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Abstract

Reducing global energy consumption is an urgent step to-
wards slowing the pace of global warming and climate
change. Many opportunities to do so lie in the building sector,
which is a major energy occupant, particularly Heating, Ven-
tilation and Air-Conditioning (HVAC) systems. Centralized
air conditioning in large communal spaces (e.g. malls, of-
fices, cinemas, libraries) often aims to cool spaces to very low
temperatures, leading to significant energy consumption that
may not even be necessary for users’ comfort. To address this,
human-in-the-loop learning (HIL), a network-enabled crowd-
sourced reinforcement learning (RL) framework has been
proposed. This framework leverages direct thermal comfort
feedback from occupants to optimize energy efficiency and
thermal comfort in HVAC systems in public buildings. Never-
theless, in HIL, control systems may receive unreliable feed-
back from adversarial or irrational users. Therefore, in this
work we work towards increasing the safety and robustness of
HIL frameworks in HVAC systems. We propose RARL HIL,
in which a primary agent is jointly trained with an adversar-
ial agent which aims to destabilize the system via generating
’false’ feedback. The primary agent learns to operate effec-
tively in challenging and destabilizing environments. Simula-
tion results shows that our algorithm outperforms a traditional
human in the loop RL algorithm, in unseen test environments
involving adversarial or irrational user feedback.

Introduction
Human-in-the-loop learning (HIL) with crowdsourced user
feedback is a network-enabled AI framework that uses hu-
man input to adjust settings in control systems. Human-in-
the-loop techniques have the potential to enable control sys-
tems to make more user-friendly, equitable and explainable
decisions (Mosqueira-Rey et al. 2022). At the same time,
human-in-the-loop techniques can also have an edge over
manual modeling methods in terms of capturing nuanced hu-
man complexities. However, HIL learning also raises signif-
icant challenges in handling possibly adversarial, irrational,
or missing feedback from unreliable human users.
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One application of HIL learning is in Heating, Ventila-
tion and Air-Conditioning (HVAC) systems. HVAC systems
are the largest contributor (Katili, Boukhanouf, and Wil-
son 2015) of energy consumption in the building sector, ac-
counting for 36% of total global energy consumption (San-
tamouris and Vasilakopoulou 2021). In public buildings, it is
estimated that cooling accounts for more than 50% of energy
usage (Katili, Boukhanouf, and Wilson 2015). Therefore,
optimizing temperature settings in HVAC systems is impor-
tant for better energy efficiency. Nevertheless, in tropical re-
gions near the equator, effective cooling systems should also
ensure the thermal comfort of building occupants. Thus, it is
crucial to balance energy efficiency with the thermal com-
fort of users (Garcı́a, Prett, and Morari 1989; Kwadzogah,
Zhou, and Li 2013).

Traditional techniques for controlling temperatures in
HVAC systems (Wang and Ma 2008) include model pre-
dictive control (Kwadzogah, Zhou, and Li 2013) and opti-
mization techniques (Huang et al. 2016; Mossolly, Ghali,
and Ghaddar 2008). There has been a shift towards learning-
based methods, in which explicit environment models are
not pre-defined. Instead, the learning agents learn optimal
temperature settings through interaction with the environ-
ment. Reinforcement learning (RL) is often proposed as a
solution, where the agent learns a policy which determines
the optimal actions given different environmental settings
(Mozer 1998; Biemann et al. 2021; Gao, Li, and Wen 2019).

However, RL for HVAC comes with challenges such as
slow convergence, sample inefficiency, and difficulties in
generalizing to unseen environments with data distributions
that differ from those encountered during training. RL-based
meta-learning and transfer learning (Lissa, Schukat, and
Barrett 2020) have been proposed to deal with the chal-
lenges. Human-in-the-loop learning (HIL) for HVAC tem-
perature optimization has also been proposed (Chen, Meng,
and Zhang 2023), for incorporating real-time user feedback
into the RL process. This is especially useful for public
spaces with centralized air-conditioning systems, such as
malls, cinemas, libraries, or communal office spaces. Un-
like individual households or offices with thermostats and
temperature switches, public spaces often do not allow users
to control the temperature, partly due to the presence of
many users with potentially conflicting preferences. In HIL
for HVAC, wireless networks play a pivotal role in enabling



communication between users, sensors, HVAC devices, and
central controllers. A human-in-the-loop RL algorithm in
this context aggregates real-time crowd-sourced occupant
feedback, e.g. via apps on wireless mobile devices, and
learns how to adjust the temperature in a way that balances
optimizing energy savings with user comfort.

Nevertheless, for crowd-sourced human-in-the-loop algo-
rithms to be successfully implemented in real-world HVAC
systems or other cyber-physical systems in smart cities,
it is crucial to work towards improving their robustness
and safety, because humans can be unreliable or malicious.
There may be adversarial users who provide random feed-
back to destabilize the system, or intentionally give mislead-
ing feedback not corresponding to their true preferences, to
guide the system towards specific outcomes (Harris 2023).
Additionally, humans are not perfectly rational and may
non-maliciously and unintentionally provide feedback that
does not align with their true internal preference states. In-
tegrating such feedback introduces unreliable or adversar-
ial data that could lead RL agents to make suboptimal deci-
sions. At the same time, it may be difficult to detect and deal
with such feedback, given that no objective ground truth ex-
ists in human-in-the-loop systems.

This paper seeks to address a critical gap by introducing
RARL HIL, a framework designed to enhance the robust-
ness of human-in-the-loop systems under realistic and ad-
versarial conditions. Our work is the first to explicitly study
the implications of irrational or adversarial human feed-
back in HVAC control settings. RARL HIL integrates ro-
bust adversarial reinforcement learning (Pinto et al. 2017)
with human-in-the-loop dynamics, introducing an adversar-
ial agent that actively generates ‘false’ feedback to simu-
late potential real-world adversarial scenarios. The primary
agent learns to operate effectively in this challenging en-
vironment, developing strategies to counteract the destabi-
lizing effects of adversarial feedback. While our focus is
on HVAC optimization, the modular design of RARL HIL
makes it broadly applicable to other crowd-sourced human-
in-the-loop systems, establishing a foundation for robust op-
eration in adversarial environments.

Our contributions are as follows:
1. We present a novel system model for human-in-the-

loop reinforcement learning-based temperature control in
HVAC systems, in which we model adversarial and irra-
tional human input.

2. To be robust towards adversarial and irrational human
input, we present RARL HIL, an adversarial reinforce-
ment learning algorithm. In our algorithm, the primary
and adversarial agents are jointly trained in a zero-sum
framework, to improve the robustness of the primary
agent in difficult environments.

3. We present experimental results which analyze the im-
pact of adversarial and irrational user input, on a vanilla
deep Q-learning network (DQN) human-in-the-loop al-
gorithm. Finally, we show that in unseen online scenar-
ios, the converged policy of our algorithm RARL HIL
is more robust than the converged policy of the vanilla
DQN human-in-the-loop algorithm.

Human-in-the-loop Framework

Figure 1: Human-in-the-Loop (HIL) RL for HVAC Systems.
Users are allowed to provide timely feedback on thermal
comfort via voting. The RARL HIL robustly makes real-
time decisions based on the environment state and human
input, regardless of the input being adversarial, balancing
human comfort and energy usage.

We propose a human-in-the-loop RL framework that in-
corporates occupant thermal comfort feedback to balance
the dual objectives of user comfort and energy efficiency,
as shown in Fig. 1. In this framework, building occupants
provide scheduled thermal perception feedback (e.g. via an
app on mobile devices), on the current indoor temperature
of the system, which is then aggregated. The RL agent uses
this aggregated feedback, combined with information about
the building’s thermal state, to determine the optimal tem-
perature for the next interval. To illustrate this, we modeled
a public space where occupants with diverse thermal pro-
files enter and exit the building at different times, and where
indoor temperatures vary hourly based on the time of day.

Occupant Simulation
The simulation of occupancy level O at each time slot t
is modeled based on time-of-day occupancy probabilities.
The simulation dynamically generates an occupancy level O
based on the time of day, with different occupancy patterns
observed during specific periods. The occupancy level O at
each time slot t is modeled using the following function:

O(t) =



Uniform(0.5, 0.8) for 9 ≤ h < 12 or
13 ≤ h < 17

Uniform(0.8, 1.0) for 12 ≤ h < 13

Uniform(0.2, 0.5) for 8 ≤ h < 9 or
17 ≤ h < 18

Uniform(0.0, 0.1) for other hours

(1)

During normal work hours (9:00 AM to 12:00 PM and
1:00 PM to 5:00 PM), occupancy level O is randomly set



between 50% and 80%. During the lunch hour (12:00 PM
to 1:00 PM), occupancy level O reaches its peak, with levels
ranging from 80% to 100%. In the transition hours (8:00 AM
to 9:00 AM and 5:00 PM to 6:00 PM), occupancy level O is
lower, ranging from 20% to 50%. During off hours, outside
of typical working hours, occupancy level O are very low,
ranging from 0% to 10%. All cases of the occupancy level
O function follows a random uniform distribution.

Predicted Mean Vote of Occupants
The Predicted Mean Vote (PMV) is an index that predicts
the average thermal sensation of individuals (ISO 2005;
ASHRAE 2017). Its calculation is influenced by six fac-
tors: metabolic rate (met), clothing insulation (clo), dry bulb
air temperature, mean radiant temperature, relative humid-
ity, and relative air velocity (Dyvia and Arif 2021). Among
these six features, metabolic rate (met), clothing insulation
(clo) capture inter-human differences. In our simulations,
each occupant’s thermal profile is defined by the features
metabolic rate (range: 1–1.5) and clothing insulation index
(range: 0–1), both drawn from a random uniform distribu-
tion. Based on their thermal profile and the external envi-
ronmental conditions, occupants provide feedback which is
aggregated and fed into the RL algorithm, acting as a com-
munal thermostat to guide the temperature setting process.

Towards Realistic Modeling of Human Input
Human input is often unreliable, particularly in crowd-
sourced applications. Unreliable or even adversarial feed-
back has the potential to skew the RL agent’s decision-
making, leading to suboptimal outcomes. In this framework,
we model two distinct scenarios in which the aggregated
PMV collected from human inputs may deviate from the true
PMV values. In the Experiment and Results section, we will
evaluate how our framework performs under the scenarios
where a portion of users are adversarial or irrational.

Scenario 1: Adversarial Input
In this scenario, occupants intentionally provide an erro-
neous PMV score

PMVbias =

{
−1.0 if PMVTrue > 0

1.0 otherwise

PMVObserved = PMVTrue + PMVbias · f(t, o, h) (2)
where f(t, o, h) represents adjustments based on time of
day, occupancy, and historical PMV trends. Occupants give
adversarial PMV values inconsistently, with feedback be-
coming more extreme during peak hours or when the system
attempts corrections. This behavior can skew the agent’s pol-
icy, as it relies on aggregated PMV feedback to estimate the
thermal profile of the population.

Scenario 2: Irrational Human Input
Building on and modifying the irrational preference models
in (Ruiz–Medina and Miranda 2021), we consider a scenario
where occupants choose a PMV value with a diminishing
probability as it deviates from their true PMV. The probabil-
ity that PMVObserved = vi, given PMVtrue is given by:

P (vi|PMVTrue) =
e−B|PMVTrue−vi|∑3

j=−3 e
−B|PMVTrue−vj |

(3)

where B is an irrationality constant. A value of B = 0
implies fully random PMV choices, irrespective of the true
PMV, while B → ∞ implies occupants are almost certain
to report their true PMV.

Markov Decision Process
We formulate the HVAC temperature optimization environ-
ment as a Markov Decision Process (MDP). An MDP is de-
fined by the tuple < S,A, p, r > where:
1. The state space S describes the HVAC environment (con-

sisting of the building and its occupants). It is a three-
dimensional array:

(a) Outdoor Temperature, Toutdoor: Continuous variable
representing the outdoor temperature in ◦C.

(b) Occupancy Coefficient, coccupancy: An index ranging
from 0 to 1, representing the proportion of building
occupancy at any given time.

(c) Aggregated Predicted Mean Vote, PMVagg: A contin-
uous variable ranging from -3 to +3, capturing the av-
erage thermal comfort level of occupants, aggregated
from individual PMV values.

2. The action space A is the set of discrete temperatures
(Tindoor) that the agent can choose, from within the range
of 22-30◦C.

3. The transition probability function p : S×A→ R, where
p(s′|s, a) = p(st+1 = s′|st = s, at = a) represents the
probability of transitioning to state s′ ∈ S given the ac-
tion a ∈ A in the state s ∈ S. The transition probability
accounts for the dynamics brought about by the arrivals
and departures of user with heterogeneous thermal pro-
files, which impact PMVagg in a way which cannot be
tractably modelled.

4. The reward function r : S × A → R, where r(s, a) in-
dicates the cost/reward associated with the selected tem-
perature. The reward function is a weighted sum of the
user comfort and energy savings, described below.

Our objective is to maximize the reward function:

Reward(t) = wcUserComfort(user1, ...useri, ...userN ,

tempt)− we · energy(tempt), (4)

where wc and we are weights representing the relative im-
portance of user comfort and energy savings, respectively.
Adjusting these weights allows the algorithm to shift its fo-
cus between prioritizing occupant comfort and energy effi-
ciency. N = |O(t)| is the number of users currently in the
system.

UserComfort: This function is modeled after the Pre-
dicted Mean Vote (PMV) index, which rates comfort lev-
els on a scale from -3 (very cold) to +3 (very hot).
UserComfort(user1, ...useri, ...userN , tempt) is given by
the average PMV, PMVagg of all building occupants.

EnergyUsage: The Energy Usage function is derived
from the heat transfer equation (Holman 1986):

energy =
mca∆T

EER
, (5)



where m is the mass of the room, ca is the specific heat
capacity of dry air, ∆T is the temperature difference be-
tween the outdoor (ambient) temperature and the indoor (air-
conditioned) temperature, and EER (Energy Efficiency Ra-
tio) is the ratio of cooling capacity to power input.

Deep Q-learning
We input this state space into a deep Q-learning algorithm
(Mnih et al. 2015). The neural network’s output is the action
taken: the air-con temperature. In Q-learning, the Q-function
Q(s, a) represents the value (sum of expected discounted re-
ward) of taking action a at state s, and the algorithm’s aim
is to iterate until convergence at the true Q-value.

Q(s, a)← (1−α)Q(s, a)+α(Reward(t)+γmax
a

Q(s′, a)),

(6)
where α is the learning rate, and γ is the discount factor.
In deep Q-learning, the neural network parameterizes the Q-
function. The loss function which the neural network opti-
mizes is

L = [Reward+ γmax
a′

Q(s′, a′; θ′)−Q(s, a; θ)]2. (7)

Robust Human-in-the-Loop Learning
Algorithm

In this section we present our algorithm, RARL HIL, which
is inspired by (Pinto et al. 2017). Fig 2 shows a visualisation
of its architecture. In this reinforcement learning algorithm,
we jointly train 2 agents: the main learning agent (θlt), and
the adversarial agent (θat ). The adversarial agent’s goal is
to perturb the system, in the hope of minimizing the learn-
ing agent’s rewards. These two agents get rewards which are
of the opposite sign of each other, i.e. ra,ti = −ra,ti , mak-
ing it a zero sum game. For the main agent, its action is
the indoor temperatures Tindoor, as mentioned in the earlier
section. The adversarial agent’s actions is the extent of de-
viation from the true aggregated PMVagg , hence disturbing
the system via these ‘false’ aggregated PMVs. This serves
as a proxy for adversarial or irrational users and helps train
the main agent to be robust to real world conditions.

Our algorithm is presented in Algorithm 1. The flow of
our algorithm is as follows: for Tl steps we train the learn-
ing agent θlt and optimize its parameters, while keeping the
parameters of the adversarial agent fixed. During this pro-
cess, the environment runs, and both agents take actions ac-
cording to their current policies derived from their respec-
tive Q-networks. Next, for Ta steps, we train the adversar-
ial agent θat and optimize its parameters, while keeping the
parameters of the learning agent fixed. This alternating pro-
cess repeats. As our learning agent learns in an environment
where our adversary distrubs the system via the aggregated
PMV values, the learning agent may give less emphasis to
the energy consumption. Therefore, we add a regularization
term in the reward, to give additional emphasis to the energy
consumption if it falls above a threshold Eth.

Simulation to reality: Training is performed offline. The
converged algorithm will be tested in real-life environments
with distrubances, in this case, adversarial or irrational users,
who do not report their true PMVs.

Protagonist 
Agent

Adversarial 
Agent

Alternate Training

State Reward

Temperature

Environment

Environmental
Indoor Temperature
Occupancy
Level
Users
System
HVAC Power
Time
Average PMV

Energy Usage
Comfort Penalty
Adversarial Impact

Outdoor Temperature
Occupancy Coefficient
Average PMV

Action

Offline Training

Online Testing

Figure 2: Architecture of RARL HIL. The training of the
Protagonist Agent and the Adversarial Agent alternates ev-
ery Tl/Ta episodes. The Protagonist Agent aims to learn a
robust policy that can withstand adversarial input, while the
Adversarial Agent aims to disrupt the learning process of the
Protagonist Agent during its training.

Experiment and Results
Simulation Setup An open space is modeled to mimic a
single-level office building with an area of 4800 m2 and a
maximum capacity of 1000 consumers as shown in Fig 3.
The outdoor environment is simulated to match the summer
conditions of a tropical climate, via using a cosine function,
with base temperature 28◦C.

Figure 3: A visualisation of the simulation of a single-level
office building where we will be running our experiments.
Each red dot represents a person in the building at that point
in time, with a label of their individual PMV.

Comparison of vanilla DQN HIL with Set-point Control
For the baseline policy, we use the Set-point Control (fixed
policy) technique of VRF systems (Kim et al. 2020), as VRF
systems are often used in large buildings. Just like (Kim
et al. 2020), we use a constant temperature of 26◦C, which is
within ASHRAE 55-2017’s (ASHRAE 2017) recommended
summertime thermal comfort range.

Fig. 4 shows how the learned reward value changes dur-
ing the training process of a vanilla DQN HIL algorithm.



Algorithm 1: Robust Human-in-the-Loop Learning Algo-
rithm (RARL-HIL)

Input: Energy threshold Eth, penalty factor λ
Initialization: Neural network parameters for the learn-
ing agent θl0 and the adversarial agent θa0
for t = 1, 2, . . . , T do
θlt ← θlt−1
for i = 1, 2, . . . , Tl do
{(sti, a

l,t
i , aa,ti , rl,ti , ra,ti )} ← EnvHVAC(πθl

t
, πθa

t
)

if energyi > Eth then
rl,ti ← rl,ti − λ(energyi − Eth)/1000

end if
θlt ← OptimizePolicy({sti, a

l,t
i , rl,ti }, θlt)

end for
θat ← θat−1
for i = 1, 2, . . . , Ta do
{(sti, a

l,t
i , aa,ti , rl,ti , ra,ti )} ← EnvHVAC(πθl

t
, πθa

t
)

if energyi > Eth then
ra,ti ← ra,ti − λ(energyi − Eth)/1000

end if
θat ← OptimizePolicy({sti, a

a,t
i , ra,ti }, θat )

end for
end for

Each episode represents a day-long simulation with rewards
calculated at every 30 minutes interval. Here, there are no ir-
rational or adversarial users. As seen in Fig. 4, vanilla DQN
HIL outperforms the set point policy (fixed temperature of
26◦C) and converges after around 250 episodes.

Figure 4: Cumulative reward curves for vanilla DQN HIL
agent vs set-point temperature, without adversarial or irra-
tional users.

Effect of Unreliable Human Input on a Vanilla
DQN HIL algorithm.
We study the impact of adversarial and irrational input on a
vanilla DQN human-in-the-loop algorithm, where the state
and action space follows that mentioned in this paper.

Effect of Adversarial Input We evaluate the impact of
adversarial occupant inputs on the vanilla DQN HIL model’s
ability to identify a policy that optimizes rewards. To this

Figure 5: Cumulative reward curves for the vanilla DQN
HIL agent under varying adversarial fractions.

end, we train the model in the same environment as above,
while varying the proportion of adversarial inputs. The com-
fort rewards component is computed using user-reported
PMV regardless of whether they are adversarial or not, this
is because the system has no knowledge of who is adversar-
ial. We conduct this experiment for adversarial fractions of
[0.1, 0.3, 0.5], representing the proportion of adversarial in-
puts among all occupants. Each configuration is repeated 5
times, and the mean and variance of the cumulative reward
are depicted in Fig. 5. As expected, an increase in the adver-
sarial fraction leads to a corresponding decline in rewards.
This decline is attributable to the distortion of aggregated
PMV signals caused by a higher proportion of adversarial
inputs, impairing the model’s ability to make optimal tem-
perature decisions.

Effect of Irrational Input Likewise, we evaluate the im-
pact of irrational inputs on the vanilla DQN HIL human-in-
the-loop algorithm. As mentioned in our system model sec-
tion, a value of B = 0 implies fully random PMV choices,
while B →∞ implies occupants are almost certain to report
their true PMV. The comfort rewards component is calcu-
lated using the rewards prior to irrationality being applied
so that we optimize for user’s true comfort level. Fig. 6
shows a positive correlation between the irrationality con-
stant, B, and cumulative rewards, indicating that increasing
irrationality (lower B) of occupants lead to worsening per-
formance of the vanilla DQN HIL agent in choosing the op-
timal temperature.

Performance of RARL HIL vs Vanilla DQN HIL
with Unreliable Human Input
As seen above, a vanilla DQN human-in-the-loop algorithm
may not be able to deal with unreliable human input, espe-
cially as the human input increases in unreliability. In this
section, we apply the converged policies of our algorithm
RARL HIL and a vanilla DQN HIL algorithm, in online sce-
narios where a fraction of users are adversarial or irrational.

First, we test both policies on an environment in which the
the converged policy of the adversarial agent πθa

t
is used to

make disturbances to the system. The results are presented
in Fig. 7, averaged over 5 runs of experiments. As seen, our



Figure 6: Cumulative reward curves for vanilla DQN HIL
agent with varying irrational coefficient B.

Figure 7: Comparison of rewards, when the converged poli-
cies of RARL HIL and vanilla DQN HIL are applied, in an
environment with the adversarial agent.

algorithm RARL HIL outperforms vanilla DQN human-in-
the-loop, in this adversarial environment with ‘false’ PMVs.
Next, we will test the two converged policies in unseen on-
line environments.

Testing in Unseen Environments: Adversarial users:
We evaluate and compare the performance of the converged
policies of a trained RARL HIL and a trained vanilla DQN
HIL in environments with simulated adversarial occupant in-
put. To simulate adversarial users, we implemented a dy-
namic bias calculation system that adapts to both system
state and user behavior. The bias combines multiple factors:
a base directional bias opposite to the current PMV, a tem-
poral trend factor based on PMV history, occupancy-based
scaling, and time-of-day amplification during business hours
(9:00-17:00). The system amplifies the bias by 1.5× when
detecting potential control countermeasures (pmvdirection ∗
pmvcurrent < 0). We systematically evaluate both models
across multiple adversarial ratios (0, 0.5, 0.75 and 1.0), run-
ning three independent tests per ratio. Results presented in
Fig. 8 and Table 1 demonstrate that as the proportion of ad-

versarial users increases, our algorithm’s performance ad-
vantage over the vanilla DQN baseline becomes more pro-
nounced, achieving up to 14.8% improvement with a fully
adversarial population.

Figure 8: Comparison of rewards when the converged mod-
els of RARL HIL and a vanilla DQN HIL agent are applied
in a previously-unseen online setting with simulated adver-
sarial user input.

Ratio: 0.75 Ratio: 1.0
Vanilla DQN HIL −1.6509 −2.1502

±0.0055 ±0.0079
RARL HIL −1.5686 −1.8323

±0.0092 ±0.0066
% improvement 5.0% 14.8%

Table 1: Tabular comparison of average reward statistics,
when the converged models of RARL HIL and a vanilla
DQN HIL agent are applied in a previously-unseen online
setting, with varying ratio of adversarial user input.

Testing in Unseen Environments: Irrational Users.
Likewise, we evaluate and compare the performance of a
trained RARL HIL and a trained vanilla DQN HIL with sim-
ulated irrational occupant input. This simulated irrational
occupant input follows Eq. (3). The irrationality constant B
indicates the likelihood of users reporting their true PMV.
As B → ∞, they are almost certain to report their true
PMV; as B → 0, users tend towards more and more ran-
dom PMV choices. We set B = 0.5, 0.01, 0. Results are
presented in Fig. 9. It can be seen that as the irrationality
of users increases (i.e. B decreases), our algorithm outper-
forms the vanilla DQN baseline by a greater extent.

Conclusion
Human-in-the-loop (HIL) crowdsourced feedback is a
network-enabled AI application across mobile devices,
HVAC devices, and central controllers. In HVAC systems,
this approach functions analogously as a thermostat for tem-
perature control, in large public spaces with multiple users,
helping to jointly optimize energy efficiency with user com-
fort. User feedback is fed into the reinforcement learning
algorithm, which adjusts the temperature settings. For HIL



(a) B=0. (b) B=0.01. (c) B=0.5.

Figure 9: Comparison of rewards, when the converged models of RARL HIL and a vanilla DQN HIL are applied in an online
setting with irrational user input. The irrationality constant B is varied.

algorithms to be implemented in practice, it is crucial to im-
prove their safety and robustness towards malicious or un-
reliable user input. In this work, we propose a framework,
RARL HIL, which enhances the robustness of HIL sys-
tems under realistic and adversarial conditions. Our frame-
work involves jointly training a reinforcement learning agent
along with an adversarial agent that seeks to disturb the sys-
tem, in a zero-sum setting. Our method outperforms vanilla
DQN in unseen online environments with adversarial and
irrational human input. We will release this building simula-
tor, with RARL HIL algorithm integrated in, for open use.

References
2005. Ergonomics of the thermal environment — Analytical
determination and interpretation of thermal comfort using
calculation of the PMV and PPD indices and local thermal
comfort criteria.
ASHRAE, A. 2017. Standard 55-2017. Thermal environ-
mental conditions for human occupancy.
Biemann, M.; Scheller, F.; Liu, X.; and Huang, L. 2021. Ex-
perimental evaluation of model-free reinforcement learning
algorithms for continuous HVAC control.
Chen, L.; Meng, F.; and Zhang, Y. 2023. Fast Human-in-
the-Loop Control for HVAC Systems via Meta-Learning and
Model-Based Offline Reinforcement Learning.
Dyvia, H.; and Arif, C. 2021. Analysis of thermal comfort
with predicted mean vote (PMV) index using artificial neural
network. In IOP Conference Series: Earth and Environmen-
tal Science, volume 622, 012019. IOP Publishing.
Gao, G.; Li, J.; and Wen, Y. 2019. Energy-Efficient Thermal
Comfort Control in Smart Buildings via Deep Reinforce-
ment Learning.
Garcı́a, C. E.; Prett, D. M.; and Morari, M. 1989. Model
predictive control: Theory and practice—A survey.
Harris, C. G. 2023. Evaluating Mitigation Approaches for
Adversarial Attacks in Crowdwork. In 2023 IEEE Interna-
tional Conference on Big Data and Smart Computing (Big-
Comp), 113–119.
Holman, J. P. 1986. Heat transfer. McGraw Hill.

Huang, Y.; Khajepour, A.; Ding, H.; Bagheri, F.; and
Bahrami, M. 2016. An energy-saving set-point opti-
mizer with a sliding mode controller for automotive air-
conditioning/refrigeration systems. Applied Energy.
Katili, A. R.; Boukhanouf, R.; and Wilson, R. 2015. Space
cooling in buildings in hot and humid climates—a review of
the effect of humidity on the applicability of existing cooling
techniques. In 14th International Conference on Sustainable
Energy Technologies âC“SET.
Kim, J.; Song, D.; Kim, S.; Park, S.; Choi, Y.; and Lim, H.
2020. Energy-saving potential of extending temperature set-
points in a VRF air-conditioned building. Energies, 13(9):
2160.
Kwadzogah, R.; Zhou, M.; and Li, S. 2013. Model predic-
tive control for HVAC systems — A review.
Lissa, P.; Schukat, M.; and Barrett, E. 2020. Transfer Learn-
ing Applied to Reinforcement Learning-Based HVAC Con-
trol.
Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A. A.; Veness,
J.; Bellemare, M. G.; Graves, A.; Riedmiller, M.; Fidje-
land, A. K.; Ostrovski, G.; et al. 2015. Human-level control
through deep reinforcement learning. nature, 518(7540):
529–533.
Mosqueira-Rey, E.; Hernández-Pereira, E.; Alonso-Rı́os, D.;
Bobes-Bascarán, J.; and Fernández-Leal, 2022. Human-
in-the-loop machine learning: a state of the art. Artificial
Intelligence Review, 56(4): 3005–3054.
Mossolly, M.; Ghali, K.; and Ghaddar, N. 2008. Optimal
control strategy for a multi-zone air conditioning system us-
ing a genetic algorithm. Energy.
Mozer, M. C. 1998. The Neural Network House: An Envi-
ronment that Adapts to its Inhabitants.
Pinto, L.; Davidson, J.; Sukthankar, R.; and Gupta, A. 2017.
Robust adversarial reinforcement learning. In International
conference on machine learning, 2817–2826. PMLR.
Ruiz–Medina, M.; and Miranda, D. 2021. Bayesian sur-
face regression versus spatial spectral nonparametric curve
regression.



Santamouris, M.; and Vasilakopoulou, K. 2021. Present and
future energy consumption of buildings: Challenges and op-
portunities towards decarbonisation. e-Prime-Advances in
Electrical Engineering, Electronics and Energy, 1: 100002.
Wang, S.; and Ma, Z. 2008. Supervisory and optimal control
of building HVAC systems: A review. Hvac&R Research,
14(1): 3–32.


