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Abstract

Vector Gaussian processes are becoming increasingly important in machine learning and
statistics, with applications to many branches of applied sciences. Recent efforts have al-
lowed to understand smoothness in scalar Gaussian processes defined over manifolds as well
as over product spaces involving manifolds. This paper challenges the problem of quantify-
ing smoothness for vector Gaussian processes that are defined over non-Euclidean product
manifolds. After noting that a constructive RKHS approach is unsuitable for this specific
task, we proceed through the analysis of spectral properties. Specifically, we find a spectral
representation to quantify smoothness through Sobolev spaces that are adapted to certain
measure spaces of product measures obtained through the tensor product of Haar mea-
sures with multivariate Gaussian measures. Our results allow to measure smoothness in a
simple way, and open for the study of foundational properties of certain machine learning
techniques over product spaces.

1 Introduction

1.1 Context

The paper deals with the smoothness of continuous vector-valued Gaussian processes defined on the product
of two spaces, with one of them being non-Euclidean, namely a hypersphere of d dimensions embedded in a
(d + 1)-dimensional Euclidean space.

Gaussian processes (Seeger, 2004) are ubiquitous in machine learning, statistics and numerical analysis. Vec-
tor (i.e., multivariate) Gaussian processes have recently received attention after the constructive approaches
proposed by Hutchinson et al. (2021). The impact of such processes on the machine learning community
ranges from regression (Chen et al., 2023), Bayesian optimization and active learning (see the discussion in
Hutchinson et al., 2021, and references therein), to relevance vector machines (Quinonero-Candela, 2004),
sensor networks (Osborne et al., 2008), text categorization (Kazawa et al., 2004), informance vector machines
(Lawrence et al., 2002), gradual learning (Yuan et al., 2022), and multitask learning (Bonilla et al., 2007;
Xing et al., 2021).

Vector Gaussian processes arise within the framework of multiple output learning of a vector-valued function
f = (f1, . . . , fp)⊤ that is observed over a finite set Y = f(X) := {f(x1), . . . , f(xN )}, from training data x
collected over the training set X = {x1, . . . , xN }. Specifically, we suppose that x is defined over a product
space Υ(d,k) = Sd × Rk, with Sd being the unit sphere of dimension d and Rk being the k-dimensional
Euclidean space. The output space Y, where f is defined, has dimension p.

The problem can be tackled either assuming that f belongs to a reproducing kernel Hilbert space (RKHS)
of vector-valued functions or assuming that f is drawn from a vector Gaussian process.

We start by illustrating the RKHS perspective for vector-valued functions that are reproduced through
matrix-valued kernels, denoted K̃ throughout, being matrix-valued functions from Υ(d,k) ×Υ(d,k) into Rp×p.
A vector RKHS is a Hilbert space, H

K̃
, composed of vector-valued functions f such that, for all c ∈ Rp and
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all x ∈ Υ(d,k), the linear combination f(x)⊤c is obtained through

f(x)⊤c = ⟨f(·), K̃(·, x)c⟩H
K̃

,

where ⟨·, ·, ⟩H
K̃

is the inner product on H
K̃

. The kernel K̃ is positive semidefinite: for any arbitrary system
{ck}N

k=1 of p-dimensional real vectors and any finite collection of points {xk}N
k=1 in the input space, we have

N∑
h=1

N∑
k=1

c⊤
h K̃(xh, xk)ck ≥ 0.

For a thorough review about RKHS for both scalar- and vector-valued settings, as well for material about
regularization in RKHS, the reader is referred to Hofmann et al. (2008) and Alvarez et al. (2012).

Although RKHS are a powerful instrument to quantify smoothness of scalar-valued Gaussian processes, the
same does not hold for the case of vector Gaussian processes, where the role of the matrix-valued kernel
remains unclear. Hence, we opt here for the alternative of matrix-valued kernels through vector-valued
Gaussian processes.

1.2 Why Studying Smoothness? Why Product Spaces?

Smoothness plays a fundamental role in numerous applications to machine learning and statistics. We men-
tion here the most recent development in Gaussian process regression. The recent work by Rosa et al. (2023)
deals with Bayesian contraction rates under the framework of Gaussian process regression with random de-
sign. Posterior construction rates provide a nice way to illustrate how a given class of posteriors concentrates
around the true data generating process. Rosa et al. (2023) prove that the contraction rates depend on the
smoothness of the underlying Gaussian process, the prior of which is defined through a Matérn kernel (Porcu
et al., 2023).

Well-known results from probability theory connect the smoothness properties of the Gaussian process with
those of the associated kernel (Yadrenko, 1983; Adler and Taylor, 2007). An intuitive way to look at the
geometric smoothness properties of the Gaussian process is by working under the framework of Sobolev
spaces.

Another relevant motivation for studying smoothness of Gaussian processes on manifolds is related to the
use of computational tools of kernel cubature and kernel discrepancy beyond the usual Euclidean manifold.
Barp et al. (2022) illustrate the importance of Sobolev spaces when quantifying kernel cubatures. These
topics have been popular in statistics, machine learning, and numerical analysis. Kernel cubature has been
applied in several contexts, and the reader is referred to Hubbert et al. (2023), with the references therein.

Studying smoothness on non-Euclidean manifolds has been important to several disciplines. For the special
case of the manifold being a d-dimensional sphere, applications include kernel cubature (Marques et al.,
2013; 2022), Stein’s method to numerically calculate posterior expectations in directional statistics (Barp
et al., 2022), and approximation of solutions of some classes of PDEs (see e.g. Fasshauer, 2007). Not to
mention that certain classes of kernels on spheres ensure that the solution of the PDE belongs to the RKHS
and, through the use of an appropriate kernel method, can be consistently approximated (see Fuselier and
Wright, 2009; 2012; Hubbert et al., 2015).

The product space Υ(d,k) has received increasing attention in the statistics and machine learning communities.
Applications from several branches of science justify this context, such as atmospheric science, environmental
science, remote sensing, geophysics, geology, geotechnics, social science, or neuroscience (Christakos et al.,
2000; Wingeier et al., 2001; Shirota and Gelfand, 2017; Sánchez et al., 2019; 2021; Porcu et al., 2021).

1.3 Challenges and Contribution

While scalar Gaussian processes are well understood, the literature on smoothness of vector Gaussian pro-
cesses in machine learning is scarce, with the notable exception of Cleanthous (2023), who provides an
ingenious construction for a Gaussian process defined over a ball embedded in Rk.
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The literature is substantially lacking in characterizing the smoothness of vector Gaussian processes that
are defined over product spaces. Our paper contributes in this direction. Specifically,
a) we consider continuous vector Gaussian processes defined over the space Υ(d,k) as being previously
defined;
b) we take a spectral path to smoothness, through a proper spectral representation for a vector Gaussian
process on Υ(d,k), and consequently for the related matrix-valued kernel;
c) we construct a suitable Sobolev space for such a vector Gaussian process;
d) we provide a spectral characterization of smoothness that relies on the properties of the matrix-valued
kernel.

1.4 Outline and Notation

Section 2 provides a succinct mathematical background. Section 3 illustrates the way to construct proper
Sobolev spaces through spectral representations over the space Υ(d,k). Proofs are technical and deferred to
an Appendix. Section 5 concludes the paper with a discussion.

Hereinafter, Z+ = {κ ∈ Z : κ ≥ 0}, i stands for the complex imaginary unit, p, d and k for positive integers,
and ∥ · ∥k for the Euclidean norm on Rk. Bold letters denote vectors or matrices of size p × p. A refers to
the conjugate of a complex matrix A, and A⊤ to its transpose. In order to work in multidimensional spaces,
we consider the multi-index notation: for α = (α1, . . . , αk) ∈ Zk

+ and h = (h1, . . . , hk) ∈ Rk, we set

|α| =
k∑

i=1
αi , α! =

k∏
i=1

αi! , ∂αf(h) = ∂α1
h1

∂α2
h2

. . . ∂αk

hk
f(h),

and for α, β ∈ Zk
+

αβ =
k∏

i=1
αβi

i , α ≥ β ⇐⇒ αi ≥ βi, ∀ i,

with the usual understanding that 00 = 1.

2 Vector Gaussian Processes

Let
Υ(d,k) := Sd × Rk = {x = (x, t) ∈ Rd+1 × Rk : ∥x∥d+1 = 1, t ∈ Rk}.

A p-variate (vector) Gaussian process, {Z(x) : x ∈ Υ(d,k)} is an uncountable collection of random vectors
such that, for any finite collection of points x1, . . . , xN ∈ Υ(d,k), the vector (Z(x1)⊤, . . . , Z(xN )⊤)⊤, having
dimension (p×N)×1, is a Gaussian random vector. A p-variate covariance kernel on Υ(d,k) is a matrix-valued
function

K̃ : Υ(d,k) × Υ(d,k) → Rp×p

defined as
K̃

(
x, y

)
= [K̃ij

(
x, y

)
]pi,j=1, x, y ∈ Υ(d,k),

where K̃ij

(
x, y

)
= K̃ji

(
y, x

)
for all i, j ∈ {1, . . . , p} and x, y ∈ Υ(d,k), and where K̃ is positive semidefinite,

that is, the pN × pN block matrix [K̃ (xm, xn)]Nm,n=1 is symmetric and nonnegative definite for any set of
points x1, . . . , xN ∈ Υ(d,k).

Hereinafter, we focus on the case where the mapping K̃ is continuous, isotropic on Sd and stationary in Rk,
meaning that

K̃(x, y) = K
(
⟨x, y⟩, t − t′), (1)

for x = (x, t), y = (y, t′), with ⟨·, ·⟩ denoting the dot product in Rd+1, and a continuous mapping K :
[−1, 1] × Rk → Rp×p. Throughout, K will be called a kernel for simplicity, albeit this should be called as
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the isotropic profile of the kernel K̃. This will not give rise to confusion as from now only the mapping K
will be used.

The fact that we consider kernels K of the type (1) has implications on the spectral representation of the
associated p-variate Gaussian process, Z. Arguments in Porcu et al. (2021) prove that

Z(x) =
∞∑

n=0

∑
q∈An,d

Ad
n,q(t)Yn,q,d(x), x = (x, t) ∈ Υ(d,k). (2)

Here, An,d is a set of finite cardinality, denoted dim(Hd
n), associated with the spherical harmonics

Yn,q,d, which form an orthonormal basis for all Lebesgue-square-integrable measurable functions on the
d-dimensional sphere, Sd. The sequence {Ad

n,q(·)} of vector Gaussian processes in Rk determines the prop-
erties of Z.

In particular, under the assumption that

cov
(
Ad

n,q(t), Ad
n′,q′(t′)

)
= δn,n′ δq,q′ Cd

n(t − t′), n, n′ ∈ Z+, q ∈ An,d, q′ ∈ An′,d,

for a sequence {Cd
n(·)}∞

n=0 of matrix-valued covariance kernels such that {dim(Hd
n)Cd

n(t−t′)}∞
n=0 is summable

at t = t′, a direct application of the addition theorem for spherical harmonics (Erdélyi, 1953, formula 11.4.2)
shows that

cov (Z(x), Z(x′)) = K(s, h)

=
∞∑

n=0
dim(Hd

n)Cd
n(h)G(d−1)/2

n (s), s ∈ [−1, 1], h ∈ Rk, (3)

where x = (x, t), x′ = (x′, t′), s = ⟨x, x′⟩, h = t − t′. In (3), when d > 1, G(d−1)/2
n is defined in terms of the

Gegenbauer polynomial G
(d−1)/2
n , normalizing as G

(d−1)/2
n = G(d−1)/2

n

G
(d−1)/2
n (1)

, while for d = 1, G0
n = Tn is the nth

Chebyshev polynomial of the first kind. Arguments in Alegría et al. (2019, Theorem 6.2) furthermore prove
that the expansion (3) is unique.

Equation (2) can be coupled with Cramér’s theorem (Cramér, 1940) to attain

Z(x) =
∞∑

n=0

∑
q∈An,d

∫
Rk

ei⟨t,ω⟩ξn,q(dω)Yn,q,d(x), x = (x, t) ∈ Υ(d,k), (4)

where {ξn,q(d·)}∞
n,q is a sequence of vector-valued measures with orthogonal increments, that is,

E
(

ξn,q(A)ξn′,q(B)
)

= δn=n′Fn(A
⋂

B), for all q, n, n′ and all Borel sets A and B in Rk, where Fn is
a matrix-valued measure of bounded variation such that Fn(dω) is a positive semidefinite matrix for all
ω ∈ Rk.

Under the additional condition
∑

n dim(Hd
n)

∫
Rk ξn,ζ(dω) < ∞, Equation (3) becomes

cov (Z(x), Z(x′)) = K(s, h)

=
∞∑

n=0
dim(Hd

n)
( ∫

Rk

ei⟨h,ω⟩Fn(dω)
)
G(d−1)/2

n (s), s ∈ [−1, 1], h ∈ Rk, (5)

Clearly, Cd
n is real matrix-valued if, and only if, Fn(A) = Fn(−A), for all Borel sets A in Rk. A stronger

condition for this to happen is that ξn(−A) = ξn(A)⊤. Throughout, we shall always work under the
assumption of real matrix-valued covariance kernels.

3 Understanding Regularities of Vector Gaussian Processes

The geometric properties of the vector Gaussian process {Z(x) : x ∈ Υ(d,k)} are intimately related to those
of the matrix-valued kernel K. An intuitive approach is to provide a Karhunen-Loève expansion of a vector
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Gaussian process in Rp, with input space Υ(d,k). Since the product space Υ(d,k) is not compact, an extension
of the arguments provided for the scalar case by Clarke De la Cerda et al. (2018) suggest that a sensible
strategy is needed to provide a legitimate Karhunen-Loève expansion of vector-valued functions. There are
indeed two possibilities:
a) to compactify the space Υ(d,k) by considering the space Υ(d,k)

T := Sd × [0, T ]k, with T a positive constant.
Under such a construction, a Karhunen-Loève expansion can be namely obtained. Yet, this approach has a
cost in that it does not allow for traditional spectral expansions as much as in (4) and (5), respectively;
b) to consider the measure space (

Υ(d,k),B, µΥ(d,k)

)
, (6)

where B is the Borel sigma-algebra over Υ(d,k), and where µΥ(d,k) is a product measure defined through

µΥ(d,k)(dx) = σd(dx) × ν(dt), x ∈ Υ(d,k),

where σd is the Haar measure, i.e., the Lebesgue measure for the sphere, and ν is the Gaussian measure
in Rk with zero-vector mean and identity covariance matrix, i.e., ν(dt) = (2π)−k/2e−∥t∥2

k/2dt. Under this
choice, the Karhunen-Loève expansion for the vector Gaussian process Z can be attained at the expense of
defining a suitable orthonormal basis that is legitimate for this measure space. Our paper takes this path.
Hence, we start by defining a proper orthonormal basis for the case considered here.

We illustrate our routine through the following scheme.

The Route to Smoothness

1. Consider the measure space in Equation (6).

2. Provide an orthonormal basis.

3. Provide a suitable Karhunen-Loève expansion.

4. Define a proper Sobolev space.

5. Quantify smoothness.

The following sections detail each of the steps in this routine.

3.1 A Constructive Approach to Orthonormal Bases

Consider the normalized Hermite polynomials Hκ on the real line defined by

Hκ(ξ) = (−1)κ

(κ!)1/2 e
ξ2
2

dκ

dξκ
e

−ξ2
2 , ξ ∈ R, κ = 0, 1, 2, . . . .

The family {Hκ}κ∈Z+
forms a complete orthonormal system for L2(R, ν), with the standard Gaussian mea-

sure dν = (2π)−1/2e−ξ2/2dξ, i.e.,
1√
2π

∫ ∞

−∞
Hκ(ξ)Hκ′(ξ)e

−ξ2
2 dξ = δκ,κ′ .

Moreover, the l-th derivative of the Hermite polynomials satisfies

dl

dξl
Hκ(ξ) =

√
κ!

(κ − l)! Hκ−l(ξ). (7)

On Rk, k ≥ 2, we define the normalized multiple Hermite functions Φα, with α ∈ Zk
+ through the identity

Φα(h) =
k∏

i=1
Hαi

(hi) , h ∈ Rk. (8)
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It can be namely verified that these functions form an orthonormal basis of L2 (
Rk, ν

)
.

Hence, we have completed Step 2 in our Route to Smoothness.

3.2 Expansion for the Matrix-Valued Kernel

The sequence {Cn(·)}∞
n=0 in the series expansion (3) is summable at zero. Further, from well-known

properties of matrix-valued positive definite functions (Chilès and Delfiner, 2012), we have that, for ev-
ery n = 0, 1, . . ., the matrix-valued function Cn having elements Cij,n, i, j = 1, . . . , p, satisfies Cij,n(h)2 ≤
Cii,n(0)Cjj,n(0), for i, j = 1, . . . , p. This in turn implies that, for every finite measure λ, the mapping Cn is
in L2(Rk, λ) for all n. This is obviously true for the Gaussian measure ν.

From (3) in concert with the fact that∣∣∣G(d−1)/2
n (s)

∣∣∣ =
∣∣∣∣∣G

(d−1)/2
n (s)

G
(d−1)/2
n (1)

∣∣∣∣∣ ≤ 1, s ∈ [−1, 1],

we conclude that the convergence of the series (3) is uniform.

At this point, since the multivariate Hermite polynomials that have been defined at (8) form a complete
orthonormal basis in L2(Rk, ν), we have that, for every n = 0, 1, . . ., the positive definite functions Cn :
Rk → Rp×p can be uniquely expanded in terms of Hermite polynomials, that is,

Cd
n(h) =

∑
α∈Zk

+

γd
n,αΦα(h), h ∈ Rk,

where the series converges in L2(Rk, ν), and where
{

γd
n,α

}
α∈Zk

+
⊂ Cp×p is a summable sequence of matrices

such that
γd

n,α =
∫
Rk

Cd
n(h)Φα(h) ν(dh), n ∈ Z+, α ∈ Zk

+. (9)

Consequently, the kernel K in (3) can be uniquely expanded as

K(s, h) =
∞∑

n=0
dim(Hd

n)
∑

α∈Zk
+

γd
n,αΦα(h)G(d−1)/2

n (s), (s, h) ∈ [−1, 1] × Rk. (10)

We call the indexed set
{

γd
n,α

}
(n,α)∈Ωk

⊂ Cp×p the Gegenbauer-Hermite spectrum of the p-variate kernel K,
where the indexes take value in the set

Ωk := {(n, α) : n ∈ Z+, α ∈ Zk
+}. (11)

3.3 Defining the Sobolev Spaces

For given ζ, m ∈ Z+, let Cζ,m((−1, 1),Rk; Rp×p) be the space of functions R defined in (−1, 1) × Rk, with
values in Rp×p, such that dj

dsj ∂βR exist and are continuous for j = 0, 1, . . . , ζ and 0 ≤ |β| ≤ m, where d
ds

represents the differentiation in (−1, 1) and ∂β the partial derivative in Rk of multi-index β.

Define

∥R∥2
W ζ,m

d,k

:=
ζ∑

j=0

∑
|β|≤m

∫
Rk

∫ 1

−1

∥∥∥∥ dj

dsj
∂βR(s, h)

∥∥∥∥2

∗

(
1 − s2)d/2−1+j ds ν(dh), (12)

where ∥·∥∗ is the Fröebenius norm in Rp×p, induced by the Fröebenius inner product ⟨A, B⟩∗ := tr(AB′), so
that ∥A∥2

∗ = tr(AA′), with tr denoting the trace operator.

Finally, define the Sobolev space W ζ,m
d,k ((−1, 1),Rk; Rp×p) as the completion of the space

Cζ,m((−1, 1),Rk; Rp×p) with respect to the norm (12) (with the usual identification of a.e. equal functions).
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Remark 3.1. The choice of this particular norm is due to the actual meaning of the variables in our setting:
in fact the differentiation with respect to s is connected to a differentiation on the sphere with respect to the
geodesic distance, defined as arccos(⟨·, ·⟩) between any pair of points on the spherical shell. The measure(
1 − s2)d/2−1 ds corresponds to the surface measure σd on Sd.

3.4 Quantifying Smoothness

In the following we intend to obtain estimates from below and from above for the Sobolev norm (12). We
will use the equivalence relation f ∼ g to relate functions f, g, meaning that cg ≤ f ≤ Cg with constants
c, C > 0 that can only depend on (d, k, ζ, m). Note that this is the case if the constants depend also on j
or on β, since it will always be intended that j ≤ ζ and |β| ≤ m, so they only take values in a finite set
depending on ζ, m, k.

Our search from smoothness starts by defining a proper spectral inversion of K under the Fröebenius norm
∥ · ∥2

∗. To do so, for β ∈ Zk
+ and j ∈ Z+ such that |β| ≤ m and j ≤ ζ, we define

Ij,β :=
∫
Rk

∫ 1

−1

∥∥∥∥ dj

dsj
∂βK(s, h)

∥∥∥∥2

∗

(
1 − s2)d/2−1+j ds ν(dh). (13)

We now define a sequence {sj,β}j,β with generic element sj,β being identically equal to

sj,β :=
∞∑

n=j

∑
α≥β

∥∥γd
n,α

∥∥2
∗ (n + 1)d−1+2jαβ. (14)

We are going to prove that the quantities (13) and (14) are actually related, and that they are both crucial
to quantify smoothness.

We start with a technical result that clearly illustrates the relation between these two quantities.
Proposition 3.1. Let ζ, m ∈ Z+. Given the continuous kernel K : (−1, 1) × Rk → Rp×p that is isotropic
on Sd and stationary on Rk as in (10), we have that

∥K∥2
W ζ,m

d,k

=
ζ∑

j=0

∑
|β|≤m

Ij,β ∼
ζ∑

j=0

∑
|β|≤m

sj,β.

Hence, ∥K∥2
W ζ,m

d,k

< ∞ if and only if sj,β < ∞, for all j ≤ ζ and β ∈ Zk
+ such that |β| ≤ m.

Proposition 3.1 derives from Lemma A.2 given in Appendix. Clearly, it does not provide a friendly way to
check when a given function K belongs to the Sobolev space W ζ,m

d,k for given quadruple (d, k, ζ, m) of suitable
integers. The next result (proof in Appendix) provides an estimate that helps shedding some light in this
direction.
Proposition 3.2. In the conditions of Proposition 3.1,

∥K∥2
W ζ,m

d,k

∼ s0,0 + sζ,0 +
∑

|β′|=m

s0,β′ +
∑

|β′|=m

sζ,β′ .

A further step ahead can be done by introducing the space of square summable multi-sequences, with respect
to a measure µ in the set Ωk defined in (11):

ℓ2(µ) :=

{γn,α}(n,α)∈Ωk
⊂ Cp×p :

∞∑
n=0

∑
α≥0

∥γn,α∥2
∗ µn,α < ∞

 .

We are ready to state the main result (proof in Appendix), which completes our quest for smoothness over
product spaces.
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Proposition 3.3. Let ζ, m ∈ Z+ and the measure µ̃ζ,m be defined as

µ̃ζ,m
n,α = (n + 1)d−1 [

1 + (n + 1)2ζχn≥ζ

] 1 +
∑

|β′|=m

αβ′
χα≥β′

 , (n, α) ∈ Ωk, (15)

with χn≥ζ and χα≥β′ being equal to 1 if n ≥ ζ and α ≥ β′, respectively, and to 0 otherwise. Then, for a
given continuous kernel K : (−1, 1) × Rk → Rp×p that is isotropic on Sd and stationary on Rk as (10), we
have that K belongs to the space W ζ,m

d,k if and only if
{

γd
n,α

}
∈ ℓ2(µ̃ζ,m).

Hence, we have proved that under the spectral construction proposed in this paper for a Gaussian measure
space, quantifying smoothness is equivalent to prove summability conditions for the matrices γd

n,α. One
can certainly argue that these conditions are analytically tricky to check. Yet, Proposition 3.3 provides the
building block to deduce the simpler condition below (proof in Appendix).
Corollary 3.4. Consider µζ,m one of the following measure in Ωk

µζ,m
n,α = (n + 1)d−1 [

1 + (n + 1)2ζ
] 1 +

∑
|β′|=m

αβ′

 , (n, α) ∈ Ωk, (16)

or
µζ,m

n,α = (n + 1)d−1 [
1 + (n + 1)2ζ

]
[1 + |α|m] (n, α) ∈ Ωk. (17)

If
{

γd
n,α

}
∈ ℓ2(µζ,m), then K belongs to the space W ζ,m

d,k .

4 Example

For d > 1, a ≥ 0, b > 0 and η ∈ (0, 1), consider the following univariate nonseparable kernel (Emery et al.,
2021):

K(s, h; a, b, η) = (1 − η)d−1 exp(−b∥h∥2
k)

(1 − 2ηs exp(−a∥h∥2
k) + η2 exp(−2a∥h∥2

k)(d−1)/2 , s ∈ [−1, 1], h ∈ Rk.

To calculate its Gegenbauer-Hermite spectrum, we start with the Gegenbauer expansion (Emery et al., 2021)

K(s, h; a, b, η) = (1 − η)d−1
∞∑

n=0
ηn exp(−(an + b)∥h∥2

k)G(d−1)/2
n (s)

=
∞∑

n=0
dim(Hd

n)Cd
n(h; a, b, η)G(d−1)/2

n (s), s ∈ [−1, 1], h ∈ Rk,

with
Cd

n(h; a, b, η) = (d − 1)(1 − η)d−1ηn

2n + d − 1 exp(−(an + b)∥h∥2
k).

The Gegenbauer-Hermite spectrum is given by (9). Accounting for the properties of Hermite polynomials
(Magnus et al., 1966, Section 5.6.2), one finds

γd
n,α =

∫
Rk

Cd
n(h; a, b, η)Φα(h)dh

=

0 if one or more components of α is odd
(d−1)(1−η)d−1ηn

2n+d−1
2−|α|/2

(α/2)!

√
πkα!

(1/2+an+b)k

(
1

1+2(an+b) − 1
)|α|/2

otherwise.

Using the duplication formula for the gamma function (Olver et al., 2010, formula 5.5.5), it is seen that
2−|α|/2

(α/2)!

√
πkα!

(1/2+an+b)k belongs to (0, (2π)k/2]. Since, furthermore, ( 1
1+2(an+b) − 1) and η belong to (−1, 1) and

(0, 1), respectively, it follows that
{

γd
n,α

}
∈ ℓ2(µ̃ζ,m) for any ζ, m ∈ Z+. Accordingly, owing to Proposition

3.3, K belongs to W ζ,m
d,k for any ζ, m ∈ Z+.

8
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5 Conclusions

Our work provides the foundations to smoothness quantification of Gaussian processes defined over some
specific product space involving a d-dimensional sphere. Some comments are in order. The results presented
in Section 3 can be extended to product spaces involving other manifolds. For instance, classic harmonic
analysis arguments prove that the d-dimensional sphere might be replaced by a compact two-point homoge-
neous space at the expense of replacing the normalized Gegenbauer polynomials in (3) with their counterpart
over such spaces, known as Jacobi polynomials (Cleanthous et al., 2020). We are not aware of whether our
results would hold for other general networks such as graphs with Euclidean edges (Porcu et al., 2023). For
such cases, even spectral representations become questionable, so that more mathematical effort is needed
in this direction.

Future works may involve the verification of the results presented in this paper for specific classes of scalar
and matrix-valued kernels, such as the ones proposed by Porcu et al. (2016; 2018), Alegría et al. (2019) and
Emery et al. (2021).

Also, extensions to our work to kernels that are not isotropic on the sphere could be based on spectral
characterizations such as the one proposed by Jones (1963) for axially symmetric processes on S2, i.e.,
processes that are stationary over longitudes, but not over latitudes, of the 2-sphere. Having some insight
in this direction would help to overcome the restrictive assumption of isotropy and allow for wider classes of
kernels in vector Gaussian process regression.

9
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A Technical Lemmas, and Proofs

Lemma A.1. Let α, β, ε ∈ Zk
+. If α+ε ≥ β, then one has:

(α+ε)!
(α+ε − β)! ∼ αβ. (18)

Proof. The claim holds because c1(βi, εi)αβi

i ≤ (αi+εi)!
(αi+εi−βi)! ≤ c2(βi, εi)αβi

i , i = 1, 2, . . . , k (Olver et al., 2010,
formula 5.11.12). In particular, the constants depend on β and ε.

For the next lemma we will need to state some formulas. From Olver et al. (2010, formulas 18.9.19, 18.9.21
and 18.7.4), we have

dj

dsj
Gλ

n(s) = 2j (λ)j Gλ+j
n−j(s) ∼ Gλ+j

n−j(s), ∀ n ≥ j, ∀ λ > 0, (19)

d
ds

G0
n(s) = d

ds
Tn(s) = nG1

n−1(s), ∀ n ≥ 1, (20)

where (λ)j = Γ(λ+j)
Γ(λ) is the Pochhammer symbol (Olver et al., 2010, formula 5.2.5). Using Olver et al., 2010,

Table 18.3.1 and formula 18.14.4, we get∫ 1

−1
Gλ

n(s)Gλ
n′(s)

(
1 − s2)λ−1/2 ds = π21−2λΓ(n + 2λ)

n!(n + λ)Γ(λ)2 δn,n′ , ∀ n, n′ ≥ 0, ∀ λ > 0, (21)

∫ 1

−1
G0

n(s)G0
n′(s)

(
1 − s2)−1/2 ds ∼ δn,n′ , ∀ n, n′ ≥ 0. (22)

Finally, from Muller (1966, equation 11),

dim(Hd
n)

G
(d−1)/2
n (1)

= 2n + d − 1
d − 1 , ∀ n ≥ 1, ∀ d > 1, (23)

dim(H1
n) = 2, ∀ n ≥ 1.

Lemma A.2. Let ζ, m ∈ Z+. For β ∈ Zk
+ and j ∈ Z+ such that |β| ≤ m and j ≤ ζ, define Ij,β and sj,β as

per (13) and (14). Then the following estimates hold:

Ij,β ∼
∞∑

n=j

∑
α≥β

∥∥γd
n,α

∥∥2
∗ (n + 1)d−1+2j α!

(α − β)! (24)

and
Ij,β ∼ sj,β. (25)

Proof. By (10),

Ij,β =
∫
Rk

∫ 1

−1

∥∥∥∥∥∥
∞∑

n=0
dim(Hd

n)
∑

|α|≥0

γd
n,α ∂βΦα(h) dj

dsj
G(d−1)/2

n (s)

∥∥∥∥∥∥
2

∗

(
1 − s2)d/2−1+j ds ν(dh)

=
∞∑

n,n′=0

∑
|α|,|α′|≥0

⟨γd
n,α γd

n′,α′⟩∗ J̃n,n′Jα,α′ ,

where
J̃n,n′ := dim(Hd

n)dim
(
Hd

n′

) ∫ 1

−1

dj

dsj
G(d−1)/2

n (s) dj

dsj
G

(d−1)/2
n′ (s)

(
1 − s2)d/2−1+j ds

10
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and

Jα,α′ :=
∫
Rk

∂βΦα(h)∂βΦα′(h) ν(dh).

Note that, J̃n,n′ = 0 for n < j. For n ≥ j ≥ 0, we distinguish two cases, depending on whether d is greater
than 1 or not. First, let us examine the case when d > 1 and n ≥ j ≥ 0. In this case, we have, by (19),

J̃n,n′ = dim(Hd
n)

G
(d−1)/2
n (1)

dim
(
Hd

n′

)
G

(d−1)/2
n′ (1)

∫ 1

−1

dj

dsj
G(d−1)/2

n (s) dj

dsj
G

(d−1)/2
n′ (s)

(
1 − s2)d/2−1+j ds

∼ dim(Hd
n)

G
(d−1)/2
n (1)

dim
(
Hd

n′

)
G

(d−1)/2
n′ (1)

∫ 1

−1
G

(d−1)/2+j
n−j (s)G(d−1)/2+j

n′−j (s)
(
1 − s2)d/2−1+j ds .

By (21) and (23), we obtain

J̃n,n′ ∼
(

2n + d − 1
d − 1

) (
2n′ + d − 1

d − 1

) ∫ 1

−1
G

(d−1)/2+j
n−j (s)G(d−1)/2+j

n′−j (s)
(
1 − s2)d/2−1+j ds

=
(

2n + d − 1
d − 1

)2
π22−d−2jΓ(n + j + d − 1)

(n − j)!(n + d−1
2 )Γ( d−1

2 + j)2 δn,n′ .

Since
2n + d − 1

d − 1 ∼ n + 1

and (Olver et al., 2010, formula 5.11.12)

π22−d−2jΓ(n + j + d − 1)
(n − j)!(n + d−1

2 )Γ( d−1
2 + j)2 ∼ (n + 1)d−3+2j ,

the previous result simplifies into

J̃n,n′ ∼ (n + 1)d−1+2jδn,n′ . (26)

Let us now address the case when d = 1. For n ≥ j = 0, we have

J̃n,n′ = dim(H1
n)dim

(
H1

n′

) ∫ 1

−1
G0

n(s)G0
n′(s)

(
1 − s2)−1/2 ds

∼ δn,n′ ,

based on (22). For n ≥ j > 0, we have, by (18), (19), (20) and (21):

J̃n,n′ = dim(H1
n)dim

(
H1

n′

) ∫ 1

−1

dj

dsj
G0

n(s) dj

dsj
G0

n′(s)
(
1 − s2)j−1/2 ds

= dim(H1
n)dim

(
H1

n′

)
nn′4j−1[(j − 1)!]2

∫ 1

−1
Gj

n−j(s)Gj
n′−j(s)

(
1 − s2)j−1/2 ds

= dim(H1
n)dim

(
H1

n′

)
n

π(n + j − 1)!
2(n − j)! δn,n′

∼ (n + 1)2jδn,n′ .

Hence, (26) remains valid when d = 1.

11
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On the other hand,

Jα,α′ =
∫
Rk

∂β
k∏

j=1
Hαj

(hj) ∂β
k∏

j=1
Hα′

j
(hj) ν(dh)

=
∫
Rk

k∏
j=1

∂βj Hαj (hj)
k∏

j=1
∂βj Hα′

j
(hj) ν(dh)

=
∫
Rk

k∏
j=1

√
αj !

(αj − βj)! Hαj−βj
(hj)

k∏
j=1

√
α′

j !
(α′

j − βj)! Hα′
j
−βj

(hj) ν(dh)

=
√

α!
(α − β)!

√
α′!

(α′ − β)!

∫
Rk

k∏
j=1

Hαj−βj (hj)
k∏

j=1
Hα′

j
−βj

(hj) ν(dh)

=
√

α!
(α − β)!

√
α′!

(α′ − β)!

∫
Rk

Φα−β (h) Φα′−β (h) ν(dh)

and then, since the multivariate Hermite polynomials are an orthonormal basis of L2(Rk, ν),

Jα,α′ = α!
(α − β)!δα,α′ , α ≥ β. (27)

Thus, from (26) and (27) we obtain (24) and then (25) using (18).

Lemma A.3. Let α, β, β′ ∈ Zk
+. If α ≥ β′ ≥ β ≥ 0, then αβ ≤ αβ′ .

Proof. In the scalar case, a, b, b′ ∈ Z+ with a ≥ b′ ≥ b implies ab ≤ ab′ . By applying this to each component
we obtain the claim.

Fix β ∈ Z+ with |β| ≤ m, let
Iβ := {β′ ∈ Z+ : β′ ≥ β, |β′| = m}

and
Aβ := {α ∈ Z+ : α ≥ β} .

Lemma A.4. The set Aβ can be written as

Aβ = Ãβ ∪
⋃

β′∈Iβ

Aβ′ (28)

where Ãβ = {α ∈ Z+ : |α| < m, α ≥ β} .

Proof. If α ∈ Aβ, then either |α| < m or there exists β′ ∈ Iβ such that β ≤ β′ ≤ α. One can construct
such β′ by increasing those components βi of β that satisfy βi < αi until reaching |β′| = m.

Proof of Proposition 3.2. Given j ≤ ζ and |β| ≤ m, in the definition (14) of sj,β, the sum runs over every
n ≥ j and α ∈ Aβ .
We have that

• if n ≥ ζ then (n + 1)2j ≤ (n + 1)2ζ ,

• if n < ζ then (n + 1)2j ≤ (ζ + 1)2ζ .

Moreover, by (28), if α ∈ Aβ then either α ∈ Ãβ or α ∈ Aβ′ for some β′ ∈ Iβ:

12
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• if α ∈ Ãβ then αβ ≤ mm,

• if α ∈ Aβ′ with β′ ∈ Iβ, then by Lemma A.3, it holds αβ ≤ αβ′ .

Then we can estimate from above all the terms
∥∥γd

n,α

∥∥2
∗ (n + 1)d−1+2jαβ in the definition (14) of sj,β with

the corresponding term

• in sζ,β′ with α ≥ β′ ≥ β if |α| ≥ m, n ≥ ζ,

• in (ζ + 1)2ζs0,β′ with α ≥ β′ ≥ β if |α| ≥ m, n < ζ,

• in mmsζ,0 if |α| < m, n ≥ ζ,

• in (ζ + 1)2ζmms0,0 if |α| < m, n < ζ.

As a consequence

sj,β ≤ (ζ + 1)2ζmms0,0 + mmsζ,0 + (ζ + 1)2ζ
∑

|β′|=m

s0,β′ +
∑

|β′|=m

sζ,β′ ,

and then summing up all the terms (the number of such terms only depends on ζ, k, m), we get

∥K∥2
W ζ,m

d,k

∼
ζ∑

j=0

∑
|β|≤m

sj,β ∼ s0,0 + sζ,0 +
∑

|β′|=m

s0,β′ +
∑

|β′|=m

sζ,β′ ,

since the estimate from below is trivial.

Proof of Proposition 3.3. By Proposition 3.2, all we have to do is to prove that

s0,0 + sζ,0 +
∑

|β′|=m

s0,β′ +
∑

|β′|=m

sζ,β′ =
∞∑

n=0

∑
α≥0

∥∥γd
n,α

∥∥2
∗ µ̃ζ,m

n,α, (29)

where µ̃ζ,m
n,α is given in (15). Indeed, from (14), one has:

s0,0 =
∞∑

n=0

∑
α≥0

∥∥γd
n,α

∥∥2
∗ (n + 1)d−1α0,

sζ,β′ =
∞∑

n=ζ

∑
α≥β′

∥∥γd
n,α

∥∥2
∗ (n + 1)d−1+2ζαβ′

=
∞∑

n=0

∑
α≥0

∥∥γd
n,α

∥∥2
∗ (n + 1)d−1+2ζχn≥ζ αβ′

χα≥β′ ,

sζ,0 =
∞∑

n=ζ

∑
α≥0

∥∥γd
n,α

∥∥2
∗ (n + 1)d−1+2ζα0 =

∞∑
n=0

∑
α≥0

∥∥γd
n,α

∥∥2
∗ (n + 1)d−1+2ζχn≥ζ α0,

s0,β′ =
∞∑

n=0

∑
α≥β′

∥∥γd
n,α

∥∥2
∗ (n + 1)d−1αβ′

=
∞∑

n=0

∑
α≥0

∥∥γd
n,α

∥∥2
∗ (n + 1)d−1αβ′

χα≥β′ ,

where α0 = 1. This all adds up into

µ̃ζ,m
n,α = (n + 1)d−1

1 + (n + 1)2ζχn≥ζ

∑
|β′|=m

αβ′
χα≥β′ + (n + 1)2ζχn≥ζ +

∑
|β′|=m

αβ′
χα≥β′


= (n + 1)d−1 [

1 + (n + 1)2ζχn≥ζ

] 1 +
∑

|β′|=m

αβ′
χα≥β′

 .

13



Under review as submission to TMLR

Proof of Corollary 3.4. Obviously,

µ̃ζ,m
n,α ≤ (n + 1)d−1 [

1 + (n + 1)2ζ
] 1 +

∑
|β′|=m

αβ′

 .

Moreover, αβ′ ≤ |α|m, so that
∑

|β′|=m αβ′ ≤ D(m, k)|α|m, where D(m, k) > 1 is the number of multi-
indices in Zk

+ of module m (an integer depending only m and k). Accordingly,

µ̃ζ,m
n,α ≤ (n + 1)d−1 [

1 + (n + 1)2ζ
]

[1 + D(m, k)|α|m]
≤ D(m, k)(n + 1)d−1 [

1 + (n + 1)2ζ
]

[1 + |α|m] .

Thus, considering the measure in (17) or in (16), if
{

γd
n,α

}
∈ ℓ2(µζ,m), then

{
γd

n,α

}
∈ ℓ2(µ̃ζ,m) and the

result follows by Proposition 3.3.
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