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Abstract

We study the sample complexity of online reinforcement learning in the general
setting of nonlinear dynamical systems with continuous state and action spaces.
Our analysis accommodates a large class of dynamical systems ranging from a
finite set of nonlinear candidate models to models with bounded and Lipschitz
continuous dynamics, to systems that are parametrized by a compact and real-
valued set of parameters. In the most general setting, our algorithm achieves a
policy regret of O(Nϵ2 + ln(m(ϵ))/ϵ2), where N is the time horizon, ϵ is a user-
specified discretization width, and m(ϵ) measures the complexity of the function
class under consideration via its packing number. In the special case where the
dynamics are parametrized by a compact and real-valued set of parameters (such as
neural networks, transformers, etc.), we prove a policy regret of O(

√
Np), where

p denotes the number of parameters, recovering earlier sample-complexity results
that were derived for linear time-invariant dynamical systems. While this article
focuses on characterizing sample complexity, the proposed algorithms are likely
to be useful in practice, due to their simplicity, their ability to incorporate prior
knowledge, and their benign transient behaviors.

1 Introduction

Reinforcement learning describes the situation where a decision-maker chooses actions to control a
dynamical system, which is unknown a priori, to optimize a performance measure. At the core of
reinforcement learning is the fundamental dilemma between choosing actions that reveal information
about the dynamics and choosing actions that optimize performance. These are typically conflicting
goals. We consider an online non-episodic setting, where the decision-maker is required to learn
continuously and is unable to reset the state of the dynamical system. This further introduces the
challenge that the information received by the learner is correlated over time and hence, standard
statistical tools cannot be applied directly. Despite these important challenges, we provide a suite
of online reinforcement learning algorithms that are relatively straightforward to analyze, while
being both practically and theoretically relevant. The algorithms sample from a posterior over
the different potential model candidates (or an approximation thereof), apply the corresponding
“certainty-equivalent” policies, while carefully introducing enough excitation to ensure that the
posterior distribution over models converges sufficiently rapidly.

Preprint. Under review.



We consider three different settings. In the first setting, the decision-maker has access to a finite set
of nonlinear candidate models that potentially describe the system dynamics (continuous state and
action spaces). This setting is relevant for many practical engineering applications, where the choice
of candidate models provides a natural way to incorporate prior knowledge. In this setting our online
algorithm achieves a sample complexity of O(ln(N) + ln(m)) in terms of policy regret, where N
denotes the time horizon and m the number of candidate models. In the second setting, we allow for
any class of dynamical system, where the dynamics are given by a bounded set in a normed vector
space. This includes, for example, all bounded Lipschitz continuous functions with the supremum
norm, or a bounded set of square integrable functions. By applying packing and covering arguments,
we can relate the second setting to the first one and derive corresponding policy-regret guarantees
that take the form O(Nϵ2 + ln(m(ϵ))/ϵ2), where ϵ describes the discretization width and m(ϵ) the
packing number, which measures the complexity of the function class [50]. In the third setting,
we consider systems that are parametrized by a compact and real-valued set of parameters. This
includes the situation where the dynamics are parametrized by neural networks, transformers, or other
parametric function approximators, and we obtain a policy regret of O(

√
Np), where p describes

the number of parameters. We further note that in the common situation where our function class is
given by a linear combination of nonlinear feature vectors, which also encompasses linear dynamics
as a special case, our algorithm is straightforward to implement, as it only requires sampling from a
(truncated) Gaussian distribution at every iteration.

Our main contributions are summarized as follows:

• We provide a suite of algorithms with nonasymptotic regret guarantees for online reinforcement
learning over continuous state and action spaces with nonlinear dynamics. Numerical results
highlight that transients are benign and that our algorithms are likely to be useful in practice.

• Compared to earlier work in the machine learning community [see, e.g., 19, 46], which mainly
focused on linear dynamical systems and relied on two-step learning strategies that alternate
between least-squares estimation and optimal control design, our work accommodates a much
broader class of systems and results in a single-step procedure that unifies control design and
identification. Moreover, our analysis is straightforward and recovers the results from earlier work
as simple corollaries specialized to linear dynamics.

• Compared to earlier work in the adaptive control community [see, e.g. 5, 25], which focuses on
asymptotic stability, boundedness, and deterministic dynamical systems, we consider stochastic
dynamical systems and characterize nonasymptotic performance. While boundedness (almost
surely) cannot be guaranteed in our stochastic setting, where the process noise, for example, has
unbounded support, we provide a nonasymptotic bound on the second moment of state trajectories
and show that our estimation converges in finite time almost surely. This can be viewed as the
stochastic analogue of boundedness and asymptotic convergence.

• Our analysis sheds light on the difference in sample complexity between model-based and model-
free reinforcement learning.1 In the model-based setting, as considered herein, a single iteration
provides information about the accuracy of each candidate model, resulting in a regret that scales
with O(ln(m)) in the presence of a finite set of models. In contrast, in the model-free setting,
a single iteration provides only information about the feedback policy that is currently applied,
resulting in a regret that scales with O(m) or worse [see, e.g., 33, 22].

• The work provides a powerful separation principle that applies to nonlinear dynamics. Indeed, as
we will see (e.g., in the proof of Thm. 3.2), our algorithms are based on identifying the best model
in the given class and applying a certainty-equivalent policy, separating the model identification
and the optimal control task. In particular, our algorithms combine optimal certainty-equivalent
control with optimal model identification based on the posterior distribution over models. This
provides an algorithmic paradigm that contrasts with prevalent approaches based on optimism
in the presence of uncertainty and it facilitates policy-regret characterization for systems with
continuous states and inputs.

The decision-making problem considered here is central to machine learning and related disciplines,
and there has been a great deal of prior work. We provide a short review of recent prior work that is
closely related to our approach in the following paragraph; a more detailed review of the literature
can be found in App. A.

1By model-free reinforcement learning we mean a setting where the decision-maker has only access to a set
of feedback policies. The terminology is arguably ill-defined.
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Online continuous control is an important benchmark problem in reinforcement learning with
continuous states and actions, and is fundamentally harder than the tabular setting with discrete
states and actions. Building on the fruitful contributions of learning for control in the linear world
[24, 48], the frontier now becomes online control with nonlinear dynamics. Prior work [see, e.g.,
29, 11, 37] has shown that sublinear O(

√
N) regret can be achieved under structural assumptions

on the dynamics, e.g., contraction or linear representations of nonlinear features, which are stronger
than what is assumed herein. Our approach instead builds on the use of multiple candidate models
and aggregation across these models, a situation reminiscent of multi-model adaptive control, where
the goal is asymptotic stabilization [6]. In contrast, we tackle online reinforcement learning and
provide nonasymptotic policy-regret characterizations. Compared to recent work in online switching
control [35, 32], we handle a broad class of nonlinear dynamics and achieve a favorable logarithmic
regret with respect to the number of models. Some online approaches address nonlinear dynamics
with unknown parameters through the paradigm of optimism in the face of uncertainty [2, 3, 18].
In contrast, our multi-model perspective leverages a separation principle that decouples online best
model identification and certainty-equivalent control. This separation not only allows computing
policies offline to save online computation, but also facilitates explicit characterizations of how policy
regret scales with the time horizon, state dimension, and complexity of the function class.

The article is structured as follows: Sec. 2 discusses the problem formulation and presents the main
results. Sec. 3 illustrates our analysis, where we focus on the first setting (finite set of models)—the
other two settings are similar at a high level and we provide a detailed presentation in the appendix.
Sec. 4 provides a short conclusion, while proofs, numerical experiments, and further discussion is
included in the appendix.

2 Problem formulation and summary

We consider a reinforcement learning problem where a decision-maker chooses actions uk ∈ Rdu

to control a dynamical system xk+1 = f(xk, uk) + nk, where xk ∈ Rdx denotes the state, f :
Rdx ×Rdu → Rdx the dynamics (unknown to the decision-maker), and nk ∼ N (0, σ2I) the process
noise. The random variables nk, k = 1, . . . , represent a sequence of independent and identically
distributed random variables, and without loss of generality we set x1 = 0. We further denote the
Lipschitz constant of f in (x, u) by L.

The decision-maker aims at minimizing the expected loss, E[
∑N

k=1 l(xk, uk)], where l : Rdx×Rdu →
R≥0 captures the stage cost, by learning and applying an appropriate and possibly random feedback
policy uk = µk(xk).

We consider three different settings. In the first setting (S1) the decision-maker has access to m
potential (nonlinear) candidate models F := {f1, . . . , fm}, f i : Rdx × Rdu → Rdx , i = 1, . . . ,m
that describe potential system dynamics. Each f i is L-Lipschitz in (x, u). In the second setting (S2),
we allow for any class of functions F that is given by a bounded set in a normed vector space, which
is therefore much broader and includes, for example, all bounded L-Lipschitz functions with the
usual supremum norm or a bounded set of square integrable functions. In the third setting (S3), the
dynamics are parametrized by the parameter θ, i.e., F = {fθ(x, u) | θ ∈ Ω}, where Ω is a compact
real-valued set. Without loss of generality, we assume that Ω is contained in a unit ball by scaling the
parameters accordingly. This captures the setting where the functions fθ are represented by neural or
transformer architectures, or when fθ are given by linear combinations of (nonlinear) feature vectors
fθ(x, u) = θ⊤ϕ(x, u). This also encompasses linear dynamics as a special case. We further assume
that the system dynamics f are contained in the set of candidate models, i.e., f ∈ F for each setting.

This article analyzes the decision-making strategy listed in Alg. 1, which can be easily adapted to the
settings S2/S3 (see Alg. 2 in App. D and Alg. 3). The algorithm keeps track of the one-step prediction
error, that is,

sik =

k−1∑
j=1

|xj+1 − f i(xj , uj)|2

1 + |(xj , uj)|2/b2
, f i ∈ F,

where b > 0 is a sufficiently large constant, and |(xj , uj)| denotes the ℓ2-norm of a vector stacking
xj and uj . The normalization with 1 + |(xk, uk)|2/b2 ensures that the variables sik remain bounded
even when xk, uk become arbitrarily large, while for small xk, uk the normalization is close to the
identity. This will simplify the subsequent analysis and the resulting statement of the policy-regret
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Algorithm 1 Reinforcement learning (S1)

Inputs: F := {f1, . . . , fm}, η, M , {σ2
uk}∞k=1

compute {µ1, . . . , µm} // e.g. by d. p.

for k = 1, . . . do
// every M th step
if mod(k − 1,M) = 0 then

sik ←
∑k−1

j=1

|xj+1−fi(xj ,uj)|2

1+|(xj ,uj)|2/b2

ik ∼ exp(−ηsik)/Z
else

ik = ik−1 //stay with ik−1

end if
//follow policy ik and add excitation
uk = µik (xk) + nuk, nuk ∼ N (0, σ2

ukI)
end for

Algorithm 3 Reinforcement learning (S3)

Inputs: F = {fθ | θ ∈ Ω }, η, M , {σ2
uk}∞k=1

for k = 1, . . . do
// every M th step
if mod(k − 1,M) = 0 then

sk(θ) =
∑k−1

j=1

|xj+1−fθ(xj ,uj)|2

1+|(xj ,uj)|2/b2

θk ∼ exp(−ηsk(θ)) 1θ∈Ω/Z
compute µθ corr. to fθ ∈ F // e.g. by d. p.

else
θk = θk−1 //stay with ik−1

end if
//follow policy θk and add excitation
uk = µθk (xk) + nuk, nuk ∼ N (0, σ2

ukI)
end for

bounds. Our analysis also carries over to b→∞ and the same regret bounds apply, as is discussed in
App. F; however, the constants in the resulting regret guarantees and algorithm parameters become
more complex. The sum of squared distances |xj+1 − f i(xj , uj)|2 can be interpreted as the negative
log-likelihood of model i given the past trajectory {xj , uj}kj=1, due to the fact that the process noise
is Gaussian. Hence, from a Bayesian perspective, the distribution exp(−sik) represents the probability
that model f i corresponds to f given the past trajectory. The scaling with η implements a softmax
(for η large we greedily pick the model that maximizes the posterior, for η ≈ 1 we directly sample
from the posterior). Our analysis also applies when nk is non-zero-mean, since this can be captured
by modifying f accordingly, and generalizes to sub-Gaussian process noise.

The algorithm chooses control actions uk as

uk = µik(xk) + nuk,

where nuk ∼ N (0, σ2
ukI), and ik is a random variable that is defined in the following way: If

mod(k − 1,M) = 0, ik takes the value ik = i with probability density pik ∼ exp(−ηsik)/Z
(conditional on the past), where Z denotes a normalization constant. If mod(k − 1, M ) ̸= 0, ik
remains fixed, i.e., ik = ik−1. The random variable switches only every M th step, which ensures that
the excitation with nuk is rich enough, as specified precisely in Ass. 3 below. The feedback policy µi

describes any policy associated with candidate model f i, i.e., a policy that achieves the performance

lim sup
N→∞

1

N
E
[ N∑
k=1

l(xi
k, µ

i(xi
k))
]
= γi, (1)

on the candidate model f i, where xi
k+1 := f i(xi

k, µ
i(xi

k)) + nk with xi
1 = 0. The policy µi can be

optimal for model f i, but this does not necessarily need to be the case. In practice, such a policy can
be obtained by solving a Bellman equation through (approximate) dynamic programming [10], or by
applying proximal policy optimization in conjunction with an offline simulator. We will consider
policy regret as our performance objective, where the policy µ corresponding to the dynamics f
represents the benchmark performance.

The reinforcement learning strategy has a very natural interpretation: The strategy selects, at each
M th iteration, the feedback policy µik under which the distribution of ik follows a softmax function
of sik. The system is further excited by adding the random perturbation nuk to the feedback policy.
If persistence of excitation is guaranteed, the estimation will converge at a rate at least O(1/k2),
which yields a policy regret (compared to the strategy µ corresponding to the dynamics f ) that scales
logarithmically in the horizon N and the number of candidates m.

We emphasize that our analysis technique translates in straightforward ways to more general situations
than the ones described herein. For example, while this article focuses on time-invariant policies, it
would be straightforward to also incorporate time-varying policies µi

k, and a corresponding finite-
horizon benchmark. More precisely, we focus on steady-state performance, where the benchmark
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is given by the steady-state performance of policy µ (corresponding to f ). However, finite-horizon
objectives can be easily accommodated by measuring regret with respect to the optimal finite-horizon
policy µk; the same nonasymptotic regret bounds would apply. The article also focuses on “naive"
excitation signals nuk, sampled from a normal distribution. However, our analysis principle is
flexible enough to also incorporate more general type of excitation strategies (e.g., relying on domain-
specific knowledge), as long as the excitation has finite second moments and guarantees a persistence
condition similar to Ass. 3.

Our results are summarized as follows:

Theorem 2.1 (S1) Let the cost-to-go function corresponding to f and the stage cost l be smooth
(see Ass. 1 and 2), the feedback policies µi be Lipschitz continuous, and let a persistence of excitation
condition be satisfied (see Ass. 3). Then, for a constant learning rate η and σ2

uk ∼ 1/(duk) +
ln(m)/(duk

2) the policy regret of Alg. 1 is bounded by

E[

N∑
k=1

l(xk, uk)]−Nγ ≤ cr1ln(N) + cr2ln(m) + cr3σ
2dx,

for all N ≥ 2M , where cr1, cr2, cr3 are constant, and γ corresponds to theH2 gain associated with
the dynamics f (see (1)). The precise constants are listed in Thm. 3.2.

Theorem 2.2 (S2) Let the set of candidate models F be a bounded set in a normed vector space.
Let the cost-to-go function corresponding to f and the stage cost l be smooth (see Ass. 2 and 5),
the feedback policies µf̄ corresponding to an f̄ ∈ F be Lipschitz continuous, and let a persistence
of excitation condition be satisfied (see Ass. 4). Then, for all N ≥ 2M , any ϵ > 0, for a constant
learning rate η, and σ2

uk ∼ 1/(ϵ2duk) + ln(m(ϵ))/(ϵ2duk
2), the policy regret of Alg. 2 (see App. D)

is bounded by

E[

N∑
k=1

l(xk, uk)]−Nγ ≤ cr0Nϵ2 + cr1ln(N)/ϵ2 + cr2ln(m(ϵ))/ϵ2 + cr3σ
2dx,

where m(ϵ) denotes the packing number of the set F . The precise constants are listed in Thm. D.2.

Theorem 2.3 (S3) Let the set of candidate models F be parametrized by θ, i.e., F = {fθ(x, u) | θ ∈
Ω}, where Ω ⊂ Rp is contained in a unit ball of dimension p. Let the cost-to-go function correspond-
ing to f and the stage cost l be smooth (see Ass. 2 and Ass. 7), the feedback policies µθ corresponding
to each fθ ∈ F be Lipschitz continuous, and let a persistence of excitation condition be satisfied (see
Ass. 6). Then, for all N ≥ 2M , for a constant learning rate η, and σ2

uk ∼ 1/(duk) + p/(duk
2), the

policy regret of Alg. 3 is bounded by
N∑

k=1

E[l(xk, uk)]−Nγ ≤
√

(cr1ln(N) + cr2p)N + cr3σ
2dx.

The precise constants are listed in Thm. E.1.

The results characterize precisely how the policy regret scales with the dimension dx, du and the
time horizon N . In the setting of Thm. 2.1, we have a finite class of models, and the policy regret
scales with ln(m), which is in line with the literature on online learning [13, 33]. Thm. 2.2 relies on
a packing argument, whereby the set F is successively approximated by a finite number of candidate
models. The result is stated in full generality; for a specific function class F and packing number m(ϵ)
the right-hand side can be minimized over ϵ (the discretization width). For instance if F consists of the
space of bounded L-Lipschitz functions, the packing number m(ϵ) scales with dx exp((L/ϵ)

dx+du),
which means that the policy regret grows roughly with N (dx+du)/(dx+du+2) = o(N), and establishes
no-regret learning for a very large class of functions. In the special case where dx = du = 1, the
right-hand side grows with

√
N . Thm. 2.3 is of direct practical importance, since it provides an

algorithm and corresponding regret bound that applies to the typical scenario where the functions
F are parametrized, for example by neural networks. In the simplest setting, F consists of linear
dynamical systems, which directly recovers well-known results from the literature [e.g., 46, 19].
More precisely, if F consists of linear dynamical systems, the number of parameters is given by
d2x + dxdu, which means that the resulting regret bound scales with

√
(d2x + dxdu)N .
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We conclude the summary by commenting on boundedness of states. In control-theoretic applications
(and in the related community) boundedness of solutions and benign transients are a primary concern.
We will see that in all our results we can ensure boundedness provided that the stage cost satisfies
l(x, u) ≥ Ll|x|2/2 for a constant Ll > 0. More precisely, we can guarantee that

LlE[|xk|2] ≤ 2E[V (xk)] ≤ cb (2)

for all k = 1, . . . , along the trajectories of our reinforcement learning algorithm, where V refers
to the cost-to-go function corresponding to the dynamics f and policy µ, and cb > 0 is an explicit
constant. Due to the fact that the dynamics are Lipschitz continuous and nk, nuk are Gaussian, xk, uk

are in fact sub-Gaussian with mean and second moment bounded by
√

cb/Ll and cb/Ll, respectively,
and we can therefore characterize tail probabilities for finite k, as well as for arbitrarily large values
of k under ergodicity assumptions on the dynamics arising from µ.

3 Summary of the analysis

This section discusses the technical details and insights that lead to the results presented in Thm. 2.1-
2.3. The presentation focuses on the setting S1, since, as we will see, the results in setting S2 and S3
follow analogously.

3.1 Finite model set-up

This section considers the set-up where F is finite, i.e., F = {f1, . . . , fm} and f ∈ F . We denote
the cost-to-go function related to the dynamics f and the policy µ by V : Rdx → R≥0, where V is
any function that satisfies the following assumption:

Assumption 1 (Bellman-type inequality) The cost-to-go function V (corresponding to f and µ)
satisfies the following inequality

V (x)≥E[l(x, u) + V (f(x, u) + n)]− γ − duLuσ
2
u, (3)

for a constant Lu and for all x ∈ Rdx , where u = µ(x)+nu, n ∼ N (0, σ2I), nu ∼ N (0, σ2
uI), and

the expectation is taken over n and nu.

The rationale behind Ass. 1 is the following: From a dynamic programming point of view computing
an optimal policy µ requires solving a corresponding infinite-horizon average-cost-per-stage problem.
In general, a corresponding Bellman equation and cost-to-go function might not exist, as for example
discussed in [10, Ch. 5]. The formulation via Ass. 1 circumvents these technical difficulties, due to
the fact that γ is not required to correspond to the optimal infinite-horizon average cost. Indeed, from
a control-theoretic point of view Ass. 1 characterizes a notion of dissipation [51], where V represents
a storage function and −l(x, u) + γ the supply rate (for σu = 0). Moreover, if a Bellman equation
[10, Prop. 5.5.1] and corresponding cost-to-go function exist for the dynamics f , then Ass. 1 is clearly
satisfied for the corresponding cost-to-go function (for σu = 0). The additional term duLuσ

2
u captures

the influence of the excitation nu and is without loss of generality, since for any smooth function
ξ : Rdu → R the following applies

E[ξ(u+ nu)] = E
[
ξ(u) +∇ξ(u)⊤nu +

1

2
n⊤

u ∇2 ξ(ū) nu

]
= E[ξ(u)] +O(duσ

2
u ),

where nu ∼ N (0, σ2
u I). The constant Lu in Ass. 1 makes the previous bound quantitative.

We will further require the following smoothness conditions:

Assumption 2 The policies µi are Lµ Lipschitz, the stage-cost l is L̄l smooth, and the cost-to-go
function V is L̄V smooth and satisfies V (x) ≥ −cV + LV|x|2/2 for some LV > 0 and cV ≥ 0.

These smoothness assumptions will be needed to analyze how the cost-to-go V evolves if the feedback
policy µq ̸= µ is applied and prevent the state from diverging in finite time. We note that the quadratic
lower bound on V (x) is automatically satisfied in view of Ass. 1 if l(x, u) ≥ Ll|x|2/2 for a constant
Ll > 0. Ass. 1 and 2 are clearly satisfied if f i are linear functions and l is a positive definite quadratic.

We further require the following assumption:
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Assumption 3 There exists an integer M > 0 and two constants ce > 0 and b > 0 such that for any
x1 ∈ Rdx , σu > 0, and f i ∈ F , f i ̸= f ,

1

M

M∑
k=1

E
[ |f i(xk, uk)− f(xk, uk)|2

1 + |(xk, uk)|2/b2
]
≥ duceσ

2
u

holds, where xk+1 = f(xk, uk)+nk, uk = µq(xk)+nuk with nk ∼ N (0, σ2I), nuk ∼ N (0, σ2
uI),

and q ∈ {1, . . . ,m}.

The previous assumption specifies persistence of excitation, which guarantees that the estimate ik
of the best candidate model will quickly converge to i∗, where f i∗ = f . Ass. 3 can be restated in
the following equivalent way. For any σu > 0 and initial condition x1, the model f ∈ F is the
unique minimizer of the expected one-step prediction error sik, i ∈ F , accumulated over M steps.
The integer M corresponds to the time interval by which ik is updated, see Alg. 1. Ass. 3 includes a
normalization with the constant b, which may seem slightly strong compared to the literature [see,
e.g., 38, Ch. 8.2], where b→∞ is usually considered. However, as discussed in App. F our analysis
also encompasses the case b→∞; the resulting constants are more elaborate and we therefore focus
our discussion on the situation where b is finite. We further note that in the situation where f i ∈ F
are linear, that is f i(x, u) = Aix + Biu, µi(x) = Kix, Ass. 3 for b → ∞ is straightforward to
verify and we obtain, for example, the following bound for k ≥ 2:

E[|f i(xk, uk)−f(xk, uk)|2] ≥ σ2
u|Bi−B|2F +

(
σ2
uσ(W

c
k−1) + σ2

)
|Ai−A+(Bi−B)Kq|2F, (4)

where Kq represents the linear feedback controller corresponding to model fq ∈ F , and W c
k denotes

the controllability Gramian (over k steps):

W c
k =

k−1∑
j=0

(A+BKq)j
⊤
BB⊤(A+BKq)j ,

where σ denotes the minimum singular value, and | · |F the Frobenius norm. Hence, Ass. 3 (for
b→∞) is generically satisfied for linear systems, whereby the constant ce relates to the controllability
of the closed-loop dynamics and the accuracy |Ai −A|2F and |Bi −B|2F of the different candidate
models. The previous rationale can be extended to nonlinear dynamical systems, as shown in App. F
and Prop. F.2, which highlights that Ass. 3 is satisfied for a broad class of dynamical systems.

Our analysis of Alg. 1 starts by showing that the convergence to the best candidate model is fast,
which leads to the logarithmic scaling of the policy regret with N and m. This is summarized with
the following proposition:

Proposition 3.1 Let Ass. 3 be satisfied and let the step size be η ≤ min{1/(4Mσ2), 1/(2ML2b2)}.
Then, the following holds

Pr(ik = i) ≤ exp

−duceη

4

k−M∑
j=1

σ2
uj

 ,

for k = 1, 2, . . . . Moreover, choose σ2
uk as

σ2
uk =

4

ηduceM

(
2

⌈k/M⌉
+

ln(m)

(⌈k/M⌉)2

)
,

where ⌈·⌉ denotes rounding to the next higher integer. Then, it holds that

Pr(ik ̸= i∗) ≤ M2

(k −M)2
,

for all k ≥M + 1, where f i∗ = f .

Proof The proof can be found in App. C.1 and relies on a concentration of measure argument. □

An immediate corollary of the fast convergence rate established with Prop. 3.1 is that the sequence ik
will converge to i∗ in finite time (almost surely), where f i∗ = f . This is discussed in Cor. C.6. As a
result of Prop. 3.1, we are now ready to state and prove our first main result that characterizes the
policy regret in setting S1.
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Theorem 3.2 Let Ass. 1, 2 and 3 be satisfied and choose η ≤ min{1/(4Mσ2), 1/(2ML2b2)} and
σ2
uk as in Prop. 3.1. Then, the policy regret of Alg. 1 is bounded by

N∑
k=1

E[l(xk, uk)]−Nγ ≤ cr1 + cr2M ln(m) + cr2ln(N),

for all N ≥ 2M , where the constants co, c2 are specified in Lemma C.3, and cr1, cr2 are given by

cr1 = 3cαM(dxσ
2L̄V/2 + co) + cr2, cr2 =

8cα(L̄VL
2 + L̄l + Lu)

ηce
, cα = e3c2M .

Proof (Sketch, details are in App. C.2) The proof relies on using V as a Lyapunov function and
performing the following decomposition

E[V (xk+1)] =E[V (xk+1)|ik ̸= i∗]Pr(ik ̸= i∗) + E[V (xk+1)|ik = i∗]Pr(ik = i∗). (5)

The first term describes the evolution of V (xk+1) when choosing ik ̸= i, and in this (unfavorable)
situation V may grow at most exponentially. This is captured by the following bound that relies on
the continuity assumptions on V (see Lemma C.3)

E[V (xk+1)|ik ̸= i∗] ≤ c2E[V (xk)] +O(σ2 + σ2
uk)− E[l(x, uk)|ik ̸= i∗],

where the notation O hides continuity and dimension-related constants. The second term in (5),
describes the favorable situation of choosing ik = i∗, where V (xk+1) is bounded as a result of the
Bellman-type inequality (3). This yields:

E[V (xk+1)|ik = i∗] ≤ E[V (xk)] + γ +O(σ2
uk)− E[l(xk, uk)|ik = i∗],

where continuity and dimension-related constants are again hidden. By combining the two inequalities
we arrive at

E[V (xk+1)] ≤ E[V (xk)](c2Pr(ik ̸= i∗) + 1) + γ −E[l(xk, uk)] +O(σ2
uk +Pr(ik ̸= i∗)σ2). (6)

From Prop. 3.1, we know that Pr(ik ̸= i∗) decays at rate 1/k2. This means that, roughly speaking,
the inequality (6) gives rise to a telescoping sum (see Lemma C.4 for details), which yields

N∑
k=1

E[l(xk, uk)]− γN ≤ O(
N∑

k=1

(σ2
uk + Pr(ik ̸= i∗)σ2)).

The fact that Pr(ik ̸= i∗) is summable, due to the decay at rate 1/k2, and that the sum over σ2
uk

evaluates to O(ln(N) + ln(m)) establishes the desired result up to constants (these are computed in
App. C.2). □

The proof of Thm. 3.2 relies on using V as a Lyapunov function. Provided that the stage cost l(x, u)
is bounded below by a quadratic of the type |x|2, we can modify the analysis in straightforward ways
to obtain explicit bounds on E[V (xk)] and hence on E[|xk|2], uniform over k, which is an important
concern in the adaptive control community. Moreover, these bounds require persistence of excitation
only over a finite number of steps, since Pr(ik ̸= i∗) is monotonically decreasing even when Ass. 3
is not satisfied. The details are presented in App. C.4.

3.2 Infinite cardinality

The ideas described in the previous section translate to the situation in which the set of candidate
models F is a bounded subset of a normed vector space with norm ∥ · ∥. For example, F could
represent the set of bounded, L-Lipschitz continuous functions that map from Rdx × Rdu → Rdx ,
with ∥ · ∥ the supremum norm. Alternatively, F could be a bounded subset of the set of square
integrable functions. Our presentation focuses on the main ideas that enable us to apply the arguments
from the previous section; the details and formal proofs can be found in App. D.

The decision-making strategy for S2 is listed in Alg. 2 (see App. D). Alg. 2 computes a minimizer
argminf̄∈F sk(f̄), which will be denoted by f∗, where sk(f̄) denotes the prediction error as before,

sk(f̄) =

k−1∑
j=1

|xj+1 − f̄(xj , uj)|2

1 + |(xk, uk)|2/b2
, f̄ ∈ F.
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We then construct an ϵ-packing of the set F , denoted by F ϵ
k by greedily adding functions f i ∈ F as

long as ∥f i − f̄∥ > ϵ for all f̄ ∈ F ϵ
k . As a result F ϵ

k covers F by construction, i.e., for every f ∈ F
there exists f i ∈ F ϵ

k such that ∥f i−f∥ ≤ ϵ. The cardinality of F ϵ
k is bounded by the packing number

of F , which is denoted by m(ϵ). The algorithm then randomly samples ik as before and applies the
feedback policy µik that corresponds to model f ik ∈ F ϵ

k . Clearly, these steps (minimization over
f̄ ∈ F , constructing the packing, and solving a dynamic programming problem at every iteration) are
computationally intractable in general and one would have to resort to approximations in practice.
The purpose of Alg. 2 is to provide an upper bound on the sample complexity of online reinforcement
learning in this very general setting and not to characterize computational complexity; see the next
subsection for a computationally tractable variant. As before, the key step to our analysis is to ensure
that Pr(ik = i) decays rapidly for models f i ∈ F ϵ

k where ∥f i − f∥ is large. The fact that the
dynamics f are not included in F ϵ

k is of minor importance, since by construction F ϵ
k contains f∗,

the minimizer of sk(f). This means that the arguments used in deriving Prop. 3.1 apply in the same
way and implies that Pr(ik ̸∈ I∗k) ≤M2/(k −M)2 as before, where I∗k denotes the set of models
f i∗ ∈ F ϵ

k that satisfy ∥f i∗ − f∥ ≤ ϵ. As a result, the same arguments as in the proof of Thm. 3.2
apply, which yields the statement of Thm. 2.2. The details are presented in App. D.

3.3 Parametric models

The following section discusses the situation where the set of candidate models F is parametrized by
a parameter θ ∈ Ω ⊂ Rp, where Ω is contained in a p-dimensional unit ball, that is,

F = {fθ : Rdx × Rdu → Rdx | θ ∈ Ω}.
The canonical example we have in mind is when fθ is parametrized with a large neural network,
transformer, or state-space architecture, where θ represents the parameters. As in the previous section,
we assume that f ∈ F , and without loss of generality, we set f = fθ=0, i.e., the parameters are
centered around f .

Alg. 3 has a particularly straightforward interpretation, which also facilitates its implementation in
practice. In each iteration, fθk is sampled from the posterior distribution over models fθ, scaled
by η. In the special case where fθ(x, u) = ϕ(x, u)⊤θ we note that the density exp(−ηsk(θ))/Z
corresponding to the random variable θk is Gaussian, with mean and covariance

argmin
θ∈Rp

k−1∑
j=1

|xj+1 − ϕ(xj , uj)
⊤θ|2

1 + |(xj , uj)|2/b2
,

1

2η

k−1∑
j=1

ϕ(xj , uj)ϕ(xj , uj)
⊤

1 + |(xj , uj)|2/b2

−1

.

The Gaussian mean and covariance can be efficiently evaluated by running a recursive least squares
algorithm, resulting in a per-iteration computational complexity of only O(p2). The corresponding
computation of the policy µθ for the model fθ is much more challenging, but can, in principle, be done
offline with dynamic programming, or in an offline simulation with proximal policy optimization, for
example. A notable exception is when ϕ(x, u) is linear, in which case the corresponding (steady-state
optimal) policy µθ is linear and can be computed by solving a Riccati equation in O(d3x) steps. If
fθ has a more general structure, the sampling can, for example, be implemented with Langevin
Monte-Carlo [49]. The regret analysis follows the same steps as in Sec. 3.1 and is included in App. E.

4 Conclusion

This article provides policy-regret guarantees for online reinforcement learning with nonlinear
dynamical systems over continuous state and action spaces. We provide a suite of algorithms and
prove that the resulting policy regret over N steps scales as O(ln(N) + ln(m)) in a setting where
there is a finite class of m models and as O(

√
Np) in a setting where models are parametrized over a

compact real-valued space of dimension p. The results require persistence of excitation, and rely on
continuity assumptions on the dynamics, feedback policies, and a corresponding value function.

The results highlight important and fruitful connections between reinforcement learning and control
theory. There are numerous exciting future research avenues, including the exploration of an H∞
or an output feedback setting, the application to emerging real-world and large-scale infrastructure
systems, or the analysis of the model-agnostic case, where the dynamics do not belong to the class of
systems known to the learner.
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theoretical foundation of policy optimization for learning control policies. Annual Review of
Control, Robotics, and Autonomous Systems, 6(1):123–158, 2023.

[27] Thomas Jaksch, Ronald Ortner, and Peter Auer. Near-optimal regret bounds for reinforcement
learning. Journal of Machine Learning Research, 11(51):1563–1600, 2010.

[28] Chi Jin, Zhuoran Yang, Zhaoran Wang, and Michael I Jordan. Provably efficient reinforcement
learning with linear function approximation. Mathematics of Operations Research, 48(3):1496–
1521, 2023.

[29] Sham Kakade, Akshay Krishnamurthy, Kendall Lowrey, Motoya Ohnishi, and Wen Sun. Infor-
mation theoretic regret bounds for online nonlinear control. Advances in Neural Information
Processing Systems, 33:15312–15325, 2020.

[30] Aren Karapetyan, Efe C Balta, Andrea Iannelli, and John Lygeros. Closed-loop finite-time
analysis of suboptimal online control. arXiv preprint arXiv:2312.05607, 2023.

[31] Taylan Kargin, Sahin Lale, Kamyar Azizzadenesheli, Animashree Anandkumar, and Babak
Hassibi. Thompson sampling achieves Õ(
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A Related work

This article revolves around online reinforcement learning with multiple nonlinear candidate models.
We adopt a viewpoint at the intersection of online decision-making, reinforcement learning, and
adaptive control. We review representative works along these lines as follows.

Online reinforcement learning is concerned about interacting with an unknown environment to
optimize a cumulative performance metric. The initial focus has been on the tabular setting with
discrete states and actions [7, 8, 27]. The more challenging scenario of online continuous control
attracts increasing attention, where both states and actions are continuous.

Online continuous control studies optimizing a cumulative cost involving continuous states and
actions and Markovian state transitions. At each time step, the stage cost is a function of the state
and the input, and the cost is revealed sequentially after the control input is applied. This online
nature constitutes the main difference compared with classical optimal control [10] and gives rise to
nonasymptotic performance characterizations via regret, i.e., the cumulative performance gap relative
to the optimal policy in hindsight. Online control hinges on specifying an appropriate policy class and
leveraging effective mechanisms for searching control policies. For instance, the class of linear state
feedback policies is often associated with problems involving linear dynamics and quadratic costs.
Policies attaining sublinear regret can be found via iterative gradient-based schemes [16, 21, 26] and
explore-then-commit pipelines based on the certainty-equivalent principle [19, 39, 46], optimism in
the face of uncertainty [1, 17, 3, 18], or Thompson sampling [2, 31]. For linear dynamics and convex
stage costs, typical benchmarks are disturbance-action policies represented by linear combinations
of states and past disturbances [4, 23, 47, 34, 15, 53]. Growing attention is currently paid to online
nonlinear control, for which additional structure (e.g., linear mapping of nonlinear features [29] or
matched uncertainty [11]), properties (e.g., contractive perturbation [37] or incremental input-to-state
stability [30]), and parameterizations of nonlinear dynamics and policies [2, 18] are required. We
refer the readers to [24, 48] for comprehensive reviews.

Our analysis is closely aligned with optimistic methods [2, 18, 29]. These approaches hinge on
iteratively refining parametric models with confidence bounds and applying policies associated with
the most optimistic model. The regret bounds therein enjoy a square-root dependence on the time
horizon and the Eluder dimension [22], which quantifies the hardness of the model class and facilitates
transforming model learning errors into performance gaps. In contrast, we offer a fresh multi-model
perspective and a separation principle to decouple online best model selection and certainty-equivalent
control. This separation allows control policies to be computed offline, thereby alleviating online
computational burden. We additionally provide quantitative and accessible persistence of excitation
conditions to characterize the discrepancy (i.e., hardness of distinguishing) among candidate models.
Compared to characterizations via Eluder dimension, our assumptions are explicit and met for a large
set of linear and nonlinear dynamical systems. The resulting policy regret matches the scalings of the
aforementioned optimistic methods in terms of time horizon. Furthermore, the policy regret herein
features benign dependence on the number of candidate models and problem dimensions.

Multi-model adaptive control emphasizes the versatility of a system to handle diverse operating
conditions by switching among multiple candidate models and associated controllers [42, 5, 25,
41, 14]. There is a supervisory controller that tracks the performance of the running controller
and, if necessary, applies another more appropriate controller based on switching logic. Oftentimes
the switching criterion follows the model (and the corresponding controller) with the smallest
estimation error integral [36, 6] or implements performance-based falsification [45]. The above works
mainly focus on asymptotic stabilization, whereas this article explores online reinforcement learning
characterized by nonasymptotic policy regret measures.

Online control with switching policies is closely related to adaptive control with multiple models.
Nonetheless, instead of tackling asymptotic stabilization, online control addresses optimal control
from a modern nonasymptotic finite-sample perspective. Specifically, [35, 32] consider regulating
a nonlinear dynamical system by iteratively selecting a control input from a finite set of candidate
control policies. The key principles are to use the system trajectory driven by the chosen controller
as a performance criterion to filter out non-stabilizing controllers and to identify the best stabilizing
controller in hindsight via Exp3, a classical multi-armed bandit algorithm. The regret bounds therein
scale sublinearly with the time horizon, but grow exponentially with the number of non-stabilizing
controllers. In contrast, in the setting with finite candidate models, our algorithm attains a favorable
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logarithmic regret in terms of both the time horizon and the number of models. Furthermore, we
extend the design and analysis to handle a continuum of nonlinear candidate models lying in a
bounded set of function spaces. Our multi-model perspective is also connected to the line of works
[20, 43, 40] that use dynamic convex combinations of an ensemble of models to synthesize policies.
In contrast, we tackle a challenging non-episodic scenario without state reset and handle more general
model classes including parametric families and families with infinite cardinality.

This article leverages a separation principle, whereby we dynamically identify the best model
within a given class and apply a certainty-equivalent feedback policy. Along the lines of policy
extraction, we mention two streams of related works, since these can be readily incorporated into our
online reinforcement learning pipelines. One stream is reinforcement learning with linear function
approximation [52, 28], featuring efficient search for no-regret policies when the transition dynamics
and stage costs are approximated by linear representations of feature mappings. Another stream is
model predictive control [44, 12], where receding-horizon policies are computed in a setting with
parameterized dynamics and finite horizons. We envision fruitful advances in these directions will
further consolidate our multi-model perspective on online decision-making.

All the aforementioned works provide a comprehensive ground for online decision-making. Nonethe-
less, achieving sublinear regrets in an online regime encompassing a broad class of nonlinear dynamics
models remains a critical challenge. In this article, we adopt a multi-model perspective and provide a
suite of algorithms that identify the best candidate model and apply a certainty-equivalent policy, all
equipped with nonasymptotic policy-regret guarantees. These guarantees feature favorable scalings
with the time horizon, state dimension, and complexity of the function class.

B Numerical example

We present results of a numerical simulation to illustrate our algorithms. To simplify the presentation
we consider a linear time-invariant dynamical system of dimension dx = 20 and du = 5 and apply
the two algorithms Alg. 1 and Alg. 3. The stage cost is l(x, u) = |x|2 + |u|2. The dynamics
f (unknown to the decision-maker) consist of five four-dimensional leaky integrators of the type
xi
k+1 = 0.8xi

k + xi+1
k , i = 1, . . . , 3. The dynamics are relatively challenging for control, as there is

a lag of five steps until a change in the input affects x1
k. The above dynamics are compactly written as

f(x, u) = Ax+Bu, where x ∈ Rdx is the state, u ∈ Rdu is the input, A = I5 ⊗A0, B = I5 ⊗B0

are system matrices, I5 is an identity matrix of size 5, ⊗ denotes the Kronecker product, and

A0 =

0.8 1 0 0
0 0.8 1 0
0 0 0.8 1
0 0 0 0.8

 , B0 =

000
1

 .

It is assumed that the elements of the matrices A and B that define the dynamics are unknown with
respect to an absolute error of 0.1 and relative error of 20%, which gives rise to a large set of possible
models including some open-loop unstable ones. For instance, the jk-th element ajk of A, is known
to be in the range [0.8ajk − 0.1, 1.2ajk + 0.1].

B.1 Setting S1

Set-up: We generate m candidate models f i(x, u) = Aix+Biu at random, whereby each element
of Ai, Bi is randomly drawn from the known parameter range, e.g., the jk-th element aijk of Ai is
sampled from the uniform distribution over [0.8ajk − 0.1, 1.2ajk + 0.1]. The feedback policy µi

related to candidate model f i is

µi(x) = −Kix, where Ki = (I +Bi⊤PBi)−1Bi⊤P iAi,

and P i ∈ Rdx×dx is a positive definite matrix satisfying the discrete-time algebraic Riccati equation
involving Ai and Bi [10]. The policies µi are computed through the built-in dlqr command in
MATLAB and the settings of Alg. 1 were chosen as specified in Thm. 3.2, that is

η = 10, σ2
uk =

10

ηduM

(
2

⌈k/M⌉
+

ln(2m)

⌈k/M⌉)2

)
, M = 2.
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Assumptions of Thm. 3.2: Ass. 1-3 are clearly satisfied:

• The cost-to-go function V is given by V (x) = x⊤Px, where P satisfies the discrete-
time algebraic Riccati equation involving A and B. Hence, Ass. 1 is satisfied with γ =
tr(P )σ2, Lu = σ̄(P ), where σ̄ denotes the maximum singular value of a matrix.

• Ass. 2 is satisfied with cV = 0, LV = σ(P ), where σ is the minimum singular value of a
matrix.

• Ass. 3 is satisfied (for any M > 0) with

ce = min
i∈{1,...,m}

|Bi −B|2F,

for example, as can be seen from (4). Larger values of ce can be achieved when choosing
M larger and factoring in the controllability Gramian W c

k.

Please note that the constants ce, cV, LV, γ only appear in the resulting policy-regret bounds and are
not needed for running Alg. 1.

Computational complexity: All experiments run on a Laptop (Intel Core i7 processor with
2.30GHz; 32 GB of random access memory) and are executed in a few minutes even when increasing
the number of candidate model up to 10,000. The offline computation of the policies µi has cost
O(d3x + d2udx), the online computation in Alg. 1 is O(dxm+ dudx).

B.2 Setting S2

Set-up: The parameter space Ω ⊂ Rp with p = d2x+dxdu = 500 covers the entire parameter range

Ω = {(Ā, B̄) ∈ Rp | ājk ∈ [0.8ajk − 0.1, 1.2ajk + 0.1], b̄jk ∈ [0.8bjk − 0.1, 1.2bjk + 0.1]},
where we slightly abuse notation to avoid distinguishing between different ways of stacking vectors
and matrices (we will frequently do so in the following as the stacking is clear from context). For a
given set of matrices (Ā, B̄) ∈ Ω the corresponding feedback controller µ̄(x) = −K̄x is given as
in setting S1 and requires solving the discrete-time algebraic Riccati equation involving Ā, B̄. As
before, the feedback policies are computed through the built-in dlqr command in MATLAB and the
settings of Alg. 3 are chosen as specified in Thm. E.1, that is,

η = 10, ϵ = p/T, σ2
uk =

10

ηduMϵ

(
2

⌈k/M⌉
+

p

⌈k/M⌉2

)
, M = 5.

The posterior distribution over models in Alg. 3 is updated by a recursive least squares algorithm and
we set b→∞. The recursive implementation has the advantage that reasonable estimates of A and
B are already provided in the first p steps, which is important for the initial transient behavior.

Assumptions of Thm. E.1: Ass. 2, Ass. 6, and Ass. 7 are satisfied:

• The cost-to-go function is given by V (x) = x⊤Px, where P satisfies the discrete-time
algebraic Riccati equation involving A and B. One can easily show that Ass. 7 is satisfied
by applying Prop. D.1. (As pointed out in [46, Prop. 6], for example, the policies µθ are
continuously dependent on the system parameters θ = (A,B).)

• Ass. 7 is satisfied with cV = 0, LV = σ(P ).
• Ass. 6 is satisfied in view of (4) in Sec. 3, provided that M = 5, which ensures that the

controllability Gramian W c
k is full rank for any feedback gain K̄. (The dynamics A,B give

rise to decoupled four-dimensional leaky integrators, hence the Gramian W c
4 defined in

Sec. 3 is guaranteed to be full rank.)

Computational complexity: Sampling the parameter θk in Alg. 3 amounts to sampling from a
truncated Gaussian, where the mean and covariance of the Gaussian are computed via the recursive
least squares algorithm. The computation of mean and covariance can be done in at mostO(d2x+dxdu)
elementary operations at each iteration k. We then sample θk by applying rejection sampling (although
much more efficient approaches could be applied). The policy µθk is then computed by solving
the corresponding discrete-time algebraic Riccati equation, which requires at most O(d3x + d2udx)
elementary operations.
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Figure 1: The first panel shows the evolution of the parameter error of Alg. 1, while the second panel
shows the evolution of the two norm of the states. The green line indicates the performance of the
optimal (steady-state) policy on a different realization of nk. We note that near-optimal steady state
performance is reached in about 25 steps.

0 20 40 60 80 100
0

1

2

k

|θ
k
−
θ∗
|

Alg. 3

(a) parameter error

0 20 40 60 80 100
100

101

102

103

k

|x
k
|

Alg. 3
opt

(b) two-norm of state trajectory

Figure 2: The first panel shows the evolution of the parameter error of Alg. 3, while the second panel
shows the evolution of the two norm of the states. The green line indicates the performance of the
optimal (steady-state) policy on a different realization of nk. Compared to Fig. 1b the overshoot is
larger and the convergence to near-optimal performance requires about 60 iterations.

B.3 Results

Simulation results for the setting S1 are shown in Fig. 1, whereas the results for setting S2 are shown
in Fig. 2. A rapid convergence to near-optimal steady-state behavior can be observed in both cases.
We note that the space of parameters in Alg. 3 is uncountable compared to Alg. 1 and therefore Alg. 3
takes about twice as long to converge. Alg. 1 achieves optimal steady-state performance very quickly
(in about twenty steps). We therefore believe that Alg. 1 provides an algorithmic paradigm that is
applicable to many emerging real-world machine learning and engineering challenges, including the
control of intelligent transportation systems or automated supply chains.

To showcase the scalability of our algorithms, we provide comparison results when the number of
models m in Alg. 1 is increased from 10 to 10, 000. We perform 40 independent realizations of
Alg. 1 for each value of m and show the corresponding policy regret in Fig. 3a (averaged over the
40 realizations). Once again we observe a fast initial transient phase after which the policy regret
stabilizes and near-optimal steady-state performance is achieved. Fig. 3b shows the corresponding
evolution of the two-norm of the state trajectory on a single realization. The plots highlight that
Alg. 1 scales favorably in the number of models.

C Details of Sec. 3.1

We first state and prove two intermediate lemmas that are used in the proof of Prop. 3.1. The two
lemmas express the fact that the larger the expected model deviation f i − f (accumulated over the
past steps), the smaller the corresponding probability of selecting model i.
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Figure 3: The first panel shows the change in policy regret of Alg. 1 when varying m. The second
panel shows the evolution of the two norm of the state trajectory. We note that the behavior is
consistent over the different values of m (from 10 to 10, 000, which amounts to three orders of
magnitude). The green line indicates the performance of the optimal (steady-state) policy on the
same realization of nk.

Lemma C.1 For any step size η > 0 it holds that

Pr(ik = i) ≤ E[e−η(sik−sjk)],

for all sjk (and in particular for sjk = s∗k corresponding to f ).

Proof We note that pik is given by

pik =
e−ηsik∑m
j=1 e

−ηsjk
≤ e−η(sik−s̄k) ≤ e−η(sik−sjk),

for all j ∈ {1, . . . ,m}, where s̄k = mini∈{1,...,m} s
i
k. In addition, it holds that

Pr(ik = i) = E[1ik=i] = E[E[1ik=i|x1, . . . , xk, uk, nk]] = E[pik],

where 1 denotes the indicator function, which yields the desired result. □

Lemma C.2 Let

lik :=
|xk+1 − f i(xk, uk)|2

1 + |(xk, uk)|2/b2
,

where b > 0 is constant. Let Fk denote the collection of random variables xj , uj , ij , nj−1, nuj up
to time k. Then, the following bound holds for all 0 < η ≤ min{1/(4σ2), 1/(2L2b2)} and for all
1 ≤ q ≤ k:

E[e−η(lik−l∗k)|Fq] ≤ exp

(
−η

4
E

[
|f − f i|2

1 + |(xk, uk)|2/b2
∣∣∣Fq

])
,

where f stands for f(xk, uk) and f i for f i(xk, uk), and where l∗k corresponds to the loss of the
candidate f .

Proof We note that |xk+1 − f i(xk, uk)|2 can be expressed as

|f − f i + nk|2 = |f − f i|2 + 2n⊤
k (f − f i) + n⊤

k nk,

and, as a result, lik − l∗k is given by

|f − f i|2 + 2n⊤
k (f − f i)

1 + |(xk, uk)|2/b2
.

Hence, conditioned on xk, uk, the randomness in lik− l∗k is solely due to n⊤
k (f −f i), which describes

a sum of dx independent Gaussian random variables, weighted by the components of f − f i. As
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a result, we exploit the closed-form expression for the moment generating function of a Gaussian,
which yields

E[e−η(lik−l∗k)|xk, uk] ≤ exp

(
2η2σ2|f − f i|2

1 + |(xk, uk)|2/b2
− η

|f − f i|2

1 + |(xk, uk)|2/b2

)
.

Thus, for η ≤ 1/(4σ2), the following bound holds

E[e−η(lik−l∗k)|Fq] ≤ E

[
exp

(
− η|f − f i|2/2
1 + |(xk, uk)|2/b2

)∣∣∣Fq

]
.

As a result of the Lipschitz continuity of f and f i, the term

0 ≤ |f − f i|2

1 + |(xk, uk)|2/b2
≤ 4L2b2 (7)

is bounded. When deriving the previous inequality we used the fact that |f i(xk, uk)− f(xk, uk)| ≤
|f i(xk, uk)− f i(0, 0)|+ |f(xk, uk)− f(0, 0)| ≤ 2L|(xk, uk)| by Lipschitz continuity of f and f i.2
We can therefore apply a “Poissonian" inequality [see, e.g., 13, App. A], which yields

E[e−η(lik−l∗k)|Fq] ≤ exp

(
(e−2ηL2b2 − 1)

4L2b2
E

[
|f − f i|2

1 + |(xk, uk)|2/b2
∣∣∣Fq

])
,

for all η ≤ 1/(4σ2). The desired result follows from the fact that (e−2ηL2b2 − 1)/(4L2b2) ≤ −η/4
for all η ≤ min{1/(4σ2), 1/(2L2b2)}. □

C.1 Proof of Prop. 3.1

We first consider the iterations k = k′M + 1, for k′ = 0, 1, . . . . These are the iterations k where
the random variable ik is updated according to the distribution pik (conditional on xk, uk). It will be
useful to introduce the variables l̄ik′ as follows:

l̄ik′ =

M∑
j=1

lik′M+j ,

which corresponds to a sum of the variables lik over M steps. Let Fk′ denote the collection of all
random variables (xk, uk, ik, nk−1, nuk) up to time k = k′M + 1. We condition on Fk′−1 and
conclude from Lemma C.2

E[e−η(l̄i
k′−l̄∗

k′ )|Fk′−1]=E[e
−η

∑M
j=1(l

i
k′M+j

−l∗
k′M+j

)|Fk′−1]

≤
M∏
j=1

(E[e−ηM(li
k′M+j

−l∗
k′M+j

)|Fk′−1])
1/M

≤
M∏
j=1

(e
− ηM

4 E[
|f−fi|2

1+|(xk,uk)|2/b2
|Fk′−1])1/M

≤ exp

(
−ηMcedu

4
σ2
u(k−1)

)
, (8)

where we have used Hölder’s inequality for the first inequality, Lemma C.2 for the second inequality,
and Ass. 3 for the third inequality. As a result, by unrolling the recursion for k′ − 1, k′ − 2, . . . , we
conclude that

E[e−η(sik−s∗k)] ≤ exp

−ηMcedu
4

k′∑
j=1

σ2
u(Mj)

 .

2We stated the inequality assuming f(0, 0) = f i(0, 0) = 0. In the more general situation the upper bound
2|f i(0, 0)− f(0, 0)|2 + 8L2b2 applies in (7).
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By virtue of Lemma C.1, this implies

Pr(ik = i) ≤ exp

−ηMcedu
4

k′∑
j=1

σ2
u(Mj)

 .

The bound holds in fact also for k + 1, k + 2, until k + (M − 1), since, by definition, ik = ik+1 =
· · · = ik+(M−1). This proves the first bound of Prop. 3.1.

It remains to derive the second bound, which is done by approximating the sum over σ2
uk from below.

We find

ηMcedu
4

k′∑
j=1

σ2
u(Mj) =

k′∑
j=1

(
2

j
+

ln(m)

j2

)
≥
∫ k′

1

2

j
dj + ln(m) ≥ 2ln(k′) + ln(m),

for k′ ≥ 1. This concludes that Pr(ik = i) ≤ 1/(mk′2), due to the fact that m ≥ 1. We further note
that k′ = (k − 1)/M by our choice of k. However, ik remains unchanged for the M next iterations,
and therefore

Pr(ik+M−1 = i) ≤ M2

m(k − 1)2
,

which holds for all k ≥ 2 and i ̸= i∗. This implies Pr(ik = i) ≤ M2/(m(k − M)2) for all
k ≥ M + 1 by a change of variables. Applying a union bound yields the second inequality of
Prop. 3.1, i.e.,

Pr(ik ̸= i∗) ≤
∑
i ̸=i∗

Pr(ik = i) ≤ M2

(k −M)2
.

□

C.2 Proof of Thm. 3.2

We will use V as a Lyapunov function and have

E[V (xk+1)] =E[V (xk+1)|ik ̸= i∗]Pr(ik ̸= i∗) + E[V (xk+1)|ik = i∗]Pr(ik = i∗). (9)

The first term can be further simplified in view of Lemma C.3, which yields

E[V (xk+1)|xk, ik ̸= i∗] ≤ c2V (xk) + L̄Vdxσ
2/2 + co

− E[l(x, uk)|xk, ik ̸= i∗] + (L̄VL
2 + L̄l)duσ

2
uk. (10)

The second term in (9) is bounded as a result of the Bellman-type inequality (3) for the policy µ (the
policy that corresponds to V ). It will be convenient to rewrite the bound (3) in the following way:

E[V (f(x, u) + n)] ≤ V (x)− E[l(x, u)] + q(x) + duLuσ
2
u,

where u = µ(x) + nu, (nu, n) are independent with nu ∼ N (0, σ2
uI), n ∼ N (0, σ2I), and q(x) is

chosen such that q(x) ≤ γ and −E[l(x, u)] + q(x) ≤ 0.3 The function q(x) is introduced to account
for the fact that the policy µ might in principle also achieve a running cost E[l(x, u)] ≤ γ in the short
term, since γ captures only the steady-state performance. As a result, we obtain

E[V (xk+1)|ik = i∗] ≤ −E[l(xk, uk)|ik = i∗] + E[V (xk)] + γk + duLuσ
2
uk, (11)

where γk := E[q(xk)]. By combining (10) and (11) with (9) we arrive at

E[V (xk+1)] ≤ E[V (xk)](c2Pr(ik ̸= i∗) + 1) + γk − E[l(xk, uk)]

+ L̄uduσ
2
uk + (L̄Vdxσ

2/2 + co)Pr(ik ̸= i∗),

where L̄u := L̄VL
2+ L̄l+Lu. As a result of Prop. 3.1, we know that Pr(ik ̸= i∗) ≤M2/(k−M)2

for k ≥M + 1. We further note that E[l(xk, uk)] ≥ γk and γk ≤ γ (by our choice of γk). We now
invoke Lemma C.4 and conclude

N∑
k=1

(E[l(xk, uk)]− γk) ≤ cαL̄udu

N∑
k=1

σ2
uk + cα(L̄Vdxσ

2/2 + co)

N∑
k=1

Pr(ik ̸= i∗),

3This can by achieved by setting q(x) = E[V (f(x, µ(x)+nu)+n)]−V (x)+E[l(x, µ(x)+nu)]−duσ2
uLu

for γ ≥ E[l(x, µ(x) + nu)] and q(x) = γ otherwise.
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where we have used the fact that V (x1) = 0 and the following calculation
∞∏
k=1

(c2Pr(ik ̸= i∗) + 1) ≤ ec2
∑∞

k=1 Pr(ik ̸=i∗) ≤ e3Mc2 = cα,

due to the fact that
∞∑
k=1

Pr(ik ̸= i∗) ≤ 2M − 1 +

∞∑
k=2M

M2

(k −M)2

≤ 2M +

∫ ∞

2M

M2

(k −M)2
dk ≤ 3M.

Moreover, we bound the sum over σ2
uk as follows

N∑
k=1

σ2
uk =

4

duηce

N∑
k=1

(
2

M⌈k/M⌉
+

M ln(m)

(M⌈k/M⌉)2

)

≤ 4

duηce

N∑
k=1

(
2

k
+

M ln(m)

k2

)
≤ 8

duηce
(1 + ln(N − 1) +M ln(m)).

Combining the previous inequalities and taking advantage of the fact that γk ≤ γ yields the desired
result. □

C.3 Supporting lemmas in the proof of Thm. 3.2

This section contains two lemmas that support the proof of Thm. 3.2.

Lemma C.3 Let Ass. 2 be satisfied. Then, there exist two constants c2, co ≥ 0 such that

E[V (f(x,µi(x)+nu)+n)] ≤ c2V (x)− E[l(x, µi(x)+nu)] + co + (L̄VL
2+L̄l)duσ

2
u +

L̄V

2
dxσ

2,

for all x ∈ Rdx , σu > 0, and i ∈ {1, . . . ,m}, where the constant c2 is given by

c2 = (8L2L̄V(1 + Lµ)
2 + 2L̄l(1 + 2L2

µ))/LV,

and co can be expressed as an explicit function of maxi∈[m] |µi(0)|, V (0), |∇V (0)|, l(0, 0),
|∇l(0, 0)|, |f(0, µ(0))|, and cV. The random variables nu and n are independent and satisfy
n ∼ N (0, σ2I), nu ∼ N (0, σ2

uI).

Proof We exploit smoothness of V to bound E[V (f(x, µi(x) + nu) + n)] by

E[V (f(x, µi(x) + nu)] +
L̄V

2
dxσ

2,

where we used the fact that the term linear in n vanishes in expectation. We further note that the term
V (f(x, µi(x) + nu)) can be bounded in a similar way:

V (f(x, µi(x) + nu)) ≤ V (f(x, µi(x))) +∇V (f(x, µi(x)))⊤∇uf(ξ)nu +
L̄V

2
|∇uf(ξ)nu|2,

where we applied the mean value theorem to rewrite f(x, µi(x) + nu)− f(x, µi(x)) as ∇uf(ξ)nu

for some ξ (dependent on nu). By applying Young’s inequality and taking advantage of the fact that
∇uf is bounded above we arrive at

E[V (f(x, µi(x) + nu))] ≤ V (f(x, µi(x))) +
1

2L̄V
|∇V (f(x, µi(x)))|2 + L̄VL

2duσ
2
u.

Due to smoothness, V is guaranteed to satisfy

|∇V (x)| ≤ co1 + L̄V|x|, V (x) ≤ co2 + L̄V|x|2,
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where co1 = |∇V (0)|, and the constant co2 ≥ 0 is similarly related to |∇V (0)| and V (0). As a
result, we obtain the following upper bound on E[V (f(x, µi(x) + nu))]:

E[V (f(x, µi(x) + nu))] ≤ co2 +
c2o1
L̄V

+ 2L̄V|f(x, µi(x))|2 + L̄VL
2duσ

2
u.

The fact that f(x, µi(x)) is L(1 + Lµ) Lipschitz can be used to conclude that |f(x, µi(x))|2 ≤
co3 + 2L2(1 + Lµ)

2|x|2, where co3 = 2|f(0, µ(0))|2, which, in turn, yields the following upper
bound

E[V (f(x, µi(x) + nu))] ≤ co2 +
c2o1
L̄V

+ 2L̄Vco3 + 4L̄VL
2(1 + Lµ)

2|x|2 + L̄VL
2duσ

2
u.

We further note that the fact that l is L̄l smooth and l(x, u) ≥ 0 implies l(x, u) ≤ co4+L̄l(|x|2+|u|2)
and therefore

E[l(x, µi(x) + nu)] ≤ co5 + L̄lduσ
2
u + L̄l(1 + 2L2

µ)|x|2,
where co5 ≥ 0 is related to maxi∈[m] |µi(0)|, l(0, 0), and |∇l(0, 0)|. Combining the previous two
inequalities results in

E[V (f(x, µi(x) + nu))] ≤ co6 +
c2LV

2
|x|2 − E[l(x, µi(x) + nu)] + (L̄VL

2 + L̄l)duσ
2
u,

where co6 ≥ 0 is constant and can be expressed as a function of maxi∈[m] |µi(0)|, V (0), |∇V (0)|,
l(0, 0), |∇l(0, 0)|, and |f(0, µ(0))|. The results follows by inserting LV|x|2/2 ≤ V (x) + cV in the
previous inequality. □

Lemma C.4 Let the sequence

Vk+1 ≤ (1 + αk)Vk + g+k − g−k , Vk ≥ 0,

be given, where k = 1, 2, . . . , αk ≥ 0 g+k ≥ 0, and g−k ≥ 0 are arbitrary sequences such that
cα :=

∏∞
k=1(1 + αk) <∞. Then, the following holds for all N ≥ 1

N∑
j=1

g−j ≤ cα

 N∑
j=1

g+j + V1

 .

Proof By unrolling the linear difference equation we obtain

VN+1 ≤
N∏

k=1

(1 + αk)V1 +

N∑
i=1

(g+i − g−i )

N∏
j=i+1

(1 + αj)

≤ cα

(
V1 +

N∑
i=1

g+i

)
−

N∑
i=1

g−i ,

where we exploited the fact that
∏N

k=1(1 + αk) < cα <∞. □

C.4 Finite second moment

Corollary C.5 Let Ass. 2 be satisfied, let σ2
uk be as in Prop. 3.1, let l(x, u) ≥ Ll|x|2/2 for some

constant Ll > 0, and η ≤ min{1/(4Mσ2), 1/(2ML2b2)}. Let Ass. 3 be satisfied for at least the
first

k0 :=
⌈
M

(
1 +

√
2L̄Vc2/Ll

)⌉
steps. Then, it holds that

E[V (xk)] ≤ max{c3, c4}, ∀k ≥ 1,

with

c3 = ck0
2 k0(L̄Vdxσ

2 + co + (L̄VL
2 + L̄l)duσ

2
u1),

c4 =
2L̄V

Ll

(γ+(L̄VL
2+L̄l+Lu)duσ

2
u1+L̄Vdxσ

2 + co).
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Proof We conclude from Prop. 3.1 that Pr(ik ̸= i∗) is bounded by

Pr(ik ̸= i∗) ≤ M2

(k −M)2
≤ Ll

2L̄Vc2
, (12)

for all k ≥ k0. It is important to note that persistence of excitation is only required to hold for k0
steps, as, by our choice of η, Pr(ik ̸= i∗) is monotonically decreasing (see proof of Prop. 3.1). By
Lemma C.3 we conclude that over the first k0 steps the following holds

E[V (xk+1)] ≤ c2E[V (xk)] + L̄Vdxσ
2 + co + (L̄VL

2 + L̄l)duσ
2
uk,

which implies that

E[V (xk)] ≤ ck0
2 k0(L̄Vdxσ

2 + co + (L̄VL
2 + L̄l)duσ

2
u1),

for all k ≤ k0 + 1, where we have exploited that σuk is monotonically decreasing.

By following the same reasoning (case distinction between ik = i∗ and ik ̸= i∗) as in the proof of
Thm. 3.2 we arrive at

E[V (xk+1)] ≤ E[V (xk)](Ll/(2L̄V) + 1) + γ − E[l(xk, uk)] + L̄uduσ
2
u1 + L̄Vdxσ

2 + co,

for all k ≥ k0, where we have used inequality (12) to bound Pr(ik ̸= i∗), γk ≤ γ, and the fact that
σuk is decreasing. The constant L̄u is given by L̄u = L̄VL

2 + L̄l + Lu. Due to the fact that l is
bounded below by a quadratic we conclude that l(x, u) ≥ Ll/L̄VV (x) for all x ∈ Rdx , which can be
used to simplify the above inequality:

E[V (xk+1)] ≤ E[V (xk)](1− Ll/(2L̄V)) + γ + L̄uduσ
2
u1 + L̄Vdxσ

2 + co.

This readily implies

E[V (xk)] ≤ 2
L̄V

Ll

(γ + L̄uduσ
2
u1 + L̄Vdxσ

2 + co),

for all k ≥ k0, which yields the desired result. □

C.5 Convergence in finite time

Corollary C.6 (Finite time convergence) Let the assumptions of Prop. 3.1 be satisfied. Then, almost
surely, {ik}∞k=1 converges to i∗ in finite time, that is,

Pr( sup
ik ̸=i∗

k <∞) = 1.

Proof We conclude form Prop. 3.1 that Pr(ik ̸= i∗) ≤ M2/(k −M)2 for all k ≥ M + 1. This
implies for any j ≥M + 1

Pr( sup
ik ̸=i∗

k > j) ≤
∞∑
k=j

Pr(ik ̸= i∗),

where the right-hand side is bounded above by
∞∑
k=j

M2

(k −M)2
≤ M2

(j −M)2
+

∫ ∞

j

M2

(k −M)2
dk ≤ M2

j −M

(
1 +

1

j −M

)
.

Hence, the right-hand side converges to zero for large j, which yields the desired result. □

D Details of Sec. 3.2

In order to provide regret guarantees, we will slightly modify Ass. 3 from setting S1 as follows.

Assumption 4 There exists an integer M > 0 and a constant ce > 0 such that for all x1 ∈ Rdx ,
σu > 0, and f1, f2 ∈ F ,

1

M

M∑
k=1

E
[ |f1(xk, uk)−f2(xk, uk)|2

1 + |(xk, uk)|2/b2
]
≥ duceσ

2
u∥f1 − f2∥2,

holds, where xk+1 = f(xk, uk)+nk, uk = µ̂(xk)+nuk with nk ∼ N (0, σ2I) and uk ∼ N (0, σ2
uI),

and where µ̂ is any policy corresponding to a model f ∈ F .
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Algorithm 2 Reinforcement learning (S2)

Inputs: F , η, M , {σ2
uk}∞k=1, ϵ

for k = 1, . . . do
// every M th step
if mod(k − 1,M) = 0 then

f∗ ← argminf̄∈F sk(f̄)
F ϵ ← greedyCover(F, f∗, ϵ)

sk(f
i)←

∑k−1
j=1

|xj+1−fi(xj ,uj)|2

1+|(xk,uk)|2/b2

ik ∼ exp(−ηsk(f i))/Z, f i ∈ F ϵ

compute µik corr. to f ik ∈ F ϵ // e.g. by d.p.
else

ik = ik−1 //stay with ik−1

end if
//follow policy ik and add excitation
uk = µik (xk) + nuk, nuk ∼ N (0, σ2

ukI)
end for

Algorithm 4 greedyCover(F, f∗, ϵ)

F ϵ ← {f∗}
S ← {f̄ ∈ F | ∥f̄ − f i∥ > ϵ,∀f i ∈ F ϵ}
while S ̸= {} do

// pick an element from S
F ϵ ← F ϵ ∪ {f̄}, f̄ ∈ S

S ← {f̄ ∈ F | ∥f̄ − f i∥ > ϵ,∀f i ∈ F ϵ}
end while
return F ϵ

The assumption is stated for a finite b > 0 even though it can be relaxed to b → ∞, and the
same policy-regret guarantees apply although with more elaborate constants, see App. F for further
discussion. For b → ∞ the assumption describes persistence of excitation as used in system
identification and statistics, [see, e.g., 38, Ch. 8.2]. From a maximum-likelihood point of view,
Ass. 8 ensures that the dynamics f correspond to a unique non-degenerate minimum of the one-step
prediction error, accumulated over M steps. The assumption is generically satisfied if the models
f ∈ F are linear and ∥ · ∥ denotes the Lipschitz-norm [see, e.g., 9], as highlighted in Sec. 3. A similar
reasoning applies to nonlinear systems, see Sec. F.

We will further strengthen the Bellman-inequality from Ass. 1 to ensure that the steady-state perfor-
mance γ of the policy µ is stable under small policy changes that arise from models f i ∈ F close to
f . This notion of stability requires µ to optimize the corresponding Q-function. This is made precise
as follows.

Assumption 5 (Bellman-type inequality) For all small enough ξ > 0 there exists a cost-to-go
function V (corresponding to f and µ) satisfying the following inequality:

V (x) ≥ E[l(x, µi(x) + nu) + V (f(x, µi(x) + nu) + n)]− γ − Luduσ
2
u − Lµξ

2,

for all policies µi corresponding to ∥f i − f∥ < ξ, for all x ∈ Rdx , where Lu, Lµ > 0 are constant,
n ∼ N (0, σ2I), and nu ∼ N (0, σ2

uI).

The following proposition provides a sufficient condition for Ass. 5 to hold. In particular, the
proposition applies to the class of linear dynamical systems with a quadratic, positive definite stage
cost, where all assumptions are satisfied [see also Prop. 6 in 46].

Proposition D.1 Let Ass. 1 and Ass. 2 be satisfied and fix x ∈ Rdx . If, in addition,

l(x, u) ≥ Ll|x|2/2, µ(x) ∈ argmin
u∈Rdu

E[l(x, u) + V (f(x, u) + n)], and ∥µi − µ∥op ≤ L′
µξ,

holds for all policies µi corresponding to ∥f i − f∥op < ξ and all ξ > 0 small enough, then Ass. 5
is satisfied for x and all σu small enough, where Ll, L

′
µ > 0 are constant and n ∼ N (0, σ2I). The

Lipschitz-norm ∥ · ∥op is defined for any Lipschitz-continuous function q : Rdx → Rd as

∥q∥op := max
{
|q(0)|, sup

x1,x2∈Rdx

|q(x1)− q(x2)|
|x1 − x2|

}
.

Proof Let cs/L′2
µ denote the smoothness constant of E[l(x, u) + V (f(x, u) + n)] in u in a neighbor-

hood of u = µ(x). From smoothness and the fact that µ(x) is a minimizer we conclude

E[l(x, µi(x))+V (f(x, µi(x))+n)] ≤E[l(x, µ(x))+V (f(x, µ(x))+n)]+cs|µi(x)−µ(x)|2/(2L′
µ)

≤ V (x) + γ + cs|µi(x)− µ(x)|2/(2L′2
µ ), (13)
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where Ass. 1 has been used for the second step (where we set σu = 0). We further note that

|µi(x)− µ(x)| = |µi(0)− µ(0) + µi(x)− µ(x)− (µi(0)− µ(0))| ≤ L′
µ(ξ + ξ|x|),

due to the fact that ∥µi − µ∥op ≤ L′
µξ. We multiply (13) by 1 + 4csξ

2/Ll, define Ṽ := (1 +

4csξ
2/Ll) V , and arrive at

E[l(x, µi(x)) + Ṽ (f(x, µi(x)) + n)] ≤ Ṽ (x) + (1 + 4csξ
2/Ll)γ − 2ξ2cs|x|2

+cs(1 + 4csξ
2/Ll)ξ

2 + cs(1 + 4csξ
2/Ll)ξ

2|x|2,

where we have used the fact that l(x, u) ≥ Ll|x|2/2. We choose ξ2 ≤ Ll/(4cs) and rearrange terms.
This results in

E[l(x, µi(x))+Ṽ (f(x, µi(x))+n)] ≤ Ṽ (x)+γ+2cs(2γ/Ll + 1)ξ2+cs(−1 + 4csξ
2/Ll)ξ

2|x|2,

where the last term is non-positive. We therefore conclude that the inequality in Ass. 5 holds for Ṽ
with Lµ = 2cs(2γ/Ll + 1), Lu = cs/(2L

′2
µ ), and a small enough σu. □

We are now ready to prove the main result of this section:

Theorem D.2 Let Ass. 2, Ass. 4, and Ass. 5 be satisfied and choose η and σuk as

η = min
{ 1

4Mσ2
,

1

2ML2b2

}
, σ2

uk =
4

ηceduMϵ2

(
2

⌈k/M⌉
+

ln(m(ϵ))

(⌈k/M⌉)2

)
.

Then, the policy regret of Alg. 2 is bounded by

N∑
k=1

E[l(xk, uk)]−Nγ ≤ cr1
3ln(N) +M ln(m(ϵ))

ϵ2
+ LµNϵ2 + cr2

for all N ≥ 2M , where m(ϵ) denotes the packing number of F for a packing of size ϵ and where the
constants cr1 and cr2 are given by

cr1 =
8cα(L̄VL

2 + L̄l + Lu)

ηce
, cα = e3c2M , cr2 = 3Mcα(L̄Vdxσ

2/2 + co).

Proof The proof follows Thm. 3.2. At every iteration k we denote by I∗k the set of models f i∗ ∈ F ϵ
k

that satisfy ∥f i∗ − f∥ ≤ ϵ. We then conclude from the same reasoning as in Prop. 3.1 that

Pr(ik ̸∈ I∗k) ≤
M2

(k −M)2
,

for all k ≥M + 1. We make therefore the case distinction ik ∈ I∗k and ik ̸∈ I∗k , which then yields by
the same arguments (see (9))

N∑
k=1

(E[l(xk, uk)]− γk) ≤ NLµϵ
2 + cαL̄udu

N∑
k=1

σ2
uk + cα(L̄Vdxσ

2/2 + co)

N∑
k=1

Pr(ik ̸∈ I∗k),

where there is an additional error term, due to the fact that f i∗ and f could be different (although
∥f i∗ − f∥ ≤ ϵ for any i∗ ∈ I∗k , by construction of I∗k ). The desired result follows from the previous
inequality. However, compared to Thm. 3.2 we used the slightly more conservative bound

N∑
k=1

σ2
uk ≤

8

duηceϵ2
(3ln(N) +M ln(m(ϵ))),

which applies as long as N ≥ 2, and simplifies the resulting constants. □
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E Details of Sec. 3.3

For deriving the regret bound we will slightly adapt the persistence of excitation condition Ass. 3
from Sec. 3. The motivation is analogous to Ass. 4 and we refer the reader to App. D and App. F for
further discussion.

Assumption 6 There exists an integer M > 0 and a constant ce > 0 such that

1

M

M∑
k=1

E
[ |fθ(xk, uk)− f(xk, uk)|2

1 + |(xk, uk)|2/b2
]
≥ duceσ

2
u|θ|2,

for all θ ∈ Ω and all x1 ∈ Rdx , where xk+1 = f(xk, uk) + nk, uk = µθ(xk) + nuk, and nk, nuk

are independent random variables that satisfy nuk ∼ N (0, σ2
uI), nk ∼ N (0, σ2I).

The second assumption, which will be important, is a strengthened version of the Bellman-inequality
from Ass. 1. The assumption ensures that the steady-state performance γ of the policy µ is stable
under small policy changes that arise from models fθ ∈ F that are close to f . The sufficient condition
provided by Prop. D.1 applies here in the same way (∥fθ − f∥op reduces to |θ|) and we therefore
conclude that the assumption below is, for example, satisfied for linear dynamical systems with a
quadratic, positive definite stage cost.

Assumption 7 (Bellman-type inequality) For all small enough ξ > 0, there exists a cost to go
function V (corresponding to f and µ) satisfying the following inequality:

V (x) ≥ E[l(x, µθ(x) + nu) + V (f(x, µθ(x) + nu) + n)]− γ − Luduσ
2
u − Lµξ

2,

for all policies µθ with |θ| < ξ, for all x ∈ Rdx , where Lu, Lµ > 0 are constant, n ∼ N (0, σ2I),
and nu ∼ N (0, σ2

uI).

We now prove the main result characterizing policy regret for the setting S3.

Theorem E.1 Let Ass. 2, Ass. 6, and Ass. 7 be satisfied and choose η and σ2
uk as

η ≤ min
{ 1

4Mσ2
,

1

2ML2b2

}
, σ2

uk =
4

ηceduMϵ2

(
2

⌈k/M⌉
+

p

(⌈k/M⌉)2

)
.

Then, for all N ≥ 2M there exists a large enough p, such that the policy regret of Alg. 3 is bounded
by

N∑
k=1

E[l(xk, uk)]−Nγ ≤ 2
√

cr1(3ln(N) +Mp)N + cr2,

where the constants cr1 and cr3 are given by

cr1 =
8cαLµ(L̄VL

2 + L̄l + Lu)

ηce
, cα = e3c2M , cr2 = 3Mcα(L̄Vdxσ

2/2 + co),

with

ϵ2 =

√
cr1(3ln(N) +Mp)

L2
µN

.

Proof We first argue that the reasoning in Lemma C.1 applies in a very similar way to setting S3. To
that extent, we first define the random variable pk as follows

pk =

∫
Ω\{θ:|θ|≤ϵ} e

−η(sk(θ)−s̄k)dθ∫
Ω
e−η(sk(θ)−s̄k)dθ

,

where dθ denotes the Lebesgue measure, and s̄k = minθ∈Ω sk(θ). However, compared to the
discrete setting, where the denumerator was simply bounded below by unity, the situation is more
delicate. More precisely, we bound the denumerator from below by |Bδ|e−ηh(δ), where h(δ) :=
maxθ∈Bδ

sk(θ) − s̄k and Bδ denotes a ball of radius δ with volume |Bδ| centered at a minimizer
of sk(θ). From the smoothness of sk(θ) we conclude that h(δ) = O(δ2) for small δ. Due to our
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normalization, Ω is contained in a ball of unit radius and we have |Bδ|/|Ω| ≥ |Bδ|/|B1| ≥ δp where
p refers to the dimension of Ω. Hence we arrive at the following lower bound∫

Ω

e−η(sk(θ)−s̄k)dθ ≥ |Ω|δpe−h(δ) ≳ |Ω|e−p,

where the second inequality arises from carefully choosing δ in order to balance the the term δp and
e−h(δ). This yields the following bound on pk (which resembles the discrete setting)

pk ≤
ep

|Ω|

∫
Ω\{θ:|θ|≤ϵ}

e−η(sk(θ)−s∗k)dθ,

where we have also replaced s̄k with s∗k due to the fact that s̄k is a minimum. Following the same
reasoning as in Lemma C.1 and Prop. 3.1 yields therefore

Pr(|θk| > ϵ) ≤ ep

|Ω|

∫
Ω\{θ:|θ|≤ϵ}

E[e−η(sk(θ)−s∗k)]dθ ≤ ep exp

−ceduη

4
ϵ2

k−M∑
j=1

σ2
uj

 ,

where Fubini’s theorem has been used in the first step to interchange expectation and integration. In
addition, due to the modification of σ2

uk compared to Thm. D.2 (where now m(ϵ) is replaced by ep),
we find that

Pr(|θk| ≥ ϵ) ≤ M2

(k −M)2
,

for all k ≥M + 1. We apply the same reasoning as in the proof of Thm. 3.2, where we now have
the case distinction Pr(|θk| > ϵ) and Pr(|θk| ≤ ϵ) (corresponding to Pr(ik ̸= i∗) and Pr(ik = i∗)).
This concludes that

N∑
k=1

(E[l(xk, uk)]− γk) ≤ LµNϵ2 + cαL̄udu

N∑
k=1

σ2
uk + cα(L̄Vdxσ

2/2 + co)

N∑
k=1

Pr(|θk| > ϵ),

where, as before,
N∑

k=1

Pr(|θk| > ϵ) ≤ 3M.

We further note that the sum over σ2
uk yields

N∑
k=1

σ2
uk ≤

8

duηceϵ2
(1 + ln(N) +Mp) ≤ 8

duηceϵ2
(3ln(N) +Mp),

where N ≥ 2M ≥ 2 (and therefore ln(N) ≥ 1/2) has been used in the second step. Consequently
the regret is bounded by

N∑
k=1

E[l(xk, uk)]−Nγ ≤ LµNϵ2 + cr1
3ln(N) +Mp

Lµϵ2
+ cr2.

The choice of ϵ achieves an optimal trade-off between the first two terms, which yields the desired
result. □

F Relaxing persistence of excitation

This section discusses the situation when b→∞. We slightly modify Ass. 3 to the following:

Assumption 8 There exists an integer M > 0 and two constants ce > 0 and b > 0 such that for any
x1 ∈ Rdx , σu > 0, and f i ∈ F , f i ̸= f ,

1

M

M∑
k=1

E
[
|f i(xk, uk)− f(xk, uk)|2

]
≥ce(duσ

2
u + dxσ

2)

holds, where xk+1 = f(xk, uk)+nk, uk = µq(xk)+nuk with nk ∼ N (0, σ2I), nuk ∼ N (0, σ2
uI),

and q ∈ {1, . . . ,m}.
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We now derive a variant of Lemma C.2 that relies on the fact that over finite time xk and uk are
sub-Gaussian random variables. This is summarized as follows.

Lemma F.1 Let Ass. 8 be satisfied and let

lik = |xk+1 − f i(xk, uk)|2,
for k = 1, 2, . . . , where xk, uk denotes the trajectory resulting from Alg. 1, and σ2

uk is monotonically
decreasing. Let k′ ≥ 0 be an integer and define k = k′M + 1 (i.e., k is a time instance where
ik switches). Then, the following bound holds for all 0 < η ≤ min{1/(4Mσ2), η0} and all
j = k, . . . , k +M − 1

E[e−η
∑k+M−1

j=k (lij−l∗j )|xk] ≤ exp

−ηce
4

k+M−1∑
j=k

(duσ
2
uj + dxσ

2)

 ,

where
η0 =

1

4M(σ2dx + σ2
u1du)

· ce
128M2(2L2M (1 + Lµ)2M )2

,

and fj ,f i
j is shorthand notation for f(xj , uj) and f i(xj , uj), respectively.

Proof Without loss of generality we set k = 1 and k′ = 0 (the proof follows exactly the same
steps for k′ > 0). We first note that the random variables xj and uj for j ≥ k are Lipschitz
continuous functions of the noise variables {nq, nuq}M−1

q=1 . We define the random variable Xj :=

|f(xj , uj)− f i(xj , uj)|/
√
2 and note that X is sub-Gaussian with variance proxy

σ̃2 := 2L2M (1 + Lµ)
2MM(σ2

u1du + σ2dx),

due to the fact that there are at most M steps between x1 and xj . We will simplify the notation by
introducing the following variables

L̃ := 2L2M (1 + Lµ)
2M , σ2

e := M(σ2
u1du + σ2dx),

such that σ̃2 = L̃σ2
e and 128M2σ̃2η0 = ce/(4L̃). The previous result exploits the fact that a Lv-

Lipschitz function of a set of pv independent standard Gaussian random variables is sub-Gaussian
with variance proxy pvLv [see, e.g., 50, Ch.2.3]. By following the same argument as in Prop. 3.1 and
Lemma. C.2 we arrive at

E[e−η
∑M

j=1(l
i
j−l∗j )] ≤

 M∏
j=1

E[e−ηM(lj−l∗j )]

1/M

≤

 M∏
j=1

E[e−ηM |fj−fi
j |

2/2]

1/M

≤

 M∏
j=1

E[e−ηMX2
j ]

1/M

,

where we used the shorthand notation fj , f
i
j as in the statement of the lemma and the fact η ≤

1/(4Mσ2). The random variables Xj are sub-Gaussian with variance proxy σ̃2 and therefore
X2

j − E[X2
j ] are sub-Exponential with parameter 16σ̃2. As a result, we can simplify the previous

inequality to

E[e−η
∑M

j=1(l
i
j−l∗j )] ≤

 M∏
j=1

e−ηME[X2
j ]+ησ̃2ce/(4L̃)

1/M

,

since 128Mησ̃2 ≤ ce/(4L̃) by our choice of η0. As a result of Ass. 8 we infer
M∑
j=1

E[X2
j ] ≥Mce(duσ

2
u1 + dxσ

2)/2 = ceσ
2
e/2,
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and therefore
M∑
j=1

E[X2
j ]−

ceσ̃
2

4L̃
≥ σ2

e (
ce
2
− ce

4
) =

σ2
ece
4

.

This establishes
E[e−η

∑M
j=1(l

i
j−l∗j )] ≤ e−ηceσ

2
e/4,

and yields the desired result. □

The conclusion from the setting with linear dynamics can be generalized to nonlinear systems as
follows. In order to simplify the presentation we consider the situation where the process noise is
absent (σ = 0); the same rationale applies when σ > 0. The following result demonstrates that
Ass. 3 is generic and holds for a broad class of nonlinear dynamics. This result also highlights a close
connection between controllability and the required notion of persistence of excitation.

Proposition F.2 Let x ∈ Rdx and q ∈ {1, . . . ,m} be fixed. Then, there exists a constant c′e > 0
such that

E[|f i(xk, uk)− f(xk, uk)|2] ≥ c′eduσ
2
u

for all small enough σu > 0 if either of the two inequalities are satisfied

|f i(x̄k, µ
q(x̄k))− f(x̄k, µ

q(x̄k))|2 > 0, σ(W c
k−1) |Ai

k −Ak|2F + |Bi
k −Bk|2F > 0,

where xk is defined recursively via x1 = x, xj+1 = f(xj , µ
q(xj) + nuj) with nuj ∼ N (0, σ2

ujI)
j = 1, . . . , k − 1 and

Ak :=
∂

∂x
f(x, µq(x))

∣∣∣∣
x=x̄k

, Ai
k :=

∂

∂x
f i(x, µq(x))

∣∣∣∣
x=x̄k

,

Bk :=
∂

∂u
f(x, u)

∣∣∣∣
x=x̄k,u=µq(x̄k)

, Bi
k :=

∂

∂u
f(x, u)

∣∣∣∣
x=x̄k,u=µq(x̄k)

,

W c
k :=

k−1∑
j=1

Ak−1Ak−2 . . . Aj+1BjB
⊤
j A⊤

j+1 . . . A
⊤
k−2A

⊤
k−1.

Moreover, x̄k corresponds to the noise-free trajectory and is defined via x̄1 = x, x̄j+1 =
f(x̄j , µ

q(x̄j)).

Proof We start by considering the situation where f i(x̄k, µ
q(x̄k)) ̸= f(x̄k, µ

q(x̄k)). We note that

E[|f i(xk, µ
q(xk) + nuk)− f(xk, µ

q(xk) + nuk)|2]

continuously depends on σu and converges to |f i(x̄k, µ
q(x̄k)) − f(x̄k, µ

q(x̄k))|2 > 0 as σu → 0.
Hence the desired inequality is clearly satisfied for all small enough σu > 0.

Next we consider the situation where f i(x̄k, µ
q(x̄k)) = f(x̄k, µ

q(x̄k)) and apply Taylor’s theorem
as follows:

f(xk, µ
q(xk) + nuk) = f(x̄k, µ

q(x̄k)) +Ak(x̄k − xk) +Bknuk + o(x̄k − xk, nuk),

where o is a continuous function that satisfies o(ξ)/|ξ| → 0 for |ξ| → 0. We therefore conclude

|f i(xk, uk)− f(xk, uk)| =
∣∣∣(Ai

k −Ak)(xk − x̄k) + (Bi
k −Bk)nuk + o(x̄k − xk, nuk)

∣∣∣,
where we slightly abused notation to redefine the reminder term (we will frequently do so throughout
the remainder of the proof). We further apply Taylor’s theorem to express xk − x̄k as

xk − x̄k =

k−1∑
j=1

Ak−1 . . . Aj+1Bjnuj + o(nu1, . . . , nuk−1).

By combining the previous two equations, squaring, and taking expectations, we arrive at

E[|f i(xk, uk)− f(xk, uk)|2] ≥ (|Ai
k −Ak|2Fσ(W c

k−1) + |Bi
k −Bk|2F)σ2

u − o(σ2
u),
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where we took advantage of the fact that nu1, . . . , nuk are mutually independent. We further used the
following reasoning: i) independence between nui and nuj , i ̸= j, concludes

E[o(nui)n
⊤
uj ] = E[o(nui)E[n

⊤
uj | nui]] = 0.

ii) for i = j we have

E[o(|nui|2)] =
∫
Rdu

o(|ξ|2) 1

(
√
2πσu)du

e−|ξ|2/(2σ2
u)dξ ≤

∫
Rdu

o(|ξ|2) 2q
√
2π

du

q!

|ξ|2q
dξ︸ ︷︷ ︸

=const.

σ2q−du
u ,

for any integer q ≥ 0 large enough, where we have bounded the exponential using e−ξ ≤ q!/ξq for
all ξ ≥ 0. This implies that E[o(|nui|2)] = o(σ2

u) (in fact E[o(|nui|2)] decays much faster for small
σu), which leads to the desired result. □
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