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Abstract

Recent advances in reasoning-oriented Large Language Models (LLMs) have been driven
by the introduction of Chain-of-Thought (CoT) traces, where models generate intermediate
reasoning traces before producing an answer. These traces, as in DeepSeek R1, are not only
used to guide model inference but also serve as supervision signals for Knowledge Distillation
(KD) to improve smaller models. A prevailing but under-examined implicit assumption is that
these CoT traces are both semantically correct and interpretable for the end-users. While
there are reasons to believe that these intermediate tokens help improve solution accuracy,
in this work, we question their validity (semantic correctness) and interpretability to the
end user. To isolate the effect of trace semantics, we design experiments in the Question
Answering (QA) domain using a rule-based problem decomposition method. This enables
us to create Supervised Fine-Tuning (SFT) datasets for LLMs where - each QA problem
is paired with either verifiably correct or incorrect CoT traces, while always providing
the correct final solution. Trace correctness is then evaluated by checking the accuracy of
every sub-step in decomposed reasoning chains. To assess end-user trace interpretability,
we also finetune LLMs with three additional types of CoT traces: DeepSeek R1 traces,
LLM-generated summaries of R1 traces, and LLM-generated post-hoc explanations of R1
traces. We further conduct a human-subject study with 100 participants asking them to
rate the interpretability of each trace type on a standardized Likert scale. Our experiments
reveal two key findings - (1) Correctness of CoT traces is not reliably correlated with the
model’s generation of correct final answers: correct traces led to correct solutions only for
28% test-set problems while incorrect traces don’t necessarily degrade solution accuracy. (2)
In interpretability studies, fine-tuning on verbose DeepSeek R1 traces produced the best
model performance but these traces were rated as least interpretable by users, scoring on
average 3.39 for interpretability and 4.59 for cognitive load metrics on a 5-point Likert scale.
In contrast, the decomposed traces that are judged significantly more interpretable don’t
lead to comparable solution accuracy. Together, these findings challenge the assumption in
question suggesting that researchers and practitioners should decouple model supervision
objectives from end-user-facing trace design.

1 Introduction

Reasoning with intermediate Chain-of-Thought (CoT)-style traces (step-by-step outputs that models produce
prior to an answer) has become one of the defining strategies for improving the performance of Large Language
Models (LLMs) over a diverse range of problems, as exemplified by approaches like DeepSeek R1|Guo et al.
(2025). While models such as DeepSeek R1 often produce extremely verbose unstructured responses even for
simple problems Kambhampati et al. (2025)), these reasoning traces are utilized both as inference aids and
supervision signals in Knowledge Distillation (KD) when Supervised Fine-Tuning (SFT) smaller LLMs for
enhanced task performance Magister et al.| (2022); [Shridhar et al.| (2022)); Tian et al.| (2025).

A common but often implicit assumption behind these CoT traces is that they are semantically correct and
interpretable for end-users |Guo et al.[(2025). Training with these traces is done primarily to improve LLM
performance on a given task, but training/fine-tuning objectives rarely require these traces to be semantically
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correct or interpretable E In this work, we challenge this assumption and ask: “Must CoT reasoning traces
be semantically correct and interpretable to end-user for enhancing LLM task performance?"

Facts:

[Morus Hasratyan worked for The Newcastle upon Tyne
Hospitals NHS Foundation Trust from September 11, 1972
to December 18, 1974.', 'Morus Hasratyan is a member of
the Communist Party of the Soviet Union in 1955.", 'Morus

— Hasratyan works for Haigazian University from 1965 to
1966., ... ]

Question:
While Morus Hasratyan was working for Haigazian
University, which employer did Morus Hasratyan work for
during the same time period?

| =
Rule-based Problem E
Decomposition

[ - ]
Classification Information
Step Retrieval Step

Relevant Text: "['Morus

Hasratyan works for History
Museum of Armenia from 1964 to
1975.1"

Problem
Category: 'during'

Intermediate Trace

SFT Dataset with
verifiable
~ intermediate traces

Input/Output Pairs

Figure 1: The construction of SFT dataset w/ verifiable intermedi-
ate traces using rule-based problem decomposition on an example

from the CoTemp QA dataset.

To address this, we focus our experiments
on the Question Answering (QA) domain,
where end-users regularly interact with
both intermediate traces and final outputs
Polemi et al.| (2024) (e.g., ChatGPT |Ope-
nAll (2023)), Perplexity |Al| (2023)), Copilot
Microsoft| (2023), Gemini |Google, (2023)).
Faithfulness of reasoning traces is espe-
cially critical in these interactive settings
where unverifiable traces can lead to loss
of trust in users, misinformation and er-
rors in model outputs, and perpetuation
of biases among other negative conse-
quences |Guidotti et al.| (2018)). To as-
sess the trade-offs between semantic cor-
rectness of the traces and LLM perfor-
mance, we design an experimental setting
where both final solutions and intermedi-
ate traces can be independently evaluated.
Specifically, we employ a rule-based prob-
lem decomposition technique to break
QA tasks into structured sub-problems
McDonald & Emami (2024); [Xue et al.
(2024). Next, we generate SF'T datasets
pairing questions with either verifiably
correct or verifiably incorrect reasoning
traces (while always including the correct
answer). At inference, this allows us to
verify the correctness of both the final
solution and the intermediate traces gen-
erated by the distilled model.

To assess the trade-offs between trace in-
terpretability and LLM performance, we
fine-tune models on different types of rea-
soning traces: DeepSeek R1 traces (ver-
bose CoT outputs), LLM (GPT-40-mini)-
generated summaries of R1 traces (end-

user facing summarizations), LLM (GPT-4o-mini)-generated post-hoc explanations (natural language ex-
planations of R1 traces), and verifiably correct traces that we discussed above. In parallel, we conduct a
human-subject study with 100 participants (hired on Prolific), split into four sets of 25. Each group was
asked to interpretability of the trace types using a Likert Scale measuring predictability, comprehensibility,
and faithfulness attributes |Jalali et al.| (2023); |[Doshi-Velez & Kim| (2017).

Our experiments reveal two key findings:

1. Correctness of CoT traces is not reliably correlated with LLMs producing correct final answers:
correct traces led to correct solutions only for 28% test-set problems, while incorrect traces did not
consistently degrade answer accuracy.

IThis distinction has also been brought to light by the recent GPT-OSS models split the trace into tree parts - CoT trace,
summary and the final answer |(OpenAl (2025). The assumption is that this suggests that GPT-5 is only showing the summary
to the users.
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2. Interpretability of CoT traces is not reliably correlated with LLMs producing correct final answers:
fine-tuning on verbose DeepSeek R1 traces led to the strongest task performance, yet users rated
these traces as least interpretable, scoring on average 3.39 for interpretability and 4.59 for cognitive
load metrics on a 5-point Likert scale.

These results highlight that semantic correctness and human interpretability of reasoning traces can
in fact be an albatross from the perspective of LLM’s task performance, challenging assumptions
in current LLM supervision practices.

The rest of the paper is structured as follows: We discuss the relevant existing literature on Large Language
& Reasoning Models, Knowledge Distillation, and CoT Trace Interpretability in In we discuss the
problem setup and the rule-based problem decomposition for the Open Book QA setting, and how we
construct the SFT dataset for distilling the LLMs with correct and incorrect intermediate traces paired with
correct solutions. We discuss our experimental setup for SF'T experiments and the human-subject studies in
followed by an analysis of the results and and discussion on the key takeaways from our work in Finally,
we conclude our work in Section [6] followed by a note on the Broader Impact of this study. Supplementary
includes additional experiment details, and SF'T datasets and code will be released on acceptance.

2 Related Work

2.1 Large Reasoning Models & Chain-of-Thought traces

Large Language Models (LLMs) have shown remarkable performance on a wide variety of natural language
tasks in question answering, text generation, summarization, and translation, to name a few [Bubeck et al.
(2023)). Recent advances in post-training techniques have led to the rise of Large Reasoning Models (LRMs)
such as DeepSeek R1 |Guo et al.| (2025)), Google Gemini 2.5 |Google| (2023, Microsoft Phi-4-reasoning |Abdin,
et al| (2025), etc. These reasoning models produce a set of intermediate tokens, commonly referred to
as ‘reasoning’ traces, followed by the final solution. While LRMs have shown a significant improvement
in final solution accuracy on reasoning tasks over standard LLMs |Guo et al.| (2025)); |Abdin et al.| (2025),
their intermediate traces are subjective and verbose, making it hard to evaluate their trace validity and
interpretability Kambhampati et al.| (2025)).

2.2 Knowledge Distillation and Structured Reasoning Traces

While Small Language Models (SLMs) offer a computationally efficient alternative to LLMs and LRMs, they
are not robust to prompt augmentations (such as Chain-of-Thought) or steerable using in-context examples
used in few-shot prompt settings [Shridhar et al.| (2022); [Stolfo et al. (2022). Knowledge Distillation is a
well-studied approach used for fine-tuning these SLMs (student) via the outputs of a larger model (teacher)
Magister et al.| (2022]). With LRMs generating both an intermediate trace and the final solution, SLMs are
also distilled to replicate this output Shridhar et al.|[(2022);|Tian et al.| (2025). However, the lack of structured
intermediate trace outputs makes the validity of the traces hard to evaluate. This problem is exacerbated for
end-user settings such as in Question Answering (QA) domains, where user interactions involve exposure to
both intermediate traces and final outputs.

2.3 Interpretability of Reasoning Traces

Some recent works have argued for making these CoT traces more interpretable, i.e., improve their faithfulness
for the end user, as they are believed to serve as the LLM’s explanation to generate the final solution
Arcuschin et al.| (2025)); Tanneru et al.| (2024); |Li et al.| (2024)); Tutek et al.| (2025); |Paul et al.| (2024)); Lyu et al.
(2023)); [Lanham et al.| (2023)); [Yeo et al.| (2024). On the other hand, there has also been work showcasing why
these traces are not explainable to the end user [Barez et al.| (2025)). Both sides of this argument stem from
the assumption that these traces are indeed meant to be useful and interpretable for the end user and not
just for the LLM to improve its final solution performance over a certain task. We specifically challenge this
assumption and show the disconnect between the use of CoT traces for the LLM (as a training signal in SFT)
and the use of CoT traces for the end user (as an interpretable reason behind the model’s final solution).
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3 Knowledge Distillation using Problem Decomposition

In this section, we discuss the rule-based problem decomposition technique that we employ to break down
complex Open Book QA reasoning problems into independently verifiable sub-problems (§3.1]). We further
discuss how we utilize this approach to construct the structured intermediate traces for distilling SLMs (§3.2)).

3.1 Rule-based Problem Decomposition

In the context of Open Book QA, consider the example shown in Figure [1| which consists of a text passage
(referred to as set of facts for our discussion) and a question involving temporal reasoning between the queried
problem and the facts present in the provided text. Answering this reasoning question involves identifying the
relevant fact from the text which satisfies the temporal relation asked in the problem. In this case, the queried
fact refers to “Morus Hasratyan works for Haigazian University from 1965 to 1966." The temporal relation
queried in the problem is ‘during’ and thus, the relevant fact that answers the query is “Morus Hasratyan
works for History Museum of Armenia from 1964 to 1975." Hence, the final answer is ‘History Museum of
Armenia’. From this example, we see that the complex Open Book QA problem can be decomposed into a 1)
Classification step determining the type of question asked (‘during’ temporal relation in this case), and an 2)
Information Retrieval (IR) step to determine the relevant part of text that can answer the query (the fact
with the temporal overlap with the one in question). Therefore, we utilize these two steps to decompose the
Open Book QA problems that allow us to construct structured intermediate traces for evaluation.

3.2 Intermediate Trace Generation for SFT

Given the outputs of the sub-problems obtained by decomposing the original query as shown in Figure [} we
generate the intermediate traces in an automated way which consists of the Classification step describing the
type of the question posed in the query, and the IR step showing the relevant fact in the text that can help
answer the query. We construct a dataset using these Input-Trace-Output tuples that can be utilized to SFT
the Small Language Models. Note, that by constructing the intermediate trace using these two steps, we
can then evaluate the accuracy of the intermediate traces generated by the distilled model at the time of
inference. We will refer to this setting as SFT w/ Correct Traces for further discussion.

To critically understand the correlation between intermediate trace correctness and final solution accuracy for
Knowledge Distillation methods, we also consider an alternative SFT setting where for every input problem,
we choose an incorrect problem category and incorrect fact/s for constructing the intermediate trace. This
allows us to construct a SFT dataset which also consists of Input-Trace-Output tuples but with incorrect
traces and correct final outputs. We will refer to this setting as SFT w/ Incorrect Traces. We discuss the
empirical setup for our experiments in the following section.

4 Experimental Setup

In this section, we first introduce the Open Book QA datasets used for our experiments ( Next, we
discuss the experimental details to assess the correlation between semantic correctness of traces and LLM’s
task performance (§4.2). Finally, we talk about the SFT experiments and human-subject study that we
conduct to assess the interpretability vs LLM performance trade-offs ( Implementation details for
running all our experiments are provided in §4.4]

4.1 Datasets

We run our experiments on the following three publicly available Open Book QA datasets:

CoTemp QA: CoTemp QA [Su et al.| (2024) consists of English co-temporal questions which involve
identifying the type of temporal relation posed in the problem, followed by inferring which fact in the given
passage of text satisfies the temporal relation with the question. The dataset is categorized into four temporal
relation types, namely - ‘equal’, ‘overlap’, ‘during’ and ‘mix’, and requires around one or two facts for
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Table 1: An example from the CoTemp QA dataset showing the outputs of Qwen3-1.7B and Llama-3.2-1B-
Instruct models under different query setting. Correct final solutions are shown in , and incorrect final
solutions are shown in red. Correct intermediate traces are shown in blue, and incorrect intermediate traces
are shown in red.

Model Query Setting Example

Input Prompt: ’Answer the question based on the context:
[\"Morus Hasratyan worked for The Newcastle upon Tyne Hospitals NHS Foundation Trust
from September 11, 1972 to December 18, 1974.\’,
\’Morus Hasratyan is a member of the Communist Party of the Soviet Union in 1955.\’,
\'Morus Hasratyan works for Haigazian University from 1965 to 1966.\, "
"Morus Hasratyan worked for Bishop\’s University from 1972 to 1975."",
\’Morus Hasratyan worked for ISCTE — Lisbon University Institute from June, 1957 to December, 1960.\’,
\"Morus Hasratyan works for History Museum of Armenia from 1964 to 1975.\’,
\"Morus Hasratyan worked for Royal Air Force College Cranwell in February, 1959.\’,
\'Morus Hasratyan worked for University of Detroit Mercy in September, 1963.\’,
"Morus Hasratyan worked for Tagesspiegel from May, 1957 to November, 1957.\’,
Y g & b
\'Morus Hasratyan worked for North Carolina State University in May, 1962.\’]
Question: While Morus Hasratyan was working for Haigazian University,
which employer did Morus Hasratyan work for during the same time period? Only return the answer.

Gold Answer: '[History Museum of Armenia’]" ;
Problem Category: ’during’ ;
Relevant Text: "["Morus Hasratyan works for History Museum of Armenia from 1964 to 1975.]"

Prompt "Bishop’s University"

Qwen3-1.7b SFT - Vanilla " "

"<think>The temporal relation between the event in question and the event in context is: equal.
I need to use the following facts to answer the question:
["Morus Hasratyan works for History Museum of Armenia from 1964 to 1975.]</think>
<answer> < /answer>"

SFT w/ Correct Traces

"<think>The temporal relation between the event in question and the event in context is: equal.
I need to use the following facts to answer the question:
Morus Hasratyan worked for ISCTE - Lisbon University Institute from June, 1957 to December, 1960.</think>
<answer> < /answer>"

SFT w/ Incorrect Traces

Prompt ‘ "Bishop’s University"

" "

Llama-3.2-1B-It SFT - Vanilla

"<think>The temporal relation between the event in question and the event in context is: during.
I need to use the following facts to answer the question:
['Morus Hasratyan works for History Museum of Armenia from 1964 to 1975.]</think>
<answer> < /answer>"

SFT w/ Correct Traces

"<think>The temporal relation between the event in question and the event in context is: overlap.
I need to use the following facts to answer the question:
Morus Hasratyan worked for Royal Air Force College Cranwell in February, 1959.</think>
<answer> < /answer>"

SFT w/ Incorrect Traces

answering the question. For our experiments, we utilize 3,798 train and 950 test samples to construct the
SEFT datasets.

Microsoft MARCO QA: The Microsoft MAchine Reading COmprehension (MARCO) dataset Bajaj
et al.|(2016) is an English dataset that consists of a real user-generated queries collected on the Bing platform.
Among the other datasets that we use for our experiments, Microsoft MARCO provides the largest passage
for each user query generated by a list of URLs in support of answering the question. There are five categories
in the dataset, namely - ‘description’, ‘numeric’, ‘entity’, ‘location’, and ‘person’, and also requires one
paragraph from the passage to answer the question. For our experiments, we utilize 5,000 samples for the
train and 1000 samples for test dataset.

Facebook bAbI QA: The Facebook bAbI QA dataset Weston et al.| (2015)) is also an English dataset
that evaluates reading comprehension via question answering problems which requires different reasoning
approaches to solve the queried problem such as chaining multiple facts or using deduction. There are 20
question categories in the original dataset, however we utilize 11 categories for our experiments, namely -
‘single-supporting-fact’, ‘two-supporting-facts’, ‘two-arg-relations’, ‘counting’, ‘lists-sets’, ‘conjunction’, ‘time-
reasoning’, ‘basic-deduction’, ‘basic-induction’, ‘positional-reasoning’, and ‘size-reasoning’. Each question
requires on average three facts to answer the question. We construct the SFT dataset consisting of 3,773
train and 376 test samples. The train/test splits for all the datasets can be found in



Under review as submission to TMLR

4.2 Trace Correctness vs LLM Task Performance

For our experiments to evaluate the correlation between intermediate trace correctness and final solution
accuracy, we utilize the Llama-3.2-1B-Instruct and the Qwen3-1.7B chat models. We adopt the following
baselines for our evaluations:

1. Direct Prompting SLMs: We directly prompt the two SLMs to establish the baseline performance
of these models across the three datasets without any additional fine-tuning.

2. SFT - Vanilla: Following the conventional fine-tuning technique, we also utilize the SF'T baseline
where we fine-tune the models using only Input-Output pairs and no intermediate traces. This allows
us to evaluate the final solution performance for these models against the final solution performance
obtained via directly prompting and via SF'T with intermediate traces.

For examining the impact and correctness of intermediate traces, we run the following experiments:

1. SFT w/ Correct Traces: Using the intermediate traces constructed via problem decomposition
(Section [3.2)), we fine-tune the models using the Input-Trace-Output tuples for each of the three
datasets.

2. SFT w/ Incorrect Traces: In this case, we construct incorrect intermediate traces as discussed in
Section but use the correct final solutions in the Input-Trace-Output tuples.

For our experiments on SFT w/ Correct Traces and SFT w/ Incorrect Traces, we additionally report Category
Accuracy (signifying the Classification step performance in the intermediate trace), the IR step Accuracy
(signifying the IR step performance in the intermediate trace), and average trace length (# of words in the
intermediate trace) on the test datasets computed at inference time.

4.3 Interpretability of Traces vs Final Solution Accuracy

For our experiments to evaluate the correlation between end-user interpretability of intermediate traces
and final solution accuracy, we also include evaluations using larger models (Qwen3-8B and Llama-3.1-8B)
to further examine the impact of SFT with more complex traces. Owing to the practical constraints of
conducting human-subject studies, we run our experiments on the CoTemp QA domain (

4.3.1 Reasoning Trace Generation

We consider (1) DeepSeek R1 traces where we prompt the R1 model on the CoTemp QA training dataset
and collect the model responses for our SF'T experiments where it got the correct final answer. Utilizing
this filtered training dataset, we prompt GPT-4o-mini to generate both (2) summaries and (3) post-hoc
explanations of these R1 traces. Since R1 traces can often be verbose, we posit that their summary as well as
a post-hoc explanation can likely be more interpretable to the end user (prompts shown in .

4.3.2 Human-Subject Study

We conducted four separate user studies to evaluate the interpretability of the four types of reasoning traces.
In each study, a set of 25 participants were hired on Prolific and shown only one type of trace: (1) DeepSeek
RI1 traces, (2) summarized R1 traces, (3) post-hoc explanations of R1 traces, or (4) verifiably correct reasoning
traces. An example of the four types of traces can be found in §B.5| We use a between-subjects design
to avoid bias from having participants compare multiple trace types themselves. We specifically test the

following hypotheses:

1. H1: Reasoning traces that improve task accuracy will not lead to higher interpretability for the user.

2. H2: Reasoning traces that improve task accuracy will be associated with higher cognitive workload
for the user, as measured by increased mental demand, effort, and frustration.
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Each participant viewed five Q/A examples (fixed across all studies), consisting of the input question, the
predicted answer, and the reasoning trace. After each example, participants rated the reasoning trace on a
5-point Likert scale on the following properties as suggested by [Doshi-Velez & Kiml (2017)); Jalali et al.| (2023)):
predictability, comprehensibility, interpretability, and faithfulness to context (alignment with given facts). To
capture the cognitive workload involved in processing and evaluating the traces, we used the NASA-TLX
assessment [Hart| (2006]), focusing on the dimensions of mental demand, effort, and frustration. Additional
user study details, human participant demographics, and study procedure have been discussed in §B]

4.4 Implementation Details

Models were fine-tuned using the Hugging Face library [Wolf et al.| (2020) on a single 80GB NVIDIA Tesla
A100 GPU for 3 epochs (effective batch size 16, max sequence length 1024). We employed PEFT QLoRA
Dettmers et al.| (2023) (rank 16, alpha 32) with a learning rate of 2e-4 (8-bit AdamW, cosine scheduler, 0.1
warm-up). Prompt experiments utilized vLLM |[Kwon et al.| (2023)).

5 Results

We first discuss the Final Solution Accuracy comparing all four query settings (Tables [2[ and . Next, we
discuss the Intermediate Trace Accuracy comparing the two methods of SFT with correct and incorrect
intermediate traces. Finally, we analyze the correlation, or as our results reveal the lack thereof, between
Final Solution Accuracy and Intermediate Trace Accuracy (Figures [2| and .

Table 2: Cotemporal QA Results

‘ Final Solution Evaluations ‘ Intermediate Trace Evaluations
Model Query Setting Accuracy F1 Precision Recall S?l?)siizi?::y ;is::gy Lengrlf (T;iiicns)
Prompt 6.35 11.35 14.33 10.1 - - -
Qwen3-1.7b SE'T - Vanilla 60.33 74.88 82.15 71.3 - - -
: SET - Correct Trace 52.88 70.63 79.45 66.33 47.06 78.99 45.8
SFT - Incorrect Trace 63.88 76.5 82.58 73.5 20.36 56.92 34.15
Prompt 7.48 13.78 17.58 12.15 - - -
SFT - Vanilla 44.65 61.08 69.53 56.58 - - -
Llama-3.2-1B-It  opr_ (onect Trace 39.55 56.83  65.83 52.5 39.09 79.4 43.51
SET - Incorrect Trace 45.58 61.15 69.65 57.23 18.8 73.62 40.28

Table 3: Microsoft MARCO QA and Facebook bAbI QA Results

Microsoft MARCO QA Facebook bAbI QA
Avg Final Avg Trace Acc Avg Trace Avg Trace Avg Final Avg Trace Acc Avg Trace Avg Trace
Model Query Setting Solution (Classification  Acc (IR Length Solution (Classification  Acc (IR Length
Accuracy (%) Step) (%) Step) (%) (# tokens) | Accuracy (%) Step) (%) Step) (%) (# tokens)
Prompt 0 - - - 0 - - -
SFT - Vanilla 3.4 - - - 97.9 - - -
Quend-L.7B  qpr_ Correct Trace 26.3 60.4 40.6 68.14 94.41 60.64 24.73 43.25
SFT - Incorrect Trace 20.3 6.9 52.5 85.07 95.21 17.82 0 42.45
Prompt 1.7 - - - 12.8 - - -
SFT - Vanilla 33.4 - - - 96.5 - - -
Llama-3.2-1B-It  qpp_ Gorrect Trace 33.7 59.9 214 55.82 94.41 61.7 24.73 42.17
SFT - Incorrect Trace 28.9 20 43.9 80.48 86.17 3.46 0 38.5

5.1 Final Solution & Intermediate Trace Performance

From Table [2] we observe that across all four metrics of Accuracy, Precision, F1, and Recall, SFT w/ Incorrect
Trace performs the best in Final Solution Evaluations for both language models. However, by virtue of
making the intermediate traces verifiable, we observe that the models which were SFT-ed w/ Correct Traces
naturally have higher Classification Step and IR Step accuracies than the models SFT-ed w/ Incorrect Traces.
Similar results are observed for the MARCO QA and bAbI QA datasets in Table [3] where both models
SFT-ed with intermediate traces have comparable performance in Final Solution Accuracy, but the models
SFT-ed with correct traces have better intermediate trace evaluations. These results are pronounced for the
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bAbI QA dataset (consists of 11 categories for the Classification Step) where the two models SFT-ed w/
Incorrect Traces have negligible intermediate trace performance.
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Figure 2: Confusion Matrices for SFT w/ Correct Traces on Llama-3.2-1B-It model (top) and Qwen3-1.7B
(bottom) model, showing Final Solution Accuracy (X-axis) vs Trace Accuracy (Y-axis) for the CoTemp QA,
Microsoft MARCO QA, and, the Facebook bAbl QA datasets.
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Figure 3: Confusion Matrices for SF'T w/ Incorrect Traces on Llama-3.2-1B-It model (top) and Qwen3-1.7B
(bottom) model, showing Final Solution Accuracy (X-axis) vs Trace Accuracy (Y-axis) for the CoTemp QA,
Microsoft MARCO QA, and, the Facebook bAbI QA datasets.
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5.2 (Lack of) Correlation b/w Final Solution Accuracy & Trace Correctness

From the confusion matrices for SFT models w/ Correct Traces shown in Figure [2| the top row shows the
results for Llama-3.2-1B-It model for all three datasets. We specifically focus on the significantly high number
of False Positives (25.7% in CoTemp , 32.7% in MARCO, and 71.54% in bAbI) which represent the cases
where the model outputs the correct final solutions but incorrect intermediate traces. Again, the bottom row
showing the results for Qwen3-1.7B model reveals similar results for the False Positive case. For both the
models, we also observe a small number of True Positives which represent the cases where both the final
solution and the intermediate trace are correct. For example in the cases of MARCO QA (Sub-figure and
bAbI QA (Sub-figure , we observe 2.5% and 22.61% True Positives against a relatively higher number of
False Positives. This again highlights that a large portion of the test samples where the SFT-ed models get
the correct final answer consist of incorrect intermediate traces.

Figure Eﬂ reveals another set of striking observations from the top row showing Llama-3.2-1B-It model’s
results and the bottom row showing Qwen3-1.7B model’s results. Each of the model’s confusion matrices
show an alarmingly high number of False Positives across all three datasets. This represents that finetuning
these models on correct solution but incorrect intermediate traces still allowed them to score high on final
solution accuracy and expectedly low on intermediate trace accuracy.

5.3 Error Analysis b/w Final Solution & Intermediate Traces

When we SFT the two language models with correct intermediate traces and correct final solutions,
Figure [2| shows that in the cases where the final solution was incorrect (True Negatives and False Negatives),
we obtained 35.15% in CoTemp QA, 27.3% in MARCO QA, and, 23.8% test samples in bAbl QA where
incorrect final solutions were preceded by correct intermediate traces for Llama-3.2-1B-It model. Similarly,
we obtained 44.32% in CoTemp QA, 45.86% in MARCO QA, and, 30.77% test samples in bAbI QA where
incorrect final solutions were preceded by correct intermediate traces for Qwen3-1.7B model.

When we look at the cases where the intermediate traces were correct, we obtained 51.8% in CoTemp QA,
94.76% in MARCO QA, and, 5.5% test samples in bAbI QA where correct intermediate traces were followed
by incorrect final solutions for Llama-3.2-1B-It model. Similarly, we obtained 42.76% in CoTemp QA, 93.11%
in MARCO QA, and, 4.49% test samples in bAbI QA where correct intermediate traces were followed by
incorrect final solutions for Qwen3-1.7B model. In summary, our results highlight that LLMs finetuned with
correct intermediate traces also led to a large number of incorrect final answers across all three QA datasets.

5.4 (Lack of) Correlation b/w Final Solution Accuracy & Trace Interpretability
5.4.1 SFT Evaluations

We highlight the key SFT results in Figure[d A common observation seen across three out of the four models
(except in Qwen3-8B) is that SFT with R1 traces leads to the highest final solution accuracy over SFT with
any other trace type with the largest performance boost seen for Llama-3.2-1B-Instruct model. Furthermore,
among all the four models, we note that SFT with the algorithmically-generated semantically correct traces
perform the worst also in comparison to SFT with summaries and explanations of R1 traces. Keeping these
results in consideration, we conduct a user study to test if the R1 traces that led to the best performing SFT
models are interpretable to humans.

5.4.2 Interpretability measured through Human-Subject Studies

From Table |4l we observe that participants rated algorithmically generated correct reasoning traces as the
most interpretable across all dimensions—predictability, comprehensibility, interpretability, and faithful-
ness—consistently scoring higher medians than all other trace types. In contrast, R1 traces received the lowest
interpretability ratings across every dimension. Summarized R1 traces and R1-trace explanations received
intermediate ratings, indicating that compact or post-hoc representations improve human comprehension

2In Figure[2] and Figure [3] Intermediate Trace correctness implies the cases where the models output comprises of both, the
correct Classification Step output and the correct IR Step output.
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compared to raw R1 traces. In terms of cognitive workload, R1 traces imposed higher mental demand,
effort, and frustration compared to other kinds of traces. Correct traces were associated with relatively lower
cognitive workload, indicating that users found them easiest to follow and comprehend.

I SFT w/ R1 Traces Il SFT w/ R1 Explanations
B SFT w/ Summarized R1 Traces [ SFT w/ Correct Traces

Accuracy (%)
N w B w o ~ (o]
o o o o o o o

=
o

o

Llama-3.2-1B-It Llama-3.1-8B Qwen3-1.7B Qwen3-8B
Model

Figure 4: Final solution performance on CoTemp QA test dataset after SF'T with different trace types on
Llama and Qwen models.

Dimension Question R1 Summarized R1 Correct
Traces R1 Traces Explanations Traces

Predictability I could anticipate the next steps or con-| 3.48 4.45 4.29 4.82
clusions based on earlier parts of the rea-
soning. (1)

Comprehensibility |T understood the reasoning followed by| 3.46 4.55 4.27 4.56
the model. (1)
I could follow each step in the reasoning| 3.46 4.54 4.28 4.84
without confusion. (7)

Interpretability The reasoning helped me understand why| 3.31 4.53 4.29 4.86
the model acted or concluded the way it
did. (1)

Faithfulness There were no major gaps or missing rea-| 3.33 4.54 4.26 4.72
soning steps in the reasoning. (7)
The reasoning is consistent with the facts| 3.34 4.24 4.29 4.84
or evidence provided in the context. (7)

Mental Demand |How mentally demanding was the task?| 4.65 2.87 2.92 2.31
()

Effort How hard did you have to work to accom-| 4.54 2.39 2.17 2.86
plish your level of performance? ({)

Frustration How frustrated, stressed, and annoyed| 4.58 2.04 2.42 2.42
were you? ()

Table 4: Median participant ratings of reasoning traces across dimensions of interpretability and cognitive
workload. Arrows indicate the desired direction of scores: T higher ratings are better for interpretability
measures, | lower ratings are better for cognitive workload measures.

10



Under review as submission to TMLR

5.4.3 Statistical Analysis

We conducted pairwise Mann—Whitney U tests McKnight & Najab| (2010]) at a significance level of a = 0.05
with Bonferroni correction applied for multiple comparisons. These tests were performed across all trace type
pairings (R1 vs Algorithmically-generated Correct Traces, R1 vs Summarized R1 Traces, and R1 vs Post-hoc
Explanations), as reported in Table @ For the purposes of hypothesis testing, however, we focus specifically
on the R1 vs algorithmically-generated Correct Traces pairing.

1. NH-1 (Interpretability): There is no difference in interpretability ratings between R1 traces and
algorithmically-generated correct reasoning traces.

2. NH-2 (Cognitive Workload): There is no difference in cognitive workload ratings between R1
traces and algorithmically-generated correct reasoning traces.

There was a significant difference in interpretability measured between these two trace types, across all
measured dimensions (predictability: U = 176.5 ,p = .00022 < 0.05; comprehensibility: U = 175, p = .00019 <
0.05; interpretability: U = 161, p = .00014 < 0.05; faithfulness: U = 178.5, p = .00015 < 0.05). Further
analysis also shows that there was a significant difference between cognitive workload of users between the
two trace types, across all measured dimensions (mental demand: U = 194, p = .00036 < 0.05; effort: U
= 176, p = .00013 < 0.05; frustration: U = 176.5, p = .01287 < 0.05). Thus, we reject both NH-1 and
NH-2. Across all pairwise comparisons (Table E[), we find that R1 traces consistently differ from the other
trace types in terms of interpretability, with significant differences across predictability, comprehensibility,
interpretability, and faithfulness. In terms of cognitive workload, R1 traces also led to significantly higher
mental demand, effort, and frustration compared to correct reasoning traces. Overall, the results highlight
that R1 traces degrade interpretability and increase cognitive workload relative to all other reasoning traces.

5.5 Discussion

The key takeaways from our results can be summarized as follows:
1) SFT w/ incorrect traces at times outperformed SFT w/ correct traces in final solution accuracy (

2) Trace correctness did not guarantee final solution correctness. Solution correctness also did not imply a

correct intermediate trace (! & .

3) Fine-tuning LLMs with the traces found to be the least interpretable by end-users led to the highest final
solution accuracy, and vice-versa (

An important observation here is that while intermediate traces may look like how humans may approach
a given problem (for example, QA in this work), they may not be the same way language models lead to
generating the correct final answers. Our intervention experiments on fine-tuning the models with SF'T
data that consists of correct final solutions but incorrect intermediate traces acts provides support to this
argument. On the other hand, our experiments also showed that correct answers can also be generated with
incorrect traces, which can engender a false sense of trust. By constructing verifiable intermediate traces,
we were able to demonstrate that the correctness of training traces does not even matter in the first place.
This can be particularly consequential in end-user interactive systems where users are exposed to both the
intermediate traces and the final solutions generated by the models.

Our findings from the interpretability vs performance trade-off experiments reveal a significant disconnect
between the utility of reasoning traces for improving LLM performance and their cognitive interpretability
for humans. SFT with R1 traces led to higher accuracy, yet these traces were rated the lowest across all
dimensions of interpretability—predictability, comprehensibility, and faithfulness—and were associated with
the highest mental demand, effort, and frustration. Summaries and post-hoc explanations of R1 traces further
validate this point: although they yielded lower accuracy than R1 traces, they are easier for users to predict,
understand, and perceive as faithful (but also lack systematic evaluation). By contrast, algorithmically
generated correct traces were judged as most interpretable and least mentally demanding, but yielded the
weakest improvements in model accuracy. These results clearly highlight that verbose traces like R1 provide
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rich training signals for models, but are poorly aligned with the interpretability expectations of the end
user. Furthermore, the reasoning traces which benefit the LLMs the most need not have semantic structure,
underscoring a fundamental disconnect between what serves as a good training signal and what supports
human understanding.

6 Conclusion

In this work, we investigate the correlation between an LLM’s task performance, i.e., final solution accuracy
and two properties of the intermediate traces generated after SF'T, namely - semantic correctness and end-user
interpretability. By using a Knowledge Distillation method which utilizes problem decomposition making
these intermediate traces objectively verifiable, we evaluated the correctness of both the final solution and
the intermediate traces at the time of inference, specifically for Open Book QA reasoning problems. Our
SFT experiments with correct and incorrect intermediate traces on Llama and Qwen models across QA
datasets reveal that there is no significant correlation between final solution accuracy and intermediate trace
accuracy. In our SFT experiments with R1 traces, their summaries, and post-hoc explanations generated
using GPT-40-mini, we saw that using R1 traces achieved the highest final solution accuracy. However, from
our human-subject study we found that R1 traces were rated lowest in all human interpretability metrics,
revealing that traces most beneficial for the model often impose the greatest cognitive burden on users. This
decoupling between model performance and trace interpretability leads to two main takeaways: (1) verbose
trace formats like CoT seems to be helpful for improving model performance rather than end-user explanations,
and (2) generating human-interpretable rationales must be addressed independently via dedicated explanation
modules or a separate training objective. Our results highlight the need for a more nuanced approach in
designing trace-based training/fine-tuning methods and explanation systems for future LLMs, balancing both
LLM performance and user understanding.

Broader Impact

With the surge in number of end-user interactions with dialogue systems such as ChatGPT, Perplexity,
Microsoft Copilot or Google Gemini, there is also a growing need to deploy SLMs which provide computationally
efficient alternatives but lack the performance of Large Language Models. Task-specific SF'T, and more
recently with Input-Trace-Output tuples, has shown improved final solution performance for these SLMs.
However, since these systems directly interface with end users who expect accuracy and transparency in the
models’ outputs, our work points at the the lack of verifiable and interpretable intermediate traces being
used for finetuning language models. We also highlight the consequential impact of a model outputting
intermediate ‘reasoning’ traces which hold little to no correlation with correct final solutions. We believe that
our findings motivate future works to independently design solutions for boosting LLM performance and for
generating post-hoc explanations for end-users.
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A Additional Experiment Details
A.1 Dataset Distributions

Table 5: Train and Test data distribution for CoTemp QA dataset used in our SFT experiments.

Category ‘ Train/Test Samples

equal 349 / 87
overlap 522 / 131
during 2477 / 619

mix 450 / 113

Table 6: Train and Test data distribution for Microsoft MARCO QA dataset used in our SFT experiments.

Category ‘ Train/Test Samples

description 1000 / 200
entity 1000 / 200
numeric 1000 / 200
location 1000 / 200
person 1000 / 200

Table 7: Train and Test data distribution for Facebook bAbl QA dataset used in our SFT experiments.

Category ‘ Train/Test Samples
single-supporting-fact 200 / 20
two-supporting-facts 200 / 20

two-arg-relations 1000 / 100
counting 200 / 20
list-sets 200 / 20

conjunction 200 / 20

time-reasoning 200 / 20
basic-deduction 250 / 25
basic-induction 1000 / 100
positional-reasoning 125 / 12
size-reasoning 198 / 19
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A.2 Prompts

R1 Trace Summarization Prompt

Summarize the following trace in a very concise and clear manner, highlighting key events and outcomes
in less than 100 words:

{R1 trace}
Summary:

R1 Trace Explanation Prompt

{Problem}

{R1 trace}
{R1 answer}
You have answered the question correctly. Please provide a detailed explanation of the reasoning behind

your answer. The explanation should be clear, concise, and easy to understand.

Explanation:
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B User Study

To evaluate the interpretability of reasoning traces generated by reasoning models, we conducted a set of
structured user studies. Each participant was given a compensation of $12/hr. The IRB protocol details will
be released on acceptance. Each study followed the same sequence of steps, designed to ensure consistency
across participants for each study. Below we outline the main components of the study design.

B.1 Human Participant Demographics

We conducted four user studies with participants recruited through Prolific (all located in the United States).
In general, the participant populations in all four studies were demographically similar, with no major
differences in the age or education distribution, suggesting that the results in the studies are comparable and
not driven by differences in the composition of the participants.

Education: Participants spanned a range of educational backgrounds. Across all studies, the majority
held an Undergraduate Degree (roughly 45-55% in each study), followed by Master’s Degrees (20-30%), and
a smaller proportion with PhDs or equivalent doctoral-level degrees (10-15%). A minority of participants
reported High School, Associate’s Degree, or Some College as their highest level of education (<10% each).
These proportions were consistent across the four studies.

Age: The participants were distributed over a wide age range, with the largest groups being 35-50 years
old (approximately 35-40%) and 51+ years old (30-35%). Younger age groups were represented to a lesser
extent: 26-34 years old (20-25%) and 18-25 years old (5-10%). Again, these proportions were stable across
studies.

B.2 Consent and Statement

Each participant began the study by reviewing and agreeing to a consent statement (Figure[5| The statement
explained the goals of the study, what participants would be asked to do, and how their data would be
handled.

User Study

What to Expect

This study has been reviewed and approved by the Institutional Review Board (IRB) with
code:55564726. During the study, you will be presented with five passage-based
questions. We expect the study to take approximately 15 minutes to complete.

Confidentiality

All data collected during this study will be kept strictly confidential. Your personal
information will remain anonymous, and will only be accessible by authorized research
investigators. The information will only be used for research purposes and will not be
shared with any external entities.

Prolific ID
At the end of the study (when you click "Submit") you will be provided Prolific

Remuneration Code. Please
retain that code for your reference and enter it in Prolific Interface to get the remuneration.

Figure 5: Consent statement shown to participants before starting the study.
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B.3 Instructions

Participants were provided with detailed instructions describing the study structure (Figure @ Each of the
five parts of the study followed the same format:

—

. Facts: A short list of factual statements about a person.
2. Question: A query based on the passage.
3. Model’s Answer: The response generated by the AI model.

4. Reasoning: A step-by-step explanation of how the model arrived at its answer.

User Study

Instructions

There will be a total of 5 parts. In each part of the study, you will go through the following
steps:

1. Facts — You will be shown a short list of factual information about a person.

2. Question - A question based on the passage.

3. Medel's Answer — A response to the question generated by an Artificial Intelligence

(Al) model.
4. Reasoning — A step-by-step explanation of how the model arrived at its answer. This

will be presented to you inside the " ".

After reviewing this information, you will be asked to rate a series of statements about the
reasoning.

Each statement will be rated using the following scale:

Strongly Disagree - Disagree — Neutral — Agree - Strongly Agree

There are no right or wrong answers — we are interested in your personal impressions of
the model's reasoning.

=] An example will be shown on the next page to help you get familiar with the format.

Back Next Clear form

Never submit passwords through Google Forms.

Figure 6: Instructions shown to participants before starting the study.

After reviewing this information, participants rated statements about the reasoning on a 5-point Likert scale
(Strongly Disagree—Strongly Agree).
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B.4 Q/A Task

Before beginning the main task, participants reviewed an example question and answer with reasoning (Figure
@. Participants then completed five Q/A tasks of the same form as the example. Each task included a
passage, model answer, reasoning trace, and associated questionnaire (Figure .

User Study

Example

Facts:

« Gilbert Collard is a member of the National Rally from 2017 to 2022.

= Gilbert Collard holds the position of general secretary from November 30, 2018 to
2022.

= Gilbert Collard haolds the position of council member in April 4, 2014.

« Gilbert Collard holds the position of Anglican Bishop of Llandaff in January, 1974.

« Gilbert Collard is a member of the Reconqu\uOOeate in 2022.

= Gilbert Collard haolds the position of member of the European Parliament in July 2,
2019.

» Gilbert Collard is a member of the French Section of the Workers' International from
1964 10 1969.

« Gilbert Collard holds the position of medical director from 1970 to 2010.

« Gilbert Collard holds the position of Shadow Secretary of State for Northern Ireland in
August, 1964,

= Gilbert Collard is a member of the Socialist Party from 1969 to 1992.

Question: While Gilbert Collard was holding the position of member of the European
Parliament, which position did Gilbert Collard during the identical time period? Only return the
answer.

Model's Answer: general secretary

Reasoning:

Gilbert Collard served as a Member of the European Parliament (MEP) starting July 2, 2019.
Concurrently, he held the position of general secretary of the National Rally from November
30, 2018, until 2022, and was a member of the National Rally from 2017 to 2022. His MEP
role overlapped with both positions, but the general secretary role is the most relevant
concurrent position during his tenure as MEP. He joined Reconqu\uOQeate in 2022, after his
time in the European Parliament.

Please rate the following statements about the reasoning above;

Once you are done with this example, the user study begins from the next section.

| could anticipate the next steps or conclusions based on earlier parts of the
reasoning.

Strongly Disagree O O O O O Strongly Agree

Back Next Clear form
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Figure 7: Example shown to participants.
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User Study

Facts:

« Stine Bosse worked for Paramount Pictures from January 14, 1992 to November 24,
1999.

« Stine Bosse worked for IBM Almaden Research Center in October, 2008.

« Stine Bosse attended University of Copenhagen in 1987.

« Stine Bosse worked for Thomas Edison State University from June, 2007 to January,
2011.

= Stine Bosse works for Tryg from September 30, 2002 to February 1, 2011.

« Stine Bosse works for TODC from September 27, 2004 to February 28, 2006.

= Stine Bosse works for Alka from September 30, 2002 to February 1, 2011.

= Stine Bosse worked for National University of Science and Technology in January,
1999.

« Stine Bosse worked for Vassar College from March 26, 1998 to March 28, 1999.

« Stine Bosse works for Nykredit from January 16, 1989 to January 28, 1992.

Question: While Stine Bosse was working for TDC, which employer did Stine Bosse work for
within the same time interval? Only return the answer.

Model's Answer: Tryg and Alka

Reasoning:

Stine Bosse worked for TDC from September 27, 2004, to February 28, 2006. During this
period, she also worked for Tryg and Alka, both of which had overlapping employment dates
from September 30, 2002, to February 1, 2011. Although the question asks for a singular

employer, both Tryg and Alka qualify as valid answers.

Please rate the following statements about the reasoning above:-

Figure 8: Task shown to participants.
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B.5 Examples of Traces shown to Users

Table. [8) compares four representations of reasoning traces used in the study: the full R1 traces, summarized
traces, post-hoc generated explanations, and the correct traces.

Table 8: Comparison of R1 traces, summarized traces, post-hoc explanations, and correct traces for inter-
pretability analysis.

Type of Trace

Trace generated by model after SFT

DeepSeek R1

"Hmm, the user is asking about Gilbert Collard’s positions during the time he was a member of the
European Parliament. Let me carefully analyze the context provided. Looking at the timeline,

Gilbert Collard became a member of the European Parliament on July 2, 2019. I need to find which
other positions he held simultaneously during this period. From the context: He was general secretary

of National Rally from November 30, 2018 to 2022. He was a member of National Rally from 2017

to 2022. He joined Reconquéte in 2022. Since his European Parliament term started in July 2019 and
overlapped with both his National Rally membership (2017-2022) and his general secretary position
(2018-2022), both positions were held concurrently with his MEP role. However, the question specifically
asks for positions held during the identical time period as his MEP tenure. Both 'member of National
Rally’ and ’general secretary’ qualify, but I need to see which one is more precise. The general secretary
role started before his MEP term (Nov 2018 vs July 2019) and ended at the same time (2022). The party
membership also covers the entire period. But since the question mentions 'position,” both are valid,
though general secretary is a specific appointed role. I notice the user’s question says 'which position’
(singular), so I should provide the most relevant concurrent position. Given that general secretary is an
active leadership role within the party he belonged to during his MEP term, it seems the most directly
relevant answer. The other positions either predate his MEP term (like his medical director role ending
in 2010) or are from different periods (like his Socialist Party membership ending in 1992). The Anglican
Bishop and Shadow Secretary positions seem like possible data errors as they don’t align with his known
political career. Therefore, while holding the MEP position from July 2019 onward, Gilbert Collard was
simultaneously the general secretary of National Rally until 2022."

LLM-generated
R1 Summary

"Gilbert Collard served as a Member of the European Parliament (MEP) starting July 2, 2019.
Concurrently, he held the position of general secretary of the National Rally from November 30,

2018, until 2022, and was a member of the National Rally from 2017 to 2022. His MEP role
overlapped with both positions, but the general secretary role is the most relevant concurrent position
during his tenure as MEP. He joined Reconquéte in 2022, after his time in the European Parliament."

LLM-generated R1
post-hoc Explanation

"Alright, let me break down how I arrived at the answer step by step. The user wants to know which

position Gilbert Collard held simultaneously while serving as a Member of the European Parliament (MEP).
First, I identify the key timeframe: Collard became an MEP on July 2, 2019. This is my anchor point.

Now I need to examine all his other positions to see which overlapped exactly with this period.

Looking through the data: His role as general secretary ran from November 30, 2018 to 2022.

Since July 2019 falls between these dates, this overlaps. His National Rally membership (2017-2022) also
covers the MEP period, but the question specifically asks for 'position’ - implying a formal role, not just
membership. Other positions either ended before 2019 (like medical director ending in 2010) or started

after he left the MEP role (Reconquéte membership in 2022). Notably, some entries seem implausible based
on known facts (like Anglican Bishop in 1974 or Shadow Secretary in 1964), so I disregard those as likely
errors. Therefore, the only verifiable formal position held concurrently with his MEP term is general secretary
of National Rally. The timeline alignment is clear: he held both roles continuously from July 2019 until 2022."

Verifiably Correct
Trace

"The temporal relation between the event in question and the event in context is: during. I need to use the
following facts to answer the question: {’Gilbert Collard holds the position of general secretary from
November 30, 2018 to 2022.}"
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B.6 Questionnaire

After each reasoning trace, participants filled out a brief questionnaire assessing dimensions of interpretability
(Figure E[) At the end of the study, participants completed a feedback survey, with NASA-TLX questions to

measure perceived workload (Figure [10).

| could anticipate the next steps or conclusions based on earlier parts of the
reasoning.

Strongly Disagree O O O O O Strongly Agree
| understood the reasoning followed by the model.

Strongly Disagree O O O O O Strongly Agree
| could follow each step in the reasoning without confusion.

Strongly Disagree O O O O O Strongly Agree

The reasoning helped me understand why the model acted or concluded the way it
did.

Strongly Disagree O O O O O Strongly Agree
There were no major gaps or missing reasoning steps in the reasoning.
Strongly Disagree O O O O O Strongly Agree

The reasoning is consistent with the facts or evidence provided in the context.

Strongly Disagree O O O O O Strongly Agree

Back Next Clear form

Figure 9: Task-specific questionnaire shown to participants.
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User Study

Final Feedback

Thank you for completing the main part of the study! Before you finish, we would like you to
answer a few short questions about your experience with the task.

How mentally demanding was the task?

Very Low O O O O O Very High

How hard did you have to work to accomplish your level of performance?

Very Low O O O O O Very High

How frustrated, stressed, and annoyed were you?
1 2 3 4 5

Very Low O O O O O Very High

Back Next Clear form

Never submit passwords through Google Forms.

This content is neither created nor endorsed by Google. - Contact form owner - Terms of Service - Privacy Policy

Does this form look suspicious? Report

Google Forms

Figure 10: Final screen shown to participants for NASA TLX questions.
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B.7 Statistical Analysis Results

Dimension R1 vs Correct R1 vs Summarized R1 R1 vs Explanations

U D Sig. U D Sig. U D Sig.

H1: Interpretability

Predictability 176.5 .00022  Yes 177.0 .00036 Yes 126.5 .0004 Yes
Comprehensibility 175 .00019 Yes 102.2 < .00001 Yes 126 .0006 Yes
Interpretability 161 .00014 Yes 74.5 < .00001 Yes 187 < .00001 Yes
Faithfulness 178.5 .00015 Yes 73.5 < .00001 Yes 115.5 < .00001 Yes

H2: Cognitive Workload

Mental Demand 194 .00036 Yes 237.5 0.055 No 264 21 No
Effort 176 .00013 Yes 169.5 .0016 Yes 104 < .00001 Yes
Frustration 102.5 .01287 Yes 164 0.0013 Yes 158 .00056 Yes

Table 9: Pairwise Mann—Whitney U test results across different trace types. Significance is determined at
a = 0.05 with Bonferroni correction.
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