
S∗: Scaling Test-time Compute for Code Generation

Anonymous ACL submission

Abstract

Increasing test-time compute for Large Lan-001
guage Models (LLMs) has demonstrated002
promising gains across various domains. While003
this approach has been extensively studied in004
the math domain, its potential in code gener-005
ation remains underexplored. In this paper,006
we propose S∗, the first hybrid test-time scal-007
ing framework that substantially improves the008
coverage and selection accuracy of generated009
code. S∗ extends the existing parallel scaling010
paradigm with sequential scaling to push perfor-011
mance boundaries. It further leverages a novel012
selection mechanism that adaptively generates013
distinguishing inputs for pairwise comparison,014
combined with execution-grounded informa-015
tion to robustly identify correct solutions.016

Evaluation across 12 Large Language Mod-017
els and Large Reasoning Models of vary-018
ing sizes demonstrates the generality and019
superior performance of S∗: (1) it consis-020
tently improves performance across model021
families and sizes, enabling a 3B model022
to outperform GPT-4o-mini; (2) it enables023
non-reasoning models to surpass reasoning024
models—GPT-4o-mini with S∗ outperforms025
o1-preview by 3.7% on LiveCodeBench;026
(3) it further boosts state-of-the-art reason-027
ing models—DeepSeek-R1-Distill-Qwen-32B028
with S∗ achieves 85.7% on LiveCodeBench,029
approaching o1 (high) at 88.5%. Anony-030
mous code is available at https://anonymous.031
4open.science/r/TestTimeCodeGen-1BB1.032

1 Introduction033

Increasing test-time compute has emerged as a034

powerful approach for improving the performance035

of large language models (LLMs) across diverse036

tasks (OpenAI, 2024; Guo et al., 2025; Qwen, 2024;037

Muennighoff et al., 2025; Team, 2025; Brown et al.,038

2024; Snell et al., 2024). In particular, test-time039

scaling has been extensively explored in mathemat-040

ical reasoning, where parallel sampling increases041

0 20 40 60 80
Performance (Pass@1)

o1-mini
QwQ-32B-Preview

R1-Distill-32B
R1-Distill-14B

R1-Distill-7B
GPT-4o-mini

Qwen-Coder-32B
Qwen-Coder-14B

Qwen-Coder-7B
Qwen-Coder-3B

Qwen-Coder-1.5B
Qwen-Coder-0.5B

76.5 +8.6
62.1 +14.3

69.1 +16.6
63.2 +19.6

48.4 +24.7
40.9 +20.4

47.4 +20.9
44.8 +19.8

29.4 +25.0
18.4 +24.2

7.0 +20.6
1.2+9.7

o1-preview mini highBaseline Improvement w/ S*

Figure 1: Performance improvement with S∗ in Live-
CodeBench (v2) (Jain et al., 2024). "Qwen-Coder"
denotes "Qwen2.5-Coder-Instruct," (Hui et al., 2024)
and "R1-Distill" denotes "DeepSeek-R1-Distill-Qwen."
(Guo et al., 2025). S∗ consistently improves models
across different sizes, allowing non-reasoning models to
surpass reasoning models and open models to be com-
petitive with o1 (high reasoning effort).

solution coverage, sequential refinement improves 042

individual samples through rethinking and revising, 043

and reward models guide the search process more 044

effectively (Ehrlich et al., 2025; Snell et al., 2024; 045

Li et al., 2024b). These methods collectively push 046

the performance boundaries of LLMs by leveraging 047

additional compute during inference. 048

Despite these advancements in the math do- 049

main, the potential of test-time scaling for code 050

generation—a domain with both fundamental im- 051

portance and widespread practical applications— 052

remains under-explored. Code generation intro- 053

duces unique challenges compared to math rea- 054

soning. Correctness in math can often be veri- 055

fied through rule-based string matching with refer- 056

ence answers (Guo et al., 2025; Zeng et al., 2025), 057

whereas validating code requires executing a large 058

set of test cases to accurately check functional cor- 059

rectness (Liu et al., 2023). This dependence on 060

execution increases the complexity of test-time 061

scaling and complicates the design of reward mod- 062

els (Zeng et al., 2025). However, code generation 063

1

https://anonymous.4open.science/r/TestTimeCodeGen-1BB1
https://anonymous.4open.science/r/TestTimeCodeGen-1BB1
https://anonymous.4open.science/r/TestTimeCodeGen-1BB1

…

…Sample 1

Round 1

…

…

Iterative

debugging

Round 2 Stop at max round

Sample N

Stage 1: Generation

Iterative debugging enhanced hybrid scaling

Stage 2: Selection

Adaptive input synthesis based selection

Best sample

Problem description

Public tests

Given a positive integer

num represented as a

string, return the integer

num without trailing zeros

as a string.

Input: num = "51230100"

Output: "512301“

Input: num = “123"

Output: “123"

…

Prompt:

Generate inputs that can

distinguish pairwise samples

Iterative

debugging

Run samples with

generated inputs

Prompt:

Select the best sample

based on execution results

Figure 2: Overview of S∗. Stage 1: Generation—S∗ enhances parallel samples through iterative debugging. Each
sample is tested using public test cases executed via an interpreter, with outputs and/or error messages used to guide
the next round of sample generation. Stage 2: Selection—S∗ selects the best sample by prompting an LLM to
generate inputs that differentiate between paired samples, then leveraging actual execution results to inform the
LLM to determine the optimal choice.

also offers a distinct advantage: The availability of064

programmatic interpreters enables the execution of065

programs to obtain precise outputs and error mes-066

sages, providing a reliable grounding mechanism067

for improving generation and selection (Chen et al.,068

2023; Li et al., 2022).069

In this paper, we propose S∗, the first hybrid070

test-time scaling framework for code generation,071

which substantially improves both coverage 1 and072

selection accuracy. S∗ pushes the limits of existing073

parallel scaling strategies by integrating sequential074

scaling through iterative debugging, while introduc-075

ing a novel adaptive selection mechanism grounded076

in execution. The framework operates in two key077

stages, as shown in Fig. 2.078

First, in the generation stage, S∗ augments079

parallel sampling (Brown et al., 2024; Li et al.,080

2022) with sequential scaling via iterative debug-081

ging. Each generated sample is executed on public082

test cases to obtain outputs and/or error messages,083

which are fed back into the model to iteratively084

refine the code. Second, in the selection stage, ex-085

isting methods often rely on generating test inputs086

indiscriminately, which can fail to effectively dif-087

ferentiate between candidate solutions (Chen et al.,088

2022; Zeng et al., 2025). To overcome this limi-089

tation, S∗ introduces adaptive input synthesis: for090

each pair of samples, an LLM is prompted to gen-091

erate distinguishing test inputs. These inputs are092

executed, where the outputs are further provided093

to ground the LLM to select the best sample. This094

adaptive, execution-grounded approach ensures ro-095

bust identification of correct solutions (§5.4).096

1The fraction of problems that are solved by any generated
sample (Brown et al., 2024).

S∗ is a general approach that outperforms zero- 097

shot generation and existing test-time scaling meth- 098

ods. We evaluate S∗ on 12 models, spanning a wide 099

range of sizes, both open and closed, instruction- 100

based and reasoning models. S∗ consistently 101

enhances performance across these diverse set- 102

tings. Notably, S∗ enables: (1) Small models 103

to surpass larger models within the same family: 104

Qwen2.5-7B-Instruct + S∗ outperforms Qwen2.5- 105

32B-Instruct on LiveCodeBench by 10.7%; (2) 106

Instruction-based models to outperform reason- 107

ing models: GPT-4o-mini + S∗ surpasses o1- 108

preview by 3.7%; and (3) Open reasoning models 109

to achieve performance competitive with state-of- 110

the-art closed models: DeepSeek-R1-Distill-Qwen- 111

32B + S∗ achieves 85.7% on LiveCodeBench, ap- 112

proaching the state-of-the-art performance of o1- 113

high at 88.7%. Fig. 3 provides an overview of the 114

performance improvements enabled by our tech- 115

niques. In summary, our contributions are: 116

1. We propose S∗, the first hybrid test-time scal- 117

ing framework for code generation, which 118

augments parallel scaling with sequential scal- 119

ing via iterative debugging and introduces 120

adaptive test input synthesis using LLMs for 121

robust sample selection. 122

2. We conduct extensive evaluations on Live- 123

CodeBench and CodeContests, demonstrating 124

that S∗ consistently improves performance 125

across diverse model families and sizes. 126

3. We will release all software artifacts, model 127

generations, and intermediate results to sup- 128

port and accelerate future research in this area. 129

2

82.8
66.2

63.2
64.6

51.5
44.8

20 30 40 50 60 70 80 90

+ S* selection

+ S* generation

R1-Distill-14B

+S* selection

+ S* generation

Qwen-Coder-14B

o1-preview o1-high

+6.7
+13.1

+3.0
+16.6

o1-mini

Figure 3: Example performance benefits of S∗:
Qwen2.5-Coder-14B-Instruct (denoted as Qwen-Coder-
14B) (Hui et al., 2024) with S∗ can surpass o1-preview
without S∗. DeepSeek-R1-Distill-Qwen-14B (denoted
as R1-Distill-14B) (Guo et al., 2025) with S∗ outper-
forms o1-mini without S∗.

2 Related work130

Test Time Scaling for LLMs. Existing ap-131

proaches to increase test-time compute can be132

broadly categorized into two paradigms: parallel133

scaling and sequential scaling (Muennighoff et al.,134

2025). Parallel scaling (i.e., repeated sampling)135

involves generating multiple solutions simultane-136

ously and selecting the best one, a strategy com-137

monly known as Best-of-N. Coverage—the frac-138

tion of problems solved by any of these N samples—139

continues to improve as N increases (Chollet,140

2019; Irvine et al., 2023), even at the scale of141

104 to 106 (Brown et al., 2024; Li et al., 2022).142

Common selection strategies, such as (weighted)143

majority voting (Wang et al., 2022) and reward144

model scoring (Christiano et al., 2017; Lightman145

et al., 2023; Wang et al., 2024a; Wu et al., 2024;146

Beeching et al.; Pan et al., 2024), often struggle147

to select the correct best sample in parallel scaling148

robustly (Brown et al., 2024; Hassid et al., 2024;149

Stroebl et al., 2024).150

Sequential scaling, on the other hand, encour-151

ages the model to refine its reasoning over mul-152

tiple steps. This includes methods like chain-of-153

thought (CoT) prompting (Wei et al., 2022; Nye154

et al., 2021), and iterative rethinking and revi-155

sion (Madaan et al., 2024; Lee et al., 2025; Hou156

et al., 2025; Huang et al., 2022; Min et al., 2024;157

Team, 2025; Muennighoff et al., 2025; Wang et al.,158

2024b; Li et al., 2025). Noticeably, OpenAI o1,159

DeepSeek R1, Qwen QwQ, and Kimi employ in-160

context long CoT with revision and backtracking161

to find the best solution (OpenAI, 2024; Guo et al.,162

2025; Qwen, 2024; Team et al., 2025).163

Test Time Scaling for Code Generation. Chen164

et al. (2022); Huang et al. (2023); Jiao et al. (2024)165

use models to generate both code samples and 166

test cases, selecting the final sample in a self- 167

consistency manner (Wang et al., 2022; Zeng et al., 168

2025). However, these approaches often suffer 169

from model hallucination, where the model fails to 170

accurately predict the output of a test input (Jain 171

et al., 2024; Zeng et al., 2025; Gu et al., 2024). 172

AlphaCode explores large-scale parallel sampling 173

with a trained model to generate test cases for 174

filtering and selection (Li et al., 2022). Alpha- 175

Codium uses a series of self-revision on both pub- 176

lic demonstration and model-generated tests to im- 177

prove solutions (Ridnik et al., 2024). Saad-Falcon 178

et al. (2024) searches over various inference tech- 179

niques and finds that parallel sampling with model- 180

generated tests works well for CodeContests prob- 181

lems (Li et al., 2022). 182

Hybrid Test-Time Scaling. Many works in the 183

math domain study hybrid approaches that combine 184

parallel and sequential scaling, often leveraging 185

reward-model-guided tree search algorithms, such 186

as Monte-Carlo Tree Search (MCTS), to effectively 187

navigate the solution space (Gao et al., 2024; Li 188

et al., 2024b; Silver et al., 2016; Snell et al., 2024; 189

Hendrycks et al., 2021b). S1 (Muennighoff et al., 190

2025) primarily focuses on sequential scaling but 191

observes diminishing returns and thus incorporates 192

parallel-based approaches like majority voting and 193

tree search to further enhance performance. 194

In contrast, our work applies hybrid scaling to 195

code generation tasks without relying on tree search 196

methods, as developing a general and effective re- 197

ward model for the code generation domain re- 198

mains challenging (Zeng et al., 2025). Instead, 199

S∗ augments parallel scaling with sequential scal- 200

ing via execution-grounded iterative debugging to 201

improve coverage and introduces adaptive input 202

synthesis to enhance selection accuracy. 203

Concurrent Work. CodeMonkeys is a notice- 204

able concurrent work to this paper, released on 205

Arxiv in Jan 2025 (Ehrlich et al., 2025). It also gen- 206

erates multiple samples in parallel and revises each 207

sample. However, CodeMonkeys focuses on the 208

software engineering domain, optimizing perfor- 209

mance on SWE-Bench (Chowdhury et al., 2024), 210

which addresses challenges such as identifying files 211

that need to be edited. In contrast, our work focuses 212

on competition-level code generation. 213

3

3 Method214

S∗ takes as input a coding problem P and a code215

generation model M. The model M aims to gen-216

erate a program solution X(·) that maps inputs to217

outputs according to the problem specification.218

We adopt the standard setup widely used in exist-219

ing coding benchmarks (Chen et al., 2021; Li et al.,220

2022, 2023; Jain et al., 2024; Hendrycks et al.,221

2021a; Gulwani et al.). Each coding problem P222

consists of a natural language description and a set223

of public and private test cases, each represented224

as input-output pairs.225

Private tests evaluate the correctness of X but226

remain inaccessible to M during code generation.227

A solution is considered correct if it passes all pri-228

vate tests. In contrast, public tests are provided to229

clarify the problem’s intent and are typically in-230

cluded in the prompt. Public tests are usually far231

fewer than private tests; for instance, in CodeCon-232

tests (Li et al., 2022), there are, on average, 2.0233

public tests and 202.1 private tests per problem.234

This contrasts with mathematical reasoning tasks,235

where evaluation typically relies on exact string236

matching of the final solution without additional237

test information (Li et al., 2024a).238

3.1 The S∗ Framework239

S∗ is a two-stage hybrid test-time scaling frame-240

work consisting of Generation and Selection stages,241

as demonstrated in Fig. 2. It extends parallel sam-242

pling with sequential sampling via iterative debug-243

ging to improve coverage and employs adaptive in-244

put synthesis during selection to enhance selection245

accuracy, leveraging execution results throughout246

the process.247

Stage 1: Generation. In the generation stage, S∗248

improves coverage by extending parallel scaling249

with sequential scaling through iterative debugging250

grounded with execution feedback. Specifically,251

it first generates N initial samples independently,252

leveraging parallel sampling techniques (Chen253

et al., 2023). Each sample is then refined through254

up to R rounds of sequential revision, informed255

by execution results on public test cases. The revi-256

sion process halts once a sample passes all public257

tests or reaches the maximum number of revision258

attempts.259

Stage 2: Selection. After generating N candi-260

date solutions, the next step is to identify the best261

one. Since the public tests are already used dur-262

Algorithm 1: Best Sample Selection in S∗

Input: Problem description: P
Input: Candidate samples: X
Output: The best selected sample: x∗

1 T ← llm_test_input_gen(P)
2 O ← sample_execution(X, T)
3 C ← sample_clustering(O)
4 Scores← 0
5 for each pair (Ci, Cj) ∈ C do
6 Sample xi, xj from Ci, Cj

7 Ta ← adaptive_input_gen(xi, xj)
8 better_idx = exec_and_llm_select(xi, xj , Ta)
9 Scores[better_idx] += 1

10 end
11 C∗ ← argmax(Scores)
12 x∗ ← random_pick(C∗)
13 return x∗

ing the generation stage, additional evaluation is 263

needed for reliable selection. We investigate two 264

existing approaches: (1) LLM-as-a-judge (Zheng 265

et al., 2023), which relies on pre-trained knowledge 266

to compare candidate solutions, and (2) generated 267

test cases (Li et al., 2022; Chen et al., 2022) which 268

uses synthesized test cases to guide selection. 269

Unfortunately, we find that LLM-based judging 270

alone often struggles to predict program behavior 271

accurately, while generated tests frequently fail to 272

provide reliable outputs for grounding the selection 273

or to produce high-quality inputs that effectively 274

distinguish samples (see Tab. 3). 275

To overcome these limitations, S∗ introduces 276

adaptive input synthesis, a hybrid selection ap- 277

proach that integrates LLM evaluation with 278

execution-grounded verification, as illustrated in 279

Algorithm 1. First, we prompt an LLM to synthe- 280

size a set of test inputs. We execute these inputs 281

and cluster the N samples based on their execution 282

outputs (Line 1 to Line 3) (Li et al., 2022). We then 283

perform pairwise comparisons across clusters: for 284

each comparison, we prompt the LLM to generate 285

distinguishing inputs, execute both samples using 286

these inputs, and select the superior one based on 287

the execution results (Line 7 to Line 9). This adap- 288

tive selection process grounds LLM evaluations 289

in concrete execution feedback, resulting in more 290

reliable and accurate sample selection compared to 291

naive LLM judging or generated tests-based meth- 292

ods (see §4). 293

4 Evaluation 294

In this section, we evaluate S∗ across a diverse set 295

of instruction-based and reasoning models, span- 296

ning various model families, sizes, and access 297

4

Method Qwen2.5-Coder-Instruct 4o-mini R1-Distill QwQ o1-mini
0.5B 1.5B 3B 7B 14B 32B 7B 14B 32B

Zero-Shot 1.2 7.0 18.4 29.4 44.8 47.4 40.9 48.4 63.2 69.1 62.1 76.5
Majority Vote 2.5 11.0 25.2 40.5 50.8 55.9 46.6 58.7 68.1 75.8 67.3 81.6
Self-Debugging 2.4 9.4 27.8 39.9 51.5 59.5 51.7 58.4 66.2 70.1 59.3 79.9
S* 10.9 27.6 42.7 54.4 64.6 70.1 61.3 73.2 82.8 85.7 76.3 85.3

Table 1: Pass@1 of zero-shot, majority voting (Wang et al., 2022; Li et al., 2022), self-debugging (Chen
et al., 2023), and S∗ on LiveCodeBench (v2). Bold text denotes the best performance. "R1-Distill", "QwQ",
"4o-mini" is short for "DeepSeek-R1-Distill-Qwen" (Guo et al., 2025), "QwQ-32B-Preview" (Qwen, 2024), and
"GPT-4o-mini" (Achiam et al., 2023) respectively. S∗ consistently outperforms other baselines.

types (open and closed), as well as multiple bench-298

marks (Jain et al., 2024; Li et al., 2022).299

Our key findings demonstrate the generality and300

effectiveness of S∗:301

1. S∗ consistently improves model performance302

across different families, sizes, and types, and303

generalizes effectively to multiple code gener-304

ation benchmarks, including LiveCodeBench305

(§4.2) and CodeContests (§4.4), showcasing306

its robustness and broad applicability.307

2. S∗ outperforms existing widely-used308

test-time scaling methods, including self-309

debugging (Chen et al., 2023) and majority310

voting (Wang et al., 2022; Li et al., 2022),311

by enhancing both coverage and selection312

accuracy (§4.3).313

4.1 Experimental Setup314

Models. We consider both instruction-based and315

reasoning-based models. To compare performance316

across models of different sizes using S∗, we select317

a series of models within the same family. We ex-318

periment with 12 models: (1) Instruction-based319

models: Qwen2.5-Coder-Instruct series (0.5B,320

1.5B, 3B, 7B, 14B, 32B), GPT-4o mini (0718321

version) (Hui et al., 2024; Achiam et al., 2023);322

(2) Reasoning-based models: QwQ-32B-Preview,323

DeepSeek-R1-Distill-Qwen series (7B, 14B, 32B),324

and o1-mini (Qwen, 2024; Guo et al., 2025; Ope-325

nAI, 2024).326

Benchmarks. We primarily use LiveCodeBench327

(MIT License) as our main evaluation benchmark,328

given its extensive usage by recent reasoning mod-329

els and its inclusion of difficulty levels, which help330

analyze the behavior of different techniques (Jain331

et al., 2024; DeepSeek, 2024; Qwen, 2024). We332

use its v4 version for development (e.g., selecting333

hyper-parameters), which contains problems from334

August 2024 to November 2024. For final evalua- 335

tion, we use a non-overlapping v2 version that con- 336

tains problems from May 2023 to June 2024. Live- 337

CodeBench (v2) contains 511 problems, ranging 338

from easy (182 problems), medium (206 problems), 339

to hard (123 problems). In addition, we evaluate S∗ 340

on CodeContests (Li et al., 2022), a collection of 341

165 challenging coding problems. We use Pass@1 342

as our primary metric (Chen et al., 2021). Some 343

experiments report Pass@N with N samples (often 344

referred to as the ‘oracle’ settings) (Stroebl et al., 345

2024; Brown et al., 2024). 346

Baselines. Our evaluation considers two cate- 347

gories of baselines. First, we assess our method’s 348

improvement over the original model (without 349

test-time scaling), using three leading OpenAI 350

reasoning models—o1-preview, o1-high, and o1- 351

mini (OpenAI, 2024)—as performance bench- 352

marks. Second, we evaluate different test-time 353

scaling methods applied to the same models, en- 354

compassing both parallel (i.e., majority voting) and 355

sequential (i.e., self-debugging) approaches. 356

Implementation Details. We configure S∗ to 357

generate 16 samples in parallel with a tempera- 358

ture of 0.7 (without top-p sampling) and perform 359

2 rounds of iterative debugging on public tests. 360

We justify our choice of hyper-parameters in §5. 361

Prompts are automatically generated by a prompt- 362

ing framework, DSPy, where detailed prompts can 363

be found in Appendix A.2. We run codes in a sand- 364

box to avoid maliciously generated code, according 365

to (Chen et al., 2021). Experiments with the largest 366

model (DeepSeek-R1-Distill-Qwen32B) takes one 367

day on 8 H100 GPUs, with a single run. 368

4.2 S∗ Main Results 369

Fig. 1 presents a performance comparison on Live- 370

CodeBench with and without S∗, alongside the o1- 371

5

series reasoning models for reference. Our results372

demonstrate that S∗ consistently enhances model373

performance. When applied to models within374

the same family, S∗ allows small models to sur-375

pass large ones. For example, Qwen2.5-7B-Coder-376

Instruct integrated with S∗ outperforms Qwen2.5-377

32B-Coder-Instruct without S∗ by 10.1%. Addi-378

tionally, S∗ enables instruction-based models to379

surpass reasoning models, as evidenced by GPT-380

4o mini (0718) with S∗ outperforming o1-Preview.381

Moreover, S∗ further improves strong reasoning382

models: the most capable open-source reasoning383

model, DeepSeek-R1-Distill-Qwen-32B, when en-384

hanced with S∗, surpasses o1-mini and achieves385

near state-of-the-art results comparable to o1 (high386

reasoning efforts). These results highlight that S∗387

serves as a powerful test-time scaling technique388

that can effectively improve model performance389

across different scales, architectures, and reasoning390

capabilities.391

4.3 Comparison to Other Test-Time Methods392

We evaluate S∗ against two popular test-time scal-393

ing methods: majority voting (Li et al., 2022) and394

self-debugging (Chen et al., 2023). Majority vot-395

ing employs parallel scaling: the model generates396

N samples, clusters them based on execution re-397

sults (Li et al., 2022), selects the largest cluster,398

and randomly picks a final sample from it. Self-399

debugging follows a sequential scaling approach:400

the model generates a single sample, iteratively re-401

fines it using public tests (Chen et al., 2023), and402

selects the final revised version.403

To ensure fair comparison, we use consistent404

hyperparameters: 16 parallel samples for majority405

voting and 2 debugging rounds for self-debugging.406

GPT-4o mini generates inputs for majority voting407

clustering and refines code samples for reasoning408

models. We use the model itself to refines code409

for non-reasoning models. As shown in Tab. 1,410

S∗ consistently outperforms both methods. For in-411

stance, for Qwen-2.5-Coder series, S∗ improves412

8.4% to 18.2% to baselines. For the best perform-413

ing model, DeepSeek-R1-Distill-Qwen-32B, S∗414

outperforms the majority vote baseline by 9.9%,415

and the self debugging baseline by 15.6%. These416

results demonstrating the effectiveness of our hy-417

brid approach.418

4.4 Results on Other Benchmark419

We further validate S∗ on CodeContests (Li et al.,420

2022). Tab. 2 summarizes results, where S∗ consis-421

Model Zero-Shot S* S* (Oracle)
Qwen-Coder-7B 1.8 10.9 (+9.1) 12.1
Qwen-Coder-14B 9.7 21.8 (+12.1) 27.9
Qwen-Coder-32B 10.1 21.8 (+11.7) 29.7
gpt-4o-mini 9.1 23.0 (+13.9) 28.5
o1-mini 32.7 48.5 (+15.8) 58.2

Table 2: Performance comparison on CodeContests.
Bold text denotes the best performance of the same
model. "Qwen-Coder" is short for "Qwen2.5-Coder-
Instruct", "R1-Distill" is short for "DeepSeek-R1-Distill-
Qwen". S∗ consistently improves model performance
on benchmark beyond LiveCodeBench.

tently improves both instruction-based and reason- 422

ing models significantly. In particular, Qwen-2.5- 423

Coder-7B-Instruct with S∗ improves 9.1% from its 424

zero-shot peformance of 1.8%. It further outper- 425

forms GPT-4o mini without S∗ by 1.8%. 426

5 Ablation Studies 427

In this section, we conduct ablation studies to an- 428

alyze the key components of S∗, focusing on the 429

effectiveness and variations within each stage of 430

the framework. We evaluate the following aspects: 431

1. Parallel Scaling: We analyze the impact of 432

different hyper-parameter choices, such as the 433

temperature setting and the number of sam- 434

ples, on parallel sampling performance (§5.1). 435

Additionally, we investigate the effect of in- 436

corporating in-context example retrieval into 437

the parallel sampling process (§5.2). 438

2. Sequential Scaling: We explore variations of 439

the iterative debugging process, including self- 440

debugging with model-generated test cases 441

(§5.3). 442

3. Selection Policy: We assess the performance 443

of different selection policies, comparing our 444

adaptive input synthesis approach with alter- 445

native selection strategies (§5.4). 446

All ablation experiments are conducted on Live- 447

CodeBench (v4). 448

5.1 Parallel Sampling Hyper-Parameters 449

We examine the impact of two key factors in paral- 450

lel sampling: temperature and the number of paral- 451

lel samples. Understanding their influence is essen- 452

tial for optimizing test-time scaling strategies. 453

Moderate temperatures improve performance, 454

but high temperatures degrade it. Fig. 4 (left) 455

6

0.20 0.50 0.70 0.95
Temperature

20

30

40

50

60

70

80
Pa

ss
@

N
Effect of Temperature

1 2 4 8 16 32 64 128
Number of Samples (log)

Effect of Sample Size

GPT-4o mini
Qwen2.5-Coder-7B-Instruct
Qwen2.5-Coder-32B-Instruct
QwQ-32B-Preview

Figure 4: The effect of hyper-parameters. Left:
The impact of temperature. A moderate temperature
(0.7) balances diversity and quality, leading to higher
Pass@N. In contrast, a higher temperature (0.95) does
not further improve Pass@N, potentially degrading code
quality. Right: The effect of increasing the number of
samples. Performance improves log-linearly.

shows that moderate temperatures (0.2–0.7) en-456

hance performance by balancing exploration and457

sample diversity. However, beyond 0.7, perfor-458

mance plateaus or declines, likely due to exces-459

sive randomness introducing noise. Some models,460

such as Qwen2.5-Coder-7B-Instruct, exhibit per-461

formance regression at higher temperatures, em-462

phasizing the trade-off between diversity and solu-463

tion consistency. These findings suggest that while464

moderate temperatures improve generation quality,465

excessively high values reduce code quality.466

Repeated sampling improves performance, even467

for reasoning models. As shown in Fig. 4 (right),468

increasing the number of parallel samples signif-469

icantly improves performance across all models.470

Notably, Qwen2.5-Coder-7B-Instruct, the weakest471

performer at N = 1, shows the largest gain, ex-472

ceeding 35% at N = 64. Similarly, the more capa-473

ble reasoning-model (QwQ-32B-Preview) follows474

the same trend, though its gains plateau beyond475

N = 32. Nevertheless, it improves substantially,476

rising from 50% at N = 1 to 80% at N = 32.477

These results confirm that increasing the number478

of parallel samples is a simple yet effective strat-479

egy for enhancing performance in both instruction-480

following and reasoning-based models.481

5.2 Impact of In-Context Examples482

While S∗ primarily focuses on repeated sampling483

for parallel scaling, it can be integrated with more484

advanced parallel scaling techniques. For instance,485

varying input prompts can create more diverse re-486

sponses (Lambert et al., 2024), which in turn may487

lead to better coverage. In this ablation study, we488

investigate whether augmenting prompts with in-489

1 2 4 8 163264
Samples (Log)

20

40

60

Pa
ss

@
N

Qwen2.5-Coder-7B-Inst.
No ICL
ICL (BM25)
ICL (Patterns)

1 2 4 8 163264
Samples (Log)

Pa
ss

@
N

Qwen2.5-Coder-32B-Inst.

1 2 4 8 163264
Samples (Log)

Pa
ss

@
N

GPT-4o mini

Figure 5: Performance with in-context examples
across different numbers of parallel samples (N),
for GPT-4o mini, Qwen2.5-Coder-7B-Instruct, and
Qwen2.5-Coder-32B-Instruct.

context examples can further improve parallel scal- 490

ing performance. 491

We construct an example set from Live- 492

CodeBench (v2) containing correct solutions and 493

reasoning traces generated by GPT-4o mini. We 494

explore two retrieval approaches for selecting in- 495

context examples. ICL (BM25) retrieves the top- 496

k similar prompts using a BM25 retriever and 497

prepends each to a different sample when n = 498

k (Robertson et al., 2009). This approach is simple 499

but may overlook solution-level similarities. ICL 500

(Pattern) groups problems by techniques (e.g., dy- 501

namic programming) and retrieves examples from 502

the same technique, aiming to provide more rele- 503

vant and structurally similar examples. 504

We evaluate medium-difficulty problems from 505

LiveCodeBench (v4) with oracle selection. As 506

shown in Fig. 5, performance is highly sensitive to 507

in-context example quality. ICL (BM25) performs 508

similarly to or worse than the zero-shot baseline 509

in most cases, except for n = 64 with Qwen2.5- 510

Coder-32B-Instruct. In contrast, ICL (Pattern) out- 511

performs the baseline when n ≥ 8 for Qwen2.5- 512

Coder-7B-Instruct and n ≥ 4 for Qwen2.5-Coder- 513

32B-Instruct, while showing comparable perfor- 514

mance with GPT-4o mini. 515

These results highlight that selecting high- 516

quality examples is crucial, and naive retrieval 517

methods often fall short. Although ICL itself is 518

promising, its performance is sensitive to example 519

quality and retrieval effectiveness. We regard it 520

as future work to develop robust ICL techniques 521

that can be integrated into S∗ to further enhance 522

parallel scaling performance. 523

5.3 Impact of Iterative Debugging Variants 524

We examine the effectiveness of three variants of 525

iterative debugging: (1) Public Tests: The model 526

iteratively debugs using public tests and stops once 527

the sample passes all of them. (2) +Generated 528

Tests: In addition to public tests, the model contin- 529

7

1 2 3 4 5
Round

40

42

44

46
Pa

ss
@

N
Qwen2.5-Coder-7B-Inst.

1 2 3 4 5
Round

56

58

60

62

Pa
ss

@
N

GPT-4o mini

1 2 3 4 5
Round

71

72

73

74

Pa
ss

@
N

QwQ-32B-Preview

Public Tests
Last Round Context
+ Generated Tests

Figure 6: Comparison of three iterative debugging
approaches: Public Tests, + Generated Tests and Last
Round Context. Results are obtained with N = 8,
temperature = 0.7 and up to four rounds of debugging.

ues debugging on model-generated tests following530

the algorithm in (Ridnik et al., 2024). (3) Last531

Round Context: The model iteratively debugs us-532

ing only public tests, but instead of using code533

samples from all previous rounds for debugging, it534

uses only the last round of code sample as context.535

This is motivated by observations that LLMs may536

perform sub-optimally when handling large context537

windows (Liu et al., 2024).538

Fig. 6 summarizes the result. We find that: (1)539

Even though reasoning models implicitly perform540

self-reflection and revising, they benefit from ex-541

plicit debugging through test execution feedback:542

the performance of QwQ-32B-Preview model im-543

proves from 72.6 to 74.2 with 2 rounds of debug-544

ging. (2) Reducing the context window or consid-545

ering more model-generated tests does not show546

consistent improvement: while using only the last547

round of context improves performance for the548

Qwen2.5-Coder-7B-Instruct model, it results in549

worse performance for the other two models. Sim-550

ilarly, incorporating additional model-generated551

tests does not enhance performance for GPT-4o552

mini. (3) The benefits of iterative debugging tend553

to plateau, typically after 2–3 rounds: this finding554

aligns with the observation that the benefit of se-555

quential scaling flattens out (Muennighoff et al.,556

2025). Motivated by these findings, we choose to557

use 2 round of debugging, only on public tests for558

simplicity, and apply iterative debugging even for559

reasoning models in §4.2.560

5.4 Impact of Different Selection Policies561

We compare different policies for selecting the best562

sample after iterative debugging. We evaluate four563

approaches: (1) Public Only: using only public564

test cases for selection and randomly selecting a565

sample if it passes all tests; (2) Generated Tests:566

applying public test filtering followed by additional567

test case generation using GPT-4o mini, selecting568

the sample that passes the most test cases; (3) LLM569

Judge: applying public test filtering and then using570

Model Public Generated LLM Adaptive Input
Only Tests Judge Synthesis (Ours)

Qwen-Coder-7B 42.3 42.3 42.3 44.5
Qwen-Coder-32B 54.6 57.8 55.5 58.3
GPT-4o mini 54.1 55.2 56.3 57.3
QwQ-32B-Preview 64.3 65.9 68.6 69.7
Avg. 53.8 53.1 55.6 57.5

Table 3: Pass@1 Performance comparison between
different selection methods on LiveCodeBench(v4).
Bold text denotes the best performance of the same
model. "Qwen-Coder", "R1-Distill" is short for
"Qwen2.5-Coder-Instruct" and "DeepSeek-R1-Distill-
Qwen". Number in parenthesis denotes the relative
improvement over using only the public test to perform
selection. Results are obtained with N=8 and tempera-
ture=0.7. Our Adaptive Input Synthesis method achieves
better accuracy over other methods.

LLMs for pairwise selection among code samples; 571

and (4) Adaptive Input Synthesis —applying the 572

selection algorithm described in § 3.1 with GPT-4o 573

mini after public test filtering. 574

Tab. 3 summarizes the results. Notably, the Gen- 575

erated Tests approach does not yield improvements 576

over the Public Only baseline. This is due to er- 577

rors in model-generated outputs, which, when ap- 578

plied to poorly chosen inputs, introduce significant 579

noise in the selection process, ultimately degrading 580

performance. In contrast, our Adaptive Selection 581

method enables the LLM to strategically select an 582

input that best differentiates samples while avoid- 583

ing the need to predict outputs. By leveraging real 584

execution outputs rather than model predicttions, 585

the LLM makes more reliable decisions, leading to 586

improved selection accuracy. 587

6 Conclusion 588

We propose S∗, the first hybrid test-time scaling 589

framework for code generation that substantially 590

improves both coverage and selection accuracy. 591

S∗ extends the existing parallel scaling paradigm 592

with sequential scaling through iterative debugging 593

and incorporates adaptive input synthesis, a novel 594

mechanism that synthesizes distinguishing test in- 595

puts to differentiate candidates and identify correct 596

solutions via execution results. 597

S∗ consistently improves code generation per- 598

formance across benchmarks, including Live- 599

CodeBench and CodeContests. Notably, S∗ en- 600

ables a 3B model to outperform GPT-4o mini, GPT- 601

4o mini to surpass o1-preview by 3.7% on Live- 602

CodeBench, and DeepSeek-R1-Distill-Qwen-32B 603

to achieve 86.7% on LiveCodeBench, approaching 604

o1-high at 88.5%. 605

8

7 Limitations606

This work primarily focuses on competition-level607

code generation, where it does not studies tasks608

such as software engineering tasks, e.g., SWE-609

BENCH (Jimenez et al., 2023). The method primar-610

ily focuses on improving accuracy, while it does611

not aim for minimizing costs.612

References613

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama614
Ahmad, Ilge Akkaya, Florencia Leoni Aleman,615
Diogo Almeida, Janko Altenschmidt, Sam Altman,616
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.617
arXiv preprint arXiv:2303.08774.618

Edward Beeching, Lewis Tunstall, and Sasha Rush.619
Scaling test-time compute with open models.620

Bradley Brown, Jordan Juravsky, Ryan Ehrlich, Ronald621
Clark, Quoc V Le, Christopher Ré, and Azalia Mirho-622
seini. 2024. Large language monkeys: Scaling infer-623
ence compute with repeated sampling. arXiv preprint624
arXiv:2407.21787.625

Bei Chen, Fengji Zhang, Anh Nguyen, Daoguang Zan,626
Zeqi Lin, Jian-Guang Lou, and Weizhu Chen. 2022.627
Codet: Code generation with generated tests. arXiv628
preprint arXiv:2207.10397.629

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming630
Yuan, Henrique Ponde De Oliveira Pinto, Jared Ka-631
plan, Harri Edwards, Yuri Burda, Nicholas Joseph,632
Greg Brockman, et al. 2021. Evaluating large633
language models trained on code. arXiv preprint634
arXiv:2107.03374.635

Xinyun Chen, Maxwell Lin, Nathanael Schärli, and636
Denny Zhou. 2023. Teaching large language models637
to self-debug. arXiv preprint arXiv:2304.05128.638

François Chollet. 2019. On the measure of intelligence.639
arXiv preprint arXiv:1911.01547.640

Neil Chowdhury, James Aung, Chan Jun Shern, Oliver641
Jaffe, Dane Sherburn, Giulio Starace, Evan Mays,642
Rachel Dias, Marwan Aljubeh, Mia Glaese, et al.643
2024. Introducing swe-bench verified.644

Paul F Christiano, Jan Leike, Tom Brown, Miljan Mar-645
tic, Shane Legg, and Dario Amodei. 2017. Deep646
reinforcement learning from human preferences. Ad-647
vances in neural information processing systems, 30.648

DeepSeek. 2024. Deepseek-r1-lite-preview re-649
lease. https://api-docs.deepseek.com/news/650
news1120. Accessed: 2024-11-20.651

Ryan Ehrlich, Bradley Brown, Jordan Juravsky, Ronald652
Clark, Christopher Ré, and Azalia Mirhoseini. 2025.653
Codemonkeys: Scaling test-time compute for soft-654
ware engineering. arXiv preprint arXiv:2501.14723.655

Zitian Gao, Boye Niu, Xuzheng He, Haotian Xu, 656
Hongzhang Liu, Aiwei Liu, Xuming Hu, and Lijie 657
Wen. 2024. Interpretable contrastive monte carlo tree 658
search reasoning. arXiv preprint arXiv:2410.01707. 659

Alex Gu, Baptiste Rozière, Hugh Leather, Armando 660
Solar-Lezama, Gabriel Synnaeve, and Sida I Wang. 661
2024. Cruxeval: A benchmark for code reason- 662
ing, understanding and execution. arXiv preprint 663
arXiv:2401.03065. 664

Sumit Gulwani, Oleksandr Polozov, and Rishabh Singh. 665
Foundations and trends in programming languages. 666
Bd, 4:1–119. 667

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, 668
Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong Ma, 669
Peiyi Wang, Xiao Bi, et al. 2025. Deepseek-r1: In- 670
centivizing reasoning capability in llms via reinforce- 671
ment learning. arXiv preprint arXiv:2501.12948. 672

Michael Hassid, Tal Remez, Jonas Gehring, Roy 673
Schwartz, and Yossi Adi. 2024. The larger the better? 674
improved llm code-generation via budget realloca- 675
tion. arXiv preprint arXiv:2404.00725. 676

Dan Hendrycks, Steven Basart, Saurav Kadavath, Man- 677
tas Mazeika, Akul Arora, Ethan Guo, Collin Burns, 678
Samir Puranik, Horace He, Dawn Song, and Jacob 679
Steinhardt. 2021a. Measuring coding challenge com- 680
petence with apps. NeurIPS. 681

Dan Hendrycks, Steven Basart, Saurav Kadavath, Man- 682
tas Mazeika, Akul Arora, Ethan Guo, Collin Burns, 683
Samir Puranik, Horace He, Dawn Song, et al. 2021b. 684
Measuring coding challenge competence with apps. 685
arXiv preprint arXiv:2105.09938. 686

Zhenyu Hou, Xin Lv, Rui Lu, Jiajie Zhang, Yujiang 687
Li, Zijun Yao, Juanzi Li, Jie Tang, and Yuxiao Dong. 688
2025. Advancing language model reasoning through 689
reinforcement learning and inference scaling. arXiv 690
preprint arXiv:2501.11651. 691

Baizhou Huang, Shuai Lu, Weizhu Chen, Xiaojun 692
Wan, and Nan Duan. 2023. Enhancing large lan- 693
guage models in coding through multi-perspective 694
self-consistency. arXiv preprint arXiv:2309.17272. 695

Jiaxin Huang, Shixiang Shane Gu, Le Hou, Yuexin Wu, 696
Xuezhi Wang, Hongkun Yu, and Jiawei Han. 2022. 697
Large language models can self-improve. arXiv 698
preprint arXiv:2210.11610. 699

Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Day- 700
iheng Liu, Lei Zhang, Tianyu Liu, Jiajun Zhang, 701
Bowen Yu, Kai Dang, et al. 2024. Qwen2. 5-coder 702
technical report. arXiv preprint arXiv:2409.12186. 703

Robert Irvine, Douglas Boubert, Vyas Raina, Adian 704
Liusie, Ziyi Zhu, Vineet Mudupalli, Aliaksei Kor- 705
shuk, Zongyi Liu, Fritz Cremer, Valentin Assassi, 706
et al. 2023. Rewarding chatbots for real-world en- 707
gagement with millions of users. arXiv preprint 708
arXiv:2303.06135. 709

9

https://huggingface.co/spaces/HuggingFaceH4/blogpost-scaling-test-time-compute
https://api-docs.deepseek.com/news/news1120
https://api-docs.deepseek.com/news/news1120
https://api-docs.deepseek.com/news/news1120

Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia710
Yan, Tianjun Zhang, Sida Wang, Armando Solar-711
Lezama, Koushik Sen, and Ion Stoica. 2024. Live-712
codebench: Holistic and contamination free eval-713
uation of large language models for code. arXiv714
preprint arXiv:2403.07974.715

Fangkai Jiao, Geyang Guo, Xingxing Zhang, Nancy F716
Chen, Shafiq Joty, and Furu Wei. 2024. Preference717
optimization for reasoning with pseudo feedback.718
arXiv preprint arXiv:2411.16345.719

Carlos E Jimenez, John Yang, Alexander Wettig,720
Shunyu Yao, Kexin Pei, Ofir Press, and Karthik721
Narasimhan. 2023. Swe-bench: Can language mod-722
els resolve real-world github issues? arXiv preprint723
arXiv:2310.06770.724

Omar Khattab, Arnav Singhvi, Paridhi Maheshwari,725
Zhiyuan Zhang, Keshav Santhanam, Sri Vard-726
hamanan, Saiful Haq, Ashutosh Sharma, Thomas T727
Joshi, Hanna Moazam, et al. 2023. Dspy: Compiling728
declarative language model calls into self-improving729
pipelines. arXiv preprint arXiv:2310.03714.730

Nathan Lambert, Jacob Morrison, Valentina Pyatkin,731
Shengyi Huang, Hamish Ivison, Faeze Brahman,732
Lester James V Miranda, Alisa Liu, Nouha Dziri,733
Shane Lyu, et al. 2024. T\" ulu 3: Pushing frontiers734
in open language model post-training. arXiv preprint735
arXiv:2411.15124.736

Kuang-Huei Lee, Ian Fischer, Yueh-Hua Wu, Dave737
Marwood, Shumeet Baluja, Dale Schuurmans, and738
Xinyun Chen. 2025. Evolving deeper llm thinking.739
arXiv preprint arXiv:2501.09891.740

Dacheng Li, Shiyi Cao, Tyler Griggs, Shu Liu, Xiangxi741
Mo, Shishir G Patil, Matei Zaharia, Joseph E Gonza-742
lez, and Ion Stoica. 2025. Llms can easily learn to743
reason from demonstrations structure, not content, is744
what matters! arXiv preprint arXiv:2502.07374.745

Jia Li, Edward Beeching, Lewis Tunstall, Ben Lip-746
kin, Roman Soletskyi, Shengyi Huang, Kashif Rasul,747
Longhui Yu, Albert Q Jiang, Ziju Shen, et al. 2024a.748
Numinamath: The largest public dataset in ai4maths749
with 860k pairs of competition math problems and750
solutions. Hugging Face repository, 13:9.751

Qingyao Li, Wei Xia, Kounianhua Du, Xinyi Dai, Ruim-752
ing Tang, Yasheng Wang, Yong Yu, and Weinan753
Zhang. 2024b. Rethinkmcts: Refining erroneous754
thoughts in monte carlo tree search for code genera-755
tion. arXiv preprint arXiv:2409.09584.756

Rongao Li, Jie Fu, Bo-Wen Zhang, Tao Huang, Zhihong757
Sun, Chen Lyu, Guang Liu, Zhi Jin, and Ge Li. 2023.758
Taco: Topics in algorithmic code generation dataset.759
arXiv preprint arXiv:2312.14852.760

Yujia Li, David Choi, Junyoung Chung, Nate Kushman,761
Julian Schrittwieser, Rémi Leblond, Tom Eccles,762
James Keeling, Felix Gimeno, Agustin Dal Lago,763
et al. 2022. Competition-level code generation with764
alphacode. Science, 378(6624):1092–1097.765

Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri 766
Edwards, Bowen Baker, Teddy Lee, Jan Leike, 767
John Schulman, Ilya Sutskever, and Karl Cobbe. 768
2023. Let’s verify step by step. arXiv preprint 769
arXiv:2305.20050. 770

Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and Ling- 771
ming Zhang. 2023. Is your code generated by chatgpt 772
really correct? rigorous evaluation of large language 773
models for code generation. Advances in Neural 774
Information Processing Systems, 36:21558–21572. 775

Nelson F Liu, Kevin Lin, John Hewitt, Ashwin Paran- 776
jape, Michele Bevilacqua, Fabio Petroni, and Percy 777
Liang. 2024. Lost in the middle: How language mod- 778
els use long contexts. Transactions of the Association 779
for Computational Linguistics, 12:157–173. 780

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler 781
Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon, 782
Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, 783
et al. 2024. Self-refine: Iterative refinement with 784
self-feedback. Advances in Neural Information Pro- 785
cessing Systems, 36. 786

Yingqian Min, Zhipeng Chen, Jinhao Jiang, Jie Chen, 787
Jia Deng, Yiwen Hu, Yiru Tang, Jiapeng Wang, Xi- 788
aoxue Cheng, Huatong Song, et al. 2024. Imitate, 789
explore, and self-improve: A reproduction report 790
on slow-thinking reasoning systems. arXiv preprint 791
arXiv:2412.09413. 792

Niklas Muennighoff, Zitong Yang, Weijia Shi, Xi- 793
ang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke 794
Zettlemoyer, Percy Liang, Emmanuel Candès, and 795
Tatsunori Hashimoto. 2025. s1: Simple test-time 796
scaling. arXiv preprint arXiv:2501.19393. 797

Maxwell Nye, Anders Johan Andreassen, Guy Gur-Ari, 798
Henryk Michalewski, Jacob Austin, David Bieber, 799
David Dohan, Aitor Lewkowycz, Maarten Bosma, 800
David Luan, et al. 2021. Show your work: Scratch- 801
pads for intermediate computation with language 802
models. arXiv preprint arXiv:2112.00114. 803

OpenAI. 2024. Learning to reason with 804
llms. https://openai.com/index/ 805
learning-to-reason-with-llms/. Accessed: 806
2024-11-20. 807

Jiayi Pan, Xingyao Wang, Graham Neubig, Navdeep 808
Jaitly, Heng Ji, Alane Suhr, and Yizhe Zhang. 2024. 809
Training software engineering agents and verifiers 810
with swe-gym. arXiv preprint arXiv: 2412.21139. 811

Qwen. 2024. Qwq: Reflect deeply on the boundaries of 812
the unknown. https://qwenlm.github.io/blog/ 813
qwq-32b-preview/. 814

Tal Ridnik, Dedy Kredo, and Itamar Friedman. 2024. 815
Code generation with alphacodium: From prompt 816
engineering to flow engineering. arXiv preprint 817
arXiv:2401.08500. 818

10

https://openai.com/index/learning-to-reason-with-llms/
https://openai.com/index/learning-to-reason-with-llms/
https://openai.com/index/learning-to-reason-with-llms/
https://qwenlm.github.io/blog/qwq-32b-preview/
https://qwenlm.github.io/blog/qwq-32b-preview/
https://qwenlm.github.io/blog/qwq-32b-preview/

Stephen Robertson, Hugo Zaragoza, et al. 2009. The819
probabilistic relevance framework: Bm25 and be-820
yond. Foundations and Trends® in Information Re-821
trieval, 3(4):333–389.822

Jon Saad-Falcon, Adrian Gamarra Lafuente, Shlok823
Natarajan, Nahum Maru, Hristo Todorov, Etash824
Guha, E Kelly Buchanan, Mayee Chen, Neel Guha,825
Christopher Ré, et al. 2024. Archon: An architec-826
ture search framework for inference-time techniques.827
arXiv preprint arXiv:2409.15254.828

David Silver, Aja Huang, Chris J Maddison, Arthur829
Guez, Laurent Sifre, George Van Den Driessche, Ju-830
lian Schrittwieser, Ioannis Antonoglou, Veda Pan-831
neershelvam, Marc Lanctot, et al. 2016. Mastering832
the game of go with deep neural networks and tree833
search. nature, 529(7587):484–489.834

Charlie Snell, Jaehoon Lee, Kelvin Xu, and Aviral Ku-835
mar. 2024. Scaling llm test-time compute optimally836
can be more effective than scaling model parameters.837
arXiv preprint arXiv:2408.03314.838

Benedikt Stroebl, Sayash Kapoor, and Arvind839
Narayanan. 2024. Inference scaling flaws: The limits840
of llm resampling with imperfect verifiers. arXiv841
preprint arXiv:2411.17501.842

Kimi Team, Angang Du, Bofei Gao, Bowei Xing,843
Changjiu Jiang, Cheng Chen, Cheng Li, Chenjun844
Xiao, Chenzhuang Du, Chonghua Liao, et al. 2025.845
Kimi k1. 5: Scaling reinforcement learning with llms.846
arXiv preprint arXiv:2501.12599.847

NovaSky Team. 2025. Sky-t1: Train your own o1
preview model within 450. https : //novasky −
ai.github.io/posts/sky − t1. Accessed : 2025 −
01− 09.

Peiyi Wang, Lei Li, Zhihong Shao, Runxin Xu, Damai Dai,848
Yifei Li, Deli Chen, Yu Wu, and Zhifang Sui. 2024a.849
Math-shepherd: Verify and reinforce llms step-by-step850
without human annotations. In Proceedings of the 62nd851
Annual Meeting of the Association for Computational852
Linguistics (Volume 1: Long Papers), pages 9426–9439.853

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le,854
Ed Chi, Sharan Narang, Aakanksha Chowdhery, and855
Denny Zhou. 2022. Self-consistency improves chain of856
thought reasoning in language models. arXiv preprint857
arXiv:2203.11171.858

Yifei Wang, Yuyang Wu, Zeming Wei, Stefanie Jegelka,859
and Yisen Wang. 2024b. A theoretical understanding860
of self-correction through in-context alignment. arXiv861
preprint arXiv:2405.18634.862

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten863
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou, et al.864
2022. Chain-of-thought prompting elicits reasoning in865
large language models. Advances in neural information866
processing systems, 35:24824–24837.867

Yangzhen Wu, Zhiqing Sun, Shanda Li, Sean Welleck, 868
and Yiming Yang. 2024. Inference scaling laws: An 869
empirical analysis of compute-optimal inference for 870
problem-solving with language models. arXiv preprint 871
arXiv:2408.00724. 872

Huaye Zeng, Dongfu Jiang, Haozhe Wang, Ping Nie, Xi- 873
aotong Chen, and Wenhu Chen. 2025. Acecoder: Ac- 874
ing coder rl via automated test-case synthesis. ArXiv, 875
2502.01718. 876

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan 877
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin, Zhuo- 878
han Li, Dacheng Li, Eric Xing, et al. 2023. Judging llm- 879
as-a-judge with mt-bench and chatbot arena. Advances 880
in Neural Information Processing Systems, 36:46595– 881
46623. 882

A Appendix 883

A.1 Example of Coding Problem 884

In the method section (§3), we introduce our prob- 885

lem setup, which includes unambiguous configu- 886

ration with a small amount of demonstrations. In 887

this section, we provide one such example to better 888

illustrate how typically dataset provide questions. 889

In particular, we show one sample from the hard 890

subset of LiveCodeBench (Jain et al., 2024). 891

11

Question

You are given a string word and an array
of strings forbidden. A string is called
valid if none of its substrings are present
in forbidden. Return the length of the
longest valid substring of the string word.
A substring is a contiguous sequence of
characters in a string, possibly empty.

Example 1:
Input: word = "cbaaaabc", forbidden =
["aaa","cb"]
Output: 4
Explanation: There are 11 valid substrings
in word: "c", "b", "a", "ba", "aa", "bc",
"baa", "aab", "ab", "abc" and "aabc". The
length of the longest valid substring is 4.
It can be shown that all other substrings
contain either "aaa" or "cb" as a substring.

Example 2:
Input: word = "leetcode", forbidden =
["de","le","e"]
Output: 4
Explanation: There are 11 valid substrings
in word: "l", "t", "c", "o", "d", "tc", "co",
"od", "tco", "cod", and "tcod". The length
of the longest valid substring is 4. It can
be shown that all other substrings contain
either "de", "le", or "e" as a substring.

Constraints:
1 ≤ word. length ≤ 105 word consists only
of lowercase English letters. 1 ≤ forbidden.
length ≤ 105. 1 ≤ forbidden[i]. length ≤
10. forbidden[i] consists only of lowercase
English letters.

892

A.2 Prompt templates893

We also provide detailed prompts used in our ex-894

periments in Fig. 7 to Fig. 9. These prompts are895

generated automatically by DSPy (Khattab et al.,896

2023).897

12

System message:
Your input fields are:
1. `prompt` (str)

Your output fields are:
1. `reasoning` (str)
2. `code` (str): Here is the past history of your code and the test case feedback. Please reason
why your code failed in the last round, and correct the code. Do not write non-code content in
the code field.

All interactions will be structured in the following way, with the appropriate values filled in.
[[## prompt ##]]
{prompt}

[[## reasoning ##]]
{reasoning}

[[## code ##]]
{code}

[[## completed ##]]

In adhering to this structure, your objective is: Given the fields `prompt`, produce the fields
`code`.

User message:
[[## prompt ##]]
{Question Prompt}
Code:
[Round 0 Reasoning]: {Round 0 Reasoning}
[Round 0 Generated code]: {Round 0 Generated Code}
[Round 0 Test Feedback]: {Round 0 Test Feedback}

Respond with the corresponding output fields, starting with the field `[[## reasoning ##]]`, then
`[[## code ##]]`, and then ending with the marker for `[[## completed ##]]`.

Figure 7: The prompt for iterative debugging.

13

System message:
Your input fields are:
1. `prompt` (str)
Your output fields are:
1. `reasoning` (str)
2. `tests` (str): Generate a complete set of potential inputs to test an AI-generated solution to
the coding problem. Cover: (i) Edge cases, such as empty string or arrays, (ii) Complex and
difficult inputs, but do not include very long inputs. (iii) Other ones that can maximize the
chance of catching a bug. Provide the input and output in JSON format as follows: {"input":
<example_input>, "output": <expected_output>} Ensure the input and output match the types
and structure expected for the problem. Do not include any additional text or explanations, just
the JSON object.

All interactions will be structured in the following way, with the appropriate values filled in.
[[## prompt ##]] {prompt}
[[## reasoning ##]] {reasoning}
[[## tests ##]] {tests}
[[## completed ##]]

In adhering to this structure, your objective is: Given the fields `prompt`, produce the fields
`tests`.

User message:
[[## prompt ##]] {Question Prompt}

Respond with the corresponding output fields, starting with the field `[[## reasoning ##]]`, then
`[[## tests ##]]`, and then ending with the marker for `[[## completed ##]]`.

Figure 8: The prompt for generating test cases.

14

System message:

Your input fields are:
1. `prompt` (str)

Your output fields are:
1. `reasoning` (str)
2. `code` (str): Executable Python function generated from the given prompt.
 DO NOT include anything other than function body! Give me only the function itself!

All interactions will be structured in the following way, with the appropriate values filled in.

[[## prompt ##]]
{prompt}

[[## reasoning ##]]
{reasoning}

[[## code ##]]
{code}

[[## completed ##]]

In adhering to this structure, your objective is:
Given the fields `prompt`, produce the fields `code`.

User message:

[[## prompt ##]]
{Question Prompt}

Code:

Respond with the corresponding output fields, starting with the field `[[## reasoning ##]]`, then
`[[## code ##]]`, and then ending with the marker for `[[## completed ##]]`.

Figure 9: The prompt for code generation.

15

