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Abstract

Inverse reinforcement learning (IRL) methods learn a reward function from expert demon-
strations such as human behavior, offering a practical solution for crafting reward functions
for complex environments. However, IRL is computationally expensive when applied to
large populations of demonstrators, as existing IRL algorithms require solving a separate
reinforcement learning (RL) problem for each individual. We propose a new IRL approach
that relies on contextual RL, where an optimal policy is learned for multiple contexts. We
first learn a contextual policy that provides the RL solution directly for a parametric family
of reward functions, and then re-use it for IRL on each individual within the population. We
motivate our method within the scenario of AI-driven playtesting of videogames, and focus
on an interpretable family of reward functions. We evaluate the method on a navigation
task and the battle arena game Derk, where it successfully recovers distinct player reward
preferences from a simulated population and provides substantial time savings compared to
a solid baseline of adversarial IRL.

1 Introduction

Modelling human behavior is one of the grand goals of AI, with versatile applications from Computational
Cognitive Science to Human-Computer Interaction (Oulasvirta et al., 2022). User modelling in video games
constitutes an example application in the latter domain and serves as the use-case for our contribution.
Models of human behavior can implicitly inform game design choices, e.g. to design more engaging and
satisfying games. Moreover, they can be explicitly employed for simulating player behavior, e.g. with the
goal of reducing the need for costly, slow and tedious human playtesting sessions (Gudmundsson et al., 2018;
Chang et al., 2019; Stahlke et al., 2020; Roohi et al., 2018).

Reinforcement learning (RL) provides one basis for building behavioral models. RL algorithms (Sutton
& Barto, 2018) leverage an agent’s experience in interacting with an environment to learn an optimal
behavioral policy which maximizes a sum of future rewards. Whether or not humans truly behave as reward-
maximizing agents, RL has been shown to be a useful framework (Silver et al., 2021), with empirical evidence
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Figure 1: Efficient population-level IRL in a 2-D navigation task (see Section 4 for details). Left: We first
find a contextual policy for a family of reward functions. These weight the preference of four target areas (red
dots) without using the expert trajectories. The colored lines indicate the optimal trajectories for a range
of preferences, all starting from the center for clarity. Right: For a set of expert trajectories (here one per
user), we infer the user’s reward preference (size of the target area) using a gradient-based algorithm that
does not require solving any RL problems. Instead, the algorithm only needs the pre-computed contextual
RL solution. This enables large-scale learning of users’ preferences.

in behavioral modeling in many domains, including AI-driven playtesting (Bergdahl et al., 2020; Shin et al.,
2020; Kristensen et al., 2020; Roohi et al., 2021; de Woillemont et al., 2021).

The key challenge in developing behavioral models with RL is in defining the reward function that matches
an individual’s goals. In some cases such reward functions can be derived directly from cognitive theories
(Holmgård et al., 2014a;b), but a more general approach is to learn the reward function from observations
of how the target individual interacts with the environment. The task of inferring the reward function from
such expert demonstrations is called inverse reinforcement learning (IRL) (Abbeel & Ng, 2004), a sub-field of
imitation learning (IL) (Osa et al., 2018; Pelling & Gardner, 2019). This formulation allows learning models
even for an individual if given sufficient samples of their past behavior. Games serve as an excellent domain
for studying and applying IRL, as they constitute worlds of arbitrary complexity and game companies often
extensively log the gameplay of potentially millions of players.

In the current IRL literature, the rewards are often represented as flexible neural networks (Finn et al.,
2016b; Fu et al., 2018) and the learning is often based on adversarial algorithms that contrast simulated and
expert trajectories (Ho & Ermon, 2016; Fu et al., 2018; Wang et al., 2021). Despite notable progress in the
core algorithms, all current solutions still scale poorly for large populations of demonstrators. In particular,
vast majority of the methods require repeatedly solving the optimal policy within the IRL algorithms. When
applied to large populations, repeatedly solving RL problems within iterative algorithms for each user is
clearly wasteful. Earlier works that propose IRL methods that avoid using nested RL solutions still retain
high cost for populations since they require training user-specific models instead of using a shared model
(Klein et al., 2013; Sharma et al., 2017; Garg et al., 2021; Pirotta & Restelli, 2016).

Closest to our work, Ramponi et al. (2020) extended the gradient-based method of Pirotta & Restelli (2016)
for populations by assuming that the demonstrators can be grouped to a few (in their experiments 2-3)
clusters where all demonstrators within a cluster share the exact same reward. This improves efficiency when
the clustering assumption holds, but does not help in learning individual rewards in general.
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We contribute a method to speed up IRL for large populations based on the concept of contextual RL (cRL)
(Hallak et al., 2015). Standard RL algorithms learn a policy for a specific environment with fixed (but often
stochastic) transition dynamics and reward functions, whereas cRL methods learn policies for contextual
environments where the dynamics and rewards are context-dependent. For instance, Eimer et al. (2021)
learnt a contextual policy for a PointMass environment with parameterized friction, enabling the agent to
behave optimally with arbitrary future friction coefficients.

Our core idea is to interpret a parameterization of the reward function as a context. This allows first learning a
cRL solution for all possible reward preferences in advance, without yet accessing any expert demonstrations.
We can then solve the IRL problem for individual users by leveraging the cRL solution. We thus separate
the RL and IRL problem, overcoming the need to repeatedly execute an RL algorithm within the inner loop
of IRL. This reduces the cost of the per-user computation at the expense of a fixed precomputation of the
cRL policy. To the best of our knowledge, no prior work has used cRL for efficient population-level IRL, even
though cRLs have recently been considered in related tasks. De Woillemont et al. (2021) employed cRL –
without explicit reference to the concept – for AI playtesting, creating alternative player personas manually
with the contextual policy. Merel et al. (2017) and Wang et al. (2017), in turn, used contexts for improving
imitation of the demonstrations, without paying attention to the reward functions underlying the behavior.
Finally, Moon et al. (2022, 2023) used cRLs as part of a behavioral model, but they do not solve the problem
with IRL but rather rely on general-purpose inference methods. Contextual RL with reward as the context
has been called multi-objective RL (MORL) in some works (Castelletti et al., 2012; Parisi et al., 2016; Yang
et al., 2019). Many of these works focus on (using the terminology of cRL) learning the contextual policy and
its theoretical aspects without considering the IRL task (Castelletti et al., 2012; Parisi et al., 2016). Closest
to our work in this literature is Yang et al. (2019) where they introduce an efficient algorithm for learning
contextual policies, and show how to recover hidden preferences (similar to IRL) with scalar rewards coming
from simulator, only using the simulator and not demonstrations (differing from IRL).

Our approach is applicable to all behavioral modelling tasks, assuming a sufficiently low-dimensional pa-
rameterization for the reward function. We construct the reward function by specifying a set of sub-reward
functions that are hypothesised to motivate the user’s behavior, and consider cases where the sub-rewards are
defined in advance as interpretable basis of behavior. Game companies often analyze their players through
pre-defined metrics that characterise e.g. how often they use specific features of the game to obtain insights
about their behavior on a population level. Such analysis, however, is necessarily limited to aggregate sum-
maries and does not generalize for complex environments with no clear interpretation between rewards and
game features or when reaching a particular reward requires a long sequence of actions. RL resolves these
challenges as a natural basis of modelling sequential and context-dependent decisions, and the pre-existing
metrics can directly be used as sub-rewards, requiring no additional developer effort. The full reward func-
tion is parametrized as a weighted combination of these sub-rewards, which is naturally low-dimensional
and interpretable. However, the new IRL algorithm itself is general and applicable also for other reward
functions.

We evaluate the approach in two simulation studies. We first employ it in a custom-made navigation task
(Figure 1) to investigate the method’s reliability in inferring the weights of a growing number of sub-rewards.
We also compare our method to adversarial inverse reinforcement learning (AIRL) (Fu et al., 2018), showing
that we require only 1% of the environment interactions for each user compared to AIRL, and hence show
that dramatic speedups are possible for large populations even after accounting for the pre-training cost
of cRL. Finally, we apply the method for distinguishing between players using either aggressive or passive
playing strategies in Derk (Norén, 2020), a video game designed for developing RL algorithms.

2 Background

2.1 Reinforcement Learning

Reinforcement learning algorithms are formulated using Markov Decision processes (MDPs) (Sutton & Barto,
2018). A MDP describes an environment and task using a tuple (S, A, P (s′|s, a), r), where S is the state
space, A is the action space, P (s′|s, a) is a distribution called transition dynamics that describes the evolution
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of the system from any state s ∈ S, to a future state s′ ∈ S, with an action a ∈ A. The reward function
r : S × A × S → R describes the utility of a transition (s, a, s′).

The goal is to find a policy π : S → A that maximizes the expected sum of (discounted) future rewards, also
called expected return J . For stochastic environments and policies parameterized by θ this corresponds to
maximizing

J(θ) = Est+1∼p(st+1|at,st)
at∼πθ(st)

[
T∑
t=0

γtr(st, at, st+1)
]

. (1)

where γ is the discount factor. We use finite T and hence consider episodic RL tasks. An episode is a collection
of state-action-reward tuples starting from an initial state s0 and terminating either at a time limit or a
terminal state sT .

The RL problem can be solved with numerous algorithms. For instance, when the transition dynamics are
unknown we often employ model-free algorithms (e.g. Schulman et al. (2017)) and if the dynamics are known
then model-based algorithms can be used (e.g. Chua et al. (2018)). Our work is agnostic w.r.t. the specific
RL algorithm since our IRL approach merely requires running a suitable RL solver as an intermediate step,
and hence the RL algorithm can be decided based on the properties of the environment.

2.2 Contextual Reinforcement Learning

Contextual reinforcement learning is about learning policies in contextual MDPs (cMDPs) (Hallak et al.,
2015). It is used commonly in environments where the agent naturally faces multiple contexts, for instance
different weather conditions in autonomous driving, or in difficult environments that can be parametrized
in a way that curriculum learning methods can be employed to reach better final performances. Learning
cRL policies is harder, as the environment becomes more complex due to the additional dependency on a
context, but is proven to be doable (Jiang et al., 2017; Modi et al., 2018; Belogolovsky et al., 2021).

Formally, a contextual MDP is a tuple (C, S, A, M(c)), where S and A are state and action spaces like before,
but C is a space of contexts and M(c) is a function from context space to a MDP (S, A, Pc(s′|s, a), rc), where
the transition dynamics Pc(s′|s, a) and the reward function rc depend on the context c.

We use a special case of the general cMDP where only the reward function rc is affected by the context and
the transition dynamics are not; this means the context only encodes information about the reward function
(and hence a given user, e.g. a player) rather than being a property of the environment (e.g. the game). This
differs from many previous uses of cRL where the environment itself is contextual.

2.3 Inverse Reinforcement Learning

While the goal of RL is to find an optimal policy given the reward function, inverse reinforcement learning
(IRL) refers to learning the reward function from expert demonstrations. We assume that every expert has a
single reward rw and the observed demonstrations correspond to a policy maximizing it. The reward function
rw is assumed to be parametrized by a vector w, and the goal is to learn w such that a policy maximizing the
corresponding return would be similar to the policy that generated the demonstrations. We assume access
to a set of N trajectories {τi}Ni=1 = {{s

(i)
0 , a

(i)
1 , . . . , s

(i)
Ti

}}Ni=1, where τi is the ith trajectory and s
(i)
t and a

(i)
t

are the state and action of the ith trajectory at timestep t, each trajectory being possibly of different length
Ti. The goal is to maximize, w.r.t. the weights w, the likelihood of N independent expert demonstrations

G ··= P (τ1, . . . , τN |w) =
N∏
i=1

exp (rw(τi))
Z

, (2)

where Z =
∫

exp
(∑Ti

t=0 rw(st, at, st+1)
)

dτ is the normalizing constant integrating over every possible tra-
jectory sequence {s0, a1, s1, . . . , sT }. We also write rw(τ) =

∑T
t=0 rw(st, at, st+1) for compactness. The form

of the likelihood comes from the Boltzmann rationality assumption w.r.t. the demonstrations (Ziebart et al.,
2008; Finn et al., 2016b); we assume the experts choose actions so that the ones yielding high returns are
favored over others by an exponential factor.
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Algorithm 1: Standard IRL
1 Initialize w randomly;
2 for i = 0 to I do // IRL loop
3 for j = 0 to R do // RL loop
4 πθ ← Improve πθ w.r.t. θ using equation 1

and rw

5 end
6 w ← w − η ∂L(w)

∂w
;

7 end

Algorithm 2: cRL + IRL
1 for j = 0 to Rc do // pretrain cRL
2 w ∼ Dir(α);
3 πθ(·, w)← Improve πθ(·, w) w.r.t. θ using

equation 1 and rw

4 end
5 Initialize w randomly;
6 for i = 0 to I do // IRL with pretrained cRL
7 w ← w − η ∂L(w)

∂w
;

8 end

Since the integral in Z is intractable, the objective of equation 2 is typically replaced by a surrogate loss

L(w) = Eτ∼sg(π(τ |w)) [rw(τi)] − Eτ∼π∗(τ) [rw(τi)] , (3)

whose gradient is equivalent to that of − 1
N log G, and where where sg(·) is the stop-gradient function. Here

π∗ denotes the expert policy and π(τ |w) denotes the policy that is optimal w.r.t. the current parameters
w. The procedure can be expressed as a standard IRL algorithm, presented in Algorithm 1, where an RL
policy is optimized for each IRL step to estimate the first expectation in equation 3 (cf. Algorithm 1, lines
3-5). Both IRL and RL are solved with iterative algorithms with I and R denoting the respective number of
iterations. The exact updates depend on the algorithm.

In Section 4 we will compare our method against one commonly used IRL method, which relies on adversarial
training. In adversarial IRL, two models are trained: a policy πθ like before and a discriminator D, whose
purpose is to classify trajectories (or state-action-next-state triplets) into two classes: those generated by the
expert and those generated by the current policy. In adversarial inverse reinforcement learning (AIRL) (Fu
et al., 2018), the discriminator takes the specific form of

D(s, a, s′) = exp(fψ,ϕ(s, a, s′))
exp(fψ,ϕ(s, a, s′)) + πθ(a|s) , (4)

where fψ,ϕ(s, a, s′) = gψ(s, a) + γhϕ(s′) − hϕ(s). Despite the adversarial formulation, the algorithm is closely
related to the objective equation 3 (for details, see (Finn et al., 2016a) and (Fu et al., 2018)) and follows
approximately Algorithm 1. The differences are that policy is trained to maximize R(s, a, s′) = log(1 −
D(s, a, s′))− log(D(s, a, s′)), that is, to fool the discriminator, while learning reward function is interchanged
with discriminator training.

3 Method

3.1 Problem Setup

Our task is to solve the IRL problem for a population of users u ∈ {1, . . . , U}, based on expert trajectories
{τui }Nu

i=1 of each user. That is, we need to solve the optimization problem of equation 2 U times. In many
scenarios U can be very large and for each user we may have a fairly large number of expert trajectories Nu.
Hence, we aim to solve this problem in a computationally efficient manner. Furthermore, we seek a solution
where the reward functions are (at least to some extent) interpretable. In our video game use case, this would
provide developers insights on the player population to aid both game design and analytics.

3.2 Approach

3.2.1 Overview

We propose an abstract general pipeline, where we combine cRL and IRL to overcome the computational
burden of IRL. We first train a single contextual policy that is (sufficiently) optimal for any reward function
characterized by the weights w. This allows the inner loop of Algorithm 1 to be moved to a pre-training
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phase, and the IRL loss in equation 3 to be calculated using the pre-trained contextual policy. Note that
user trajectories are not used in the cRL part, but only revealed to the IRL part of the approach. Combining
IRL with cRL can in principle speed up all IRL methods that require optimal policies for multiple reward
functions. We provide technical details for one instance of the principle to demonstrate how it works, but
note that other choices for the cRL and IRL training could be made. The procedure is outlined in Algorithm
2 and described in detail below.

3.2.2 Interpretable Reward Parameterization

We focus on linearly weighted sub-reward functions [r(1)(·), . . . , r(K)(·)], so that the reward function becomes

rw(s, a, s′) =
K∑
k=1

wkr(k)(s, a, s′). (5)

The sub-reward functions are assumed to be predefined by domain experts, and the IRL part only needs to
learn the weights w that offer interpretability by providing information about user preferences among the
sub-reward functions. This parameterization is similar to the early IRL works (Abbeel & Ng, 2004; Ziebart
et al., 2008), but we additionally assume the weights w to be probability vectors, i.e.

∑K
i=1 wi = 1, so that

the individual weights can be interpreted as proportional importance of the sub-rewards.

Even though we run all experiments with this reward family motivated by our video game use case where
the sub-rewards are pre-defined by the company as aspects they want to use as basis for understanding the
individual user behavior, we note that the method itself is compatible with more general reward functions
as long as we can solve the corresponding cRL problem. We discuss the feasibility of this in more detail in
Section 5.

3.2.3 Contextual Policy Learning

A contextual policy depends not only on the states but also on the reward weights w that define the contexts
here, making the policy π : S × W → A a function of state and reward weights as explained in Section 2.2.
Importantly, in our formulation the weights w only influence the (user-dependent) reward function and not
the rest of the environment.

As a specific choice for our pipeline, we choose to solve the cRL problem with the algorithm by de Woillemont
et al. (2021) that iteratively improves the policy πθ(s, w) for randomly selected contexts w. For each episode
we sample new weights w and then improve the policy πθ(s, w) for this set of weights (lines 2-5 in Alg. 2).
Note that other sampling strategies could be employed for training cRL as well, for example ones similar to
Eimer et al. (2021) that try to sample contexts that are sufficiently difficult for the current policy.

We use neural networks (of two hidden layers in our experiments) for defining the contextual policy πθ(s, w).
For updating the policy, we can use any iterative RL algorithm and we use the Proximal Policy Optimization
(PPO) (Schulman et al., 2017) that has been widely adopted by the RL community. Even though w is
kept fixed during an episode, the policies for other weights still change due to updating the shared policy
parameters θ. This process is continued until the policy πθ(s, w) converges for all w. In practice, we stop
when the episode returns converge.

The weights w need to be probability vectors and are sampled from a Dirichlet distribution w ∼ Dir(α). In
principle, any positive α would be applicable, but we found that α → 0 works well in practice 1 and provides
an easy choice with no tunable hyperparameters. That is, we only select a single sub-reward at a time, but
the cRL algorithm still learns to interpolate between these archetypal cases due to the continuous nature of
neural networks that we use as policies.

Figure 1 (left) shows an example of the interpolation capabilities in a 2-D navigation task. During train-
ing, only trajectories aiming for a single goal were rewarded, but the solution still efficiently interpolates
between the different goals. Note that this choice is made only for training the cRL, and the approach makes

1In early experimentation we found that allowing non one-hot vectors (α > 0) led to the policy getting stuck in a local
optimum where it only prefers one or few goals and others are ignored.
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no assumptions on the distribution of w for the demonstrations. In all of the experiments the observed
demonstrations correspond to w with multiple non-zero weights.

3.2.4 Gradient-based IRL

The converged contextual policy πθ can be used to provide optimal behavior w.r.t. any weights w (that
define reward function rw) by using the policy with fixed weights. This allows directly computing the IRL
loss given by equation 3 in Line 7 of Algorithm 2, without requiring optimization of the policy.

The log-likelihood of equation 2 is maximized with gradient updates, using the standard gradients that now
take the form

∇w
1
N

log G = Eτ∼π∗(τ) [∇wrw(τ)] − Eτ∼π(τ |w) [∇wrw(τ)] . (6)

The derivation is provided in the Appendix A. In practice we impose the simplex-constraint of w by opti-
mizing the unconstrained weights ν ∈ RK and transforming them by a softmax-operator wi = exp(νi)∑K

j=1
exp(νj)

The softmax reparameterization introduces a non-identifiability (adding a constant value c for each entry of
ν does not influence w) which may in some cases introduce difficulties in optimization, but this formulation
work well in our empirical experiments. Alternative techniques for accounting the constraint could be used
as well.

The IRL problem is solved separately for each user, as in the standard approach, but the critical difference is
that we now only need standard gradient descent, completely skipping the inner loop of R iterations of the
RL solver in Algorithm 1. The computational complexity for U users and I IRL iterations (per user) hence
changes from O(UI(L + R)) to O(Rc + UIL), where L refers to the iterative computation that is required
for the IRL loss, with substantial practical speedup for large U .

4 Experiments

We run experiments in two environments, an m-D navigation task and the video game Derk (Norén, 2020).
The first affords straight-forward visualization and technical verification of the proposed approach, whereas
the latter can demonstrate its applicability to more complex environments, in particular video games. We
use simulated expert trajectories so that we have a ground truth for verifying the results, but the method is
directly applicable to real user trajectories as well.

4.1 Experiment 1: m-D Navigation

4.1.1 Purpose

We demonstrate that (a) the proposed approach is able to recover the true weights w from expert trajectories,
and (b) that this works for a sufficiently large K, the number of sub-reward functions. We also show that
our method learns the models for each individual in a fraction of the environment interactions compared to
AIRL (Fu et al., 2018), a method shown to be highly competitive in recent IRL comparisons (Wang et al.,
2021).

We use an environment that allows for easily modifying the number of sub-reward functions and measuring
the quality of the recovered weights. Since we are assuming K manually defined sub-rewards as a basis for
interpretable reward functions, our aim is in the ballpark of approximately K = 5 and cases with K ≫ 10
are not considered relevant.

4.1.2 Environment and Task

We use an m-dimensional navigation task, where an agent must navigate towards a goal with discrete steps,
similar to the environment used by Eimer et al. (2021). We extend this traditional environment by allowing
multiple goals, each offering a distinct, proximity-based sub-reward function. We assume that the users may
have different personal preferences for these sub-rewards, and hence the preferences define an optimal goal
state in the environment. Figure 1 already illustrated a 2-D version of this environment and showed how

7



Published in Transactions on Machine Learning Research (06/2024)

0 200 400 600 800 1000 1200
IRL iteration

0.0

0.2

0.4

0.6

0.8

1.0
W

ei
gh

t

Goal
0
1

2
3

2 3 4 5 6 7 8
# goals

0.0

0.2

0.4

0.6

0.8

1.0

Sy
m

m
et

ric
 K

L

Recovered
Baseline

1 10 100 1000 10000 100000
# environment interactions (for IRL)

0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75

Sy
m

m
et

ric
 K

L

cRL + IRL
AIRL
AIRL warmstart

Figure 2: Left: An example convergence plot for real weights [0.16, 0.02, 0.57, 0.25] (horizonal lines) and the
corresponding recovered weights. The plot shows that, with a modest number of sub-rewards, our method
recovers a good approximation of the behavior in a relatively small number of iterations. Middle: Symmetric
KL divergences between the real weights and the recovered ones, averaged over 20 randomly sampled real
weight vectors w for varying numbers of sub-rewards. We can correctly identify the weights up to K = 4
sub-rewards, after which the performance slowly deteriorates (and becomes theoretically unidentifiable at
K = 7). We also show a naíve baseline prediction of 1

K proving a natural upper bound for the symmetric
KL. Right: Sample complexity comparison of the proposed cRL + IRL method, AIRL and AIRL with
warmstart for the IRL part of learning. The figure shows 0.25, 0.5 and 0.75-quantiles of symmetric KL over
the 20 weight vectors related to 3 goals. Using cRL + IRL lowers the sample complexity compared to AIRL
by two orders of magnitude. It also outperforms AIRL with warmstart by a similar magnitude.

the preferences influence the optimal policies. We note that, even though the environment may seem easy,
it is relatively challenging from the RL perspective due to the high-dimensional action space and sparse
state representation. We conduct experiments using m = 5 dimensions, which translates to 2m × 4 × 2 = 80
possible discrete actions to choose from. Hence, solving the RL problem alone is non-trivial.

The environment can be formally described as (see Appendix B.4 for details):

• States: st = [x(a), x(g1), . . . , x(gK), w], where x(a) and x(gk) are the m-dimensional vectors denoting
the locations of the agent and the kth goal respectively, and w are the reward weights.

• Actions: a = [a1, a2, a3], a1 for direction (discrete, 2m outcomes), a2 for the stride (discrete, 4
outcomes) and a3 does not affect the reward or the next state (nuisance).

• Sub-rewards: r(k)(st, at, st+1) = −||x(a)
t+1 − x(gk)||22

• Goal locations: The set of goals {gk}Kk=1 were chosen so that they are maximally far apart from
each other on the m-dimensional 0.5-radius sphere. This ensures distinct goals and identifiability of
rewards, so that for an environment of m dimensions we can identify the behavior uniquely for a
maximum of m + 1 goals.

• Termination: 150 steps, enough for reaching any goal.

We trained a cRL model for each choice of K, the number of goals. We then sampled 20 weight vectors
{w

(gen)
i }20

i=1 (denoting a user) for each K ∈ {2, . . . , 8}, and generated 128 trajectories with each of them. The
weight vectors w

(gen)
i used for generating the trajectories were sampled from Dir(1.0). These trajectories were

then used as demonstrations for the IRL part to investigate how IRL performance is affected by increased
number of sub-reward functions.

For the AIRL comparison, we use K = 3 goals with the same 20 weight vectors and trajectories, and compare
the sample complexity required for a similar accuracy in weight recovery. To acquire linearly weighted rewards
with AIRL, we define gψ(s) to be the linear combination of weights and sub-rewards, and keep hϕ as a flexible
neural network (like Fu et al. (2018) D.1).

We also compare to an intuitive extension of AIRL that attempts to leverage already trained models to
speed up the learning for a new user. We are not aware of specific methods proposed for this, but introduce
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here a simple variant that initialises the policy and discriminator of AIRL to a sensible checkpoint coming
from the earlier AIRL run (specifically a checkpoint saved at 2000 environment iterations). This can be
though of as observing part of the player population beforehand and using the solution learned for them as
an initialization for future user-specific AIRL models. We call this method AIRL warmstart. Note, however,
that the specific method is not to be interpreted as an optimal way of re-using previous computation, but is
merely intended as an additional baseline.

4.1.3 Results

We inspect the results from three perspectives. Figure 2 (left) shows an example convergence of the weights
over the IRL iterations, showing how the algorithm converges already within approximately 100-200 iterations
and correctly identifies the preferences for a case of four sub-rewards. The weights were smoothed in a 50-
step sliding window for visual clarity. The convergence for other ground truths and numbers of sub-reward
functions in K ∈ {2, . . . , 7} is similar (see Appendix B for more examples).

Figure 2 (middle) quantifies the accuracy for varying numbers of sub-reward functions. We measure the
goodness of recovered weights by calculating symmetric Kullback-Leibler (sKL) divergence (a.k.a the Jef-
freys divergence, Jeffreys (1998); Kullback & Leibler (1951)) DsKL(w(gen), ŵ) between a generating weight
vector w(gen) and the recovered weight vector ŵ. The sKL between two probability vectors p and q of length
K is defined by DsKL :=

∑K
i=1 pi log pi

qi
+
∑K
i=1 qi log qi

pi
. For comparison, we also plot the expected sKL

Ep∼Dir(α)

[
DsKL(p, 1

|p| )
]

denoting the symmetric KL for baseline predictions for weights, a natural upper
bound for the divergence. Symmetric KL measure was chosen as our weights carry a probability interpreta-
tion, and the KL divergence is naturally comparable between varying length vectors. Other common metrics
could have been used, and the results were similar for example for Euclidean distance between log-weights.

The results show that we can accurately estimate the true weight vectors up to K = 4. For K > 4 the
performance starts to deteriorate because the problem becomes harder but we still clearly improve over the
baseline of mean prediction. For K ≥ 7 the problem is no longer identifiable for the m = 5 dimensional
environment since multiple weight vectors can explain the same trajectories equally well (see Appendix C),
and the performance indeed drops. In other words, we verify that we can solve the IRL problem when it is
solvable, but also highlight that the designer needs to be careful in determining the sub-rewards in a way
that is appropriate for the scenario. For scenarios with non-identifiable sub-rewards (e.g. the same action
always provides the same two sub-rewards) it is impossible to recover unique weights.

However, even in those cases we can verify that the policies π(·, ŵ) induced by the recovered weights are
meaningful, by comparing the actual returns. The results presented in Appendix D confirm that the policies
using the recovered weights achieve similar performance to the policies using the ground truth weights w(gen),
even for large K’s.

Finally, Fig. 2 (right) compares the convergence of the proposed method against AIRL (Fu et al., 2018),
a representative example of how IRL problems are solved in the literature. Averaged over the 20 ground
truth weight vectors, our method converges in approximately 100 environment interactions for each user,
whereas AIRL requires approximately 100 times more interactions due to repeatedly solving an RL problem
within the algorithm (cf. Section 2). That is, we can solve approximately hundred IRL problems at the
same time it takes to run AIRL once. The AIRL warmstart method that attempts to leverage previous
computation in an alternative way leads to better initial performance, but takes just as long as standard
AIRL to converge. For fair comparison we need to account for the pre-training cost needed for cRL. We used
2 million interactions for that, but in practice the method converged after 500K interactions (see Appendix
B.4). This is approximately the same cost as solving 50 IRL problems with AIRL. For U < 50 AIRL would
hence be faster, but for U ≫ 50 we get a substantial speedup.
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Figure 3: Left: Screenshot of the Derk environment (Norén, 2020) used for the experiments. The red agent
is controlled, cyan is its team, and purple is the opposing team. Middle: Weights for the damage sub-
reward rdmg for a population of 45 simulated players in the Derk game. The two populations of players are
easily recognizable from the recovered weights. Right: Cross-plot between recovered and real weights for the
damage reward rdmg (correlation coefficient 0.9).

4.2 Experiment 2: Population IRL for Derk

4.2.1 Purpose

To demonstrate the feasibility of the method for video game player modelling with large populations, we
use the Multiplayer online battle arena (MOBA) style game Derk (Norén, 2020), developed for testing RL
algorithms in a realistic environment, and apply the proposed method to discover clusters of player behaviors
similar to Babes et al. (2011). We design two sub-reward functions, corresponding to dealing damage and
healing, and show that we can reliably infer the weights of (simulated) users based on a reasonable amount
of expert trajectories for each user. Note that the clustering assumption is here made only to simplify the
data generation process and analysis; the model still learns individual rewards for each user. For this specific
setup also methods that explicitly cluster the population could be used (Ramponi et al., 2020), but they
explicitly leverage the clustering assumption that our method does not make.

4.2.2 Environment and Task

Derk (Norén, 2020) involves two teams, each having one tower to protect and three agents capable of moving,
healing and attacking other agents – see Figure 3 (left) for a screenshot of the game. We provide here a high-
level description of the environment as used in our experiments, with the details Appendix B.5.

We learn the policy for a single agent, treating the other agents as part of the environment. A 64-dimensional
state vector describes the state of the environment, including e.g. the agents’ positions, orientations and
whether an attack is available. We set a time limit of 150 steps and assume that all agents have the same
abilities: a melee attack that requires being near the enemy, and a healing ability that can be used for healing
from a distance. Finally, we discretized the action space to be a discrete-valued vector with 5 dimensions for
movement (turning and advancing), focus, attack and heal.

We use K = 2 intuitive sub-reward functions: rdmg rewarding for dealing damage on the enemies and rheal
for healing a teammate. Learning the weights on these sub-reward functions would allow a game designer
to e.g. identify whether there are players who tend to ignore safety of the teammates and are focusing on
personally killing the opponents. Notably, the healing action is only rewarded in case the player is sufficiently
close to an injured teammate, and hence even users with a high preference for the healing action need to get
involved in combat. This makes identifying the preference for healing difficult.

The bots that were not the target of the optimization (Figure 3 left, cyan and purple) were controlled by a
separate bot policy. During the cRL training, this was the same policy as the one being trained, copied to
the bots after every 20 update steps. This is a form of self-play, that has been successfully used for example
by Silver et al. (2017). The bot policy also sampled a new set of weights every episode.
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During the IRL training we used a different bot policy to ensure that the approach is not overfitting to the
policy used for the cRL: a simple heuristic where the bots walk toward the nearest enemy at every timestep
and melee attack them if it is closer than a fixed threshold. The cRL converged in 11 hours and each user’s
IRL computation took approximately 11 minutes on single machine with P100 GPU.

4.2.3 Expert Trajectories

We generate U = 45 distinct weight vectors w and simulate a different playing style with each one of them.
To do so, we first learn a cRL solution that provides a policy π(s, w) for all w and then use the policy to
simulate the trajectories.

More specifically, we sample N1 = 20 weights from w(pop1) ∼ Beta(127.2, 31.8) and N2 = 25 weights from
w(pop2) ∼ Beta(9.6, 17.8) to represent two sub-populations of users (Figure 3, middle). These distributions
were chosen by fixing the means to be distinct enough and variances so that the distributions have some
overlap, and then solving for the parameters. For each simulated user we generate 128 trajectories (rounds),
used for solving the IRL problem.

4.2.4 Results

We evaluate the method by comparing the estimated weights for the damage reward to the true ones used
for generating the expert trajectories. The Pearson correlation between these two is ρ = 0.9 and the mean
absolute error is 0.08, confirming that we can estimate the true weights with sufficient accuracy. The results
are illustrated in Figure 3. The middle sub-plot shows histograms of the generated and recovered weights,
confirming that we can recover the sub-populations that are interpreted as players who focus on killing the
opponents (population 1) and players that focus on keeping their own team alive (population 2). The right
sub-plot shows a cross-plot of the individual weights.

5 Discussion

Our main contribution is the new approach and hence the experiments focus on validating its behavior. The
Derk game – even in the simplified format considered here – is a complex environment that resembles well
the typical intended use case and is more complex than e.g. many single-player mobile games, but the main
limitation of the experiments is the reliance on simulated users. We focused on introducing the cRL+IRL
approach and demonstrating its feasibility; obtaining data from a commercial game for user experiments is
subject to more application-oriented future work.

Despite the focus on large-scale population tasks, we only used 45 users in the Derk experiment and 20 users
(for each K) in the navigation experiment to avoid an excess waste of energy – in both cases the cost scales
linearly as a function of the users as the IRL problems are solved independently and running the experiments
explicitly for larger populations would not provide any additional value. For the navigation environment, we
showed that the proposed method is orders of magnitude better than the baseline method AIRL in terms of
sample complexity after the cRL pre-training. We decided not to train the baseline method for Derk which
is considerably slower due to rendering the screen after each step, but note that the per-user speedup would
be dramatic. In this environment already a single standard RL solver takes approximately 2 hours and hence
AIRL and other standard IRL methods that solve it repeatedly would take considerably longer, yet we get
the solution for each user in 11 minutes. The exact speedup depends on the context, but should be of similar
order for all environments and against all standard IRL algorithms that need to solve RL problems within
IRL loop.

From the perspective of interpretability, it is worth noting that we cannot always learn a unique solution.
For the navigation task we specifically constructed the environment and the sub-rewards so that the problem
is identifiable (see Appendix B.4) but for general environments and sub-rewards this cannot be ensured, and
even degenerate solutions are possible. For example, if one of the sub-rewards is constant we can optimize
equation 3 by setting its weight to one (see Appendix A). Recently, Cao et al. (2021), Kim et al. (2021)
and Metelli et al. (2023) studied the identifiability of IRL in general, and while their analysis is done for
discrete state-action spaces, it is likely to generalize for our setup: Additional assumptions on the environment
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(e.g. on sub-rewards, transition dynamics, expert trajectories and/or discount factors) are required to attain
proven identifiability. Our reward function family was motivated by personal discussion with game developers
who already have concrete sub-rewards (e.g. different types of resources) for their games, and who want to
investigate the players from the perspective of these sub-rewards. We hence assumed the rewards have been
chosen with reasonable care, for instance avoiding degenerate scenarios, and that we have observed sufficiently
many interactions to infer the reward preference. We leave recommendations on how the sub-rewards should
be designed if interested in uniquely defined solution as future work.

When interpretability of the users’s reward functions is not important and the goal is to simulate users’
behavior, then a more flexible reward structure, such as neural network, may be preferable because of its
stronger expressive power. Algorithm 2 generalizes directly for such reward functions and does not require any
changes in implementation, but proper experimentation would naturally be needed to validate how it works
in practice. Learning the contextual policy for non-linear rewards is more challenging, but Sodhani et al.
(2021) have shown that the cRL problem can be solved even in cases where the context is a 768-dimensional
encoding of natural language, and methods like curriculum learning (Klink et al., 2020; Eimer et al., 2021)
could be useful for learning the cRL policy in these situations. In our work, the context corresponds to the
parameterization of the reward function, and hence these results suggests that we could use (reasonably-sized)
neural networks as a family for the reward functions and could still learn the cRL. However, the distances
d(w, ŵ) between real and recovered parameters would no longer be informative as quality measures due to
non-identifiability of neural networks, and hence the generated behaviors would need to be compared instead.
Devising a suitable metric for these kinds of trajectory comparisons is a core challenge in many imitation
learning problems (Ho & Ermon, 2016; Fu et al., 2018; Wang et al., 2021; Ciosek, 2022).

6 Conclusion

We presented a novel integration of contextual reinforcement learning and inverse reinforcement learning to
overcome prohibitive computational complexity of IRL for large populations. This was achieved by replacing
repeated and user-specific RL solvers within an IRL algorithm with general contextual RL solution for a
family of possible reward functions, trained only once without needing access to the user demonstrations. We
showed this lowers the total sample complexity needed for solving the IRL problem for large user populations
by orders of magnitude. The approach is agnostic to the specific RL algorithms. In this work we introduced
one practical instance and studied how the number of sub-reward functions affects its performance. We also
empirically demonstrated that we can correctly identify simulated player profiles in a realistic MOBA game
environment.

Our work opens new possibilities for inverse reinforcement learning at a scale applicable in industry. We here
considered an application case in game industry where companies want to offer personalized experiences
for their players and understanding their behavior as individuals is the first step for customized games.
However, any domain where a designer might want to study and understand user behavior and/or optimize
the experience of an individual user or a specific user group can benefit from the introduced method.

Acknowledgments

This work was supported by Business Finland (project MINERAL) and the Academy of Finland (Flagship
programme: Finnish Center for Artificial Intelligence, FCAI). The authors wish to thank the Finnish Com-
puting Competence Infrastructure (FCCI) for supporting this project with computational and data storage
resources.

References
Pieter Abbeel and Andrew Y Ng. Apprenticeship learning via inverse reinforcement learning. In Proceedings

of the twenty-first international conference on Machine learning, pp. 1, 2004.

Monica Babes, Vukosi Marivate, Kaushik Subramanian, and Michael L Littman. Apprenticeship learning
about multiple intentions. In Proceedings of the 28th international conference on machine learning (ICML-
11), pp. 897–904, 2011.

12



Published in Transactions on Machine Learning Research (06/2024)

Stav Belogolovsky, Philip Korsunsky, Shie Mannor, Chen Tessler, and Tom Zahavy. Inverse reinforcement
learning in contextual mdps. Machine Learning, 110(9):2295–2334, 2021.

Joakim Bergdahl, Camilo Gordillo, Konrad Tollmar, and Linus Gisslén. Augmenting automated game testing
with deep reinforcement learning. In 2020 IEEE Conference on Games (CoG), pp. 600–603, Osaka, Japan,
2020. IEEE. doi: 10.1109/CoG47356.2020.9231552.

Haoyang Cao, Samuel Cohen, and Lukasz Szpruch. Identifiability in inverse reinforcement learn-
ing. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan
(eds.), Advances in Neural Information Processing Systems, volume 34, pp. 12362–12373. Curran
Associates, Inc., 2021. URL https://proceedings.neurips.cc/paper_files/paper/2021/file/
671f0311e2754fcdd37f70a8550379bc-Paper.pdf.

Andrea Castelletti, Francesca Pianosi, and Marcello Restelli. Tree-based fitted q-iteration for multi-objective
markov decision problems. In The 2012 International Joint Conference on Neural Networks (IJCNN), pp.
1–8, 2012. doi: 10.1109/IJCNN.2012.6252759.

Kenneth Chang, Batu Aytemiz, and Adam M Smith. Reveal-more: Amplifying human effort in quality
assurance testing using automated exploration. In 2019 IEEE Conference on Games (CoG), pp. 1–8,
London, United Kingdom, 2019. IEEE. doi: 10.1109/CIG.2019.8848091.

Kurtland Chua, Roberto Calandra, Rowan McAllister, and Sergey Levine. Deep reinforcement learning in
a handful of trials using probabilistic dynamics models. In Advances in Neural Information Processing
Systems, volume 31. Curran Associates, Inc., 2018. URL https://proceedings.neurips.cc/paper/
2018/file/3de568f8597b94bda53149c7d7f5958c-Paper.pdf.

Kamil Ciosek. Imitation learning by reinforcement learning. In International Conference on Learning Rep-
resentations, 2022. URL https://openreview.net/forum?id=1zwleytEpYx.

Pierre Le Pelletier de Woillemont, Rémi Labory, and Vincent Corruble. Configurable agent with reward
as input: A play-style continuum generation. In 2021 IEEE Conference on Games (CoG), Copenhagen,
Denmark, August 17-20, 2021, pp. 1–8. IEEE, 2021. doi: 10.1109/CoG52621.2021.9619127. URL https:
//doi.org/10.1109/CoG52621.2021.9619127.

Theresa Eimer, André Biedenkapp, Frank Hutter, and Marius Lindauer. Self-paced context evaluation for
contextual reinforcement learning. In International Conference on Machine Learning, pp. 2948–2958.
PMLR, 2021.

Chelsea Finn, Paul Christiano, Pieter Abbeel, and Sergey Levine. A connection between generative adversar-
ial networks, inverse reinforcement learning, and energy-based models. arXiv preprint arXiv:1611.03852,
2016a.

Chelsea Finn, Sergey Levine, and Pieter Abbeel. Guided cost learning: Deep inverse optimal control via
policy optimization. In International conference on machine learning, pp. 49–58. PMLR, 2016b.

Justin Fu, Katie Luo, and Sergey Levine. Learning robust rewards with adverserial inverse reinforcement
learning. In International Conference on Learning Representations, 2018.

Divyansh Garg, Shuvam Chakraborty, Chris Cundy, Jiaming Song, and Stefano Ermon. Iq-learn: Inverse
soft-q learning for imitation. Advances in Neural Information Processing Systems, 34:4028–4039, 2021.

Stefan Freyr Gudmundsson, Philipp Eisen, Erik Poromaa, Alex Nodet, Sami Purmonen, Bartlomiej Koza-
kowski, Richard Meurling, and Lele Cao. Human-like playtesting with deep learning. In 2018 IEEE
Conference on Computational Intelligence and Games (CIG), pp. 1–8, Maastricht, 2018. IEEE. doi:
10.1109/CIG.2018.8490442.

Assaf Hallak, Dotan Di Castro, and Shie Mannor. Contextual markov decision processes, 2015. URL
https://arxiv.org/abs/1502.02259.

13

https://proceedings.neurips.cc/paper_files/paper/2021/file/671f0311e2754fcdd37f70a8550379bc-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/671f0311e2754fcdd37f70a8550379bc-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/3de568f8597b94bda53149c7d7f5958c-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/3de568f8597b94bda53149c7d7f5958c-Paper.pdf
https://openreview.net/forum?id=1zwleytEpYx
https://doi.org/10.1109/CoG52621.2021.9619127
https://doi.org/10.1109/CoG52621.2021.9619127
https://arxiv.org/abs/1502.02259


Published in Transactions on Machine Learning Research (06/2024)

Jonathan Ho and Stefano Ermon. Generative adversarial imitation learning. Advances in neural information
processing systems, 29, 2016.

Christoffer Holmgård, Antonios Liapis, Julian Togelius, and Georgios N Yannakakis. Evolving Personas for
Player Decision Modeling. In Proc. Conference on Computational Intelligence and Games (CIG), pp. 1–8.
IEEE, 2014a.

Christoffer Holmgård, Antonios Liapis, Julian Togelius, and Georgios N Yannakakis. Generative Agents
for Player Decision Modeling in Games. In Proc. Int. Conference on the Foundations of Digital Games
(FDG), pp. 1–8. ACM, 2014b.

Harold Jeffreys. The theory of probability. OUP Oxford, 1998.

Nan Jiang, Akshay Krishnamurthy, Alekh Agarwal, John Langford, and Robert E. Schapire. Contextual
decision processes with low Bellman rank are PAC-learnable. In Proceedings of the 34th International
Conference on Machine Learning, volume 70 of Proceedings of Machine Learning Research, pp. 1704–
1713. PMLR, 06–11 Aug 2017. URL https://proceedings.mlr.press/v70/jiang17c.html.

Kuno Kim, Shivam Garg, Kirankumar Shiragur, and Stefano Ermon. Reward identification in inverse rein-
forcement learning. In Marina Meila and Tong Zhang (eds.), Proceedings of the 38th International Con-
ference on Machine Learning, volume 139 of Proceedings of Machine Learning Research, pp. 5496–5505.
PMLR, 18–24 Jul 2021. URL https://proceedings.mlr.press/v139/kim21c.html.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization, 2014. URL https:
//arxiv.org/abs/1412.6980.

Edouard Klein, Bilal Piot, Matthieu Geist, and Olivier Pietquin. A cascaded supervised learning approach to
inverse reinforcement learning. In Joint European conference on machine learning and knowledge discovery
in databases, pp. 1–16. Springer, 2013.

Pascal Klink, Hany Abdulsamad, Boris Belousov, and Jan Peters. Self-paced contextual reinforcement
learning. In Proceedings of the Conference on Robot Learning, volume 100 of Proceedings of Machine
Learning Research, pp. 513–529. PMLR, 30 Oct–01 Nov 2020. URL https://proceedings.mlr.press/
v100/klink20a.html.

Jeppe Theiss Kristensen, Arturo Valdivia, and Paolo Burelli. Estimating player completion rate in mobile
puzzle games using reinforcement learning. In 2020 IEEE Conference on Games (CoG), pp. 636–639,
Osaka, Japan, 2020. IEEE. doi: 10.1109/CoG47356.2020.9231581.

S. Kullback and R. A. Leibler. On Information and Sufficiency. The Annals of Mathematical Statistics, 22
(1):79 – 86, 1951. doi: 10.1214/aoms/1177729694. URL https://doi.org/10.1214/aoms/1177729694.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In International Conference on
Learning Representations, 2019. URL https://openreview.net/forum?id=Bkg6RiCqY7.

Josh Merel, Yuval Tassa, Dhruva TB, Sriram Srinivasan, Jay Lemmon, Ziyu Wang, Greg Wayne, and Nico-
las Heess. Learning human behaviors from motion capture by adversarial imitation. arXiv preprint
arXiv:1707.02201, 2017.

Alberto Maria Metelli, Filippo Lazzati, and Marcello Restelli. Towards theoretical understanding of inverse
reinforcement learning. In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan
Sabato, and Jonathan Scarlett (eds.), Proceedings of the 40th International Conference on Machine Learn-
ing, volume 202 of Proceedings of Machine Learning Research, pp. 24555–24591. PMLR, 23–29 Jul 2023.
URL https://proceedings.mlr.press/v202/metelli23a.html.

Aditya Modi, Nan Jiang, Satinder Singh, and Ambuj Tewari. Markov decision processes with continuous
side information. In Algorithmic Learning Theory, pp. 597–618. PMLR, 2018.

14

https://proceedings.mlr.press/v70/jiang17c.html
https://proceedings.mlr.press/v139/kim21c.html
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980
https://proceedings.mlr.press/v100/klink20a.html
https://proceedings.mlr.press/v100/klink20a.html
https://doi.org/10.1214/aoms/1177729694
https://openreview.net/forum?id=Bkg6RiCqY7
https://proceedings.mlr.press/v202/metelli23a.html


Published in Transactions on Machine Learning Research (06/2024)

Hee-Seung Moon, Seungwon Do, Wonjae Kim, Jiwon Seo, Minsuk Chang, and Byungjoo Lee. Speed-
ing up inference with user simulators through policy modulation. In Proceedings of the 2022 CHI
Conference on Human Factors in Computing Systems, CHI ’22, New York, NY, USA, 2022. Associ-
ation for Computing Machinery. ISBN 9781450391573. doi: 10.1145/3491102.3502023. URL https:
//doi.org/10.1145/3491102.3502023.

Hee-Seung Moon, Antti Oulasvirta, and Byungjoo Lee. Amortized inference with user simulations. In
Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems, CHI ’23, New York,
NY, USA, 2023. Association for Computing Machinery. ISBN 9781450394215. doi: 10.1145/3544548.
3581439. URL https://doi.org/10.1145/3544548.3581439.

John Fredrik Wilhelm Norén. Derk gym environment. https://gym.derkgame.com, 2020.

Takayuki Osa, Joni Pajarinen, Gerhard Neumann, J Andrew Bagnell, Pieter Abbeel, Jan Peters, et al. An
algorithmic perspective on imitation learning. Foundations and Trends® in Robotics, 7(1-2):1–179, 2018.

Antti Oulasvirta, Jussi PP Jokinen, and Andrew Howes. Computational rationality as a theory of interaction.
In CHI Conference on Human Factors in Computing Systems, pp. 1–14, 2022.

Simone Parisi, Matteo Pirotta, and Marcello Restelli. Multi-objective reinforcement learning through con-
tinuous pareto manifold approximation. Journal of Artificial Intelligence Research, 57:187–227, 2016.

Chris Pelling and Henry Gardner. Two human-like imitation-learning bots with probabilistic behaviors. In
Proceedings of the Conference on Games, pp. 1–7. IEEE, 2019.

Matteo Pirotta and Marcello Restelli. Inverse reinforcement learning through policy gradient minimization.
In Proceedings of the AAAI Conference on Artificial Intelligence, volume 30, 2016.

Giorgia Ramponi, Amarildo Likmeta, Alberto Maria Metelli, Andrea Tirinzoni, and Marcello Restelli. Truly
batch model-free inverse reinforcement learning about multiple intentions. In Silvia Chiappa and Roberto
Calandra (eds.), Proceedings of the Twenty Third International Conference on Artificial Intelligence and
Statistics, volume 108 of Proceedings of Machine Learning Research, pp. 2359–2369. PMLR, 26–28 Aug
2020. URL https://proceedings.mlr.press/v108/ramponi20a.html.

Shaghayegh Roohi, Jari Takatalo, Christian Guckelsberger, and Perttu Hämäläinen. Review of intrinsic
motivation in simulation-based game testing. In Proceedings of the Conference on Human Factors in
Computing Systems, pp. 1–13, 2018.

Shaghayegh Roohi, Christian Guckelsberger, Asko Relas, Henri Heiskanen, Jari Takatalo, and Perttu
Hämäläinen. Predicting game difficulty and engagement using ai players. Proceedings of the ACM on
Human-Computer Interaction, 5(CHI PLAY):1–17, 2021.

John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter Abbeel. High-dimensional con-
tinuous control using generalized advantage estimation. arXiv preprint arXiv:1506.02438, 2015.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy optimiza-
tion algorithms. arXiv preprint arXiv:1707.06347, 2017.

Mohit Sharma, Kris M Kitani, and Joachim Groeger. Inverse reinforcement learning with conditional choice
probabilities. arXiv preprint arXiv:1709.07597, 2017.

Yuchul Shin, Jaewon Kim, Kyohoon Jin, and Young Bin Kim. Playtesting in match 3 game using strategic
plays via reinforcement learning. IEEE Access, 8:51593–51600, 2020. doi: 10.1109/ACCESS.2020.2980380.

David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur Guez, Thomas
Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al. Mastering the game of go without human
knowledge. nature, 550(7676):354–359, 2017.

15

https://doi.org/10.1145/3491102.3502023
https://doi.org/10.1145/3491102.3502023
https://doi.org/10.1145/3544548.3581439
https://gym.derkgame.com
https://proceedings.mlr.press/v108/ramponi20a.html


Published in Transactions on Machine Learning Research (06/2024)

David Silver, Satinder Singh, Doina Precup, and Richard S. Sutton. Reward is enough. Artificial Intelligence,
299:103535, 2021. ISSN 0004-3702. doi: https://doi.org/10.1016/j.artint.2021.103535. URL https://www.
sciencedirect.com/science/article/pii/S0004370221000862.

Shagun Sodhani, Amy Zhang, and Joelle Pineau. Multi-task reinforcement learning with context-based
representations. In International Conference on Machine Learning, pp. 9767–9779. PMLR, 2021.

Samantha Stahlke, Atiya Nova, and Pejman Mirza-Babaei. Artificial players in the design process: Developing
an automated testing tool for game level and world design. In Proceedings of the Annual Symposium on
Computer-Human Interaction in Play, pp. 267–280, 2020. doi: 10.1145/3410404.3414249.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

Pin Wang, Dapeng Liu, Jiayu Chen, Hanhan Li, and Ching-Yao Chan. Decision making for autonomous
driving via augmented adversarial inverse reinforcement learning. In 2021 IEEE International Conference
on Robotics and Automation (ICRA), pp. 1036–1042. IEEE, 2021.

Ziyu Wang, Josh S Merel, Scott E Reed, Nando de Freitas, Gregory Wayne, and Nicolas Heess. Robust
imitation of diverse behaviors. Advances in Neural Information Processing Systems, 30, 2017.

Runzhe Yang, Xingyuan Sun, and Karthik Narasimhan. A generalized algorithm for multi-objective rein-
forcement learning and policy adaptation. Advances in neural information processing systems, 32, 2019.

Brian D Ziebart, Andrew L Maas, J Andrew Bagnell, Anind K Dey, et al. Maximum entropy inverse
reinforcement learning. In Aaai, volume 8, pp. 1433–1438. Chicago, IL, USA, 2008.

Appendix

A Gradient of the IRL Likelihood

The likelihood of the expert demonstrations for the IRL was given in equation 3. The scaled gradient in
equation 6 follows from

∇w
1
N

log G = ∇w
1
N

(
N∑
i=1

T∑
t=0

rw(s(i)
t , a

(i)
t ) − N log Z

)

= ∇w

(
1
N

N∑
i=1

rw(τi) − log Z

)
= 1

N

N∑
i=1

∇wrw(τi) − ∇w log Z

= 1
N

N∑
i=1

∇wrw(τi) − 1
Z

∇w

∫
exp (rw(τ)) dτ

= 1
N

N∑
i=1

∇wrw(τi) − 1
Z

∫
exp (rw(τi)) ∇wrw(τi)dτ

≈ Eτ∼π∗(τ) [∇wrw(τi)] −
∫

p(τ |w)∇wrw(τi)dτ

= Eτ∼π∗(τ) [∇wrw(τi)] − Eτ∼π(τ |w) [∇wrw(τi)] , (7)

where individual steps correspond to standard algebraic manipulation, or replacing empirical averages with
expectations. This gradient is used for updating the weights w of the sub-reward functions in gradient-based
optimization algorithms by employing a surrogate loss function

L(w) = Eτ∼sg(π(τ |w)) [rw(τi)] − Eτ∼π∗(τ) [rw(τi)] . (8)

If we assume that the experts behave according to our parameterized policy with weights w∗, we can replace
π∗(τ) = π(τ |w∗), and it is easy to see that value of the loss at this (desired) point is L(w∗) = 0.
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We remark that in specific pathological cases we can reach zero loss also with solutions that are not interesting
from the perspective of IRL. In particular, if we have a sub-reward rk such that rk(s, a, s′) = c is constant,
and wk = 1.0, then the loss becomes

L(w) = Eτ∼sg(π(τ |w))

[
Tτ∑
t=1

rk(st, at, st + 1)
]

− Eτ∼π∗(τ)

[
Tτ∑
t=1

rk(st, at, st + 1)
]

= Eτ∼sg(π(τ |w)) [Tτ c] − Eτ∼π∗(τ) [Tτ c]
= c

(
Eτ∼sg(π(τ |w)) [Tτ ] − Eτ∼π∗(τ) [Tτ ]

)
= 0,

if we assume equal length trajectories. That is, we can optimize the objective by assigning all weight on
that constant reward. This problem case is easily avoided by not using constant sub-rewards, but exact
characterization of conditions for which the correct IRL solution is the only global optimum of the objective
remains open.

B Experimental Details

B.1 PPO hyperparameters

We used Proximal Policy Optimization (PPO) (Schulman et al., 2017) algorithm for updating the contextual
policy. PPO works by running a policy in the environment, collecting N episodes of states, actions, rewards
and action probabilities from Narenas parallel environments, and then updating the policy with the gathered
episodes. Like all actor-critic algorithms, the method contains a policy π (actor) that is used to compute
actions and a value estimator V̂ (critic) that is used for evaluating rewards-to-go for a state. The loss function
that PPO minimizes is given by

− E
[
min

(
rt(θ)Ât, clip(rt(θ), 1 − ϵ, 1 + ϵ)Ât

)]
+ c1E

[(
V̂ (st) − V (st)

)2
]

− c2E [log πθ(at|st)] , (9)

where Ât is the advantage estimator, rt(θ) = πθ(at|st)
πθold (at|st) is the ratio of action probabilities computed by

comparing action probabilities given by a network with current parameters θ with those computed with θold,
the parameters that were used for generating the episodes 2. We compute the advantages using Generalized
Advantage Estimator (GAE-)λ method Schulman et al. (2015), where the advantage Ât = δt + (γλ)δt+1 +
. . . + (γλ)T−t+1δT−1 is calculated using a value function estimator V̂ , discount factor γ and GAE parameter
λ and where δt = rt + γV̂ (st+1) − V̂ (st). Value function estimator V̂ (st) is trained to estimate the rewards-
to-go V (st) by using a mean squared error loss, weighted by a constant c1 (second term of the loss). The
entropy term (third term) is maximized to encourage as much randomness as possible. The effect of entropy
is weighted by a factor of c2.

We evaluate the loss in equation 9 with mini-batches of size Nbatch. The parameters of the actor and critic
networks are optimized with Adam optimizer (Kingma & Ba, 2014) using learning rates αactor and αcritic
respectively. The optimization is run for Nepoch epochs for every N episodes collected. Optimization is halted
when a total of Ntotal timesteps is reached. The hyperparameter values that were used to train the cRL policy
in our experiments are given in Table 1.

B.2 Inverse Reinforcement Learning

The IRL hyperparameters of our method are provided in Table 2. The IRL part of Algorithm 2 is run for
I iterations, optimizing equation 3 with Adam (Kingma & Ba, 2014) optimizer using αIRL as the learning
rate. The expectations in equation 3 are evaluated using batches of sizes Nw and Nexpert respectively. To
evaluate the first term of equation 3 we use Nw of most recent simulated trajectories, while for the second
expectation we use Nexpert randomly sampled expert trajectories. We simulate Nsim trajectories per IRL
iteration and update the weights w using a batch of expert and simulation trajectories for UIRL iterations.

2Remember that we update the policy multiple times, so when we begin updating, the first iteration has θ = θold

17



Published in Transactions on Machine Learning Research (06/2024)

5-D Nav. Derk
Total timesteps (Ntotal) 2e6 5e5
Arenas (Narenas) 1 32
Episodes per update (N) 3 4
Epohcs (Nepoch) 35 20
Batch size (Nbatch) 2048 4096
KL clip fraction (ϵ) 0.125 0.2
Actor loss coefficient (c1) 0.5 0.5
Entropy coefficient (c2) 0.031 0.01
Actor learning rate (αactor) 0.005 0.003
Critic learning rate (αcritic) 0.021 0.005
Discount factor (γ) 0.91 0.99
GAE-λ (λ) 0.959 0.95

Table 1: Hyperparameters used for training the cRL

5-D Nav. Derk
Iterations (I) 1200 40
Learning rate (αIRL) 0.01 0.1
Env. simulation (Nsim) 1 32
Weight batch (Nw) 8 (last) 32 (last)
Expert batch (Nexpert) 32 32
Updates per iteration (UIRL) 2 1

Table 2: Hyperparameters used for training the IRL

The baseline that we compare against, adversarial inverse reinfrocement learning (AIRL) (Fu et al., 2018) is
an established adversarial method that learns by iterating between training a discriminator and training a
policy. Table 3 provides all of the hyperparameters used for training AIRL. We use PPO as the policy training
algorithm, for which the hyperparameter names and descriptions are the same as for learning the cRL policy
(Table 1). We train the AIRL for NAIRL iterations, where we first simulate Nsim environment trajectories
with the current policy. We than sample a batch of Nw simulated trajectories, called the simulation batch,
and Nexpert trajectories for expert batch. Then, the discriminator is updated using binary cross-entropy loss
with simulation batch labelled with negative labels, and expert batch labelled with positive labels using
AdamW optimizer (Loshchilov & Hutter, 2019) with smoothing parameters β = [0.5, 0.999] and learning
rate of αD. After the discriminator update, the policy is updated for Nepochs using batch size of Nbatch using
the same procedure as described in Section B.1.

For the m-D navigation experiment we found the recovered weights to oscillate around the correct values
(see. Fig. 4) because of two things: a) We used off-policy samples to estimate the first term of equation 3 (see
Table 2: Nsim = 1 but Nw = 8, meaning one on-policy and 7 off-policy samples from the last simulations are
used) and b) because of the theoretical minimum of the IRL loss in equation 3 being 0, but the loss allowing
negative values as well. We clamped the IRL loss on m-D navigation environment to mitigate (although
not completely removing) the oscillation so that the clamped loss becomes L̃(w) = max(0, L(w)). Clamping
would have been possible also on Derk environment, but due to the parallel computation of the environment
we only used on-policy samples for evaluation and opted out from clamping the IRL loss.

B.3 Hyperparameter Selection

The values for the hyperparameters used in cRL (Table 1) were initially randomly searched in 2-d navigation
task to get an initial guess of good values. Then for each experiment, they were manually tuned during
preliminary experimentation. The values for IRL experiment (Table 2) were manually tuned by inspecting
at the convergences of the losses and the weights with a random seed. The values for AIRL (Table 3) were
random searched using trajectories related to a single weight vector.
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Figure 4: All 20 convergence plots for K = 4 goals for the IRL part.

0.00
0.25
0.50
0.75
1.00

0
1
2

3
4

5
6

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

0 250 500 750 1000 1250
0.00
0.25
0.50
0.75
1.00

0 250 500 750 1000 1250 0 250 500 750 1000 1250 0 250 500 750 1000 1250IRL iteration

W
ei

gh
t

Figure 5: All 20 convergence plots for K = 7 goals for the IRL part.
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5-D Nav.
Iterations (NAIRL) 10000
Episodes per update (N) 8
Epohcs (Nepoch) 3
Batch size (Nbatch) 150
KL clip fraction (ϵ) 0.2
Actor loss coefficient (c1) 0.5
Entropy coefficient (c2) 0.01
Actor learning rate (αactor) 0.0003
Critic learning rate (αcritic) 0.001
Disc. learning rate (αD) 0.001
Discount factor (γ) 0.99
GAE-λ (λ) 0.95
Env. simulation (Nsim) 8
Weight batch (Nw) 40 (last)
Expert batch (Nexpert) 32
Disc. regularizer (c3) 0.01

Table 3: Hyperparameters used for the AIRL baseline. The PPO hyperparamters match the ones in Table 1.

B.4 m-D Navigation

B.4.1 Goal locations

The set of goals {gk}Kk=1 in m-D navigation task were chosen so that they are maximally apart from each
other on the m-dimensional 0.5-radius circle.

In particular, we sampled 1000 sets K locations {x
(g1)
s , . . . , x

(gK )
s }1000

s=1 and chose the set that had the largest
minimum pairwise distance. That is,

max
s

min{ ||x(gi)
s − x(gj)

s ||2 | i, j ∈ {1, . . . , K}, i ̸= j }.

The reason for the sample-based approach is that placing equidistant points on a m-ball proves to be a
non-trivial problem in spaces larger than 2-dimensional.

B.4.2 Training cRL

Contextual RL policy is trained in a pre-training phase, and for fair comparison of the sample complexities
of different methods, the pretraining needs to be accounted for. We compare the complexity in m = 5 -
dimensional navigation environment and show the training curves of cRL for K ∈ {2, . . . , 8} goals in Figure
6. We see that the pretraining converges around 500K time steps. which is equivalent of approx. 50 AIRL
computations, making our proposed approach faster for populations larger than this. The plot highlights
K = 3 goals, as the comparison was done on environment with three goals.

B.5 Derk environment

B.5.1 State

The state of the original Derk contained the following 64 features: Hitpoints, Ability0Ready,
FriendStatueDistance, FriendStatueAngle, Friend1Distance, Friend1Angle, Friend2Distance, Friend2Angle,
EnemyStatueDistance, EnemyStatueAngle, Enemy1Distance, Enemy1Angle, Enemy2Distance, Enemy2Angle,
Enemy3Distance, Enemy3Angle, HasFocus, FocusRelativeRotation, FocusFacingUs, FocusFocusingBack,
FocusHitpoints, Ability1Ready, Ability2Ready, FocusDazed, FocusCrippled, HeightFront1, HeightFront5,
HeightBack2, PositionLeftRight, PositionUpDown, Stuck, UnusedSense31, HasTalons, HasBloodClaws,
HasCleavers, HasCripplers, HasHealingGland, HasVampireGland, HasFrogLegs, HasPistol, HasMagnum,
HasBlaster, HasParalyzingDart, HasIronBubblegum, HasHeliumBubblegum, HasShell, HasTrombone, FocusHasTalons,
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Figure 6: Episode returns for training contextual reinforcement learning. The returns are smoothed using 50
episode sliding mean.

FocusHasBloodClaws, FocusHasCleavers, FocusHasCripplers, FocusHasHealingGland, FocusHasVampireGland,
FocusHasFrogLegs, FocusHasPistol, FocusHasMagnum, FocusHasBlaster, FocusHasParalyzingDart,
FocusHasIronBubblegum, FocusHasHeliumBubblegum, FocusHasShell, FocusHasTrombone, UnusedExtraSense30,
UnusedExtraSense31.

The sub-reward functions w, that act as the context, as additional features that are provided for the policy.
The final dimension of the input to the policy is thus 66, the last two being reward weights for functions
rdmg and rheal.

B.5.2 Action

The action space that we considered was 5-dimensional discrete space, each action being a =
{a1, a2, a3, a4, a5}. The definitions and options for each dimension are as follows:

• a1 ∈ {−0.8, −0.4, 0.0, 0.4, 0.8}, the length of the step that agent takes to front or back (positive for
forward)

• a2 ∈ {−0.8, −0.4, 0.0, 0.4, 0.8}, the amount that the agent turns during a step (positive for turning
right)

• a3 ∈ {0.1, 0.3, 0.5, 0.7, 0.9}, fraction that interpolates the movement towards the focus of the agent
(1.0 ignores a1 and a2 and just moves towards the focus)

• a4 ∈ {0, 1, 2, 3}, which skill to use. 0: none, 1: melee, 2: misc(never used in our case), 3: heal.

• a5 ∈ {0, 1, 2, 3, 4, 5, 6, 7}, where to focus. 0: keep current focus, 1-3: own statue and team, 4-7: enemy
statue and team

21



Published in Transactions on Machine Learning Research (06/2024)

B.5.3 Reward

The reward functions rdmg and rheal were defined as following:

rdmg =


0.1 − min{d1, d2, d3}, if focus enemy ∩ melee ∩ df < 0.072 ∩ |ρf |< 0.24

−0.5 − min{d1, d2, d3}, if focus enemy ∩ heal ∩ 0.06 < df < 0.072 ∩ |ρf |< 0.2

− min{d1, d2, d3}, otherwise,
(10)

where first condition rewards for melee attacks inflicted in sufficient proximity of an enemy and the latter
penalizes for healing an enemy (without the penalty, the agent altered between healing the enemy and
attacking it). The df and ρf stand for distance and angle to the focused agent. The minimum distance to
the enemies min{d1, d2, d3} is used for slight encouragement for movement towards the enemies to help early
exploration. The reward for healing rheal is defined similarly, but the enemy is swapped to a teammate and
there is no encouragement for reducing the distance to enemies:

rheal =


1.0, if focus teammate ∩ heal ∩ df < 0.072 ∩ |ρf |< 0.24

−5.0, if focus teammate ∩ melee ∩ 0.06 < df < 0.072 ∩ |ρf |< 0.2

0.0, otherwise.
(11)

The amount of reward were chosen so that the healing strategy and the damage reward result in similar
total returns if applied consistently (one can attack more often than heal).

Since the sub-rewards relate directly to specific actions (attacking or healing) a user can take, one could here
in principle attempt inferring the reward preferences also by direct inspection of the relative frequencies of
these actions. That is, higher relative use of the healing action would be interpreted directly as preference for
that reward. Such interpretation may, however, be severely misleading. The marginal distribution of actions
is p(a|w) =

∫
p(a|s, w)p(s|w)ds, where the distribution of states p(s|w) depends on the policy and hence the

reward. Even if preference of healing corresponds to high p(a =′ heal′|s, w) for many states, the preference
also heavily influences the states s the user visits and consequently the overall frequency of healing action
is not guaranteed to be high. For instance, a healing-oriented user may try to stay further from the combat
actions that strongly influences the frequency of states the attacking and healing actions are even possible.

C Barycentric formulation

To reason why the m-D navigation task is identifiable only for m + 1 coordinates, consider a point p ∈ Rm
that resides within the set of goals {g1, . . . , gK} , each goal being in the same m-dimensional space, gi ∈ Rm.
The point p is a linear combination of the goals and corresponding weights 0 < wi < 1 for each goal (usually
called barycentric coordinates)

p = w1g1 + . . . + wKgK , (12)

which lends itself for linear problem where we take into account that weights sum up to 1:

(m+1)×K︷ ︸︸ ︷
1 · · · 1

g11 · · · g1K
...

...
gm1 · · · gmK


w1

...
wK

 =


1
p1
...

pm

 , (13)

which is not solvable uniquely if K > m + 1.

An example of unidentifiable (non-unique) case is in Fig. 1, where a trajectory going to origin can be explained
e.g. by w = (0.5, 0.0, 0.5, 0.0) and w = (0.25, 0.25, 0.25, 0.25).
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Figure 7: Left: Raw regret, Eτ∼π(·,ŵ)[rw(gen)(τ)] as function of IRL iterations for various num-
ber of sub-rewards K. The curves are average regrets over the 20 expert trajectories used
in Section 4.1 and over 100 trajectories generated from π(·, ŵ). Right: Normalized regret(
Eτ∼π(·,ŵ)[rw(gen)(τ)]/Eτ∼π(·,w(gen))[rw(gen)(τ)]

)−1, where the performance is normalized w.r.t the generating
parameters, i.e. what is achievable with cRL with the generating weights. Even though the weight recovery
deteriorates for large number of goals because of non-identifiability of the solution (Figure 2), we still recover
weights that lead to good policies.

D Regrets of Recovered Policies

In Section 4.1 we confirmed that we can recover the true w accurately. Here we provide an alternative
perspective for validating the quality of the solution, by inspecting the regret curves for policies using the
recovered weights. The main goal is to confirm that we can also recover good policies with the recovered
weigths, but we additionally show that the IRL solution recovers useful ŵ also in cases where the weights
are non-identifiable due to the the number of goals being too high for the environment.

For a pair of generating and recovered weights (w(gen), ŵ), we define regret as Eτ∼π(·,ŵ)[rw(gen)(τ)] to measure
the expected ground-truth return of a policy using the recovered weights. Figure 7 (left) plots regrets for
the same K considered in Figure 2, showing that for all choices the policies converge well. Figure 7 (right)
confirms the policies are good, by plotting the regrets normalised so that 1 means that we are as good as a
policy trained with the ground truth reward, and < 1 means suboptimal behavior. The normalization is done
using

(
Eτ∼π(·,ŵ)[rw(gen)(τ)]/Eτ∼π(·,w(gen))[rw(gen)(τ)]

)−1, where we need the reciprocal because the rewards
in our case are always negative.
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