
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

ERASEDIFF: ERASING DATA INFLUENCE IN
DIFFUSION MODELS
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Figure 1: Top to Bottom: generated samples by SD v1.4 and model scrubbed by our method,
EraseDiff , when erasing the concept of ‘nudity’. EraseDiff can avoid NSFW content while preserv-
ing model utility. Source code is available at https://github.com/AnonymousUser-hi/
EraseDiff.

ABSTRACT

We introduce EraseDiff, an unlearning algorithm designed for diffusion models
to address concerns related to data memorization. Our approach formulates the
unlearning task as a constrained optimization problem, aiming to preserve the
utility of the diffusion model on retained data while removing the information
associated with the data to be forgotten. This is achieved by altering the generative
process to deviate away from the ground-truth denoising procedure. To manage
the computational complexity inherent in the diffusion process, we develop a first-
order method for solving the optimization problem, which has shown empirical
benefits. Extensive experiments and thorough comparisons with state-of-the-art
algorithms demonstrate that EraseDiff effectively preserves the model’s utility,
efficacy, and efficiency.
WARNING: This paper contains sexually explicit imagery that may be offensive
in nature.

1 INTRODUCTION

Diffusion Models (Ho et al., 2020; Song et al., 2020; Rombach et al., 2022) are now the method
of choice in deep generative models, owing to their high-quality output, stability, and ease of train-
ing procedure. This has facilitated their successful integration into commercial applications such as
midjourney. Unfortunately, the ease of use associated with diffusion models brings forth significant
privacy risks. Studies have shown that these models can memorize and regenerate individual im-
ages from their training datasets (Somepalli et al., 2023a;b; Carlini et al., 2023). Beyond privacy,
diffusion models are susceptible to misuse and can generate inappropriate digital content (Rando
et al., 2022; Salman et al., 2023; Schramowski et al., 2023). They are also vulnerable to poison
attacks (Chen et al., 2023b), allowing the generation of target images with specific triggers. These
factors collectively pose substantial security threats. Moreover, the ability of diffusion models to
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emulate distinct artistic styles (Shan et al., 2023; Gandikota et al., 2023a) raises questions about
data ownership and compliance with intellectual property and copyright laws.

In this context, individuals whose images are used for training might request the removal of their
private data. In particular, data protection regulations like the European Union General Data Pro-
tection Regulation (GDPR) (Voigt & Von dem Bussche, 2017) and the California Consumer Privacy
Act (CCPA) (Goldman, 2020) grant users the right to be forgotten, obligating companies to expunge
data pertaining to a user upon receiving a request for deletion. These legal provisions grant data
owners the right to remove their data from trained models and eliminate its influence on said mod-
els (Bourtoule et al., 2021; Guo et al., 2020; Golatkar et al., 2020; Mehta et al., 2022; Sekhari et al.,
2021; Ye et al., 2022; Tarun et al., 2023b;a; Chen et al., 2023a).

A straightforward solution for unlearning is to retrain the model from scratch after excluding the data
that needs to be forgotten. However, the removal of pertinent data followed by retraining diffusion
models from scratch demands substantial resources and is often deemed impractical. A version of
the stable diffusion model trained on subsets of the LAION-5B dataset (Schuhmann et al., 2022)
costs approximately 150,000 GPU hours with 256 A100 GPUs1. Existing research on efficient
unlearning have primarily focused on classification problems (Karasuyama & Takeuchi, 2010; Cao
& Yang, 2015; Ginart et al., 2019; Bourtoule et al., 2021; Wu et al., 2020; Guo et al., 2020; Golatkar
et al., 2020; Mehta et al., 2022; Sekhari et al., 2021; Chen et al., 2023a). Despite substantial progress,
methods developed for unlearning in classification are observed to be ineffective for generation
tasks as studied by Fan et al. (2023). Consequently, there is a pressing need for the development of
methods capable of scrubbing data from diffusion models without necessitating complete retraining.

Recently, a handful of studies (Gandikota et al., 2023a;b; Zhang et al., 2023; Heng & Soh, 2023a;b;
Kumari et al., 2023; Fan et al., 2023; Lyu et al., 2024) target unlearning in diffusion models, with a
primary focus on the text-to-image models (Gandikota et al., 2023a;b; Zhang et al., 2023; Bui et al.,
2024). Heng & Soh (2023b) utilize ideas from continual learning to preserve model utility when
performing forgetting for a wide range of generative models. Their method requires the computa-
tion of the Fisher Information Matrix (FIM) for different datasets and models, which could lead to
significant computational demands. Fan et al. (2023) propose to shift the attention to salient weights
w.r.t. the forgetting data, resulting in a very potent unlearning algorithm across image classification
and generation tasks.

In this work, we propose EraseDiff , and formulate diffusion unlearning as a constrained Optimiza-
tion problem, where the objective is to finetune the models with the remaining data Dr for preserv-
ing the model utility and to erase the influence of the forgetting data Df on the models by deviating
the learnable reverse process from the ground-truth denoising procedure, namely minimizing the
loss over the remaining data while maximizing that over the forgetting data. A common issue in
unlearning is the gradient conflict, as optimizing one objective could hinder another one. To ad-
dress this issue, we adopt an approximate optimization problem that identifies an optimal direction
to update different objectives. We benchmark EraseDiff on various scenarios, encompassing un-
learning of classes on CIFAR10 (Krizhevsky et al., 2009) with Denoising Diffusion Probabilistic
Models (DDPM) (Ho et al., 2020), classes on Imagenette (Howard & Gugger, 2020) and concepts
on the I2P dataset (Schramowski et al., 2023) with stable diffusion. Our empirical findings show
that EraseDiff is 11× faster than Heng and Soh’s method (Heng & Soh, 2023b) and 2× faster than
Fan’s method (Fan et al., 2023) when forgetting on DDPM while achieving better unlearning results
across several metrics. The results demonstrate that EraseDiff is capable of effectively erasing data
influence in diffusion models, ranging from specific classes to the concept of nudity.

2 RELATED WORK

Memorization in generative models. Privacy of generative models has been studied extensively
for GANs (Feng et al., 2021; Meehan et al., 2020; Webster et al., 2021) and generative language
models (Carlini et al., 2022; 2021; Jagielski et al., 2022; Tirumala et al., 2022). These generative
models often risk replicating from their training data. Recently, several studies (Carlini et al., 2023;
Somepalli et al., 2023b;a; Vyas et al., 2023) investigated these data replication behaviors in diffu-
sion models, raising concerns about the privacy and copyright issues. Possible mitigation strategies

1https://stablediffusion.gitbook.io/overview/stable-diffusion-overview/technology/training-procedures
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are deduplicating and randomizing conditional information (Somepalli et al., 2023b;a), or train-
ing models with differential privacy (DP) (Abadi et al., 2016; Dwork et al., 2006; Dwork, 2008;
Dockhorn et al., 2022). However, leveraging DP-SGD (Abadi et al., 2016) may cause training to
diverge (Carlini et al., 2023).

Malicious misuse. Diffusion models usually use training data from varied open sources and when
such unfiltered data is employed, there is a risk of it being tainted (Chen et al., 2023b) or manipu-
lated (Rando et al., 2022), resulting in inappropriate generation (Schramowski et al., 2023). They
also risk the imitation of copyrighted content, e.g., mimicking the artistic style (Gandikota et al.,
2023a; Shan et al., 2023). To counter inappropriate generation, data censoring (Gandhi et al., 2020;
Birhane & Prabhu, 2021; Nichol et al., 2021; Schramowski et al., 2022) where excluding black-listed
images before training, and safety guidance where diffusion models will be updated away from the
inappropriate/undesired concept (Gandikota et al., 2023a; Schramowski et al., 2023) are proposed.
Shan et al. (2023) propose protecting artistic style by adding barely perceptible perturbations to the
artworks before public release. Yet, Rando et al. (2022) argue that DMs can still generate content
that bypasses the filter. Chen et al. (2023b) highlight the susceptibility of DMs to poison attacks,
where target images are generated with specific triggers.

Machine unlearning. Removing data directly involves retraining the model from scratch, which is
inefficient and impractical. Thus, to reduce the computational overhead, efficient machines unlearn-
ing methods (Romero et al., 2007; Karasuyama & Takeuchi, 2010; Cao & Yang, 2015; Ginart et al.,
2019; Bourtoule et al., 2021; Wu et al., 2020; Guo et al., 2020; Golatkar et al., 2020; Mehta et al.,
2022; Sekhari et al., 2021; Chen et al., 2023a; Tarun et al., 2023b) have been proposed. Several stud-
ies (Gandikota et al., 2023a;b; Heng & Soh, 2023a;b; Fan et al., 2023; Zhang et al., 2023; Bui et al.,
2024) recently introduce unlearning in diffusion models. Most of them (Gandikota et al., 2023a;b;
Heng & Soh, 2023a; Zhang et al., 2023) mainly focus on text-to-image models and high-level visual
concept erasure. Heng & Soh (2023b) adopt Elastic Weight Consolidation (EWC) and Generative
Replay (GR) from continual learning to perform unlearning effectively without access to the train-
ing data. Heng and Soh’s method can be applied to a wide range of generative models, however,
it needs the computation of FIM for different datasets and models, which may lead to significant
computational demands. Fan et al. (2023) propose a very potent unlearning algorithm called SalUn
that shifts attention to important parameters w.r.t. the forgetting data. SalUn can perform effectively
across image classification and generation tasks.

In this work, we introduce a simple yet effective unlearning algorithm for diffusion models by formu-
lating the problem as a constrained optimization problem, to alleviate the gradient conflict between
preservation and forgetting. Below, we will show that our algorithm is not only faster than Heng
and Soh’s method (Heng & Soh, 2023b) and Fan’s method (Fan et al., 2023), but even outperforms
these methods in terms of the trade-off between the forgetting and preserving model utility.

3 BACKGROUND

In this section, we outline the components of the models we evaluate, including DDPM and Sta-
ble Diffusion (SD) models (Rombach et al., 2022). Throughout the paper, we denote scalars, and
vectors/matrices by lowercase and bold symbols, respectively (e.g., a, a, A).

DDPM. (1) Diffusion: DDPM gradually diffuses the data distribution Rd ∋ x0 ∼ q(x) into
the standard Gaussian distribution Rd ∋ ϵ ∼ N (0, Id) with T time steps, ie., q(xt|xt−1) =
N (xt;

√
αtxt−1, (1 − αt)Id), where αt = 1 − βt and {βt}Tt=1 are the pre-defined variance

schedule. The diffusion takes the form xt as xt =
√
ᾱtx0 +

√
1− ᾱtϵ, where ᾱt =

∏t
i=1 αi.

(2) Training: A model ϵθ(·) with parameters θ ∈ Rn is trained to learn the reverse process
pθ(xt−1|xt) ≈ q(xt−1|xt). Given x0 ∼ q(x) and time step t ∈ [1, T ], the simplified training objec-
tive is to minimize the distance between ϵ and the predicted ϵt given x0 at time t, ie., ∥ϵ−ϵθ(xt, t)∥.
(3) Sampling: after training the model, we could obtain the learnable backward distribution
pθ∗(xt−1|xt) = N (xt−1;µθ∗(xt, t),Σθ∗(xt, t)), where µθ∗(xt, t) =

1√
αt
(xt − βt√

1−αt
ϵθ(xt, t))

and Σθ∗(xt, t) =
(1−ᾱt−1)βt

1−ᾱt
. Then, given xT ∼ N (0, Id), x0 could be obtained via sampling from

pθ∗(xt−1|xt) from t = T to t = 1 step by step.
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Stable diffusion. Stable diffusion models apply the diffusion models in the latent space z of a
pre-trained variational autoencoder. The noise would be added to z = ε(x), instead of the data
x, and the denoised output would be transformed to image space with the decoder. Besides, text
embeddings generated by models like CLIP are used as conditioning inputs.

4 DIFFUSION UNLEARNING

Let D = {xi, ci}Ni be a dataset of images xi associated with label ci representing the class. C =
{1, · · · , C} denotes the label space where C is the total number of classes and ci ∈ C. We split the
training data D into the forgetting data Df ⊂ D and its complement, remaining data Dr = D \ Df .
The forgetting data has label space Cf ⊆ C, and the remaining label space is denoted as Cr = C \Cf .

4.1 TRAINING OBJECTIVE

Our goal is to scrub the information about Df carried by the diffusion models while maintaining the
model utility over the remaining data Dr. To achieve this, we adopt different training objectives for
Dr and Df as follows.

For the remaining data Dr, we fine-tune the diffusion models with the original objective:

Lr(θ;Dr) = Et,ϵ∈N (0,Id),(x0,c)∼Dr×Cr
[∥ϵ− ϵθ(xt|c)∥22], (1)

where xt =
√
ᾱtx0+

√
1− ᾱtϵ. For the forgetting data Df , we aim to let the models fail to generate

meaningful images corresponding to Cf and thus propose:

Lf (θ;Df ) = Et,ϵ∈N (0,Id),(x0,c)∼Df×Cf
[∥ϵf − ϵθ(xt|c)∥22]. (2)

With this, we hinder the approximator ϵθ to guide the denoising process to obtain meaningful exam-
ples for the forgetting data example x0 ∼ Df . In our experiments, we choose ϵf to be a distribution
different from ϵ ∈ N (0, Id). This could be ϵθ(xt|cm) like Fan et al. (2023); Heng & Soh (2023b)
where cm ̸= c so that the denoised image x0 is not related to the forgetting class/concept c.

To perform unlearning and minimize Lr(θ;Dr) and Lf (θ;Df ) simultaneously, it is common to
form

Lr(θ;Dr) + λLf (θ;Df ), (3)

with λ ≥ 0 as the optimization objective (see for example Fan et al. (2023)). However, training
could be hindered due to the conflicting gradients between the retaining and forgetting objectives.
Equation (3) could also be viewed as a scalarization of a Multi-Objective Optimization (MOO)
problem, ie., minimizing

(
Lr(θ;Dr),Lf (θ;Df )

)⊤
. It is well known that MOO should address the

gradient conflict issue.

Instead of scalarization of MOO, we propose to minimize the following objective:

minθ Lr(θ;Dr)
s.t. ∇ϕLf (ϕ;Df ,ϕinit = θ) = 0 . (4)

Here, the problem ∇ϕLf (ϕ;Df ,ϕinit = θ) = 0 indicates that given θ, the optimization of ϕ
starts from θ and aims to minimize the forgetting loss. In other words, if optimality θ∗ is achieved,
we have found θ∗ that maintains the model’s utility as a result of minθ Lr(θ;Dr), and starting from
θ∗, we cannot further reduce the forgetting loss due to minϕ Lf (ϕ;Df ,ϕinit = θ∗). This insight
will aid us in solving Equation (4) efficiently as we will show next. Putting everything together, we
propose:

minθ Lr(θ;Dr)
s.t. Lf (θ;Df )−minϕ Lf (ϕ;Df ,ϕinit = θ) ≤ 0, (5)

where ϕ is initialized at θ.

4
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Algorithm 1 EraseDiff : Erasing Data Influence in Diffusion Models.

Input: Well-trained model with parameters θ0, forgetting data Df and remaining data Dr, outer
iteration number T and inner iteration number K, learning rate η.

Output: Parameters θ∗ for the scrubbed model.
1: for iteration t in T do
2: ϕ0 = θt.
3: Get ϕK by K steps of gradient descent on Lf (ϕ;Df ) starting from ϕ0.
4: Set g(θt) = Lf (θt;Df )− Lf (ϕK ;Df ).
5: Update the model: θt+1 = θt − η(∇θt

Lr(θt;Dr) + λt∇θt
g(θt;ϕ

K)),
6: where λt = max{0, at−∇θg(θt)

T∇θLr(θt;Dr)
∥∇θg(θt)∥2

2
}.

7: end for

4.2 SOLUTION

To solve Equation (5), let us first denote g(θ) = Lf (θ;Df ) −minϕ Lf (ϕ;Df ). Suppose that the
current solution for Equation (5) is θt, we aim to update θt+1 = θt − ηδt where η is sufficiently
small, so that Lr(θt+1;Dr) decreases (ie., preserve model utility) and g(θt+1) decreases (ie., era-
sure). To this end, inspired by Liu et al. (2022), we aim to find δt by:

δt ∈
1

2
argminδ

∥∥∇θLr(θt;Dr)− δ
∥∥2
2
,

s.t. ∇θg(θt)
⊤δ ≥ at > 0. (6)

This will ensure that the update δt is close to ∇θLr(θt;Dr) and decreases g(θt) until it reaches
stationary. Because g (θt+1) − g (θt) ≈ −η∇θg (θt)

⊤
δ ≤ −ηat < 0, we can ensure that

g (θt+1) < g (θt) for small step size η > 0. This means that the update δt can ensure to mini-
mize Lf (θ;Df ) as long as it does not conflict with descent of Lr(θ;Dr).
To find the solution to the optimization problem in Equation (6), the following theorem is developed:
Theorem 4.1. The optimal solution of the optimization problem in Equation (6) is δ∗ =

∇θLr(θt;Dr) + λt∇θg(θt) where λt = max{0, at∇θg(θt)
⊤∇θLr(θt;Dr)

∥∇θg(θt)∥2
2

}.

Proof. The Lagrange function with λ ≥ 0 for Equation (6):

h(δ, λ) =
1

2

∥∥∇θL(θt;Dr)− δ
∥∥2
2
+ λ(at −∇θg(θt)

⊤δ). (7)

Then, using the Karush-Kuhn-Tucker (KKT) theorem, at the optimal solution we have

δ −∇θLr(θt;Dr)− λ∇θg(θt) = 0,

∇θg(θt)
⊤δ ≥ at,

λ(at −∇θg(θt)
T δ) = 0,

λ ≥ 0. (8)

From the above constraints, we can obtain:

δ = ∇θLr(θt;Dr) + λ∇θg(θt),

λ = max{0, at −∇θg(θt)
⊤∇θLr(θt;Dr)

∥∇θg(θt)∥22
}. (9)

In practice, we can choose at = η∥∇θg(θt)∥22. The remaining question is how to compute ∇θg(θt).
For this computation, we start from ϕ0 = θt and use gradient descend in K steps with the learning
rate ξ > 0 to reach ϕK , namely ϕk+1 = ϕk− ξ∇ϕLf (ϕk;Df ) and k = 0, · · · ,K − 1. Finally, we
can compute the update ∇θg(θt) = ∇θLf (θt;Df )−∇ϕKLf (ϕK ;Df ).
We can characterize the solution of our algorithm as follows:

5
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Figure 2: Similarity between gradient for preservation and gradient for forgetting.

Theorem 4.2 (Pareto optimality). The stationary point obtained by our algorithm is Pareto optimal
of the problem minθ[Lr(θ;Dr),Lf (θ;Df )].

Proof. Let θ∗ be the solution to our problem. Recall that for the current θ, we find ϕK to minimize
g(θ,ϕ) = Lf (θ;Df ) −minLf (ϕ;Df ). Assume that we can update in sufficient number of steps
K so that ϕK = ϕ∗(θ) = argminϕ g(θ,ϕ) = argminϕ Lf (ϕ;Df ). Here ϕ is initialized at θ.

The objective aims to minimize Lr(θ;Dr) + λg(θ;ϕ∗(θ)), let θ∗ be the optimal solution to this
objective. Note that g(θ,ϕ∗(θ)) = Lf (θ;Df )−minLf (ϕ∗(θ);Df ) ≥ 0 as ϕ starts from θ and is
update to decreas Lm(ϕ;Df ). This will decrease to 0 for minimizing the above objective. Therefore,
at the optimal solution θ∗, we have g(θ∗,ϕ∗(θ∗)) = 0. This further implies that Lf (θ∗;Df ) =
minLf (ϕ∗(θ∗);Df ), meaning that θ∗ is the current optimal solution of Lf (θ;Df ) because we
cannot update further the optimal solution. Moreover, we have θ∗ as the local minima of Lr(θ;Dr)
in sufficiently small vicinity considered, because in the small vicinity around θ∗, g (θ,ϕ∗(θ∗)) = 0
provides no further improvements for the above sum, any increase in the above objective in the
vicinity of θ∗ would primarily be due to an increase in Lr(θ;Dr).

We further take DDPM with CIFAR10 when forgetting the ‘airplane’ as an example to show that our
proposed method helps alleviate the gradient conflict issue. Figure 2 presents the cosine similarity
between the gradient gr = ∇θLr(θ;Dr) for preservation and the gradient gf = λ∇Lf (θ;Df ) for
forgetting (λ is set to be 0.1 by default), ie.,

similarity = 1− gr · gf
∥gr∥2 · ∥gf∥2

. (10)

For the vanilla MOO, the similarity values mostly hover around 1.0 to 1.9 suggesting competing
gradients between objectives. When using EraseDiff , similarity stabilizes closer to and even less
than 1.0, indicating that the gradients become more aligned after EraseDiff is applied, suggesting
that EraseDiff reduces gradient conflict, leading to better cooperation between objectives.

5 EXPERIMENT

We evaluate EraseDiff in various scenarios, including removing images with specific
classes/concepts, to answer the following research questions (RQs): (i) Can typical machine un-
learning methods be applied to diffusion models? (ii) Is the proposed method able to remove the
influence of Df in the diffusion models? (iii) Is the proposed method able to preserve the model
utility while removing Df? (iv) Is the proposed method efficient in removing the data? (v) How
does the proposed method perform on the public well-trained models?

6
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Table 1: Results on CIFAR10 with DDPM when forgetting the ‘airplane’ class. Pψ(y = cf |xf )
indicate the probability of the forgotten class (ie., the effectiveness of forgetting). Precision and
Recall demonstrate the fidelity and diversity (Sajjadi et al., 2018; Kynkäänniemi et al., 2019), and
FID scores are computed between the generated 45K images and the corresponding ground truth
images with the same labels from Dr (ie., preserving model utility). The best and the second best
are highlighted in blue and orange, respectively.

Unscrubbed FT NG BlindSpot SA SalUn EraseDiff

FID ↓ 9.63 8.21 76.73 9.12 8.19 9.16 8.66
Precision (fidelity) ↑ 0.40 0.43 0.08 0.41 0.43 0.41 0.43
Recall (diversity) ↑ 0.79 0.77 0.61 0.78 0.75 0.76 0.77
Pψ(y = cf |xf )↓ 0.97 0.96 0.61 0.90 0.06 0.07 0.24

5.1 SETUP

Experiments are reported on CIFAR10 (Krizhevsky et al., 2009) with DDPM, Imagenette (Howard
& Gugger, 2020) with Stable Diffusion (SD) for class-wise forgetting, I2P (Schramowski et al.,
2023) dataset with SD for concept-wise forgetting. For all SD experiments, we use the open-source
SD v1.4 (Rombach et al., 2022) checkpoint as the pre-trained model. Implementation details and
additional results like visualizations of generated images can be found in Appendices A and B.

Baselines. We primarily benchmark against the following baselines commonly used in machine
unlearning: (i) Unscrubbed: models trained on data D. Unlearning algorithms should scrub infor-
mation from its parameters. (ii) Finetune (FT) (Golatkar et al., 2020): finetuning models on the
remaining data Dr, ie., catastrophic forgetting. (iii) NegGrad (NG) (Golatkar et al., 2020): gradient
ascent on the forgetting data Df . (iv) BlindSpot (Tarun et al., 2023b): the state-of-the-art unlearn-
ing algorithm for regression. It derives a partially-trained model by training a randomly initialized
model with Dr, then refines the unscrubbed model by mimicking the behavior of this partially-
trained model. (v) ESD (Gandikota et al., 2023a): fine-tune the model’s conditional prediction away
from the erased concept. (vi) Selective Amnesia (SA) (Heng & Soh, 2023b): adopt EWC from
continual learning to preserve model utility when performing forgetting and the method is effec-
tive across a wide range of generative models. (vii) SalUn (Fan et al., 2023): the state-of-the-art
unlearning algorithm that focuses on salient weights for forgetting across image classification and
generation tasks.

Metrics. Several metrics are utilized to evaluate the algorithms: (i) Frechet Inception Distance
(FID) (Heusel et al., 2017): the widely-used metric for assessing the quality of generated images. (ii)
CLIP score: the similarity between the visual features of the generated image and its corresponding
textual embedding. (iii) Pψ(y = cf |xf ) (Heng & Soh, 2023b): the classification rate of a pre-trained
classifier Pψ(y|x), with a ResNet architecture (He et al., 2016) used to classify generated images
conditioned on the forgetting classes. A lower classification value indicates superior unlearning
performance. (iv) Precision and Recall: A low FID may indicate high precision (realistic images)
but low recall (small variations) (Sajjadi et al., 2018; Kynkäänniemi et al., 2019). Kynkäänniemi
et al. (2019) shows that generative models claim to optimize FID (high fidelity) but always sacrifice
variation (low diversity). Hence, we include metric precision (fidelity) and recall (diversity) to
express the quality of the generated samples, to provide explicit visibility of the tradeoff between
sample quality and variety.

5.2 RESULTS ON DDPM

Following SA, we aim to forget the ‘airplane’ class on CIFAR10. Here, we replace ϵ ∈ N (0, Id)
with ϵθ(xt|cm) like random labelling used in Fan et al. (2023) where cm ̸= c. Results are presented
in Table 1. Firstly, from Table 1, we can conclude that traditional machine unlearning methods
designed for image classification or regression tasks fall short in effectively performing forgetting
for DDPM. Finetune and BlindSpot suffer from under-forgetting (ie., the generated image quality is
good but the probability of generated images belonging to the forgetting class approaching the value
of the unscrubbed model), and NegGrad suffers from over-forgetting (the probability of generated
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Figure 3: Quantity of nudity content detected using the NudeNet classifier from I2P data. Our
method effectively erases nudity content from Stable Diffusion (SD), outperforming ESD and SA.

images belonging to the forgetting class is decreased compared to that of the unscrubbed model but
the generated image quality drops significantly).

Then, comparing SA and SalUn’s unlearning methods, SA achieves the lowest FID score but sac-
rifices variation (decreased recall). Also, note that SA introduces excessive computational resource
requirements and time consumption (Heng & Soh, 2023b; Zhang et al., 2024). Note that the FID
scores of SA, SalUn, and EraseDiff decrease compared with the generated images from the origi-
nal models; the quality of the generated images experiences a slight improvement. However, there
is a decrease in recall (diversity), which can be attributed to the scrubbed models being fine-tuned
over Dr, suggesting a tendency towards overfitting. Regarding forgetting, SalUn achieves a smaller
probability of the generated images classified as the forgetting class than ours; yet, the FID score is
around 0.5 larger than ours, and our generated images present better diversity and fidelity.

5.3 RESULTS ON STABLE DIFFUSION

In this experiment, we apply EraseDiff to perform class-wise forgetting from Imagenette and erase
the ‘nudity’ concept with SD v1.4. For all experiments, we employ SD for sampling with 50 time
steps. When forgetting ‘nudity’, we have no access to the training data; instead, we generate ∼400
images with the prompts cf ={‘nudity’, ‘naked’, ‘erotic’, ‘sexual’}.

Forget nudity. 4703 images are generated using I2P prompts, and 1K images are generated us-
ing the prompts {‘nudity’, ‘naked’, ‘erotic’, ‘sexual’}. The quantity of nudity content is detected
using the NudeNet classifier (Bedapudi, 2019). In Figure 3, the number in the y-axis denotes the
number of exposed body parts generated by the SD v1.4 model. Figure 3 presents the percentage
change in exposed body parts w.r.t. SD v1.4. In Appendix B, we provide the number of exposed
body parts counted in all generated images with different thresholds. Here, our algorithm replaces
ϵf with ϵθ(xt|cm) where cm is ‘a photo of pokemon’. We can find that, EraseDiff reduces the
amount of nudity content compared to SD v1.4, ESD, and SA, particularly on sensitive content like
Female/Male Breasts and Female/Male Genitalia. While SalUn excels at forgetting, our algorithm
demonstrates a significant improvement in the quality of generated images, as shown in Table 2.
Table 2 presented results evaluating the utility of scrubbed models. The FID and CLIP scores are
measured over the images generated by the scrubbed models with COCO 30K prompts. While SA
achieves the highest CLIP similar score, our algorithm significantly improves the overall quality of
the generated images.

Forget class. When performing class-wise forgetting, following Fan et al. (2023), we set the prompt
as ‘an image of [c]’. For the forgetting class cf , we choose the ground truth backward distribution to
be a class other than cf . We generate 100 images for each prompt. Our method outperforms SalUn
on average across 10 classes. Specifically, our approach outperforms SalUn in five out of ten classes
when both forgetting and preservation are considered. In contrast, SalUn shows better results in two
out of ten classes. We emphasized that SalUn is a very potent SOTA unlearning algorithm, and we
do not expect to outperform it across all tests and metrics. Averaging results across all ten classes
provides a more comprehensive evaluation and mitigates the risk of cherry-picking. Our results,
based on this average approach, clearly indicate the advantages of our method.
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Table 2: Evaluation of generated images by SD when forgetting ‘nudity’. The FID score is mea-
sured compared to validation data, while the CLIP similarity score evaluates the alignment between
generated images and the corresponding prompts.

SD v1.4 ESD SA SalUn EraseDiff

FID ↓ 15.97 15.76 25.58 25.06 17.01
CLIP ↑ 31.32 30.33 31.03 28.91 30.58

Table 3: Performance of class-wise forgetting on Imagenette using SD. UA: the accuracy of the
generated images that do not belong to the forgetting class (ie., the effectiveness of forgetting). The
FID score is measured compared to validation data for the remaining classes.

Forget. Class SalUn EraseDiff
FID ↓ UA (%)↑ FID ↓ UA (%)↑

Tench 1.49 100 1.29 100
English Springer 1.50 100 1.38 100
Cassette Player 1.11 100 0.85 100
Chain Saw 1.64 100 1.17 99.9
Church 0.76 100 0.83 100
French Horn 0.67 100 1.09 100
Garbage Truck 1.54 100 0.96 100
Gas Pump 1.59 100 1.25 100
Golf Ball 1.29 98.8 1.50 99.5
Parachute 1.35 100 0.78 99.7

Average 1.29 99.88 1.11 99.91

5.4 COMPUTATIONAL EFFICIENCY

Finally, we measure the computational complexity of unlearning algorithms. The computational
complexity of SA and SalUn involves two distinct stages: the computation of FIM for SA and the
computation of salient weights w.r.t. Df for SalUn, and the subsequent forgetting stage for both
algorithms. We consider the maximum memory usage across both stages, the metric ‘Time’ is
exclusively associated with the duration of the forgetting stage for unlearning algorithms. Table 4
show that EraseDiff outperforms SA and SalUn in terms of efficiency, achieving a speed increase of
∼ 11× than SA and ∼ 2× than SalUn. This is noteworthy, especially considering the necessity for
computing FIM in SA for different datasets and models.

5.5 ABLATION STUDY

We further investigate the influence of the number of iterations K that approximate minLm(ϕ;Df ),
and the step size η that controls the weight of forgetting and preserving model utility. Here, we re-
place ϵ ∈ N (0, Id) with ϵf ∈ U(0, Id). Note that for different hyperparameters in Figure 6,
the average entropy of the classifier’s output distribution given xf , which is H(Pψ(y|xf )) =
−E[

∑
i Pψ(y = ci|x) loge Pψ(y = ci|x)], remains close to 2.02. This indicates that the scrubbed

SD v1.4 SalUnESD SA EraseDiff

Added by authors for publication

Figure 4: Generated examples with I2P and COCO prompts after forgetting the concept of ’nudity’.
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SD v1.4

SalUn

ESD

EraseDiff

Figure 5: Generated images after forgetting the class ‘tench’. The first column is generated images
conditioned on the class ‘tench’ and the rest are those conditioned on the remaining classes.
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Figure 6: Ablation results.

Memory (MiB) Time (min.)

SA 3352.3 140.00
SalUn 4336.2 28.17
EraseDiff 3360.3 12.70

Table 4: Computational overhead. Time
is the average duration measured over
five runs on DDPM when forgetting ‘air-
plane’.

0-23,0-76,0-93

Figure 7: Cases
of potential incom-
plete erasures.

models become uncertain about the images conditioned on the forgetting class, effectively erasing
the information about Df . Below, we will further demonstrate the influence on the model utility.

In practice, we have λt = max{0, at−∇θg(θt)
⊤∇θLr(θt;Dr)

∥∇θg(θt)∥2
2

} = max{0, η − ∇θg(θt)
⊤∇θLr(θt;Dr)

∥∇θg(θt)∥2
2

},
we can see that η determines the extent to which the update direction for forgetting can deviate from
that for preserving model utility. A larger η would allow for more deviation in the updating, thus
prioritizing forgetting over preserving model utility. In Figure 6, the FID score tends to increase
(ie., image quality drop) as the step size η increases, indicating that larger η leads to greater devi-
ations from the direction that preserves the model utility. Furthermore, the number of iterations K
determines how closely the approximation ϕK will approach argminϕ Lf (ϕ;Df ). Hence, a larger
number of iterations K leads to more thorough erasure, which is also supported by the results shown
in Figure 6, as increasing K correlates with an increase in the FID score.

6 CONCLUSION AND LIMITATIONS

In this work, we explored the unlearning problem in diffusion models and proposed an efficient
unlearning method EraseDiff to alleviate the gradient conflict issue between objectives. Compre-
hensive experiments on diffusion models demonstrate the proposed algorithm’s effectiveness in data
removal, its efficacy in preserving the model utility, and its efficiency in unlearning. However,
our scrubbed model may still preserve some characteristics similar to the forgetting class (e.g., in
Figure 7, generated images conditioned on the forgetting class ‘tench’ by our scrubbed model when
forgetting the class ‘tench’ from Imagenette, which may preserve some characteristics similar to that
close to ‘tench’ visually). Besides, the scrubbed models could be biased for generation, which we
do not take into account. Future directions for diffusion unlearning could include assessing fairness
post-unlearning, using advanced privacy-preserving training techniques, and advanced MOO solu-
tions. Furthermore, like SA, a manual selection of a surrogate distribution is needed. We presented
generated images with different surrogate distributions in Appendix B but further research is needed
to develop objective criteria for selecting these distributions. We hope the proposed approach could
serve as an inspiration for future research in the field of diffusion unlearning.
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IMPACT STATEMENTS

DMs have experienced rapid advancements and have shown the merits of generating high-quality
data. However, concerns have arisen due to their ability to memorize training data and generate
inappropriate content, thereby negatively affecting the user experience and society as a whole. Ma-
chine unlearning emerges as a valuable tool for correcting the algorithms and enhancing user trust
in the respective platforms. It demonstrates a commitment to responsible AI and the welfare of its
user base.

The inclusion of explicit imagery in our paper might pose certain risks, e.g., some readers may
find this explicit content distressing or offensive, which can lead to discomfort. Although we add
masks to cover the most sensitive parts, perceptions of nudity vary widely across cultures, and what
may be considered acceptable in one context may be viewed as inappropriate in another. Besides,
while unlearning protects privacy, it may also hinder the ability of relevant systems, potentially lead
to biased outcomes, and even be adopted for malicious usage, ie., the methods developed in our
study might potentially be misused for censorship or exploitation. This includes using technology
to selectively remove or alter content in various ways.

Advanced privacy-preserving training techniques are in demand to enhance the security and fairness
of the models. Techniques such as differential privacy can be considered to minimize risks associated
with sensitive data handling. Regular audits of the models are recommended for the platforms
that apply unlearning algorithms to identify and rectify any biases or ethical issues. This involves
assessing the models’ outputs to ensure that they align with ethical guidelines and do not perpetuate
unfair biases.

A REPRODUCIBILITY STATEMENT AND DETAILS

In this section, we provide detailed instructions on the reproduction of our results, we also share
our source code at the anonymous repository https://github.com/AnonymousUser-hi/
EraseDiff.

DDPM. Results on conditional DDPM follow the setting in SA (Heng & Soh, 2023b). Thanks to
the pre-trained DDPM from SA. The batch size is set to be 128, the learning rate is 1 × 10−4, our
model is trained for around 300 training steps. 5K images per class are generated for evaluation. For
the remaining experiments, four and five feature map resolutions are adopted for CIFAR10 where
image resolution is 32×32. All models apply the linear schedule for the diffusion process. We used
A5500 and A100 for all experiments.

SD. We use the open-source SD v1.4 checkpoint as the pre-trained model for all SD experiments.
The learning rate is 1×10−5, and our method only fine-tuned the unconditional (non-cross-attention)
layers of the latent diffusion model when erasing the concept of nudity. When forgetting nudity, we
generate around 400 images with the prompts {‘nudity’, ‘naked’, ‘erotic’, ‘sexual’} and around 400
images with the prompt ‘a person wearing clothes’ to be the training data. We evaluate over 1K
generated images for the Imagenette and Nude datasets. 4703 generated images with I2P prompts
are evaluated using the open-source NudeNet classifier (Bedapudi, 2019). The repositories we built
upon use the CC-BY 4.0 and MIT Licenses.

B ADDITIONAL RESULTS

Below, we also provide results on SD for EraseDiff when we replace ϵf with ϵθ(xt|cm) like Fan
et al. (2023); Heng & Soh (2023b), where cm is ‘a person wearing clothes’, denoted as EraseDiff wc.
The CLIP score and FID score for EraseDiff wc are 30.31 and 19.55, respectively.
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Figure 8: Quantity of nudity content detected using the NudeNet classifier from Nude-1K data with
a threshold of 0.6. Our method effectively erases nudity content from SD, outperforming ESD and
SA.
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Added by authors for publication

SA EraseDiff

Figure 9: Generated examples with I2P prompts when forgetting the concept of ‘nudity’.

Table 5: Results on CIFAR10 with DDPM when forgetting the ‘airplane’ class. The choice of
replacing forgotten classes remains flexible.

EraseDiffrl EraseDiffnoise EraseDiffcar

FID ↓ 8.66 7.61 9.42
Precision (fidelity) ↑ 0.43 0.43 0.40
Recall (diversity) ↑ 0.77 0.72 0.77
Pψ(y = cf |xf )↓ 0.24 0.22 0.34
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SD v1.4 SalUnESD SA EraseDiff_wc EraseDiff

Added by authors for publication

Figure 10: Generated examples with I2P prompts when forgetting the concept of ‘nudity’.

Table 6: Evaluation of generated images by SD when forgetting ‘tench’ from Imagenette. Pψ is
short for Pψ(y = cf |xf ) and indicates the probability of the forgotten class (ie., the effectiveness
of forgetting, and the FID score is measured compared to validation data for the remaining classes.

SD v1.4 ESD SalUn EraseDiff

FID ↓ 4.89 1.36 1.49 1.29
Pψ↓ 0.74 0.00 0.00 0.00
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Figure 11: Generated examples with I2P prompts when forgetting the concept of ‘nudity’.

Figure 12: The flagged images generated by EraseDiff that are detected as exposed female
breast/genitalia by the NudeNet classifier with a threshold of 0.6. The top two rows are gener-
ated images conditioned on prompts {‘nudity’, ‘naked’, ‘erotic’, ‘sexual’}, and the rest are those
conditioned on I2P prompts. No images contain explicit nudity content.
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Figure 13: Visualization of generated examples with prompts {‘nudity’, ‘naked’, ‘erotic’, ‘sexual’}
when forgetting the concept of ‘nudity’.

SD v1.4 SalUnESD Added by authors for publicationSA EraseDiff_wc EraseDiff

Figure 14: Visualization of generated images with COCO 30K prompts by the scrubbed SD models
when forgetting the concept of ‘nudity’.
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SD v1.4 SalUnESD Added by authors for publicationSA EraseDiff_wc EraseDiff

Figure 15: Visualization of generated images with COCO 30K prompts by the scrubbed SD models
when forgetting the concept of ‘nudity’.
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Figure 16: Visualization of generated images by the scrubbed SD models when forgetting the class
‘tench’ on Imagenette. The first column is generated images conditioned on the class ‘tench’ and
the rest are those conditioned on the remaining classes.
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Figure 17: Visualization of generated images by the scrubbed SD models when forgetting the class
‘tench’ on Imagenette. The first column is generated images conditioned on the class ‘tench’ and
the rest are those conditioned on the remaining classes.
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Figure 18: Visualization of generated examples when forgetting the class ‘airplane’ on DDPM.
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