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ABSTRACT

Molecular discovery, when formulated as an optimization problem, presents
significant computational challenges as the optimization objectives can be non-
differentiable. Evolutionary Algorithms (EAs), often used to optimize black-box
objectives in molecular discovery, traverse chemical space by performing ran-
dom mutations and crossovers, leading to a large number of expensive objec-
tive evaluations. In this work, we ameliorate this shortcoming by incorporating
chemistry-aware Large Language Models (LLMs) into EAs. We consider both
commercial and open-source LLMs trained on large corpora of chemical infor-
mation as crossover and mutation operations in EAs. We perform an extensive
empirical study on multiple tasks involving property optimization and molecular
similarity, demonstrating that the joint usage of LLMs with EAs yields superior per-
formance over all baseline models across single- and multi-objective settings. We
demonstrate that our algorithm improves both the quality of the final solution and
convergence speed, thereby reducing the number of required objective evaluations.

1 INTRODUCTION

Molecular discovery involves a complex and iterative process where practitioners design molecule
candidates, synthesize them, evaluate their properties, and refine initial hypotheses. This process
can be slow and laborious, making it difficult to meet the increasing demand for new molecules in
domains such as pharmaceuticals, opto-electronics, and energy storage (Tom et al., 2024). This has
resulted in significant efforts in developing better search (Kristiadi et al., 2024), prediction (Atz et al.,
2021), and generation (Du et al., 2022a) algorithms to generate promising molecular candidates.
However, many challenges remain, especially in evaluating molecular properties due to expensive
evaluations (oracles), such as wet-lab experiments, bioassays, and computational simulations (Gensch
et al., 2022; Stokes et al., 2020).

Natural language processing (NLP) has been increasingly used to represent molecular struc-
tures (Chithrananda et al.; Schwaller et al., 2019; Öztürk et al., 2020) and extract chemical knowledge
from literature Tshitoyan et al. (2019). The link between NLP and molecular systems is facilitated
by molecular representations such as the Simplified Molecular Input Line Entry System (SMILES)
and Self-Referencing Embedded Strings (SELFIES) (Weininger, 1988; Daylight Chemical Infor-
mation Systems, 2007; Krenn et al., 2020). These methods represent 2D molecular graphs as text,
allowing molecules and their text descriptions to be represented using the same modality. Re-
cently, Large Language Models (LLMs) have been utilized in several chemistry-related tasks, such
as predicting molecular properties (Guo et al., 2023b; Jablonka et al., 2024), retrieving optimal
molecules (Kristiadi et al., 2024; Ramos et al., 2023; Ye et al., 2023), automating chemistry exper-
iments Bran et al. (2023); Boiko et al. (2023); Yoshikawa et al. (2023); Darvish et al. (2024), and
generating molecules with target properties (Flam-Shepherd & Aspuru-Guzik, 2023; Liu et al., 2024;
Ye et al., 2023). LLMs likely possess some knowledge of these domains because they have been
trained on massive amounts of textual data from the internet (including scientific knowledge) to
achieve general-purpose language comprehension (White, 2023). While these works have shown
that LLMs possess at least a preliminary understanding of chemistry, which is helpful for some
chemical discovery tasks, many are based on in-context learning and prompt engineering (Guo et al.,
2023b). This can pose issues when designing molecules with strict numerical objectives (AI4Science
& Quantum, 2023). Furthermore, methods based on LLM-prompting alone can generate molecules
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that are less fit since there is nothing physically grounding an LLM, or they can generate invalid
SMILES, meaning that outputs cannot be decoded to chemical structures (Skinnider, 2024).

In this work, we look at evolutionary algorithms (EAs), which are heuristic-based, derivative-free
optimization algorithms that only provide the objective value as feedback for a given query point (Song
et al., 2024). Because objective functions for molecular properties can be complex (for example,
spectral data or bioassays), obtaining their parameters and gradients can be nontrivial. Hence, EAs
are often used in molecular discovery (Kadan et al., 2023; Nigam et al., 2024), and have even
outperformed many gradient-based methods (Tripp & Hernández-Lobato, 2023). However, one issue
with EAs is that they randomly navigate chemical space based on pre-defined genetic operators which
are target objective agnostic. At the same time, chemistry-aware LLMs can provide knowledge of
the target objective and modify a molecule accordingly, but their outputs are noisy and typically
do not generate optimal molecules in a single step. We propose an evolutionary process called
Molecular Language-Enhanced Evolutionary Optimization (MOLLEO) that combines EAs with
LLMs as crossover and mutation operators to push the distribution of proposed molecules from
LLMs to candidates with optimized chemical properties. We first validate the performance of our
approach using three flavors of chemistry-aware LLMs on 12 property optimization and molecule
similarity tasks in the practical molecular optimization (PMO) benchmark Gao et al. (2022). We
find that MOLLEO consistently outperforms existing baselines with all language models tested. We
further show strong positive gains of MOLLEO in many multiobjective and protein-ligand docking
settings, demonstrating the utility of LLMs as genetic operators. Finally, we conduct an extensive
ablation study to illustrate the capabilities and vulnerabilities of LLMs for molecular optimization.

2 RELATED WORK

2.1 MOLECULAR OPTIMIZATION

Molecular design is a fundamental problem in the chemical sciences and is essential to a wide range
of real-world challenges, including medicine, mechanical engineering, and sustainability Sanchez-
Lengeling & Aspuru-Guzik (2018). The main obstacle for efficiently searching molecules of interest
is the gigantic and rugged chemical space with slow and expensive experimental validations Bohacek
et al. (1996); Stumpfe & Bajorath (2012). A classical approach is to make the chemical space combi-
natorial with expert-defined rules and leverages efficient search and discrete optimization methods to
find molecular structures with optimal properties of interest directly. These methods include Monte
Carlo Tree Search (MCTS) Yang et al. (2017), reinforcement learning (RL) Olivecrona et al. (2017a);
Guo & Schwaller (2023), genetic algorithms (GA) Jensen (2019); Fu et al. (2021); Nigam et al.
(2022); Fu et al. (2022) and others Du et al. (2024). In recent years, machine learning methods,
especially generative methods, have been applied to accelerate molecular optimization. These deep
generative models learn a continuous probabilistic model from empirical datasets and sample new
molecular structures from the learned distribution. This class of models include autoregressive
models (ARs) Popova et al. (2019); Gao et al. (2021), variational autoencoders (VAEs) Gómez-
Bombarelli et al. (2018); Jin et al. (2018), flow models Madhawa et al. (2019); Shi et al. (2020),
diffusion models Hoogeboom et al. (2022); Schneuing et al. (2022) and many others Du et al. (2024).
Beyond generating arbitrary molecular structures, these models often model a conditional probability
distribution on certain molecular properties or combine an optimization loop to search for molecules
with optimal properties of interest iteratively. These methods include gradient-based optimization,
Bayesian optimization, or latent space traversal methods Gómez-Bombarelli et al. (2018); Griffiths &
Hernández-Lobato (2020); Zang & Wang (2020); Du et al. (2022b); Wei et al. (2024).

2.2 LANGUAGE MODELS IN CHEMISTRY

LLMs have been widely investigated for their knowledge in scientific domains (Achiam et al., 2023;
AI4Science & Quantum, 2023), as well as their ability to leverage chemistry tools for experimental
tasks in chemical discovery and characterization (Bran et al., 2023; Boiko et al., 2023). Several works
have benchmarked LLMs such as GPT-4 on chemistry tasks and found that LLMs can do better
than human chemists in some zero-shot question-answering settings, but still struggle with chemical
reasoning (Mirza et al., 2024; Guo et al., 2023b). Several smaller, open-source models have been
specifically trained or fine-tuned on chemistry text (Taylor et al., 2022; Christofidellis et al., 2023;
Pei et al., 2023).
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Recently, language models have also been used to guide a given input molecular structure towards
specific objective properties (molecular editing) (Liu et al., 2023b; Ye et al., 2023). This is important
for optimizing compounds that need to satisfy multiple criteria, such as pharmaceutical development,
where efficacy needs to be balanced with toxicity, and battery design, where power needs to be
balanced with cell lifespan. In this paper, we focus on a different and more goal-oriented problem—
molecular optimization to find molecules with desired properties instead of interactive editing. For
readers who are interested, we provide more related works about how LLMs have been combined
with EAs for code and text generation and benchmarking LLMs in chemical tasks in Appendix A.1.

3 PRELIMINARIES

Single-objective optimization. Molecule optimization for a single property can be formulated as:

m∗ = arg max
m∈M

O(m) (1)

where m is a molecular structure and M denotes the set of molecules constituting the entire chemical
space. O(m) : M → R is a (often black-box) scalar-value objective function that evaluates a certain
property y of molecule m.

Multi-objective optimization. Oftentimes, molecules need to meet multiple, potentially competing
objectives simultaneously. The goal of multi-objective optimization is to find the Pareto-optimal
solution, where none of the objectives can be improved without deteriorating any of them Lin et al.
(2022). The multi-objective optimization problem extends the single-objective problem as:

m∗ = arg max
m∈M

F [(O1(m), O2(m), ..., On(m))] (2)

where F represents a composition of each individual objective. The easiest compositions to im-
plement are weighted sums or products, but determining the weight of each objective function is
nontrivial Kusanda et al. (2022). Instead, Pareto optimization focuses on another perspective that
aims to find a set of nondominated solutions instead of a single optimal solution.

S = {(o ∈ Rn,m) : o = O(m),m ∈M} (3)

P (S) = {(o,m) ∈ S : {o′ ∈ S : o′ ≻ o, o′ ̸= o} = ∅} (4)

where S is the set of objective values and P (S) refers to the Pareto frontier of these objective values,
≻ denotes Pareto dominance which means o′ is strictly better than o. In the end, the set P (S) contains
the set of molecules m on the Pareto frontier Geoffrion (1968); Ekins et al. (2010).

Black-box optimization. A single step t of the generic black-box optimization is:

xt ← A(h0:t−1) , yt ← f(xt) , (5)

where A is the algorithm generates a proposal xt from the search space X and history h, and yt is the
objective value evaluated on xt (Song et al., 2024). This process is repeated until some termination
criterion T is reached. In our setup, we also extend A with an additional text input information
text_prompt about the optimized objective O, i.e. xt ← A(text_prompt, h0:t−1).

For the baseline algorithm A, we consider genetic algorithms (GAs), which are a type of EA (Holland,
1992). GAs start from an initial population and then use biologically-inspired genetic operators, such
as crossover, mutation, and selection, to evolve a pool of candidates. Crossover involves selecting a
pair of “parents" from the population and combining their elements to generate a single offspring,
while mutations operate on single members. Selection pressures can be applied to the population at
various points to filter candidates based on objective values or other selection criteria. Once a new
pool of candidates is created, the objective function O : M → R is evaluated for all members.

4 METHODOLOGY

The MOLLEO framework, shown in Figure 1, builds upon Graph-GA (Jensen, 2019), and operates
as follows.
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Figure 1: Overview of MOLLEO. Given an initial pool of molecules, mates are selected using
default Graph-GA (Jensen, 2019) heuristics. Large language models (LLMs) are then engaged as
mutation or crossover operators to edit molecules using a text prompt describing the target objective.
The offspring molecules are scored using an oracle and the best-scoring ones are passed onto the next
generation. This process is repeated until the maximum allowed Oracle calls have been made.

An initial pool of molecules is randomly selected, and their fitness is calculated using a black-box
oracle of O. Two parents are then sampled with a probability proportional to their fitnesses and
combined using a CROSSOVER operator to generate a child, followed by a random MUTATION. This is
repeated num_crossover times, and children are added to the pool of offspring. Finally, we measure
the fitness of the offspring using O, add them to the population, and keep the nc of the most fit
members to pass on to the next generation. This process is repeated until the maximum number of
allowed oracle calls has been made (oracle budget). This process is outlined in Algorithm 1.

We incorporate chemistry-aware LLMs into the structure of Graph-GA. One way we investigate
this is by instead of using the random CROSSOVER operation. We generate molecules that maximize
the objective fitness function guided by the objective description. We also investigate adding a
MUTATION operator to mutate the fittest members of the current population. This selective pressure
was motivated by the fact that LLMs can generate noisy edits (in that an edited molecule has lower
fitness compared with the initial input molecule, see Appendix A.3). So we construct a filter to
select which edited molecules to keep based on structural similarity (Nigam et al., 2022). We sort the
existing population by fitness and then apply a mutation to the top population members and add them
to the pool of offspring. We prune the offspring pool by selecting the no most similar offspring to the
fittest molecule in the entire pool based on Tanimoto distance. We ablate the impact of this filter in
Appendix A.5.1.

For each LLM, we describe below the details of how we implement the CROSSOVER and MUTATION op-
erators. We empirically studied different combinations of models and hyperparameters (demonstrated
in Appendix A.5.1) and, in what follows, describe the operators that resulted in the best performance.

4.1 GRAPH-GA

• CROSSOVER: (default Graph-GA crossover) Crossover takes place at a ring position or non-ring
position with equal likelihood. Parents are cut randomly into fragments and then fragments from
both parents are combined. Invalid molecules are filtered out and a random spliced molecule is
returned Jensen (2019).
• MUTATION: (default Graph-GA mutation) Random operations such as bond insertion or deletion,
atom insertion or deletion, bond order swapping, or atom identity changes are done with predetermined
likelihoods Jensen (2019).
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Algorithm 1: MOLLEO Algorithm
Data: M0, the initial molecule pool; O, the oracle; nc, the population size; no. the number of

offspring
Result: Optimized molecule population M∗

begin
for m ∈M0 do

Compute O(m);
t← 0;
while t < oracle_budget and not_converged do

offspring = [];
while len(offspring) < num_crossovers do

m0,m1 = sample_molecules(Mt);
z̃ = CROSSOVER(m0,m1);
offspring.append(z̃);

Mt ← sorted(Mt);
i← 0;
while i < num_mutations do

z̃ = MUTATION(Mt[i]);
offspring.append(z̃);
i← i+ 1;

offspring← search(offspring)[: no]
Mt ← offspring;
for m ∈Mt do

Compute O(m);
Mt ← sorted(Mt)[: nc];
t← t+ 1;

M∗ ←Mt;
Return M∗;

4.2 MOLLEO (GPT-4)

• CROSSOVER: Two parent molecules are sampled using the default Graph-GA algorithm (with a
probability proportional to their fitness). GPT-4 is then prompted to generate an offspring with the
template tin = "I have two molecules and their [target_objective] scores: (sin,0,
f0), (sin,1, f1). Propose a new molecule with a higher [target_objective] by
making crossover and mutations based on the given molecules.", where sin,x is an input
SMILES and fx is its fitness score. We then obtain an edited SMILES molecule as an output: sout =
GPT-4(tin). If sout cannot be decoded to a valid molecule structure, we generate an offspring using
the default crossover operation from Graph-GA. We demonstrate the frequency of invalid LLM edits
in Appendix A.3.
• MUTATION: (default Graph-GA mutation)

4.3 MOLLEO (BIOT5)

• CROSSOVER: (default Graph-GA crossover)
• MUTATION: For the top Y molecules in the entire pool, we mutate them by prompting BioT5 with the
template tin = "Definition: You are given a molecule SELFIES. Your job is to generate
a SELFIES molecule that [target_objective]. Now complete the following example -
Input: <bom>[lin]<eom> Output:", where lin is the SELFIES representation of a molecule. We
then obtain an edited SELFIES molecule as an output: lout = BioT5(tin). We transform lout back
to the SMILES representation and add them to the pool of offspring. Because SELFIES can always
be decoded into a molecular structure, there are no issues with BioT5 generating invalid molecules.
Given the X offspring from crossover and the Y offspring from this editing procedure, we then
select the top nc offspring overall to keep by selecting the most structurally similar offspring using
Tanimoto distance to the fittest molecule in the entire pool Nigam et al. (2022).
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Table 1: Top-10 AUC of single-objective tasks. The best model for each task is bolded and the top
three are underlined. We also report the sum of all tasks (total) and the rank of each model overall.

Method
Objective (↑) REINVENT Graph GA GP BO MOLLEO (MOLSTM) MOLLEO (BIOT5) MOLLEO (GPT-4)

QED 0.941±0.000 0.940±0.000 0.937±0.000 0.937±0.002 0.937±0.002 0.948±0.004
isomers_c9h10n2o2pf2cl 0.642±0.054 0.719±0.047 0.469±0.180 0.871±0.039 0.873±0.019 0.874±0.053

JNK3 0.783±0.023 0.553±0.136 0.564±0.155 0.643±0.226 0.728±0.079 0.790±0.027
DRD2 0.945±0.007 0.964±0.012 0.923±0.017 0.975±0.003 0.981±0.002 0.968±0.012

GSK3β 0.865±0.043 0.788±0.070 0.851±0.041 0.898±0.041 0.889±0.015 0.863±0.047
mestranol_similarity 0.618±0.048 0.579±0.022 0.627±0.089 0.596±0.018 0.717±0.104 0.972±0.009

thiothixene_rediscovery 0.534±0.013 0.479±0.025 0.559±0.027 0.508±0.035 0.696±0.081 0.727±0.052
perindopril_mpo 0.537±0.016 0.538±0.009 0.493±0.011 0.554±0.037 0.740±0.032 0.600±0.031
ranolazine_mpo 0.760±0.009 0.728±0.012 0.735±0.013 0.725±0.040 0.749±0.012 0.769±0.022
sitagliptin_mpo 0.021±0.003 0.433±0.075 0.186±0.055 0.548±0.065 0.506±0.100 0.584±0.067

deco_hop 0.666±0.044 0.619±0.004 0.629±0.018 0.613±0.016 0.827±0.093 0.942±0.013
scaffold_hop 0.560±0.019 0.517±0.007 0.548±0.019 0.527±0.019 0.559±0.102 0.971±0.004

Total 7.872 7.857 7.521 8.395 9.202 10.008
Rank 4 5 6 3 2 1

4.4 MOLLEO (MOLSTM)

• CROSSOVER: (default Graph-GA crossover)
• MUTATION: For the top Y molecules in the entire pool, we edited them by following a single text-
conditioned editing step from (Liu et al., 2023b). Given the MoleculeSTM molecule and text encoders
(EMc and ETc, respectively), a pre-trained generative model consisting of an encoder EMg and
decoder DMg (Irwin et al., 2022), and an adaptor module (Agc) to align embeddings from EMc and
EMg, an input molecule SMILES (sin) is edited towards a text prompt describing the objective by
updating the embedding from EMg. First, the molecule embedding x0 is obtained from EMg(sin).
Then, x0 is updated using gradient descent for T iterations:

xt+1 = xt − α∇xtL(xt)
where α is the learning rate and L(xt) is defined as:

L(xt) = -cosine_sim(EMc(Agc(xt)), ETc(text_prompt)) + λ||xt − x0||2
λ controls how much the embedding at iteration t can deviate from the input embedding. Finally, xT

is passed to the decoder DMg to generate a molecule SMILES sout. If sout cannot be decoded into
a valid molecule (see Appendix A.3), we edit the next best molecule (so that we have Y offspring
after the editing has finished). Similarly to MOLLEO (BIOT5), we combine the X crossover and Y
mutated offspring and select the nc most similar molecules to the top molecule overall to keep.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Benchmarks. We evaluate MOLLEO on 15 total tasks from two molecular generation benchmarks,
PMO Gao et al. (2022) and TDC (Huang et al., 2021). The tasks are organized into the following
categories:

1. Similarity-based optimization, which optimizes for molecules based on target structures. These
include isomer generation based on a target molecular formula (isomers_c9h10n2o2pf2cl),
similarity to known drugs (mestranol_similarity, thiothixene_rediscovery), three multi-
property optimization tasks (MPO) that aim to rediscover drugs while optimizing for other
properties such as LogP and TPSA, and two tasks based on matching scaffolds and substructure
motifs (deco_hop, scaffold_hop). While tasks purely based on rediscovering existing drugs
may be trivial for LLMs if they were trained on them, they can signal whether an LLM knows
how to make perturbations towards desired molecules, demonstrating basic chemical knowledge.

2. Property optimization. We first consider a trivial property optimization task (QED Bickerton et al.
(2012), which measures the drug-likeness of a molecule based on a set of simple heuristics).
We then focus on the three following tasks from PMO, which measure a molecule’s activity
against the following proteins: DRD2 (Dopamine receptor D2), GSK3β (Glycogen synthase
kinase-3 beta), and JNK3 (c-Jun N-terminal kinase-3). For these tasks, molecular inhibition is
determined by previously-trained classifiers that take in a SMILES string and output a value
p ∈ [0, 1], where p ≥ 0.5 is taken to mean that the molecule inhibits protein activity. Finally, we
include three protein-ligand docking tasks from TDC Graff et al. (2021), which are more difficult
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Table 2: Summation and hypervolume scores of multi-objective tasks. We report the results for two
aggregation methods: Summation (Sum) and Pareto optimality (PO). The best model for each task is
bolded.

Task 1: QED (↑), JNK3 (↑),
SAscore (↓)

Task 2: QED (↑), GSK3β (↑),
SAscore (↓)

Task 3: QED (↑), JNK3 (↑),
SAscore (↓),GSK3β (↓),
DRD2 (↓)

Aggregate
objective Model Sum Hypervolume Sum Hypervolume Sum Hypervolume

Sum

Graph-GA 1.967 ± 0.088 0.713 ± 0.083 2.186 ± 0.069 0.719 ± 0.055 3.856 ± 0.075 0.162 ± 0.048
MOLLEO (MOLSTM) 2.177 ± 0.178 0.625 ± 0.162 2.349 ± 0.132 0.303 ± 0.024 4.040 ± 0.097 0.474 ± 0.193

MOLLEO (BIOT5) 1.946 ± 0.222 0.592 ± 0.199 2.306 ± 0.120 0.693 ± 0.093 3.904 ± 0.092 0.266 ± 0.201
MOLLEO (GPT-4) 2.367 ± 0.044 0.752 ± 0.085 2.543 ± 0.014 0.832 ± 0.024 4.017 ± 0.048 0.606 ± 0.086

PO

Graph-GA 2.120 ± 0.159 0.603 ± 0.082 2.339 ± 0.139 0.640 ± 0.034 4.051 ± 0.155 0.606 ± 0.052
MOLLEO (MOLSTM) 2.234 ± 0.246 0.472 ± 0.248 2.340 ± 0.254 0.202 ± 0.054 3.989 ± 0.145 0.381 ± 0.204

MOLLEO (BIOT5) 2.325 ± 0.164 0.630 ± 0.120 2.299 ± 0.203 0.645 ± 0.127 3.946 ± 0.115 0.367 ± 0.177
MOLLEO (GPT-4) 2.482 ± 0.057 0.727 ± 0.038 2.631 ± 0.023 0.820 ± 0.024 4.212 ± 0.034 0.696 ± 0.029

tasks closer to real-world drug design compared to simple physicochemical properties Cieplinski
et al. (2020). The proteins we consider are DRD3 (dopamine receptor D3, PDB ID: 3PBL),
EGFR (epidermal growth factor receptor, PDB ID: 2RGP), and Adenosine A2A receptor (PDB ID:
3EML). Molecules are docked against the protein using AutoDock Vina (Eberhardt et al., 2021),
and the output is the docking score of the binding process.

Evaluation metrics. To consider both the optimization ability and sample efficiency of each method,
we follow the evaluation metrics in (Gao et al., 2022), using the area under the curve of the top-k
average property value (top-k AUC) versus the number of oracle calls as the primary metric. This
metric rewards methods that achieve high values with fewer oracle calls. For this study, we set
K = 10, as it is useful to identify a small, distinct set of molecular candidates suitable for later stages
of development. AUC values are min-max scaled to the range [0,1] to standardize results. We restrict
the budget of oracle calls to 10,000, although the algorithm terminates early if the average fitness of
the top-100 molecules does not change by 1e− 3 within five epochs. We restrict the budget to 1000
calls for the docking experiments since the tasks are significantly more time-consuming. We report
all metrics over five random seeds.

For multi-objective optimization, we chose four metrics to evaluate solutions on Pareto frontiers.
Top-10 AUC summation, which sums the fitness values for each of the tasks for the top molecules.
Hypervolume measures the dominant region under the Pareto optimal solutions in the objective space.
Structural diversity reflects the chemical diversity of the Pareto set through the average pairwise
Tanimoto similarity between Morgan fingerprints of molecules in the set. Similarly, objective diversity
illustrates the coverage of the Pareto frontiers through pairwise Euclidean distance between objective
values of the molecules in the Pareto set.

Data. We randomly sample an initial pool of 120 molecules from ZINC 250K (Sterling & Irwin,
2015) following PMO.

Base evolutionary algorithm. We build on Graph-GA (Jensen, 2019) as our baseline evolutionary
algorithm owing to its simple architecture and competitive performance. In each iteration, Graph-GA
samples two molecules with a probability proportional to their fitnesses for crossover and mutation
and then randomly mutates the offspring with probability pm = 0.067. This process is repeated to
generate 70 offspring. The fitnesses of the offspring are measured and the top-120 most fit molecules
in the entire pool are kept for the next generation. We reduce the number of generated offspring to 7
for the docking experiments and the population size to 12 due to long experiment runtimes.

Base LLMs. We analyze three LLMs in MOLLEO as genetic operators in MOLLEO. One of
the considered models is GPT-4 (Achiam et al., 2023) — a transformer trained using next-token
prediction and reinforcement learning from human feedback, which has achieved state-of-the-art
performance on chemistry question-answering tasks (Mirza et al., 2024). The other two considered
models are open-sourced models trained on domain-specific chemistry text. Compared to GPT-4, they
have fewer parameters and have been trained on smaller datasets. BioT5, among other data, is trained
on the string representations of molecules called SELFIES to predict missing tokens (including those
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at the end of a sentence) (Pei et al., 2023). Because of its ability to generate SELFIES representations,
it always produces valid molecules, unlike other models. Finally, MoleculeSTM is trained using
a contrastive loss on the pairs of molecular structures and text descriptions and is aligned with an
open-source generative model to decode molecule embeddings to SMILES strings (Liu et al., 2023b).

Baselines. We use the top-performing models from the PMO benchmark (Gao et al., 2022) as
baselines. These are REINVENT (Olivecrona et al., 2017b), an RNN that uses a reinforcement
learning-based policy to guide generation, Graph-GA, Gaussian process Bayesian optimization (GP
BO) (Tripp et al., 2021).

Prompts. For each model, we show the prompts in Appendix A.7. We created prompts similar to
those demonstrated in the original source code of each model, replacing each template with a task
description. We briefly investigate the impact of prompt selection in Appendix A.8.

5.2 QUANTITATIVE EVALUATION

Incorporating LLMs into GA optimization. To motivate the utility of using chemistry-aware
LLMs in GA pipelines, in Figure 2 we show the fitness distribution of an initial pool of random
molecules on binding to JNK3. We then do a single round of edits to all molecules in the pool
using each LLM, and plot the resulting fitness distribution of the edited molecules. We find that the
distribution for each LLM shifts to slightly higher fitness values, indicating that LLMs do provide
useful modifications. However, the overall objective scores are still low, so single-step editing is
not sufficient (see Appendix A.3 for quantitative experiments on this). We then show the fitness
distributions of the populations as the genetic optimization progresses and find that fitnesses increase
to higher values on average given the same number of oracle calls.

0.0 0.2 0.4 0.6 0.8 1.0
Fitness

MolLEO(GPT-4)

MolLEO(BioT5)

Init pop LLM editting, one round 10% oracle calls 50% oracle calls 100% oracle calls

MolLEO(MolSTM)

Graph-GA

Figure 2: Population fitness over increasing
number of iterations for JNK3 binding. In the
lightest blue, we plot the fitness distribution of the
initial molecule pool. We then pass the molecules
through a single round of LLM edits (pink curve).
Finally, we show the fitness distribution of the top-
10 molecules over 10%, 50%, and 100% of the
oracle calls made.

Single-objective optimization. We show the
results of single-objective optimization across
12 tasks in PMO in Table 1. We report the top-10
AUC for each task, as well as the overall rank of
each model. We find that employing any of the
three LLMs we tested as genetic operators im-
proves performance over the default Graph-GA,
as well as all other baselines we test. Notably,
MOLLEO (GPT-4) ranks top-1 in 9 out of 12
tasks, demonstrating its utility in molecular gen-
eration. MOLLEO (BIOT5), which incorpo-
rates a much smaller language model trained
on domain-specific data, obtained a total score
close to that of MOLLEO (GPT-4), and has the
benefit of being free to use. We note that the
performance of MOLLEO (BIOT5) is generally
better than that of MOLLEO (MOLSTM). Empirically, we show in Appendix A.3 that BioT5 pro-
duces valid molecules more often and those molecules have higher fitness than those generated by
MoleculeSTM on average. This could be due to several reasons, such as differences in training data
or poor alignment between the MoleculeSTM encoder and the generative model they use.

For the tasks deco_hop and scaffold_hop, there was only a small gain for open-source MOLLEO
models. This is likely because the task description involves negative matching and recognition of
SMARTS patterns (e.g., This molecule does not contain the scaffold [#7]-c1n[c;h1]nc2
[c;h1]c(-[#8])[c;h0][c;h1]c12), which the models were likely not trained on.

We also find that MOLLEO has better sample efficiency compared to baseline algorithms, as they
can find better optimal molecules with fewer oracle calls; we show this in Appendix Figure 5. This is
important when considering how these models can translate to real-world experiments to reduce the
number of experiments needed to find ideal candidates.

In Figure 3, we plot the average docking scores of the top-10 best molecules of three protein-ligand
docking tasks for MOLLEO (BIOT5) and Graph-GA. These tasks are more complex than simple
property optimization and similarity-based optimization, and closer to real-world settings of molecular
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Figure 3: Average docking score of top-10 molecules when docked against DRD3, EGFR, or
Adenosine A2A receptor proteins. Lower docking scores are better. For each model, we show the
convergence point (the point at which the population scores no longer changed) with a star.

generation. We find that MOLLEO (BIOT5) can generate molecules with lower (better) docking
scores than the baseline model for all three proteins and converge faster to the optimal set. In
practice, this could translate to requiring fewer bioassays to screen molecules, which is both cost-
and time-effective.
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Figure 4: Pareto frontier visualizations for for
Graph-GA and MOLLEO (GPT-4) on multi-
objective tasks. (a) Shows Task 1 (min SA score,
max JNK3 binding, max QED) and (b) Shows Task
2 (min SA score, max GSK3B binding, max QED).

Multi-objective optimization. In Table 2, we
show the results of multi-objective optimization
for three tasks. Tasks 1 and 2 are motivated by
goals in drug discovery and aim for simultane-
ous optimization of three objectives: maximiz-
ing a molecule’s QED, minimizing its synthetic
accessibility (SA) score (meaning that it is easier
to synthesize), and maximizing its binding score
to either JNK3 (Task 1) or GSK3B (Task 2).
Task 3 is even more challenging as it targets five
objectives at the same time: maximizing QED,
maximizing binding to JNK3, minimizing bind-
ing to GSK3B and DRD2, and minimizing SA.
We investigate two strategies for multi-objective
optimization: (1) summation of individual ob-
jectives as a single objective and (2) Pareto set
selection, which uses Pareto optimal solutions as the mating pool for the next generation. We find
that MOLLEO (GPT-4) consistently outperforms the baseline Graph-GA in all three tasks in terms
of hypervolume and summation. In Figure 4, we visualize the Pareto optimal set (in objective
space) for our best model (MOLLEO (GPT-4)) and Graph-GA on Tasks 1 and 2. In Table 2, we
see that the performance of open-source LLMs degrades when introducing multiple objectives into
the prompt. We assume that this performance drop may come from their inability to capture large,
information-dense contexts. We show the structural and the objective diversity in Appendix A.2.

6 CONCLUSION, TAKEAWAY AND FUTURE WORK

In this paper, we propose MOLLEO, a marriage between EAs and LLMs that leverages the advantages
of both methods to achieve state-of-the-art performance in molecular optimization, encompassing a
variety of single- and multi-objective property optimization, rediscovery and structure-based drug
design tasks. We demonstrate the capability and versatility of language models in accelerating
molecular discovery. Towards general decision making with LLMs in scientific discovery. As an
initial study, we envision the following directions to be further studied: (1) pre-training/fine-tuning
in specific contexts, (2) human-in-the-loop design, (3) deployment in chemical discovery workflow,
(4) adapting to other optimization and design problem in science (proteins, RNAs, crystals, etc.) or
general domain.
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A APPENDIX

A.1 EXTENDED RELATED WORK

Benchmarking LLMs on Chemistry Tasks ChemLLMBench proposed and benchmarked LLMs
on a variety of eight chemistry tasks from property prediction and reaction prediction to molecule
captioning Guo et al. (2023b). Unfortunately, the benchmark results suggest the capabilities of
current LLMs are limited in solving those tasks compared to other machine learning models. Notably,
most tasks in the benchmark are formulated in a question-answering format, which is different
from the optimization problem proposed in this paper. SciBench evaluated the ability of LLMs
in taking college-level exams in a variety of science disciplines and found that LLMs fell short of
delivering satisfactory performances Wang et al. (2023). One recent work compiled a larger set of
question-answer pairs for a more systematic understanding of the abilities of LLMs across the full
spectrum of chemistry Mirza et al. (2024).

Language Models and Evolutionary Algorithms Several works have demonstrated the feasibility
of using language models to imitate the operator in evolutionary algorithms (Lehman et al., 2023).
OPRO Yang et al. (2024) and EvoPrompt (Guo et al., 2023a) progressively improved solutions in
optimization tasks when provided with the problem description and past evaluation trajectories in
natural language. Later, LMEA Liu et al. (2023a) connected LLMs with an EA by instructing LLMs
to select parent solutions from the current population and perform crossover and mutation operations
to generate offspring solutions. Rather than directly proposing solutions, FunSearch Romera-Paredes
et al. (2024) proposed an evolutionary process with LLMs to solve combinatorial problems with
program synthesis. Subsequently, Eureka Ma et al. (2024) leveraged LLMs and EA to design reward
functions in reinforcement learning for robot control, demonstrating that reward functions optimized
by LLMs can outperform those designed by human experts. This approach has been further extended
to multi-agent RL for resource allocation problems in public health Behari et al. (2024).

Large Language Models for Decision Making. Decision-making represents a fundamental chal-
lenge in artificial intelligence and cognitive science, which involves the selection of actions to reach
certain goals. One branch of decision making is arguably sequential decision making, which involves
a sequence of actions including experiment planning, robot navigation, etc Littman (1996). A notable
amount of studies have been conducted about in-context learning and prompt engineering to enhance
the reasoning capabilities of LLMs Wei et al. (2022); Yao et al. (2024). LLMs are also considered as
agents to accomplish tasks with access to tools Wu et al. (2023). Another branch of decision-making
comes from optimization problems such that the ultimate goal is to find an optimal solution in which
the common tools are mathematical programs in operation research and engineering Rao (2019). The
opportunities to use LLMs to solve optimization problems have also been studied, including program
search Romera-Paredes et al. (2024), prompt optimization Yang et al. (2023), and mathematical
programming AhmadiTeshnizi et al. (2023).

A.2 DIVERSITY ANALYSIS IN MULTI-OBJECTIVE OPTIMIZATION

We show the structural diversity and objective diversity for multi-objective optimization in Table 4.

A.3 PERFORMANCE OF SINGLE-STEP MOLECULE EDITTING

Table 3: Viability of LLM edits. We prompt different LLMs with descriptions of the JNK3 and
perindopril_mpo target objectives on an initial random pool of molecules drawn from 5 random seeds.
We report the percentage of valid molecules (number of valid molecules / number of total molecules),
the percentage of molecules with higher fitness after editting, and the mean fitness increase of those
molecules.
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Table 4: Multi objective results. The best model for each task is bolded.

Task 1: maximize QED (↑),
minimize SA (↓), maximize JNK3 (↑)

Summation
(Top-10 AUC) (↑) Hypervolume (↑) Structural diversity (↑) Objective diversity (↑)

Summation

Graph-GA 1.967 ± 0.088 0.713 ± 0.083 0.741 ± 0.115 0.351 ± 0.079
MOLLEO (MOLSTM) 2.177 ± 0.178 0.625 ± 0.162 0.803 ± 0.011 0.362 ± 0.074

MOLLEO (BIOT5) 1.946 ± 0.222 0.592 ± 0.199 0.805 ± 0.196 0.341 ± 0.091
MOLLEO (GPT-4) 2.367 ± 0.044 0.752 ± 0.085 0.726 ± 0.063 0.292 ± 0.076

Pareto optimality

Graph-GA 2.120 ± 0.159 0.603 ± 0.082 0.761 ± 0.034 0.219 ± 0.117
MOLLEO (MOLSTM) 2.234 ± 0.246 0.472 ± 0.248 0.739 ± 0.015 0.306 ± 0.085

MOLLEO (BIOT5) 2.325 ± 0.164 0.630 ± 0.120 0.724 ± 0.020 0.339 ± 0.062
MOLLEO (GPT-4) 2.482 ± 0.057 0.727 ± 0.038 0.745 ± 0.057 0.322 ± 0.104

Task 2: maximize QED (↑),
minimize SA (↓), maximize GSKB3 (↑)

Summation

Graph-GA 2.186 ± 0.069 0.719 ± 0.055 0.778 ± 0.122 0.379 ± 0.101
MOLLEO (MOLSTM) 2.349 ± 0.132 0.303 ± 0.024 0.820 ± 0.010 0.440 ± 0.037

MOLLEO (BIOT5) 2.306 ± 0.120 0.693 ± 0.093 0.803 ± 0.013 0.384 ± 0.045
MOLLEO (GPT-4) 2.543 ± 0.014 0.832 ± 0.024 0.715 ± 0.052 0.391 ± 0.021

Pareto optimality

Graph-GA 2.339 ± 0.139 0.640 ± 0.034 0.816 ± 0.028 0.381 ± 0.071
MOLLEO (MOLSTM) 2.340 ± 0.254 0.202 ± 0.054 0.770 ± 0.017 0.188 ± 0.010

MOLLEO (BIOT5) 2.299 ± 0.203 0.645 ± 0.127 0.759 ± 0.022 0.371 ± 0.047
MOLLEO (GPT-4) 2.631 ± 0.023 0.820 ± 0.024 0.646 ± 0.017 0.191 ± 0.026

Task 3: maximize QED (↑), JNK3 (↑),
minimize SA (↓), GSKB3 (↓), DRD2 (↓)

Summation

Graph GA 3.856 ± 0.075 0.162 ± 0.048 0.821 ± 0.024 0.226 ± 0.057
MOLLEO (MOLSTM) 4.040 ± 0.097 0.474 ± 0.193 0.783 ± 0.027 0.413 ± 0.064

MOLLEO (BIOT5) 3.904 ± 0.092 0.266 ± 0.201 0.828 ± 0.005 0.243 ± 0.081
MOLLEO (GPT-4) 4.017 ± 0.048 0.606 ± 0.086 0.726 ± 0.064 0.289 ± 0.050

Pareto optimality

Graph GA 4.051 ± 0.155 0.606 ± 0.052 0.688 ± 0.047 0.294 ± 0.074
MOLLEO (MOLSTM) 3.989 ± 0.145 0.381 ± 0.204 0.792 ± 0.030 0.258 ± 0.019

MOLLEO (BIOT5) 3.946 ± 0.115 0.367 ± 0.177 0.784 ± 0.020 0.367 ± 0.177
MOLLEO (GPT-4) 4.212 ± 0.034 0.696 ± 0.029 0.641 ± 0.037 0.266 ± 0.062
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Figure 5: Average of top-10 molecules generated by MOLLEO and Graph-GA models for three
tasks over the increasing number of oracle calls. For each model, we show the convergence point
(the point at which the population fitness no longer increased) with a star.

Metric MoleculeSTM BioT5 GPT-4

Percent valid molecules

peridopril_mpo:
0.938
JNK3:
0.928

peridopril_mpo:
1.000
JNK3:
1.000

peridopril_mpo:
0.862
JNK3:
0.835

Percent molecules with higher fitness after editting

peridopril_mpo:
0.456
JNK3:
0.206

peridopril_mpo:
0.568
JNK3:
0.513

peridopril_mpo:
0.240
JNK3:
0.263

Mean fitness increase

peridopril_mpo:
+0.033
JNK3:
+0.022

peridopril_mpo:
+0.208
JNK3:

+0.0320

peridopril_mpo:
+0.032
JNK3:

+0.0262
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A.4 OPTIMIZATION TRENDS OVER SINGLE-OBJECTIVE TASKS.

In Figure 5, we show the optimization curves for three tasks: JNK3, perindopril_mpo, and iso-
mers_c9h10n2o2pf2cl.

A.5 ABLATION STUDIES

A.5.1 INCORPORATING LLM-BASED GENETIC OPERATORS INTO GRAPH-GA

Table 5: Top-10 AUC on 5 random seeds for the JNK3 and perindopril_mpo tasks using different
combinations of genetic operators. The operators used for each model to compute the final results

in the main paper are indicated with a symbol.

Operators Graph-GA
(Baseline) MOLLEO (MOLSTM) MOLLEO (BIOT5) MOLLEO (GPT-4)

(Default Graph-GA settings)
CROSSOVER:
Random
MUTATION:
Random, pm = 0.067

peridopril_mpo:
0.538±0.009

JNK3:
0.553±0.136

N/A N/A N/A

CROSSOVER:
LLM
MUTATION:
Random, pm = 0.067

N/A

peridopril_mpo:
0.499±0.012[linear]

0.505±0.018[spherical]
JNK3:

0.722±0.046 [linear]
0.744±0.055 [spherical]

peridopril_mpo:
0.727±0.013

JNK3:
0.436±0.052

peridopril_mpo:
0.600±0.031

JNK3:
0.790±0.027

CROSSOVER:
Random
MUTATION:
LLM, pm = 0.067

N/A

peridopril_mpo:
0.532±0.034

JNK3:
0.631±0.327

peridopril_mpo:
0.676±0.034

JNK3:
0.650±0.096

peridopril_mpo:
0.552±0.024

JNK3:
0.673±0.047

CROSSOVER:
Random
MUTATION:
LLM, pm = 1

N/A

peridopril_mpo:
0.513±0.040

JNK3:
0.553±0.193

peridopril_mpo:
0.686±0.343

JNK3:
0.708±0.030

peridopril_mpo:
0.615±0.058

JNK3:
0.762±0.044

CROSSOVER:
Random
MUTATION:
Selected top Y molecules,
randomly mutated, pruned
offspring by distance to
top-1 molecule

peridopril_mpo:
0.579±0.044

JNK3:
0.571±0.109

N/A N/A N/A

CROSSOVER:
Random
MUTATION:
Selected top Y molecules,
mutated with LLM, pruned
offspring by distance to
top-1 molecule

N/A

peridopril_mpo:
0.554±0.034

JNK3:
0.730±0.188

peridopril_mpo:
0.740±0.032

JNK3:
0.728±0.079

peridopril_mpo:
0.575±0.074

JNK3:
0.758±0.031

A.5.2 MOLECULESTM HYPERPARAMETER SELECTION

We investigate the selection of three hyperparameters used with open-source LLMs. The first is the
number of population members that are selected to undergo LLM-based mutations (Algorithm 1). In
Table 6, we show the Top-10 AUC after choosing different numbers of top-scoring candidates for edit-
ing by MoleculeSTM. We find that 30 candidates resulted in the best performance. Note that we used a
different prompt for this experiment than the one used to obtain results in Table 1 (see Appendix A.8).
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Figure 6: Mean fitness and percent valid molecules with varying gradient descent epochs and
learning rates in MoleculeSTM.

Table 7: Ablation study on MOLLEO (GPT-4).

number of offsprings RAG search different version of LLMs different rules

20 70 200 w. RAG w/o. RAG GPT-3.5 GPT-4 w/o. rule Gragph GA rule SMILES GA rule

jnk3 0.731±0.012 0.790±0.027 0.785±0.022 0.830±0.047 0.790±0.027 0.669±0.104 0.790±0.027 0.765±0.047 0.790±0.027 0.774±0.084
isomer_c9h10n2o2pf2cl 0.967±0.010 0.874±0.053 0.960±0.049 0.982±0.018 0.874±0.053 0.902±0.021 0.874±0.053 0.871±0.085 0.874±0.053 0.872±0.029

perindopril mpo 0.573±0.042 0.600±0.031 0.580±0.028 0.717±0.024 0.600±0.031 0.564±0.022 0.600±0.031 0.562±0.042 0.600±0.031 0.583±0.031

Table 6: Top-10 AUC on JNK3 binding task with varying number of top-scoring candidates
selected to undergo LLM-based mutations.

Number of top-scoring candidates selected for mutation Top-10 AUC
20 0.680±0.213
30 0.730±0.188
50 0.627±0.250

Next, MoleculeSTM has several hyperparameters for molecule generation since it involves gradient
descent to optimize the input molecule embedding based on a text prompt. We look at two hyperpa-
rameters, the number of gradient descent steps (epochs), and the learning rate, and plot the results in
Figure 6. We find that if the learning rate is too large (lr=1), the mean fitness changes unpredictably,
but if it is too small (lr=1e-2), there are minimal changes to the mean fitness. Setting the learning rate
to 1e-1 results in more consistent improvements in mean fitness. We also set the number of epochs to
30 since more epochs are too time-consuming and fewer do not result in noticeable fitness changes.
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A.6 ABLATIONS FOR GPT-4

We conduct further experiments to understand the sensitivity of MOLLEO (GPT-4) with respect to
the number of offspring in each generation, retrieval augmentation, language model capability, and
different rules from Graph-GA and SMILES-GA in Table 7.

Number of offspring We vary the number of offspring generated in each generation of the GA
algorithm and find that increasing the number of offspring often leads to some improvements in the
optimization results, but there is no clear trend or instruction on how much is a good value.

Retrieval-augmented Search To understand how retrieval may help LLMs in the optimization
process, we remove the retrieval part, which augments the model proposed molecule by the struc-
turally similar molecules from a given dataset. We find that this is an essential step to improve the
optimization results of MOLLEO (GPT-4).

GPT-3.5 vs. GPT-4 To compare how the capability of LLMs may influence the optimization
result, we find that GPT-3.5 performs much worse than GPT-4 on two single- and multi-property
optimization tasks but surprisingly better on the solely similarity-based optimization task.

Different rules We validate the effectiveness of incorporating rule-based methods from Graph-GA
and find that it brings decent improvement to the overall results, and the Graph-based rule performs
slightly better than the SMILES-based rule.

A.7 PROMPTS

For each of the models, we show the prompts used for each task. When creating the prompts, we
followed the format of examples in the original source code as closely as possible for each model.

MOLLEO (MOLSTM) prompts

QED
This molecule is like a drug.

Isomers_C9H10N2O2PF2Cl
This molecule has the atoms C9H10N2O2PF2Cl.

perindopril_mpo
This molecule looks like Perindopril and has 2 aromatic rings.

sitagliptin_mpo
This molecule has the formula C16H15F6N5O, looks like Sitagliptin, is highly permeable,
and is hydrophobic.

ranolazine_mpo
This molecule looks like Ranolazine, is highly permeable, is hydrophobic, and has 1 F
atom.

thiothixene_rediscovery
This molecule looks like Thiothixene.

mestranol_similarity
This molecule looks like Mestranol.

JNK3
This molecule inhibits JNK3.

GSK3B
This molecule inhibits GSK3B.

DRD2
This molecule inhibits DRD2.

maxjnk3_maxqed_minsa
This molecule is synthesizable, looks like a drug, and inhibits JNK3.

maxgsk3b_maxqed_minsa
This molecule is synthesizable, looks like a drug, and inhibits GSK3B.
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maxgsk3b_maxqed_minsa
This molecule is synthesizable, does not inhibit GSKB3, does not inhibit DRD2, looks
like a drug, and inhibits JNK3.

MOLLEO (BIOT5) prompts

QED
Definition: You are given a molecule SELFIES. Your job is to generate a SELFIES
molecule that looks more like a drug. Now complete the following example - Input:
<bom>{selfies_input}<eom> Output:

Isomers_C9H10N2O2PF2Cl
Definition: You are given a molecule SELFIES. Your job is to generate a SELFIES
molecule that has the formula C9H10N2O2PF2Cl. Now complete the following example -
Input: <bom>{selfies_input}<eom> Output:

perindopril_mpo
Definition: You are given two molecule SELFIES. Your job is to combine them and
generate a SELFIES molecule that looks more like Perindopril and has 2 or more aromatic
rings Now complete the following example - Input: <bom>{selfies_input}<eom> Output:

sitagliptin_mpo
Definition: You are given a molecule SELFIES. Your job is to generate a SELFIES
molecule that has the formula C16H15F6N5O, looks more like Sitagliptin, is highly
permeable, and is hydrophobic. Now complete the following example - Input:
<bom>{selfies_input}<eom> Output:

ranolazine_mpo
Definition: You are given a molecule SELFIES. Your job is to generate a SELFIES
molecule that looks more like Ranolazine. Now complete the following example - Input:
<bom>{selfies_input}<eom> Output:

thiothixene_rediscovery
Definition: You are given a molecule SELFIES. Your job is to generate a SELFIES
molecule that looks more like Thiothixene. Now complete the following example - Input:
<bom>{selfies_input}<eom> Output:

mestranol_similarity
Definition: You are given a molecule SELFIES. Your job is to generate a SELFIES
molecule that looks more like Mestranol. Now complete the following example - Input:
<bom>{selfies_input}<eom> Output:

JNK3
Definition: You are given a molecule SELFIES. Your job is to generate a SELFIES
molecule that inhibits JNK3 more. Now complete the following example - Input:
<bom>{selfies_input}<eom> Output:

GSK3B
Definition: You are given a molecule SELFIES. Your job is to generate a SELFIES
molecule that inhibits GSK3B more. Now complete the following example - Input:
<bom>{selfies_input}<eom> Output:

DRD2
Definition: You are given a molecule SELFIES. Your job is to generate a SELFIES
molecule that inhibits DRD2 more. Now complete the following example - Input:
<bom>{selfies_input}<eom> Output:

deco_hop
Definition: You are given a molecule SELFIES. Your job is to generate a
SELFIES molecule that does not contain the substructure [#7]-c1ccc2ncsc2c1,
does not contain the substructure CS([#6])(=O)=O, contains the scaffold
[#7]-c1n[c;h1]nc2[c;h1]c(-[#8])[c;h0][c;h1]c12, and is similar to
[C][C][C][O][C][=C][C][=N][C][=N][C][Branch1][#C][N][C][=C][C][=C][N][=C][S][C][Ring1]
[Branch1][=C] [Ring1][=Branch2][=C][Ring1][S][C][=C][Ring2][Ring1][Ring2][S][=Branch1]
[C][=O][=Branch1][C][=O][C][Branch1][C][C][Branch1][C][C][C]. Now complete the
following example - Input: <bom>{selfies_input}<eom> Output:

scaffold_hop
Definition: You are given a molecule SELFIES. Your job is to
generate a SELFIES molecule that does not contain the scaffold
[#7]-c1n[c;h1]nc2[c;h1]c(-[#8])[c;h0][c;h1]c12, contains the substructure
[#6]-[#6]-[#6]-[#8]-[#6]∼[#6] ∼[#6]∼[#6]∼[#6]-[#7]-c1ccc2ncsc2c1, and is similar to
the SELFIES [C][C][C][O][C][=C][C][=N][C][=N][C][Branch1][#C][N][C][=C][C][=C][N][=C][S]
[C][Ring1][Branch1][=C][Ring1] [=Branch2][=C][Ring1][S][C][=C][Ring2][Ring1][Ring2][S]
[=Branch1][C][=O][=Branch1][C][=O][C][Branch1][C][C][Branch1] [C][C][C]. Now complete
the following example - Input: <bom>{selfies_input}<eom> Output:
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3pbl_docking
Definition: You are given a molecule SELFIES. Your job is to generate a SELFIES
molecule that inhibits DRD3 more. Now complete the following example - Input:
<bom>{selfies_input}<eom> Output:

2rgp_docking
Definition: You are given a molecule SELFIES. Your job is to generate a SELFIES
molecule that inhibits EGFR more. Now complete the following example - Input:
<bom>{selfies_input}<eom> Output:

3eml_docking
Definition: You are given a molecule SELFIES. Your job is to generate a SELFIES
molecule that binds better to adenosine receptor A2a. Now complete the following
example - Input: <bom>{selfies_input}<eom> Output:

MOLLEO (GPT-4) prompts

I have two molecules and their $Objective$ scores. $The definition of the objective$

(Smiles of Parent A, objective score of Parent A) (Smiles of Parent B, objective score
of Parent B)

Please propose a new molecule that has a $Direction$ $Objective$ score. You can
either make crossover and mutations based on the given molecules or just propose a
new molecule based on your knowledge.
Your output should follow the format: {«<Explaination»>: $EXPLANATION, «<Molecule»>:
box{$Molecule}}. Here are the requirements:
1. $EXPLANATION should be your analysis.
2. The $Molecule should be the smiles of your proposed molecule.
3. The molecule should be valid.
QED:
Direction: Higher
Objective: QED
Definition: The QED score measures the drug-likeness of the molecule.
Isomers_C9H10N2O2PF2Cl:
Direction: Higher
Objective: isomer
Definition: The isomer score measures a molecule’s similarity in terms of atom counter
to C9H10N2O2PF2Cl.
perindopril_mpo
Direction: Higher
Objective: perindopril multi-objective
Definition: The perindopril multi-objective score measures the geometric means of
several scores, including the molecule’s Tanimoto similarity to perindopril and the
number of aromatic rings.
sitagliptin_mpo
Direction: Higher
Objective: sitagliptin multi-objective
Definition: The sitagliptin multi-objective score measures the geometric means of
several scores, including the molecule’s Tanimoto similarity to sitagliptin, TPSA
score, LogP score, and isomer score with C16H15F6N5O.
ranolazine_mpo
Direction: Higher
Objective: ranolazine multi-objective
Definition: The ranolazine multi-objective score measures the geometric means of
several scores, including the molecule’s Tanimoto similarity to ranolazine, TPSA score
LogP score and number of fluorine atoms.
thiothixene_rediscovery
Direction: Higher
Objective: thiothixene rediscovery
Definition: The thiothixene rediscovery score measures a molecule’s Tanimoto
similarity with thiothixene’s SMILES to check whether it could be rediscovered.
mestranol_similarity
Direction: Higher
Objective: mestranol similarity
Definition: The mestranol similarity score measures a molecule’s Tanimoto similarity
with Mestranol.
JNK3
Direction: Higher
Objective: JNK3
Definition: The JNK3 score measures a molecular’s biological activity against JNK3.
GSK3β
Direction: Higher
Objective: GSK3β
Definition: The GSK3β score measures a molecular’s biological activity against GSK3β.
DRD2
Direction: Higher
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Objective: DRD2
Definition: The DRD2 score measures a molecule’s biological activity against a
biological target named the dopamine type 2 receptor (DRD2).
deco_hop
Direction: Higher
Objective: deco hop
Definition: The deco hop score is the arithmetic means of several scores, including
binary score about whether contain certain SMARTS structures (maximize the similarity
to the SMILE ’[#7]-c1n[c;h1]nc2[c;h1]c(-[#8])[c;h0][c;h1]c12’, while excluding specific
SMARTS patterns ’[#7]-c1ccc2ncsc2c1’ and ’CS([#6])(=O)O’) and (2) the molecule’s
Tanimoto similarity to PHCO ’CCCOc1cc2ncnc(Nc3ccc4ncsc4c3)c2cc1S(=O)(=O)C(C)(C)C’.
scaffold_hop
Direction: Higher
Objective: scaffold hop
Definition: The scaffold hop score is the arithmetic means of
several scores, including (1) binary score about whether contains
certain SMARTS structures (maximize the similarity to the SMILE
’[#6]-[#6]-[#6]-[#8]-[#6][#6][#6][#6][#6]-[#7]-c1ccc2ncsc2c1’, while excluding
specific SMARTS patterns ’[#7]-c1n[c;h1]nc2[c;h1]c(-[#8])[c;h0][c;h1]c12’) and (2) the
molecule’s Tanimoto similarity to PHCO ’CCCOc1cc2ncnc(Nc3ccc4ncsc4c3)c2cc1S(=O)(=O)C(C)(C)C’.

A.8 IMPACT OF PROMPT SELECTION

The choice of prompt for a given task is an important consideration, as some prompts can be
better aligned with information the model knows. For example, the prompt we used in MOLLEO
(MOLSTM) for the JNK3 inhibition task was “This molecule inhibits JNK3." However, there
are multiple ways of describing inhibition and multiple ways of identifying the enzyme (JNK3, c-Jun
N-terminal kinase 3). To that end, we investigate the impact of prompt selection on downstream
performance.

To generate a set of prompts, we prompted GPT-4 to generate 10 synonymous phrases for an input
prompt. We then computed the Spearman rank-order correlation coefficient (Spearman’s ρ) of each
phrase on an initial molecule pool between the cosine similarity generated by MoleculeSTM and the
ground truth fitness values. Finally, we ran the genetic optimization using MOLLEO (MOLSTM)
with the input prompt and the prompt with the highest Spearman rank-order correlation coefficient.

On the JNK3 task, the default prompt we wrote was “This molecule inhibits JNK3.", which had
a Spearman’s ρ of -0.0161. The prompt with the largest Spearman’s ρ (0.1202) was “This molecule
acts as an antagonist to JNK3." When we ran MOLLEO (MOLSTM) with the default input
prompt, the top-10 AUC was 0.643 ± 0.226. When we ran MOLLEO (MOLSTM) using the prompt
with the largest Spearman’s ρ, the top-10 AUC was 0.730 ± 0.188. This demonstrates that prompt
selection can influence downstream results, especially for smaller models, and opens the door for
future work in this area.

A.9 COMPUTATIONAL RESOURCES

All our experiments are run on NVIDIA A100-SXM4-80GB and T4V2 GPUs. In some of our
experiments, we utilize the GPT-4 model. The GPT-4 refers to the “gpt-4-turbo” model and in the
OpenAI API model with checkpoint version 2023-07-01-preview webpage1. All GPT-4 checkpoints
are hosted on Microsoft Azure2.

A.10 LIMITATIONS

We note the following limitations of our work. First, more work should be done on proposed
candidates from the final optimization result to interpret why the compounds are predicted as optimal,
although setting up this analysis is extremely nontrivial. Secondly, while the docking experiments are
a more difficult property optimization task, it is still unclear how the model would work on real-world
settings.

1.https://platform.openai.com/docs/models
2 *.openai.azure.com
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A.11 BROADER IMPACT

The methods proposed in this paper aim to improve the efficiency in exploring the chemical space to
find compounds with desired properties, which can benefit many areas, including drug discovery and
materials design. We do not foresee a special negative societal impact of them now, but the dual use
of such approaches to find materials for nefarious purposes needs to be avoided (discussed in Urbina
et al. (2022)).
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