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ABSTRACT

Binary Neural Networks (BNNs) have shown great promise for real-world em-
bedded devices. However, BNNs always suffer from obtaining unsatisfactory ac-
curacy performance on a large dataset such as ImageNet, which could hinder their
further widespread applications in practice. Nevertheless, enhancing BNN’s per-
formance is extremely challenging owing to its limited capacity. Several distilla-
tion approaches in which the knowledge of a real-valued teacher model is distilled
to a binary student network have been proposed to boost one BNN’s accuracy.
However, directly employing previous distillation solutions yields inferior results
due to an unsuitable match between the representational capacity of the adopted
real-valued teacher model and target binary student network. In this work, we re-
examine the design of knowledge distillation framework specially for BNNs and
test the limits of what a pure BNN can achieve. We firstly define one group which
consists of multi real-valued networks owning particular properties, and then in-
troduce a distribution-specific loss to enforce the binary network to mimic the
distribution of one real-valued network fetched from this group in a certain order.
In addition, we propose one distance-aware combinational model to provide one
binary network with more comprehensive guidance, and present related suitable
training strategies. The BNN in this built knowledge distillation framework can
be facilitated to learn appropriate precise distributions, dubbed APD-BNN. As a
result, APD-BNN can reach its performance limit while incurring no additional
computational cost. Compared with the state-of-the-art BNNs, APD-BNN can
obtain up to 1.4% higher accuracy on the ImageNet dataset with using the same
architecture. Specifically, APD-BNN is capable of gaining 72.0% top-1 accuracy
on ImageNet with only 87M OPs. Thus, it achieves the same accuracy of exist-
ing official real-valued MobileNetV2 at 71% fewer OPs, demonstrating the huge
potential to apply BNNs in practice. Our code and models will be available.

1 INTRODUCTION

Binary neural networks (BNNs), in which both the weights and activations are restricted to 1-bit
values, have shown enormous promise for real-world embedded devices (Xu et al., 2022). However,
BNNSs have always been criticized as they eventually gain unsatisfactory accuracy performance on
large image classification dataset such as ImageNet (Russakovsky et al., 2015). The accuracies of
BNNSs to be applied in practice should perhaps be capable of at least achieving the level of MobileNet
(Howard et al., 2017), because although some large-scale vision models can obtain impressive per-
formance, practitioners typically use much smaller models in practice (Beyer et al., 2022), such as
ResNet-50 (Kolesnikov et al., 2020) or MobileNet (Howard et al., 2017). However, the accuracies
of pure BNNs! could always be much lower than MobileNetV2 (Sandler et al., 2018). Therefore,
their deployment in practical scenarios is uncommon.

Recently, Real-to-Binary Net (Martinez et al., 2020) insisted that building a new baseline network
probably should be the first step for gaining high accuracy for one BNN. Moreover, instead of
adopting the ResNet-based architecture in Real-to-Binary Net, ReActNet (Liu et al., 2020) proposed

'Several previous works used real-valued convolution to enhance BNNs’ accuracies. However, the opera-
tions of these BNNs could be increased by multiple times. Thus, in this paper, we only focus on the hardware-
friendly BNNs which have pure 1-bit convolutions except the first and the last layers, dubbed pure BNNs.
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Figure 1: (a) The top-1 accuracy of one BNN (ReCU-ResNet-34(Xu et al., 2021)) trained by various
real-valued networks on ImageNet. (b) The potential accuracy improvements of the compared base-
line real-valued networks ignored in latest BNN studies. Their adopted training strategies specially
for BNNS can significantly boost the accuracies of corresponding real-valued networks based on our
self-implementations (in which we totally follow the settings in their published papers). (c) The top-
1 accuracy differences (Delta Acc) of ResNet-152 and ResNet-101 on mini-batches of ImageNet.

that the real-valued network design used as the starting point for binarization should be compact.
Hence, these studies proved that the first step for binarization perhaps should be to design one
appropriate baseline binary network, rather than directly implementing the binarization process.

Then, with a given BNN structure, various methods have been proposed for maximizing the potential
in this BNN structure for better performance. Real-to-Binary Net and ReActNet proposed different
kinds of distributional losses for enforcing one binary network to learn similar output distributions
as those of a real-valued network. Based on the loss function in ReActNet, AdamBNN (Liu et al.,
2021b) further focused on the investigation of optimizers and training strategy. These losses were all
inspired by knowledge distillation (Hinton et al., 2015), in which the target binary network was as
the student, while the adopted real-valued network served as one teacher. However, the single real-
valued network respectively used in these works is randomly selected, such as ResNet-34 in both
ReActNet and AdamBNN, and ResNet-18 in Real-to-Binary Net. Actually, the authors in Real-to-
Binary Net suggested that utilizing a stronger teacher did not further improve the accuracy of one
binary network, therefore they took a real-valued ResNet-18 model as a teacher.

However, contrary to Real-to-Binary Net (Martinez et al., 2020), we observe that the types and
amounts of real-valued networks adopted for one binary network could be crucial for exploring
the limits of what this binary network can achieve. The inappropriate type of the adopted real-
valued network could lead to the suboptimality of the distribution similarity, thereby resulting in
gaining inferior accuracy performance. For example, as depicted in Fig. 1(a), when training one
particular binary network on ImageNet with the totally same settings except for employing different
real-valued networks, the ultimate accuracy gap could be up to 2.7%.

Meanwhile, the training strategies proposed in AdamBNN particularly designed for one BNN could
also improve the accuracy of its full-precision counterpart by 1.7%, as shown in Fig. 1(b). However,
this improvement is neglected in AdamBNN. Besides, in BONN (Zhao et al., 2022), it was proved
that their method can equally promote the performance of original real-valued ResNet-18 by 0.6%
top-1 accuracy. However, the top-1 accuracy of their compared real-valued ResNet-18 baseline is the
original existing official one 69.3%, thereby ignoring their gained 0.6% accuracy improvement. In
addition, the new state-of-the-art RBONN (Xu et al., 2022) obtained 66.7% top-1 accuracy with us-
ing the 1-bit ReActNet-based ResNet-18. However, the possible 2.0% top-1 accuracy improvement
for the original real-valued ResNet-18 baseline incurred by applying the structure improvements and
the distillation loss in ReActNet (Liu et al., 2020) are also ignored, as described in Fig. 1(b). Hence,
these studies including AdamBNN (Liu et al., 2021b), BONN (Zhao et al., 2022), and RBONN
(Xu et al., 2022) just specially focus on boosting the accuracy of one BNN with a given structure,
regardless of the possible accuracy enhancement of its original existing full-precision counterpart.

Thus, in this paper, we follow the previous studies (Liu et al., 2021b; Zhao et al., 2022; Xu et al.,
2022) to specially maximize the potential in a given BNN structure for better performance. Cru-
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cially, we strive to make BNN powerful enough to be able to achieve the accuracy level of Mo-
bileNetV2, with holding out hope that the practitioners can be convinced that utilizing BNNs in
real-world applications is indeed feasible and promising. Specifically, unlike the simple and ran-
dom distillation schemes in prior works, we aim for constructing one strong knowledge distillation
system for enhancing BNNs. By utilizing this system, the limit of what a pure BNN can achieve is
effectively explored. Our contributions can be summarized as:

* We firstly define one group which is comprised of multi real-valued networks owning particular
properties, and then introduce a distribution-specific loss to enforce one binary network to learn
the distribution of one real-valued network extracted from this group in a certain order.

» we further propose one distance-aware combinational model to provide one binary network with
more comprehensive guidance, and present connected suitable training strategies.

* We are the first attempt to build one strong and effective knowledge distillation system for BNNs,
which facilitates them to learn appropriate precise distributions (APD-BNN), with inducing no
extra computational cost. Compared to state-of-the-art BNNs, APD-BNN can gain 1.4% higher
accuracy on the ImageNet dataset with using the same architecture. Specifically, APD-BNN can
reach 72.0% top-1 accuracy on ImageNet with only 87M OPs?. To the best of our knowledge, this
is the first time that one pure BNN can achieve the same accuracy level of existing official real-
valued MobileNetV2 (72.0%), demonstrating the huge potential of applying BNNs in practice.

2 RELATED WORKS

Although most previous studies can improve BNNs by adjusting network structures, their incurred
additional computational cost offset the BNN’s high compression advantage (Liu et al., 2021b).
Thus, in this study, we are motivated to investigate the design of knowledge distillation framework
specially for BNNs, which is orthogonal to the structure adjustment.

Knowledge distillation (Hinton et al., 2015) is a technique for transferring knowledge from one
model (teacher) to another (student). The efficiency of distillation has been showed in several works
including Real-to-Binary Net (Martinez et al., 2020) and ReActNet (Liu et al., 2020). Notably, the
state-of-the-art RBONN (Xu et al., 2022) also uses the distillation loss to assist them in achieving the
best performance on ImageNet when using the ReActNet-based networks. The main difference of
our work to the similar works on knowledge distillation for BNNSs, is that our observation is contrary
to Real-to-Binary Net (Martinez et al., 2020) and we develop the first one strong and effective
knowledge distillation system specially for BNNs. This system is capable of facilitating BNNs to
achieve their performance limits, thus attaining new state-of-the-art results.

3 METHOD

This section introduces our approach. We build one strong knowledge distillation system for explor-
ing the performance limit of one pure BNN with the aim of ultimately making it powerful enough
even to be capable of achieving the accuracy level of MobileNetV2, in hope of demonstrating the
tremendous potential to employ BNNs in practical applications.

3.1 DISTRIBUTION-SPECIFIC LOSS

It has been proved that if the binary networks can learn similar distributions as real-valued networks,
the performance can be enhanced (Martinez et al., 2020; Liu et al., 2020). Meanwhile, the authors
in Real-to-Binary Net (Martinez et al., 2020) suggested that utilizing a stronger teacher did not
further improve the accuracy of one binary network, therefore they took a real-valued ResNet-18
model as a teacher. Followingly, ReActNet (Liu et al., 2020) and AdamBNN (Liu et al., 2021b)
both just simply utilized a real-valued ResNet-34 teacher model. However, as shown in Fig. 1(a),
if one real-valued network has pretty low top-1 accuracy indicating that this network itself owns
weak representational capacity such as AlexNet (Krizhevsky et al., 2012) and GoogleNet (Szegedy
et al., 2015), then the binary network could learn a little valuable information from these real-valued

20OPs is a sum of binary OPs and floating-point OPs, i.e., OPs = BOPs/64 + FLOPs.
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networks, thus achieving poor performance. On the other hand, the capacity of binary network
is extremely limited resulting in a huge gap to the ones of outstanding real-valued networks, for
example Swin-transformer (Liu et al., 2021a), so that the information offered by these real-valued
networks could be too massive for the binary network to learn, thereby equally yielding inferior
results. Accordingly, the suitable type of one real-valued network which is selected as the teacher
model for one binary network could be critical.

There are plenty of networks, which can be simply separated based on distinguished families, such
as VGG, ResNet, MobileNet, Vision Transformer, and etc. Meanwhile, it has been proved that a
modified ResNet block must be used to obtain optimal results for binary networks (Martinez et al.,
2020). Based on this fact, we further assume that the appropriate real-valued networks which will
be utilized as the teacher models for one binary network should own ResNet blocks too. Therefore,
the range of the candidate families of real-valued networks substantially shrinks. For efficiency, we
merely consider two families of networks, including ResNet and DenseNet. As demonstrated in
Fig. 1(a), one binary network can indeed gain higher accuracy when utilizing these two kinds of
real-valued networks. Therefore, we followingly pack these networks into one group G.

Besides, one network with larger number of layers in the same family could exhibit more excellent
performance when targeting one image classification task. For example, ResNet-101 performs well
than ResNet-50 in the ResNet family. Since the families of real-valued teacher models suitable for
binary networks have already been identified as ResNet or DenseNet, we assume that one network
with higher accuracy in its corresponding family could provide more useful guidance for one partic-
ular binary network. As described in Fig. 1(a), the binarized ReCU-ResNet-34 network (Xu et al.,
2021) can gain 0.2% accuracy improvement when utilizing DenseNet-201 to replace DenseNet-121
as the teacher model, or 0.9% accuracy enhancement by replacing ResNet-18 with ResNet-34.

Hence, instead of randomly choosing one real-valued network as the teacher model for testing the
performance limit of one binary network in prior studies (Liu et al., 2021b; Xu et al., 2022), one
real-valued network ®, which has the highest accuracy in the group G, will be picked out as one
teacher model in our method. Based on this fixed rule, we propose the distribution-specific loss Lg
for this fetched network ®. It is defined as the KL divergence between the softmax output p, of ¢
and one target binary network ;.

Lo=—1Y S b (wm)log(Zm) )

b m=1 Dby, (frm)

where the subscript k represents the classes, and s is the batch size.

3.2 DISTANCE-AWARE COMBINATION MODEL

After identifying the group G consisting of multi candidate real-valued networks, we observe that
even though two networks in G show similar accuracies on ImageNet, their performance on mini-
batches is significantly different. As in Fig. 1(c), although ResNet-152 and ResNet-101 just have
a accuracy gap of 0.934% on the whole ImageNet dataset, their accuracy differences on the same
mini-batches range from —6.25% to 8.59%. Meanwhile, about 67.86% of these values are larger
than 1.0% or less than —1.0%. These phenomena indicate that one network with higher accuracy
on the whole dataset actually does not always perform excellently on every mini-batches. Accord-
ingly, if ResNet-152 is firstly adopted as the real-valued model for training one binary network, and
then ResNet-101 is utilized to replace ResNet-152 as the teacher model in another new training pro-
cess, the guidance respectively provided by ResNet-152 and ResNet-101 in these two independent
training processes may be complementary to each other on the majority of whole mini-batches.

Therefore, rather than merely utilizing one single real-valued network as the teacher model for
exploring the performance limit of one binary network in previous studies (Liu et al., 2021b; Xu
et al., 2022), we propose to combine multi real-valued networks in the group G to provide more
comprehensive guidance for one binary network.

Based on our proposed distribution-specific loss in the section 3.1, one network with the highest
accuracy, denoted as ®;, will firstly be taken out of the group G. In this case, we will then pick
out another one with highest accuracy in the remaining networks of the group G, represented as .
In this way, there will be totally m networks, including ¢, - and so on, to be extracted from the
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group G and combined together as the unified teacher models for the target binary network ¢;. Thus,
we introduce the combinational loss L. for providing ¢, with comprehensive guidance:

Le=) BixLa(®) )
=1

where [3; is the weight to measure the importance of each network ®;.

Moreover, based on the fact that the first input convolutional layer and the output fully-connected
layer in BNNs are not binarized in all previous binarization methods, we further seek for the op-
portunities of providing extra potential guidance for the target binary network %, for the sake of
facilitating this binary network to reach its performance limit as far as possible.

Firstly, let us recall the goal of our distribution-specific loss Lg. It is to enforce the target binary
network ?; to learn similar final output distribution of one real-valued network ®;. Based on this
insight, there is one essential fact. These final output distributions out, are not only the ones of the
networks ¢;, and ®;, but also the outputs of the last layers © individually in ¢; and ®;. Accordingly,
if the final output distributions out, of ¢, and ®, are successfully enforced to be close to each other
at last, then the input distributions ing of © respectively in ¢; and ®; should equally be similar to
each other, since out, are obtained just by directly processing ing in © of ¢, and ®; individually.

Hence, we present one distance model to measure the differences between ing of © in ¢;, and ;.
By minimizing the output Dzis of this distance model, extra potential enhanced guidance could be
offered for the target binary network ¢;. In this case, a desirable solution would be to calculate the
KL divergence between two distributions ing of © in ®; and ¢, after a training iteration ¢, which are
denoted as dif and d:' respectively. We first calculate the per-input channel KL divergence between
dit and di'. Then, the per-input channel KL divergence across all the input channels of the last layers
© in the current training batch are averaged.

Dis = E"[D(d% || diY)] 3)

Followingly, since the computation of the KL divergence is expensive, we also simplify the compu-
tation of the KL divergence by adopting one effective second-order model in PROFIT (Park & Yoo,
2020) which considers the mean and variance of per-channel input distribution.

Ybis = % i (log (sta/ste) + ((st)” = (sta) + (me = ma)?) / (25 (sta)?)) )

where st and mg are the standard deviation and mean of per-channel input distribution of the last
layer © in ®,, st; and m; are the ones in t;, s is the batch size, and Yp,; is the final output of our
distance model.

Consequently, instead of utilizing the cross-entropy classification loss, we introduce the distance-
aware combinational loss L . for one target binary network ty,.

Edc = £c + ax YDis (5)

where « is a balancing parameter. Here, Yp;s could be considered as some regularization on L. In
different situations, the binary networks may require varying degrees of the guidance supplied by
Ypis, which is controlled by «. In some cases, if one binary network has already learned sufficiently
from the real-valued network ®; via L., then Y, indeed makes no contributions and is unnecessary.

3.3 THE TRAINING STRATEGY

Actually, for the same one binary network, different studies tended to adopt distinguished training
strategies. For example, when optimizing the same binary ReActNet-A network, ReActNet (Liu
et al., 2020) trained it for 600K iterations with batch size being 256, while AdamBNN (Liu et al.,
2021b) trained it for 600K iterations with batch size set to 512. Meanwhile, AdamBNN utilized
another suitable weight decay value to maximize the potential in this given structure for better per-
formance. Motivated by these studies, we equally design suitable training strategies for one binary
network to be equipped with our distance-aware combinational model L.

Firstly, different from the small batch sizes including 256 in ReActNet and 512 in AdamBNN, we
utilize the large batch size b; in order to make full use of the system’s computational power (You
et al., 2017), such as 1696 for ReActNet-A network (Liu et al., 2020) on 8§ NVIDIA A40 GPUs.
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Meanwhile, FunMatch (Beyer et al., 2022) is the first work that presents the explicit identification of
the certain implicit design choices of employing the knowledge distillation solution to obtain small-
scale full-precision models with outstanding performance. They ultimately derive a state-of-the-art
full-precision ResNet-50 model with 82.8% top-1 accuracy on ImageNet. And they also demonstrate
that very long training schedule plays a key role in their proposed knowledge distillation scheme for
obtaining this full-precision ResNet-50 model. In fact, it takes extremely expensive 3000K iterations
to reach its gained 82.8% top-1 accuracy. Enlightened by FunMatch (Beyer et al., 2022), we assume
that the suitable number of training iterations for one binary network is vital for approaching its
performance limit. Besides, as originally reported in AdamBNN (Liu et al., 2021b), their binary
network is trained for 600K iterations. Thus, to strike the balance between the training cost and final
accuracy performance, the suitable total iterations for the binary network in AdamBNN (Liu et al.,
2021b) to be trained by our distance-aware combinational model L. could be set to 416K.

In addition, the previous works (Liu et al., 2020; 2021b) both used the Adam optimizer (Kingma &
Ba, 2014) with a linear learning rate decay scheduler. Directly combining the linear learning rate
decay scheduler with large batch size b; might not be optimal. If we just completely follow the
training strategies in AdamBNN (Liu et al., 2021b) except for utilizing the large batch size b; to
replace the original small one, the final accuracy could suffer from a 0.5% degradation. Instead, we
adopt the cosine annealing scheduler (Loshchilov & Hutter, 2016), and make further optimizations.
Firstly, the initial learning rates ¢, is slightly adjusted. The reason is that Adam adopts the adaptive
method to update the gradients, which will amplify the actual learning rate values during training,
S0 it requires a minor increment adjustment to avoid update values being too large. Meanwhile, the
minimum learning rate my is fixed, which is set to 1e-9. Then, i, and my together determine the
range of the values of learning rate, and the specific value of leaning rate I;; in each iteration during
one training process.

1 . Z‘tcur
lit:meri(za—mf)(lecos(, 5 ) (6)

sum

Where itzgm is the sum of iterations based on large batch size b; in one complete training process

for one dataset, and it.,,,- accounts for how many iterations have been performed.

By integrating the distance-aware combinational model L4, based on m particular real-valued net-
works fetched from our built group G and the above presented training strategies, one pure BNN
can be effectively facilitated to learn appropriate precise distributions, dubbed as APD-BNN, while
no additional computational cost is incurred.

4 EXPERIMENTS

4.1 DATASET AND IMPLEMENTATION DETAILS

All our experiments are conducted on the ImageNet 2012 classification dataset (Russakovsky et al.,
2015). We utilize the same data augmentation and pre-processing in AdaBin(Tu et al., 2022). All
of the APD-BNN models follow the rule in previous methods (Liu et al., 2020; 2021b; Xu et al.,
2022; Tu et al., 2022) that all layers, except the first input convolutional layer and the output fully-
connected layer, are binarized. Meanwhile, all experiments are implemented using PyTorch (Paszke
et al., 2019) with four or eight NVIDIA A40 GPUs, or eight NVIDIA A100-SXM4-80GB GPUs.

4.2 COMPARISON WITH STATE-OF-THE-ARTS

Our solution brings constant improvements to various structures. As presented in Table 1, with
the same network architecture, we achieve 1.7% higher accuracy than ReCU (Xu et al., 2021). In
addition, based on the same ReActNet ResNet-based structure (Liu et al., 2020), we can gain 1.5%
accuracy improvement. When applying our approach to AdamBNN (Liu et al., 2021b), it further
brings 1.5% enhancement and obtains 72.0% top-1 accuracy, substantially surpassing all previous
BNN models.

Meanwhile, our method will not increase the OPs since we utilize identical structures as the base-
lines: ReCU(Xu et al., 2021), ReActNet(Liu et al., 2020), and AdamBNN(Liu et al., 2021b). Table 2
describes the computational costs of the networks we used in experiments. Among all binary net-
works, ReActNet-A is the most promising one as it contains small overall OPs than other binary
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Table 1: Comparison with state-of-the-art methods that binarize both weights and activations. *
means the ReCU-ResNet-34 (Xu et al., 2021) architecture, * denotes the ReActNet ResNet-based
(Liu et al., 2020) structure, and ' represents the ReActNet-A (Liu et al., 2020) structure.

Networks Topl Acc %  Top5 Acc %
BNNs (Courbariaux et al., 2016) 42.2 67.1
ABC-Net (Lin et al., 2017) 42.7 67.6
DoReFa-Net (Zhou et al., 2016) 43.6 -
XNOR-ResNet-18 (Rastegari et al., 2016) 51.2 69.3
Bi-RealNet-18 (Liu et al., 2018) 56.4 79.5
CI-BCNN-18 (Wang et al., 2019) 59.9 84.2
MoBiNet (Phan et al., 2020a) 54.4 71.5
BinarizeMobileNet (Phan et al., 2020b) 51.1 74.2
PCNN (Gu et al., 2019) 57.3 80.0
StrongBaseline (Martinez et al., 2020) 60.9 83.0
Real-to-Binary Net (Martinez et al., 2020) 65.4 86.2
MeliusNet29 (Bethge et al., 2020) 65.8 -
ReCU-ResNet-34F (Xu et al., 2021) 65.1 85.8
ReActNet ResNet-based* (Liu et al., 2020) 65.5 86.1
BONN* (Zhao et al., 2022) 66.2 86.4
RBONN* (Xu et al., 2022) 66.7 87.0
ReActNet-Af (Liu et al., 2020) 69.4 88.6
AdamBNNT (Liu et al., 2021b) 70.5 89.1
AdaBin® (Tu et al., 2022) 70.4 -
RBONNT (Xu et al., 2022) 70.6 89.0
APD-BNN¥ (ours) 66.8 86.8
APD-BNN* (ours) 67.0 87.1
APD-BNNT (ours) 72.0 89.9

networks. Based on this structure, AdamBNN (Liu et al., 2021b) proposed new training strategies
to enhance its accuracy. Furthermore, the state-of-the-art works including RBONN (Xu et al., 2022)
and AdaBin (Tu et al., 2022) both can equally boost the ReActNet-A network’s top-1 accuracy.
However, AdaBin (Tu et al., 2022) suffers from inducing extra OPs. In contrast, our APD-BNN can
obtain the highest top-1 accuracy with incurring no additional OPs.

Thus, considering the tremendous challenges in previous attempts to enhance 1-bit CNNs’ perfor-
mance, the accuracy leap achieved by APD-BNN is significant. For example, our APD-BNN is
capable of gaining 72.0% top-1 accuracy at 87M OPs. To the best of our knowledge, this is the
first one pure BNN that can achieve the same accuracy level of MobileNetV2, demonstrating the
enormous potential of employing BNNs in practical applications.

4.3 ABLATION STUDY
4.3.1 THE NUMBER OF ADOPTED REAL-VALUED NETWORKS

In Table 3, we illustrate the time consumption of one training iteration and accuracy performance of
ReCU-ResNet-34 (Xu et al., 2021) on ImageNet with different numbers m of real-valued networks
taken from our built group G. Notably, when m is larger than three, the top-1 accuracy even de-
creases. In this case, the guidance supplied by extra real-valued networks could already exceed the
limit of this binary network can grasp and in turn lead to an adverse effect. Overall, when m is equal
to two, it strikes a balance between the accuracy performance and training cost.

4.3.2 THE FAMILIES OF REAL-VALUED NETWORKS

To reassure the credibility of building the group G for one binary network, we make a controlled
comparison between different selections of other outstanding families of real-valued networks, in-



Under review as a conference paper at ICLR 2023

Table 2: Comparison of the computational cost between the state-of-the-art methods and our method.
T represents the ReActNet-A (Liu et al., 2020) structure.

OPs FLOPs OPs  Topl
x10°  x10%8 x10® Acc%

XNOR-ResNet-18 (Rastegari et al., 2016)  1.70 1.41 1.67 51.2

Networks

Bi-RealNet-18 (Liu et al., 2018) 1.68 1.39 1.63 56.4
CI-BCNN-18 (Wang et al., 2019) - - 1.63 59.9
MeliusNet29 (Bethge et al., 2020) 5.47 1.29 2.14 65.8

StrongBaseline (Martinez et al., 2020) 1.68 1.54 1.80 60.9
Real-to-Binary Net (Martinez et al., 2020)  1.68 1.56 1.83 654

ReActNet-Af (Liu et al., 2020) 482 0.12 087 694
AdamBNNT (Liu et al., 2021b) 482 0.12 087 705
RBONNT (Xu et al., 2022) - - 0.87  70.6
AdaBin' (Tu et al., 2022) - - 0.88 704
APD-BNNT (ours) 482 012 087 720

Table 3: Comparison of different number of fetched real-valued networks from the group G.

m  Time of one iteration (ms) Topl Acc % Top5 Acc %
1 747 66.5 86.7
2 956 66.8 86.8
3 1279 66.9 86.8
4 1497 66.8 86.9
5 1674 66.7 87.0

cluding WRN (Zagoruyko & Komodakis, 2016), ResNeXt (Xie et al., 2017), BiT (Kolesnikov et al.,
2020), Vision Transformer (ViT) (Dosovitskiy et al., 2020), Swin Transformer (ST) (Liu et al.,
2021a), and ConvNeXt (Liu et al., 2022). As in Table 4, our suggested choice which utilizes ResNet-
152 and ResNet-101 obtains a 0.7% better accuracy over the ConvNeXt, while the original accu-
racies of ConvNeXts are at least 8.5% higher than ResNet152 and ResNet-101. Among the whole
validated real-valued network families, our suggested one itself has the lowest original accuracy,
while its guided binary network gains the highest accuracy. It indicates a suitable match between
their representational capacity, which could enable the binary network to learn sufficient valuable
information from connected real-valued networks thereby achieving superior accuracy performance.

4.3.3 THE TRAINING STRATEGY

In this experiment, following AdamBNN (Liu et al., 2021b), we train the ReActNet-A network
(Liu et al., 2020) by utilizing the two-step strategy. The activations are binarized first, and then
the weights are binarized. As listed in Table 5, for fair comparison, we use the same model with
73.7% top-1 accuracy obtained in the first step as the initialization for the second step. The accuracy
of ReActNet-A can be significantly boosted by adopting the appropriate batch size b; and initial
learning rate ¢,. Crucially, as depicted in Fig. 2(a), there is no overfitting during training.

4.3.4 COMPARISONS TO BNNS CONTAINING REAL-VALUED CONVOLUTIONS

Some prior approaches utilize real-valued convolution to boost BNN’s accuracy. However, the com-
putation cost of one BNN is significantly increased. Hence, by adopting this strategy, the most
state-of-the-art AdaBin (Tu et al., 2022) can obtain the 71.6% top-1 accuracy at 527M OPs, as in
Fig. 2(b). In contrast, our APD-BNN has pure 1-bit convolutions except the first and the last layers,
which is more hardware-friendly. Crucially, our APD-BNN is capable of achieving 72.0% top-1
accuracy on ImageNet with only 87M OPs, outperforming AdaBin (Tu et al., 2022) by 0.4% greater
accuracy at 83% fewer OPs. These results demonstrate the effectiveness of our APD-BNN design.
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Table 4: Comparison between our suggested choice (i.e. ResNet) and other outstanding families of
real-valued networks mostly built in timm (Wightman, 2019). We adopt the same data augmentation
in ReCU (Xu et al., 2021) for fair comparisons. The target binary network ¢, is ReCU-ResNet-34.
For brevity, Topl Acc (real) denotes the top-1 accuracies of related real-valued networks for ¢;,.

Real-valued networks ty
. Topl Topl
Model (family) Acc g cal) Afc
resnet152 + resnet101 (ResNet) 782+1773 66.8
wide_resnet101_2 + wide_resnet50_2 (WRN) 78.9+78.5 66.2
resnext101_32x8d + resnext50_32x4d (ResNeXt) 79.2+77.6 66.5
BiT-M-R152x4 + BiT-M-R101x3 (BiT) 83.8+83.0 66.0
vit_large_patch16_224 + vit_large_r50_s32_224 (ViT) 84.4+84.0 66.3
ig_resnext101_32x48d + ig_resnext101_32x32d (ResNeXt) 85.5+85.1 66.1
swin_large_patch4_window7_224 + swin_base_patch4_window7.224 (ST) 859+ 84.8 66.0
convnext_xlarge_in22ft1k + convnext_large_in22ft1k (ConvNeXt) 86.7 + 86.3 66.1

Table 5: Comparison of different hyper-parameter settings in the second step of two-step training on
the ReActNet-A (Liu et al., 2020) structure.

Stepl Step2
Topl Acc% m « Batchsize Initial learning rate  Topl Acc %  Top5 Acc %
2 0.1 2816 0.00150 71.6 89.9
73.7 2 01 1696 0.00125 71.6 89.8
2 0.1 1696 0.00150 72.0 89.9
2 0.1 1696 0.00175 71.7 89.9
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Figure 2: (a) The top-1 accuracy curves of our APD-BNN based on ReActNet-A (Liu et al., 2020)
structure trained on ImageNet. (b) Computational Cost vs. ImageNet Accuracy.

5 CONCLUSION

Binary neural networks always suffer from obtaining unsatisfactory accuracy performance on the
large scale image classification tasks, which could limit their widespread applications in practice. To
tackle this issue, we build the first one strong and effective knowledge distillation system specially
for one binary network with enforcing it to learn appropriate precise distributions (APD-BNN).
APD-BNN can reach its performance limit while inducing no additional computational cost. We
attain very strong empirical results. In particular, APD-BNN is capable of reaching 72.0% top-
1 accuracy on ImageNet with only 87M OPs, which achieves the same accuracy level of existing
official real-valued MobileNetV2 at 71% fewer OPs, demonstrating the huge potential of BNNs. We
believe that they are very useful from a practical point of view and are a very strong baseline for
future research on developing high-performance BNNs.
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