefore the loss function is convex as soon as λ >
λmax

(
−α`X`X

>
`

n + αu
XuX

>
u

n

)
.

C LINK TO RELATED WORK

C.1 LINK TO GRAPH-BASED SEMI-SUPERVISED LEARNING

Given generally few labeled examples and comparatively many unlabeled ones, the idea of graph-
based SSL is to construct a connected graph that propagates effective labeled information to the
unlabeled data. More specifically, the data are represented by a finite weighted graph G = (N , E ,W)
consisting of a set of nodes N based on the data samples X = [X`,Xu], a set of edges E and its
associated weight matrix W = {ωii′}ni,i′=1 where ωii′ measures the similarity between data points
xi and xi′

ωii′ = h

(
1

d
〈xi,xi′〉

)
,

for some non decreasing non negative function h so that similar data vectors xi, xi′ are connected
with a large weight. Graph-based learning algorithms estimate the label of each node based on a
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smoothness assumption on the graph. Specifically, the algorithm estimates a class attachment “score”
fi for each node i by solving the optimization problem:

min
f

ωii′ (fi − fi′)2 (10)

s.t. fi = yi ∀ 1 ≤ i ≤ n`. (11)

Here, the term ωii′ (fi − fi′)2 imposes label consistency of nearby samples (smoothness condition
on the labels of the graph). The optimization problem in Equation (10) is the classical Laplacian
regularization algorithm studied in depth in (Mai and Couillet, 2018). There, the authors showed
the fundamental importance to “center” the weight matrix W. This centering approach corrects an
important bias in the regularized Laplacian which completely annihilates the use of unlabeled data in
a large dimensional setting. A significant performance increase was reported, both in theory and in
practice in (Mai and Couillet, 2021) when this basic, yet counter-intuitive, correction is accounted for.
More specifically the centering is performed as follows

Ŵ = PWP

with P =
(
In − 1

n1n1>n
)

the centering projector.

However, the optimization problem described in (10) now becomes non convex since the entries of
the weight matrix W may take negative values (this must actually be the case as the mean value of
the entries of W is zero). To deal with this problem, Mai and Couillet (2021) proposes to constrain
the norm of the unlabeled data score vector fu (that is, the score vector restricted to unlabeled data)
by appending a regularization term α‖fu‖2 to the previous minimization problem. This leads, under
a more convenient matrix formulation, to

min
fu∈Rnu

α‖fu‖2 − f>Ŵf s.t. f` = y` . (12)

This problem is now convex for all α > ‖Ŵuu‖ where Ŵuu is the restriction of the matrix Ŵ to
the unlabeled data.

The optimization problem is a quadratic optimization problem with linear equality constraints, and fu
can be obtained explicitly and its solutions are best described under the matrix formulation (using a
linear kernel, i.e., h(x) = x):

fu =
1

n
y>` X>`

(
λId −

1

n
XuX

>
u

)−1

Xu . (13)

The graph-based SSL solution given in Equation (13) is a particular case of QLDS solution given in
Equation (9) with αu = 1 and α` = 0.

C.2 LINK TO SPECTRAL CLUSTERING AND CHOICE OF λ

Spectral clustering is a particular case of (13) when λ is the maximum eigenvalue of 1
nXuX

>
u .

Indeed, using the eigenvalue decomposition 1
nXuX

>
u = UΛU> =

d∑
i=1

λiuiu
>
i , Equation (13) can

be rewritten as

fu =
1

n
y>` X>`

(
λId −

1

n
XuX

>
u

)−1

Xu

=
1

n

d∑
i=1

y`X
>
`

uiu
>
i

λ− λi
Xu .

When λ → λmax = maxλi and denoting by umax the eigenvector corresponding to the largest
eigenvalue λmax, we obtain,

fu ∼ y`X
>
`

umaxu>max

λ− λmax
Xu

∝ u>maxXu ,

which unfolds as projecting1 the unlabeled data Xu into the largest eigenvector of 1
nXuX

>
u corre-

sponding to the spectral clustering algorithm with linear kernel.
1up to a scaling y>

` X>
` umax which does not impact the classification error
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The parameter λ In order for QLDS to specialize to spectral clustering in the unlabelled regime,
we fix the parameter λ = λmax to be the maximum eigenvalue of X = [X`,Xu]. For numerical
reasons, in all the experiments we use λ = (1 + ε)λmax with ε = 10−3. Although many choices of ε
have been tried out, we do not find substantial improvements at considering it as an hyper-parameter
and therefore fix it.

D THEORETICAL ANALYSIS OF QLDS

We recall the solution of the optimization problem of QLDS as

fu =
1

n
y>` X>`

(
λId + α`

X`X
>
`

n
− αu

XuX
>
u

n

)−1

Xu . (14)

The goal is to understand the statistical behavior of fu in particular its distribution, and the moments
of the distribution. To that end, we will assume the following concentration property on the data
X = [X`,Xu].

Assumption 3 (Distribution of D(X)) There exist two constants C, c > 0 (independent of n, d)
such that, for any 1-Lipschitz function f : Rp×n → R,

Px∼D(X)

(
|f(x)−mf(x)| ≥ t

)
≤ Ce−(t/c)2 ∀t > 0,

where mZ is a median of the random variable Z. We require that the columns of X are independent
and that for ` ∈ {1, 2}, x

(`)
1 , . . . ,x

(`)
n` are i.i.d. such that Cov(x

(`)
i ) = Σ`. We further denote the

mean and covariance for the columns of X respectively as µ` ≡ E[x
(`)
1 ] and C` = Σ` + µ`µ

>
` .

As discussed in the main article, Assumption 3 notably encompasses the following scenarios: the
columns of X are (i) independent Gaussian random vectors with identity covariance, (ii) independent
random vectors uniformly distributed on the Rp sphere of radius

√
p, and, most importantly, (iii) any

Lipschitz continuous transformation thereof. Scenario (iii) is of particular relevance for practical data
settings as it was recently shown (Seddik et al., 2020). Indeed, random data generated by GANs (for
example, images) can be modeled as in case (iii).

An intuitive explanation of Assumption 1 is that the transformed random variables f(x) for any
f : Rd → R Lipschitz has a variance of order O(1). In particular, it implies that it does not depend
on the initial dimension d. Although we are not aware of any formal method to check whether some
data follow this assumption, a line of reasoning suggests that this concentration property is most
likely present in many real data. Indeed, most machine learning algorithms are Lipschitz applications
that transform data of high dimension d into a scalar (the decision score). If the data were not
concentrated the decision score f(x) would have a very large variance (depending on the dimension
d) which would in turn lead to a random performance. The fact that a machine algorithm is supposed
to obtain non-trivial performance (different from randomness) combined with the fact that common
machine learning algorithms are Lipschitz applications suggests that the concentration assumption is
not meaningless for real applications.

As an example, we perform the following experiment: for the books data set, we take a subset of
examples and a subset of features, learn QLDS(1,0) on them, and plot the empirical distribution of
f(x). With conduct this experiment with the increasing n and d, and see in Figure 3 that the variance
with this increase remains to be of the same order.

Furthermore, we place ourselves into the following large dimensional regime.

Assumption 4 (Growth Rate) As n → ∞, we consider the regime where d = O(n), we assume
d/n → c0 > 0. Furthermore, n`j/n → c`j and nuj/n → cuj for j = 1, 2. We denote by
c` = [c`1, c`2] and cu = [cu1, cu2].

This assumption of the commensurable relationship between the number of samples and their
dimension corresponds to a realistic regime and differs from classical asymptotic where the number
of samples is often assumed to be exponentially larger than the feature size, which is very unlikely in
real-life applications.

Under Assumptions 3 and 4, the objective of this section is three-folds: (i) determine the distribution
of fu (ii) determine the first order moment of fu and (iii) determine the second order moments of fu.
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Figure 3: Practical illustration of the concentration property on books data set. With increasing n
and d, every colored histogram corresponds to the empirical distribution of the g(x) of QLDS(1,0).

D.1 DISTRIBUTION OF fu

The proof of the gaussian distribution of the decision score of several learning schemes has been
provided recently in (Tiomoko et al., 2020) (for the theoretical analysis of Multi-Task Learning),
(Seddik et al., 2021) (in the case of the theoretical analysis of softmax). We follow a similar approach
that is described as follows.

Proof under Gaussian mixture model. Under a Gaussian mixture assumption for the input data
X, the convergence in distribution of the statistics of the classification score f(x) is immediate as
the projection of the deterministic vector ω on the Gaussian random vector x, it follows that ω>x is
asymptotically Gaussian.

Extension to concentrated random vector assumption. Since conditionally on the training data
X, the classification score g(x) is expressed as the projection of the deterministic vector ω on the
concentrated random vector x, the CLT for concentrated vector unfolds by proving that projections
of deterministic vector on concentrated random vector is asymptotically gaussian. This is ensured by
the following result.

Theorem 3 (CLT for concentrated vector (Klartag, 2007; Fleury et al., 2007)) If x is a concen-
trated random vector as defined in Assumption 1 with E[x] = 0, E[xx>] = Ip and σ be the
uniform measure on the sphere Sp−1 ⊂ Rp of radius 1, then for any integer k = O(1), there
exist two constants C, c and a set Θ ⊂ (Sp−1)k such that σ ⊗ . . .⊗ σ︸ ︷︷ ︸

k

(Θ) ≥ 1 −√pCe−c
√
p and

∀θ = (θ1, . . . , θk) ∈ Θ,

∀a ∈ Rk : sup
t∈R
|P(a>θ>x ≥ t)−G(t)| ≤ Cp− 1

4 ,

with G(t) the cumulative distribution function of N (0, 1).

Then the result unfolds naturally. Since g(x) is asymptotically Gaussian, we will focus on computing
its first and second order moment.

D.2 FIRST ORDER MOMENT OF fu

Using Equation (14), the first order moment of fu can be computed as

E[fu] = E

[
1

n
y>` X>`

(
λId + α`

X`X
>
`

n
− αu

XuX
>
u

n

)−1

Xu

]
. (15)
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Let’s define for convenience the data matrix X being the concatenation of the labeled and unlabeled
data matrix X` and Xu, i.e., X = [X`,Xu] ∈ Rd×n. Then the expectation in (15) can be rewritten
in the more convenient compact formulation

E[fu] = E[
1

n
y>` X>` QXu], Q =

(
λId +

XAX>

n

)−1

, A =

(
α`In`

0n`×nu

0nu×n`
−αuInu

)
.

To proceed, we furthermore introduce the matrices S` =

(
In`

0nu×n`

)
∈ Rn×n` and Su =(

Inu

0n`×nu

)
∈ Rn×nu such that X` = XS`, and Xu = XSu. This lead to the following com-

pact expression depending only on the random matrix X

E[fu] = E[y>` S>`
X>QX

n
Su]. (16)

Furthermore, let us recall the concept of deterministic equivalents, a classical object in random matrix
theory.

Definition 2 ((Couillet and Debbah, 2011, Chapter 6)) A deterministic matrix F̄ ∈ Rn×d is said
to be a deterministic equivalent of a given random matrix F ∈ Rn×d, denoted F̄ ↔ F, if for
any deterministic linear functional fn,p : Rn×d → R of bounded norm (uniformly over d, n),
fn,p(F− F̄)→ 0 almost surely as n, d→∞.

In particular if F̄↔ F, then u>(F− F̄)v
a.s.−→ 0 for u,v two unit vectors, and for all deterministic

matrix A of bounded norm we also have 1
n tr A(F− F̄)

a.s.−→ 0.

Deriving deterministic equivalents of the various objects under consideration will be a crucial tool
to derive the main result. In particular, deterministic equivalents are particularly suitable to handle
bilinear forms involving the random matrix F, in particular for the statistics of fu where the bilinear
form X>QX

n appears (see Equation (16)).

Deterministic equivalent of X>QX
n Let u,v unit vectors for the `2-norm, we develop:

1

n
E[u>X>QXv] =

1

n

n∑
i,j=1

E
[
uix
>
i Qxjvj

]
=

1

n

n∑
i=1

E
[
uix
>
i Qxivi

]
+

1

n

n∑
i,j=1
i 6=j

E
[
uix
>
i Qxjvj

]
.

Furthermore, let us define for convenience the matrix X−i , which is the matrix X with a vector of
0p on its i-th column such that XX> = X−iX

>
−i + xix

>
i . Applying the Sherman-Morrison matrix

inversion lemma (i.e., , (M + uv>)−1 = M−1 − M−1uv>M−1

1+v>M−1u
for any invertible matrix M and

vectors u,v) to Q leads to

Q = Q−i −
1

n

AiiQ−ixix
>
i Q−i

1 + 1
nAiix

>
i Q−ixi

, Q−i =

(
X−iAX>−i

n
+ λId

)−1

.

The latter allows to disentangle the strong dependency between Q and xi as

Qxi =
Q−ixi

1 + 1
nAiix

>
i Q−ixi

. (17)

Using Equation (17) we rewrite X>QX
n as

1

n
E[u>X>QXv] =

1

n

n∑
i=1

E

[
uix
>
i Q−ixivi

1 +Aiiδ̄i

]
+

1

n

n∑
i,j=1
i 6=j

E

[
uix
>
i Q−ijxjvj

(1 +Aiiδ̄i)(1 +Ajj δ̄j)

]
,
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with δ̄i = 1
nE
[
x>i Q−ixi

]
. Assumption 3 ensures that x

(j)
1 , . . . ,x

(j)
nk , j = 1, 2, are i.i.d. data vectors,

we impose the natural constraint of equal δ̄1 = . . . = δ̄nk
within every class j = 1, 2. As such, we

may reduce the complete score vector δ̄ ∈ Rn under the form

δ̄ = [δ11>n`1
, δ21>n`2

, δ11>nu1
, δ21>nu2

]> , (18)

where δj = 1
nE
[
x>i Q−ixi|xi ∈ Cj

]
= 1

n tr(ΣjQ̄) is defined for each class j = 1, 2.

Using the shortcut notation x̄i = E[xi] and the independence between samples xi and xj for i 6= j,
the expectation can finally be obtained as

1

n
E[u>X>QXv] =

n∑
i=1

uiδ̄ivi
1 +Aiiδ̄i

+
1

n

n∑
i,j=1
i 6=j

uix̄
>
i Q̄−ijx̄jvj

(1 +Aiiδ̄i)(1 +Ajj δ̄j)
+O(1/

√
n) .

We therefore deduce a deterministic equivalent for X>QX as

1

n
X>QX↔∆ +

1

n
JM>

δ Q̄MδJ
> ,

where ∆ is the diagonal matrix ∆ii = δ̄i
1+Aiiδ̄i

, Mδ = [ µ1

1+α`δ1
, µ2

1+α`δ2
, µ1

1−αuδ1
, µ2

1−αuδ2
] and

J =

(
1n`1

0
. . .

0 1nu2

)
.

The expectation can finally be obtained as

E[fu] = y>` S>`

(
∆ +

1

n
JM>

δ Q̄MδJ
>
)

Su

=
1

n
y>` S>` JM>

δ Q̄MδJ
>Su .

It then remains to find a deterministic equivalent Q̄ for Q. Similarly as performed in (Louart and
Couillet, 2018), the deterministic equivalent for Q can be obtained as

Q↔ Q̄ =

(
λId +

α`c`1C1

1 + α`δ1
+
α`c`2C2

1 + α`δ2
− αucu1C1

1− αuδ1
− αucu2C2

1− αuδ2

)−1

. (19)

Further defining κ1 = c`1α`

1+α`δ1
− cu1αu

1−αuδ1
, κ2 = c`2α`

1+α`δ2
− cu2αu

1−αuδ2
, we can further write

Q̄ = Q̄0 − Q̄0M
>(D−1

κ + M>Q̄0M)M>Q̄0, Q̄0 = (λId + κ1Σ1 + κ2Σ2)
−1
.

Therefore M>
δ Q̄Mδ = Dδ̃A>D−1

κ

[
I2 −

(
D−1
κ + M>Q̄0M

)−1D−1
κ

]
ADδ̃ . where δ̃ =

[1/(1 + α`δ1), 1/(1 + α`δ2), 1/(1− αuδ1), 1/(1− αuδ2)] and A = [I2, I2].

We then deduce the expectation as

mj = E[fi|xi ∈ Cj ] = (e
[2]
1 − e

[2]
2 )>Dc`

Dδ̃`D
−1
κ

[
I2 −

(
D−1
κ + M>Q̄0M

)−1D−1
κ

]
Dδ̃ue

[2]
j

with M =
(
Dκ−1 + M>Q̄0M

)−1
, δ̃` = [1/(1 + α`δ1), 1/(1 + α`δ2)] and δ̃u = [1/(1 −

αuδ1), 1/(1− αuδ2)].

In the case of identity covariance tackled in the main article we have δ := δ1 = δ2 and

M =

(
D−1
κ +

M>M

λ+ κ1 + κ2

)−1

. (20)

Therefore the mean reads as

m` = E[fi|xi ∈ Cj ] =
(−1)j

(
c`j − (e

[2]
1 − e

[2]
2 )>Dc`

D−1
κ Me

[2]
j

)
κj(1− αuδ)(1 + α`δ)

. (21)
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D.3 SECOND ORDER MOMENT OF fu

The second order moment of fu can be computed as

E[f>u fu] =
1

n2
E
[
y>` S>` X>QXSuS

>
uX>QXS`y`

]
.

Let’s define by convenience the matrix B = SuS
>
u . As previously we are looking for a

deterministic equivalent for X>QXBX>QX. We proceed in the same way by computing
1
n2 E[u>X>QXBX>QXv] for all u,v of unit norm:

1

n2
E[u>X>QXBX>QXv] =

1

n2

n∑
i,j,k=1

uix
>
i QxjBjjx

>
j Qxkvk

=
1

n2

n∑
i=1

E[uix
>
i QxiBiix

>
i Qxivi] +

1

n2

n∑
i,j,k=1
i 6=j 6=k

E[uix
>
i QxjBjjx

>
j Qxkvk]

+
1

n2

n∑
i,k=1
i 6=k

E[uix
>
i QxiBiix

>
i Qxkvk] +

1

n2

n∑
i,j=1
i 6=j

E[uix
>
i QxjBjjx

>
j Qxjvj ]

+
1

n2

n∑
i,j=1
i 6=j

E[uix
>
i QxjBjjx

>
j Qxivi],

and we reuse Equation (17) in order to continue

=
1

n2

n∑
i

E[uix
>
i Q−ixiBiix

>
i Q−ixivi]

(1 +Aiiδ̄i)2
+

1

n2

n∑
i 6=j 6=k

E[uix
>
i Q−ijxjBjjx

>
j Q−jkxkvk]

(1 +Aiiδ̄i)(1 +Ajj δ̄j)2(1 +Akk δ̄k)

+
2

n2

n∑
i 6=j

E[uix
>
i Q−ijxjBjjx

>
j Q−jxjvj ]

(1 +Aiiδ̄i)(1 +Ajj δ̄j)2
+

1

n2

n∑
i6=j

E[uix
>
i Q−ijxjBjjx

>
j Q−ijxivi]

(1 +Aiiδ̄i)2(1 +Ajj δ̄j)2
+O(1/

√
n)

=

n∑
i

ui
δ̄2
i

(1 +Aiiδ̄i)2
Biivi +

1

n

n∑
i6=k

uix̄
>
i QCuδQx̄kvk

(1 +Aiiδ̄i)(1 +Akk δ̄k)

+
2

n

n∑
i 6=j

uix̄
>
i Q̄x̄j δ̄jBjjvj

(1 +Aiiδ̄i)(1 +Ajj δ̄j)2
+

1

n

n∑
i=1

tr (CiQCuδQ)uivi
(1 +Aiiδi)2

+O(1/
√
n),

where Cuδ is defined as

Cuδ =
1

n

n∑
i=1

Biixix
>
i

(1 +Aiiδ̄i)2
=

cujCj

(1− αuδj)2
. (22)

Let’s denote for convenience by E the deterministic equivalent of QCuδQ, then a deterministic
equivalent for X>QXBX>QX is given as :

1

n2
X>QXBX>QX↔∆2B +

JM>
δ EMδJ

>

n
+ 2

∆BJM>
δ Q̄MδJ

>

n
+ E

where E is the diagonal matrix containing on its diagonal Eii = 1
nE[tr (CiQCuδQ)] = 1

n tr(CiE).

We therefore deduce the variance of fu as

Var (fu) = E[f>u fu]− E[fu]2

= y>` S>`

(
∆2B +

JM>
δ EMδJ

>

n
+ 2

∆BJM>
δ Q̄MδJ

>

n
+ E

)
S`y`

− y>` S>`

(
∆ +

1

n
JM>

δ Q̄MδJ
>
)

B

(
∆ +

1

n
JM>

δ Q̄MδJ
>
)
S`y`

= y>` S>`

(
JM>

δ EMδJ
>

n
+ E

)
S`y` .
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The last step consists in finding a deterministic equivalent of QCuδQ denoted E. To that end let’s
evaluate for any deterministic vector v,u ∈ Rd of unit norm, 1

nE[u>QCuδ(Q− Q̄)v]. Applying
the matrix identity A−1 −B−1 = A−1(B−A)B−1 for any invertible matrix A,B to Q− Q̄ and
using algebraic simplifications in particular Equation (17) allow to successively obtain

1

n
E
[
u>QCuδ(Q− Q̄)v

]
=

1

n
E

[
u>QCuδQ

(
Cδ −

XAX>

n

)
Q̄v

]
=

1

n

n∑
i

E

[
− 1

n

Aiiu
>QCuδQ−ixix

>
i Q̄v

1 +Aiiδ̄i
+ u>QCuδQCδQ̄v

]
+O(1/

√
n)

=
1

n

n∑
i

E

[
− 1

n

Aiiu
>Q−iCuδQ−ixix

>
i Q̄v

1 +Aiiδ̄i

]
+

1

n2

n∑
i

E

[
1

n

A2
iiu
>Q−ixix

>
i Q−iCuδQ−ixix

>
i Q̄v

(1 +Aiiδ̄i)2

]
+O(1/

√
n)

=
1

n2

n∑
i

E

[
1

n
tr (CiQ−iCuδQ)

A2
iiu
>Q̄CiQ̄v

(1 +Aiiδ̄i)2

]
+O(1/

√
n) ,

where Q̄ = (λId + Cδ)
−1, i.e., Cδ = α`c`1C1

1+α`δ1
+ α`c`2C2

1+α`δ2
− αucu1C1

1−αuδ1
− αucu2C2

1−αuδ2
.

Therefore

QCuδQ↔ E = Q̄CuδQ̄ +

2∑
k=1

c`kα
2
`dk

(1 + α`δk)2
Q̄CkQ̄ +

2∑
k=1

cukα
2
udk

(1− αuδk)2
Q̄CkQ̄ (23)

where dk = 1
n tr (CkQCuδQ).

Right Multiplying Equation (23) by Ck and taking the trace allows to retrieve an expression for
D = Dd, with d = [d1, d2] as

D = Dt̄

(
I2 −DãṼ

)−1

, Ṽkk′ =
1

n
tr
(
CkQ̄Ck′Q̄

)
,

t̄k =
1

n
tr
(
CkQ̄CuδQ̄

)
, ãk =

c`kα
2
`

(1 + α`δk)2
+

cukα
2
u

(1− αuδk)2
.

Similarly as performed for the mean, the variance can be furthermore simplified as

Var(fi) = (e1 − e2)>
(
Dc`
Dδ̃D

−1
κ MGMD−1

κ Dδ̃Dc`
+DdDc`

)
(e1 − e2)

where G = M>Q̄0C̄Q̄0M, C̄ = Cuδ +
2∑
k=1

ãkdkCk. In the case of identity covariance matrix

tackled in the main article,

G =

(
− cu

(1− αuδ)
+

2∑
k=1

ãkdk

)
δM>M

with dk and ãk which simplifies as

dk = − 1

(1− αuδ)2

(
c0cu

(λ+ κ1 + κ2)2 − c0ãk

)
, ãk =

c`kα
2
`

(1 + α`δ)2
+

cukα
2
u

(1− αuδ)2
.

This leads to the theorem in the general covariance matrix

Theorem 4 Let X ∈ Rd×n be a data set that follows Assumptions 3 and 4 and consider the notation
convention defined previously. For any x ∈ Xu with x ∈ Cj and f(x) = 1√

n
ω?>x, we have almost

surely for both classes j

f(x|x ∈ Cj)− fj
a.s.−→ 0, where fj ∼ N

(
mj , σj

2
)
.

The mean mj and the variance σ2 are defined as

mj =
1

n
y>` S>` JM>

δ Q̄MδJ
>Su,

σ2
j = (e1 − e2)>

(
Dc`
Dδ̃D

−1
κ MGMD−1

κ Dδ̃Dc`
+DdDc`

)
(e1 − e2),
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E EXPERIMENTS

This section complements Section 5 of the main paper by giving more details of the experimental
setup and performing two additional experiments.

E.1 EXPERIMENTAL SETUP

Table 3 sums up the characteristics of publicly available real data sets used in our experiments. As we
are interested in the practical use of the proposed approach in the semi-supervised regime, we test the
performance in the case when nl � nu. Thus, instead of using the original train/test splits proposed
by data sources, we set our own labeled/unlabeled splits to fit the semi-supervised context. For each
data set, we perform an experiment 20 times by randomly splitting original data on a labeled and an
unlabeled sets fixing their sample sizes to the values shown in Table 3. For the results, we evaluate
the transductive error on the unlabeled data and display the average and the standard deviation (both
in %) over the 20 trials. All experiments were performed on a laptop with an Intel(R) Core(TM)
i7-8565U CPU @ 1.80GHz, 16GB RAM. The implementation code for reproducing the experimental
results of the paper will be released upon acceptance of the article.

Table 3: Characteristics of data sets used in our experiments.

Data set # of lab. examples, # of unlab. examples, Dimension, Class Proportions

Books 20 1980 400 0.5:0.5
DVD 19 1980 400 0.5:0.5

Electronics 19 1979 400 0.5:0.5
Kitchen 19 1980 400 0.5:0.5
Splice 10 990 60 0.48:0.52

Mushrooms 81 8043 112 0.48:0.52
Adult 325 32236 14 0.76:0.24

E.2 ESTIMATION OF CLASS PROPORTIONS FOR UNLABELED DATA
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Optimal error (with cuj = c`j
nu

n`
)

Ground truth optimal error

Figure 4: Optimal Classification error as a function of discrepancy between class proportion in
labeled and unlabeled set (n`jnu

nujn`
).

In the first experiment, we analyze the influence of the assumption cuj = c`j
nu

n`
(proportion of class

1 and class 2 is the same in unlabeled and labeled set) by representing the optimal classification
under this assumption and the optimal classification error knowing the true value of cuj as function
of the violation of this assumption represented by the ratio n`jnu

nujn`
. As a recall, this assumption is

needed since the theoretical performance depends on cuj which is not known a priori and needs to
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be estimated. As shown in Figure 4, this assumption doesn’t alter the overall behavior of the model
selection approach since the model selection is the same even though the proportion of class 1 and 2
are different in labeled set and unlabeled set (n`jnu

nujn`
6= 1)

E.3 IMPROVEMENT OVER THE SUPERVISED BASELINE

In a second experiment, we represent the gain with respect to LSSVM (ε(α?l , α
?
u)− ε(α?l , α?u)) of

QLDS when optimizing the hyperparameters (as performed theoretically in Algorithm 1 of the main
paper) as function of the difficulty of the task (implemented through the norm of the matrixM) and
the number of labeled samples. Figure 5 which looks like a "phase diagram" shows that a non-trivial
gain is obtained with respect to a fully supervised case. In particular, one can see that the gain of
using a semi-supervised approach is relevant when few labeled samples are available and when the
task is difficult. This conclusion is similar to existing conclusion from (Mai and Couillet, 2021;
Lelarge and Miolane, 2019).

Figure 5: (Left) Relative gain with respect to supervised learning as a function of the labeled sample
size and the task difficulty (through the choice of the distance between the mean of class 1 and class
2 ‖µ1 − µ2‖) on synthetic gaussian mixture model. A higher value of ‖µ1 − µ2‖ means that the task
is easy and a smaller value means that the task is difficult. On the left lower corner (difficult task and
a small number of labeled samples ) a non-trivial gain is obtained with respect to fully supervised
case. The task difficulty in the y-axis is ‖µ1 − µ2‖ which measures the distance between the mean of
the two classes.

E.4 COMPARISON OF DIFFERENT SEMI-SUPERVISED LOSSES

In this section, we additionally support our choice of the learning objective given by Eq. 1 and
compare different possibilities to construct the loss function for semi-supervised linear classification.
More specifically, we compare for the labeled part

1. the quadratic loss
∑n`

i=1(yi − x>i ω)2,

2. differentiable surrogate of the hinge loss
∑n`

i=1
1
γ log(1 + exp

{
γ(1− yix>i ω)

}
) with γ set

to 20 (Zhang and Oles, 2001),
3. the log-loss

∑n`

i=1 yi log σ(x>i ω) + (1− yi) log(1− σ(x>i ω)),

and for the unlabeled part

1. the quadratic margin
∑n`+nu

i=n`+1(ω>xi)
2,

2. the differentiable surrogate of the absolute value of the margin
∑n`+nu

i=n`+1 exp{−3(ω>xi)
2}

(Chapelle and Zien, 2005).

We consider all possible combinations of the labeled and the unlabeled parts which result in 6
semi-supervised losses. We optimize them using Adam optimizer (Kingma and Ba, 2015) fixing the
learning rate and the weight decay to 10−3 and 10−5, respectively. Note that when the square loss
and the quadratic margin are considered, we have a gradient-based version of QLDS.
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Figure 6: The performance and model selection results on different data sets with the increase of the
number of labeled examples.

For fair comparison, for each loss, we perform a grid search over possible values of α`, αu, λ and
choose the best solution according to the oracle, namely, the performance on the unlabeled data.
Table 4 illustrates the performance results on 7 real data sets. One can see that in most of cases the
quadratic margin outperforms the absolute value of the margin. In general, the combination of the
square loss and the quadratic margin appears to be stable leading to the second-best solution in many
cases. Thus, by choosing this learning objective, we do not lose much efficiency, having a convex
objective and the ability to conduct theoretical analysis.

Table 4: The classification error of different semi-supervised losses on the real benchmark data sets.
Square Loss - Quadratic Margin corresponds to QLDS. The smallest and the second smallest error
values are highlighted in bold and italics, respectively.

Data set Square Loss Hinge Loss Log-Loss

Quadratic Abs Value Quadratic Abs Value Quadratic Abs Value

books 25.82 ± 1.23 34.13 ± 2.71 23.83 ± 0.85 33.38 ± 2.78 36.2 ± 1.99 36.67 ± 2.05
dvd 24.81 ± 2.97 34.74 ± 2.76 23.33 ± 1.9 34.86 ± 2.72 37.34 ± 2.37 37.69 ± 2.22
electronics 19.82 ± 0.57 26.07 ± 2.88 19.22 ± 0.56 26.37 ± 2.89 32.52 ± 2.55 33.27 ± 2.83
kitchen 18.75 ± 0.85 24.02 ± 2.86 17.93 ± 0.57 22.95 ± 1.84 31.04 ± 3.04 31.75 ± 3.3
splice 34.47 ± 2.59 34.29 ± 3.8 34.42 ± 2.23 34.3 ± 3.73 38.7 ± 2.26 38.72 ± 2.27
mushrooms 1.55 ± 0.9 1.17 ± 0.66 2.33 ± 1.02 1.75 ± 0.74 1.9 ± 0.86 1.98 ± 1.0
adult 19.63 ± 0.88 19.65 ± 0.9 18.38 ± 0.73 18.5 ± 0.81 18.43 ± 0.64 18.47 ± 0.72

E.5 PERFORMANCE DEPENDING ON THE NUMBER OF LABELED EXAMPLES

This section extends Section 5.2 of the main paper by providing experimental results for different
size of labeled set. In addition, we depict the values of αl and αu (averaged over 20 splits) taken by
QLDS(th), QLDS(cv) and QLDS(or). All the results can be seen in Figure 6 and Figure 7.

E.6 CHOICE OF λ

In Section 5, we have fixed the value of λ as the maximum eigenvalue of X = [X`,Xu] for all
versions of QLDS. To support this choice and make sure that it does not harm the baselines, in this
section we provide an additional experiment, where we compare the fixed value of λ with the case
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Figure 7: The performance and model selection results on different data sets with the increase of the
number of labeled examples.
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when λ is tuned by the 10-fold cross-validation on the available labeled set. Table 5 depicts this
comparison for QLDS(1,0)(LS-SVM) and QLDS(0,1)(GB-SSL). As one can see on 5 of 7
data sets the maximum eigenvalue heuristics outperforms the cross-validation. The experimental
results suggests that the cross-validation policy is more relevant for the cases where the labeled
data is more informative than unlabeled data (adult and mushrooms). Otherwise, the maximum
eigenvalue heuristics seems to be more appropriate, which is accorded with (Mai and Couillet, 2021).

Table 5: The classification error of the supervised and the unsupervised baselines when the hyperpa-
rameter λ is fixed to the maximum eigenvalue, and when it’s tuned using the cross-validation on the
labeled set. The smallest error for each baseline is highlighted in bold.

Data set QLDS(1,0)(LS-SVM) QLDS(0,1)(GB-SSL)

Fixed CV Fixed CV

books 37.47 ± 2.25 38.32 ± 2.37 26.47 ± 0.72 32.84 ± 8.65
dvd 38.33 ± 1.72 38.56 ± 2.03 29.12 ± 1.35 32.74 ± 7.26
electronics 34.15 ± 3.25 35.2 ± 3.0 19.4 ± 0.29 23.8 ± 9.19
kitchen 32.39 ± 3.02 33.42 ± 4.44 19.31 ± 0.16 22.05 ± 8.55
splice 39.81 ± 2.93 40.38 ± 3.31 35.48 ± 0.86 39.53 ± 3.53
adult 33.35 ± 0.68 32.13 ± 1.88 36.28 ± 0.06 34.0 ± 0.73
mushrooms 6.55 ± 2.07 2.53 ± 1.38 11.33 ± 0.04 8.8 ± 1.47
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