
Under review as a conference paper at ICLR 2021

BLACK-BOX OPTIMIZATION REVISITED: IMPROVING
ALGORITHM SELECTION WIZARDS THROUGH MAS-
SIVE BENCHMARKING

Anonymous authors
Paper under double-blind review

ABSTRACT

Existing studies in black-box optimization for machine learning suffer from low
generalizability, caused by a typically selective choice of problem instances used
for training and testing different optimization algorithms. Among other issues,
this practice promotes overfitting and poor-performing user guidelines. To ad-
dress this shortcoming, we propose in this work a benchmark suite, OptimSuite,
which covers a broad range of black-box optimization problems, ranging from
academic benchmarks to real-world applications, from discrete over numerical
to mixed-integer problems, from small to very large-scale problems, from noisy
over dynamic to static problems, etc. We demonstrate the advantages of such a
broad collection by deriving from it Automated Black Box Optimizer (ABBO), a
general-purpose algorithm selection wizard. Using three different types of al-
gorithm selection techniques, ABBO achieves competitive performance on all
benchmark suites. It significantly outperforms previous state of the art on some of
them, including YABBOB and LSGO. ABBO relies on many high-quality base
components. Its excellent performance is obtained without any task-specific
parametrization. The benchmark collection, the ABBO wizard, its base solvers,
as well as all experimental data are reproducible and open source in OptimSuite.

1 INTRODUCTION: STATE OF THE ART

Many real-world optimization challenges are black-box problems; i.e., instead of having an explicit
problem formulation, they can only be accessed through the evaluation of solution candidates. These
evaluations often require simulations or even physical experiments. Black-box optimization meth-
ods are particularly widespread in machine learning (Salimans et al., 2016; Wang et al., 2020), to
the point that it is considered a key research area of artificial intelligence. Black-box optimization
algorithms are typically easy to implement and easy to adjust to different problem types. To achieve
peak performance, however, proper algorithm selection and configuration are key, since black-box
optimization algorithms have complementary strengths and weaknesses (Rice, 1976; Smith-Miles,
2009; Kotthoff, 2014; Bischl et al., 2016; Kerschke & Trautmann, 2018; Kerschke et al., 2018). But
whereas automated algorithm selection has become standard in SAT solving (Xu et al., 2008) and
AI planning (Vallati et al., 2015), a manual selection and configuration of the algorithms is still pre-
dominant in the broader black-box optimization context. To reduce the bias inherent to such manual
choices, and to support the automation of algorithm selection and configuration, sound comparisons
of the different black-box optimization approaches are needed. Existing benchmarking suites,
however, are rather selective in the problems they cover. This leads to specialized algorithm frame-
works whose performance suffer from poor generalizability. Addressing this flaw in black-box op-
timization, we present a unified benchmark collection which covers a previously unseen breadth of
problem instances. We use this collection to develop a high-performing algorithm selection wizard,
ABBO. ABBO uses high-level problem characteristics to select one or several algorithms, which are
run for the allocated budget of function evaluations. Originally derived from a subset of the avail-
able benchmark collection, in particular YABBOB, the excellent performance of ABBO generalizes
across almost all settings of our broad benchmark suite. Implemented as a fork of Nevergrad (Rapin
& Teytaud, 2018), the benchmark collection, the ABBO wizard, the base solvers, and all perfor-
mance data are open source. The algorithms are automatically rerun at certain time intervals and all

1



Under review as a conference paper at ICLR 2021

Algorithm 1 High-level overview of ABBO. Selection rules are followed in this order, first match
applied. d = dimension, budget b = number of evaluations. Details in (Anonymous, 2020).

Case Choice
Discrete decision variables only

Noisy optimization with categorical variables Genetic algorithm mixed with bandits (Heidrich-Meisner & Igel,
2009; Liu et al., 2020).

alphabets of size < 5, sequential evaluations (1 + 1)-Evolutionary Alg. with linearly decreasing stepsize
alphabets of size < 5, parallel case Adaptive (1 + 1)-Evolutionary Alg. (Doerr et al., 2019).
Other discrete cases with finite alphabets Convert to the continuous case using SoftMax as in (Liu et al.,

2020) and apply CMandAS2 (Rapin et al., 2019)
Presence of infinite discrete domains FastGA (Doerr et al., 2017)

Numerical decision variables only, evaluations are subject to noise
d > 100 progressive optimization as in (Berthier, 2016).
d ≤ 30 TBPSA (Hellwig & Beyer, 2016)
b > 100 sequential quadratic programming
Other cases TBPSA (Hellwig & Beyer, 2016)

Numerical decision variables only, high degree of parallelism
Parallelism > b/2 or b < d MetaTuneRecentering (Meunier et al., 2020)
Parallelism > b/5, d < 5, and b < 100 DiagonalCMA-ES (Ros & Hansen, 2008)
Parallelism > b/5, d < 5, and b < 500 Chaining of DiagonalCMA-ES (100 asks), then CMA-ES+meta-

model (Auger et al., 2005)
Parallelism > b/5, other cases NaiveTBPSA as in (Cauwet & Teytaud, 2020)

Numerical decision variables only, sequential evaluations
b > 6000 and d > 7 Chaining of CMA-ES and Powell, half budget each.
b < 30d and d > 30 (1 + 1)-Evol. Strategy w/ 1/5-th rule (Rechenberg, 1973)
d < 5 and b < 30d CMA-ES + meta-model (Auger et al., 2005)
b < 30d Cobyla (Powell, 1994)

For all other cases and all details, please refer to the source code

data is exported to the public dashboard (Rapin & Teytaud, 2020). For ICLR reviewers, all code is
available, thanks to github-anonymizer, at (Anonymous, 2020).

In summary, our contributions are as follows. (1) OptimSuite Benchmark Collection: Optim-
Suite combines several contributions that recently led to improved reliability and generalizability
of black-box optimization benchmarking, among them LSGO (Li et al., 2013), YABBOB (Hansen
et al., 2009; Liu et al., 2020; Anonymous, 2020), Pyomo (Hart et al., 2017; Anonymous, 2020),
MLDA (Gallagher & Saleem, 2018), and MuJoCo (Todorov et al., 2012; Mania et al., 2018), and
others (novelty discussed in Section 2). (2) Algorithm Selection Wizard ABBO: Our algorithm
selection technique, ABBO, can be seen as an extension of the Shiwa wizard presented in (Liu
et al., 2020). It uses three types of selection techniques: passive algorithm selection (choosing an
algorithm as a function of a priori available features (Baskiotis & Sebag, 2004; Liu et al., 2020)),
active algorithm selection (a bet-and-run strategy which runs several algorithms for some time and
stops all but the strongest (Mersmann et al., 2011; Pitzer & Affenzeller, 2012; Fischetti & Monaci,
2014; Malan & Engelbrecht, 2013; Muñoz Acosta et al., 2015; Cauwet et al., 2016; Kerschke et al.,
2018)), and chaining (running several algorithms in turn, in an a priori defined order (Molina et al.,
2009)). Our wizard combines, among others, algorithms suggested in (Virtanen et al., 2019; Hansen
& Ostermeier, 2003; Storn & Price, 1997; Powell, 1964; 1994; Liu et al., 2020; Hellwig & Beyer,
2016; Artelys, 2015; Doerr et al., 2017; 2019; Dang & Lehre, 2016). Another core contribution of
our work is a sound comparison of our wizard to Shiwa, and to the long list of algorithms available
in Nevergrad.

2 SOUND BLACK-BOX OPTIMIZATION BENCHMARKING

We summarize desirable features and common shortcomings of black-box optimization benchmarks
and discuss how OptimSuite addresses these.

Generalization. The most obvious issue in terms of generalization is the statistical one: we need
sufficiently many experiments for conducting valid statistical tests and for evaluating the robustness
of algorithms’ performance. This, however, is probably not the main issue. A biased benchmark,
excluding large parts of the industrial needs, leads to biased conclusions, no matter how many ex-
periments we perform. Inspired by (Recht et al., 2018) in the case of image classification, and
similar to the spirit of cross-validation for supervised learning, we use a much broader collection
of benchmark problems for evaluating algorithms in an unbiased manner. Another subtle issue in
terms of generalization is the case of instance-based choices of (hyper-)parameters: an experimenter

2



Under review as a conference paper at ICLR 2021

Testbed BBOB MuJoCo LSGO Nevergrad BBComp OptimSuite
Large scale - + + +
Translations + + + + +
Symmetrizations / rotations + + + +
One-line reproducibility - - + +
Periodic automated dashboard + +
Complex or real-world - + - + +
Multimodal + + + + + +
Open sourced / no license - +
Ask/tell/recommend correct - + + + +
Far-optimum + + +
Human excluded / client-server +

Table 1: Properties of selected benchmark collections (details in appendix A). “+” means that
the feature is present, “-” that the feature is missing, and an empty case that it is not applicable.
Far-optimum refers to problems with optimum far from the center or on the side of the domain;
such benchmarks test the ability of optimization algorithms to answer promptly to a bad initializa-
tion (Chotard et al., 2012). “Translations” applies only to artificial benchmarks. A “+” in rows
“Multimodal”, “symmetrization”, and “real-world” does not imply that all test functions have this
property. “Open sourced” refers to open access to most algorithms involved in the published com-
parison; here, “-” refers to license issues for the benchmark itself.

modifying the algorithm or its parameters specifically for each instance can easily improve results
by a vast margin. In this paper, we consider that only the following problem properties are known
in advance (and can hence be used for algorithm selection and configuration): the dimension of the
domain, the type and range of each variable, their order, the presence of noise (but not its inten-
sity), the budget, the degree of parallelism (i.e., number of solution candidates that can be evaluated
simultaneously). To mitigate the common risk of over-tuning, we evaluate algorithms on a broad
range of problems, from academic benchmark problems to real-world applications. Each algorithm
runs on all benchmarks without any change or task-specific tuning.

Use the ask, tell, and recommend pattern. Formalizing the concept of numerical optimization is
typically made through the formalism of oracles or parallel oracles (Rogers, 1987). A recent trend
is the adoption of the ask-and-tell format (Collette et al., 2010). The bandit literature pointed out
that we should distinguish ask, tell, and recommend: the way we choose a point for gathering more
information is not necessarily close to the way we choose an approximation of the optimum (Bubeck
et al., 2011; Coulom, 2012b; Decock & Teytaud, 2013). We adopt the following framework: given
an objective function f and an optimizer, for i ∈ {1, . . . , T}, do x ← optimizer.ask and
optimizer.tell(x, f(x)). Then, evaluate the performance with f(optimizer.recommend). The
requirement of a recommend method distinct from the ask is critical in noisy optimization. A de-
bate pointed out some shortcomings in the the noisy counterpart of BBOB (Auger & Hansen, 2009)
which was assuming that ask = recommend: (Beyer, 2012a;b; Coulom, 2012a) have shown that
in the noisy case, this difference was particularly critical, and a framework should allow algorithms
to “recommend” differently than they “ask”. A related issue is that a run with budget T is not
necessarily close to the truncation of a run in budget 10T .

Translation-invariance. Zero frequently plays a special role in optimization. For example, com-
plexity penalizations often “push” towards zero. In control, numbers far from zero are often more
likely to lead to bang-bang solutions (and therefore extract zero signal, leading to a needle-in-
the-haystack optimization situation), in particular with neural networks. In one-shot optimiza-
tion, (Cauwet et al., 2019; Meunier et al., 2020) have shown how much focusing to the center is
a good idea in particular in high-dimension. Our experiments in control confirm that the scale of the
optimization search is critical, and explains the misleading results observed in some optimization
papers (Section 4.2). In artificial experiments, several classical test functions have their optimum
in zero. To avoid misleading conclusions, it is now a standard procedure, advocated in particular
in (Hansen et al., 2009), to randomly translate the objective functions. This is unfortunately not
always applied.

Rotation and symmetrization. Some optimization methods may perform well on separable ob-
jective functions but degrade significantly in optimizing non-separable functions. If the dimension
of a separable objective function is d, these methods can reduce the objective function into d one-
dimensional optimization processes (Salomon, 1996). Therefore, Hansen et al. (2009; 2011) have

3



Under review as a conference paper at ICLR 2021

insisted that objective functions should be rotated to generate more difficult non-separable objective
functions. However, Bousquet et al. (2017) pointed out the importance of dummy variables, which
are not invariant per rotation; and (Holland, 1975) and more generally the genetic algorithms lit-
erature insist that rotation does not always makes sense – we lose some properties of a real-world
objective function, and in some real-world scenarios rotating would, e.g., mix temperature, distance
and electric intensity. Permutating the order of variables is also risky, as their order is sometimes
critical - k-point crossovers a la Holland (Holland, 1975) typically assume some order of variables,
which would be broken. Also, users sometimes rank variables with the most important first – and
some optimization methods do take care of this (Cauwet et al., 2019). In OptimSuite, we do include
rotations, but include both cases, rotated or not. For composite functions which use various objective
functions on various subsets of variables, we consider the case with rotations – without excluding
the non-rotated case. An extension of symmetrization that we will integrate later in ABBO, which
makes sense for replicating an objective function without exact identity, consists in symmetrizing
some variables: for example, if the ith variable has range [a, b], we can replace xi by b + a − xi.
Applying this on various subsets of variables leads to 2d symmetries of an objective function, if the
dimension is d. This variation can reduce the bias toward symmetric search operations (Li et al.,
2013).

Benchmarking in OptimSuite. We summarize in Table 1 some existing benchmark collections and
their (desirable) properties. We inherit various advantages from Nevergrad, namely the automatic
rerun of experiments and reproducibility in one-line. Our fork includes PBT (a small scale version of
Population-Based Training (Jaderberg et al., 2017)), Pyomo (Hart et al., 2017), Photonics (problems
related to optical properties and nanometric materials), YABBOB and variants, LSGO (Li et al.,
2013), MLDA (Gallagher & Saleem, 2018), PowerSystems, FastGames, 007, Rocket, SimpleTSP,
Realworld (Liu et al., 2020), MuJoCo (Todorov et al., 2012) and others including a (currently small)
benchmark of hyperparameters of Scikit-Learn (Pedregosa et al., 2011) and Keras-tuning, all of
those being visible for review at the above-mentioned anonymized URL (underlined means: the
benchmark is either new, or, in the case of PowerSystems or SimpleTSP, significantly modified
compared to previous works, or, in the case of LSGO or MuJoCo, included for the first time inside
Nevergrad. For MuJoCo, we believe that interfacing with Nevergrad is particularly useful, to ensure
fair comparisons, which rely very much on the precise setup of MuJoCo. . We note that, at present,
we do not reproduce the extreme black-box nature of Loshchilov & Glasmachers (2017). Still, by
integrating such a wide range of benchmarks in a single open source framework, which, in addition,
is periodically re-run, we believe that Nevergrad/OptimSuite provides a significant contribution to
benchmarking, and this both for the optimization and the machine learning community, where most
of the benchmark suites originate from.

3 A NEW ALGORITHM SELECTION WIZARD: ABBO

Black-box optimization is sometimes dominated by evolutionary computation. Evolution strate-
gies (Beyer & Schwefel, 2002; Beyer, 2001; Rechenberg, 1973) have been particularly dominant in
the continuous case, in experimental comparisons based on the Black-Box Optimization Benchmark
BBOB (Hansen et al., 2009) or variants thereof. Parallelization advantages (Salimans et al., 2016)
are particularly appreciated in the machine learning context. However, Differential Evolution (Storn
& Price, 1997) is a key component of most winning algorithms in competitions based on variants
of Large Scale Global Optimization (LSGO (Li et al., 2013)), suggesting a significant difference
between these benchmarks. In particular, LSGO is more based on correctly identifying a partial
decomposition and scaling to ≥ 1000 variables, whereas BBOB focuses (mostly, except (Vare-
las et al., 2018)) on ≤ 40 variables. Mathematical programming techniques (Powell, 1964; 1994;
Nelder & Mead, 1965; Artelys, 2015) are rarely used in the evolutionary computation world, but
they have won competitions (Artelys, 2015) and significantly improved evolution strategies through
memetic methods (Radcliffe & Surry, 1994). Algorithm selection was applied to continuous black-
box optimization and pushed in Nevergrad Liu et al. (2020) : their optimization algorithm com-
bines many optimization methods and outperforms each of them when averaged over diverse test
functions. Closer to machine learning, efficient global optimization (Jones et al., 1998) is widely
used, although it suffers from the curse of dimensionality more than other methods (Snoek et al.,
2012); (Wang et al., 2020) presented a state-of-the-art algorithm in black-box optimization on Mu-
JoCo, i.e., for the control of various realistic robots (Todorov et al., 2012). We propose ABBO,
which extends (Liu et al., 2020) by the following features: (1) Better use of chaining (Molina et al.,

4



Under review as a conference paper at ICLR 2021

Benchmark Use for ABBO # of configs ranking ABBO best competitor
ABBO Shiwa CMA-ES

HDBO Designing 24 2/21 1† 2 Shiwa
PARAMULTIMODAL Designing 112 1/27 3† 6 DiagonalCMA-ES (Ros & Hansen, 2008)
Realworld Designing 486 1/6 2† 3 Shiwa (Liu et al., 2020)
Illcondi Designing 12 1/24 3† 8 Cobyla
Illcondipara Designing 12 5/28 7† 3 DiagonalCMA-ES
YABBOB Designing* 630 1/8 2 5 Shiwa
YAPARABBOB Designing* 630 1/6 4 5 MetaModel
YAHDBBOB Designing* 378 2/19 3 18 (1 + 1)-ES
YANOISYBBOB Designing* 630 2/11 6 10 SQP
YAHDNOISYBBOB Designing* 630 4/24 2 13 SQP
YASMALLBBOB Designing* 378 1/8 2 7 Shiwa

HdMultimodal Validation 42 1/14 2† 4 Shiwa
Noisy Validation 96 16/28 19† NA RecombiningOptimisticNoisyDiscrete(1 + 1)
RankNoisy Validation 72 4/25 NA 19 ProgD13
AllDEs Validation 60 1/28 2† 3 Shiwa (Liu et al., 2020)

Pyomo Evaluating 104 1/19 3† 10 Shiwa (Liu et al., 2020)
Rocket Evaluating 13 5/18 4† 3 DiagonalCMA-ES (Ros & Hansen, 2008)
SimpleTSP Evaluating 52 3/15 2† 7 PortfolioDiscrete(1 + 1)

Seq. Fastgames Evaluating 20 3/28 4† 23 OptimisticDiscrete(1 + 1)

LSGO Evaluating 45 1/6 4† 6 MiniLHSDE
Powersystems Evaluating 48 10/26 NA 25 (1 + 1)-ES

Table 2: Nevergrad maintains a dashboard (Rapin & Teytaud, 2020). For each experiment, there
are many configurations (budget, objective function, possibly dimension, and noise level). We sep-
arate benchmarks used for designing ABBO, benchmarks used for validation, and those only used
for testing. “*” denotes benchmarks used for designing Shiwa (which is used inside ABBO). We
present the rank based on the winning rate of ABBO in the dashboard. Since the submission of this
paper, several variants of bandit-based algorithms have been added for high-dimensional noisy opti-
mization. They outperform ABBO, hence its poor rank for these cases. Detailed plots are available
in Appendix B. As expected, DE variants are strong on LSGO and CMA-ES variants are strong for
YABBOB. ABBO also performs well on YABBOB, which was used for designing its ancestor Shiwa
(see Fig. 1). For the MuJoCo testbed, details are available in Table 3 and Figure 3. Our modifications
in the codebase implies an improvement of Shiwa compared to the version published in (Liu et al.,
2020); for example, our chaining implies that the (k + 1)th code starts from the best point obtained
by the kth algorithm, which significantly improves in particular the chaining CMA-ES+Powell or
CMA-ES+SQP. Experiments with “†” in the ranking of Shiwa correspond to this improved version
of Shiwa.

2009) and more intensive use of mathematical programming techniques for the last part of the op-
timization run, i.e., the local convergence, thanks to Meta-Models (in the parallel case) and more
time spent in Powell’s method (in the sequential case). This explains the improvement visible in
Section 4.1. (2) Better performance in discrete optimization, using additional codes recently intro-
duced in Nevergrad, in particular adaptive step-sizes. (3) Better segmentation of the different cases
of continuous optimization. We still entirely rely on the base algorithms as available in Nevergrad;
that is, we did not modify the tuning of any method. We acknowledge that our method only work
thanks to the solid base components available in Nevergrad, which are based on contributions from
various research teams. The obtained algorithm selection wizard, ABBO, is presented in Algo-
rithm 1. The performances of ABBO is summarized in Table 2 and a detailed dashboard is available
at https://dl.fbaipublicfiles.com/nevergrad/allxps/list.html.

4 EXPERIMENTAL RESULTS

When presenting results on a single benchmark function, we present the usual average objective
function value for different budget values. When a collection comprises multiple benchmark prob-
lems, we present our aggregated experimental results with two distinct types of plots: (1) Average
normalized objective value for each budget, averaged over all problems. The normalized objective
value is the objective value linearly rescaled to [0, 1]. (2) Heatmaps, showing for each pair (x, y) of
optimization algorithms the frequency at which Algorithm x outperforms Algorithm y. Algorithms
are ranked by average winning frequency. We use red arrows to highlight ABBO.

5

https://dl.fbaipublicfiles.com/nevergrad/allxps/list.html


Under review as a conference paper at ICLR 2021

Avg. norm. loss Heatmap

Figure 1: Average normalized loss and heatmap for YABBOB. Additional plots for High-
dimensional (HD), NoisyHD, and Large budgets are available in Appendix B. Other variants in-
clude parallel, differences of budgets, and combinations of those variants, with excellent results for
ABBO (see Nevergrad’s dashboard https://dl.fbaipublicfiles.com/nevergrad/
allxps/list.html, publicly visible with anonymized entries, for the part of our code which
is already merged).

Pyomo Seq. Fastgames

Figure 2: Additional problems: Pyomo (covering Knapsack, P-median and others), Sequential-
Fastgames (presented as heatmaps due to the high noise: GuessWho, War, Batawaf, Flip). Rockets,
SimpleTSP, PowerSystems, and LSGO plots are available in Appendix B, Figures 7, and 8. Pyomo
and SimpleTSP include discrete variables. Pyomo includes constraints. Rocket, PowerSystems, Se-
quentialFastGames are based on open source simulators and are already merged from OptimSuite to
Nevergrad.

4.1 BENCHMARKS IN OPTIMSUITE USED FOR DESIGNING AND VALIDATING ABBO

YABBOB (Yet Another Black-Box Optimization Benchmark (Rapin et al., 2019)), is an adapta-
tion of BBOB (Hansen et al., 2009), with extensions such as parallelism and noise management. It
contains many variants, including noise, parallelism, high-dimension (BBOB was limited to dimen-
sion < 50). Several extensions, for the high-dimensional, the parallel or the big budget case, have
been developed: we present results in Figures 1 and 4. The high-dimensional one is inspired by (Li
et al., 2013), the noisy one is related to the noisy counterpart of BBOB but correctly implements
the difference between ask and recommend as discussed in Section 2. The parallel one generalizes
YABBOB to settings in which several evaluations can be executed in parallel. Results on PARA-
MULTIMODAL are presented in Figure 6 (left). In addition, ABBO was run on ILLCONDI &
ILLCONDIPARA (ill conditionned functions), HDMULTIMODAL (a multimodal case focusing
on high-dimension), NOISY & RANKNOISY (two noisy continuous testbeds), YAWIDEBBOB (a
broad range of functions including discrete cases and cases with constraints).

6

https://dl.fbaipublicfiles.com/nevergrad/allxps/list.html
https://dl.fbaipublicfiles.com/nevergrad/allxps/list.html


Under review as a conference paper at ICLR 2021

Task Target LA-MCTS results ABBO result LA-MCTS avg reward ABBO avg reward
Swimmer-v2 325 132 ioa around 450 iter 358 365
Hopper-v2 3120 2897 ioa around 3000 iter 3292 1787
HalfCheetah-v2 3430 3877 ioa around 4000 iter 3227 4730
Walker2d-v2* 4390 BR: 3314 (not reached) BR: 4398, budget < 64000 (reached!) 2769 2949
Ant-v2* 3580 BR: 2791 (not reached) BR: 5325, budget < 32000 (reached!) 2511 3532
Humanoid-v2* 6000 BR: 3384 (not reached) BR (budget 500000): 4870 2511 4620

Table 3: Results for a linear policy in the black-box setting from the latest black-box paper (Wang
et al., 2020) and references therein, compared to results from ABBO. Two last columns = average
reward for the maximum budget tested in (Wang et al., 2020), namely 1k, 4k, 4k, 40k, 30k, 40k,
respectively. “ioa” = iterations on average for reaching the target. “iter” = iterations for target
reached for median run. “*” refers to problems for which the target was not reached by Wang
et al. (2020): then BR means “best result in 10 runs”. ABBO reaches the target for Humanoid
and Ant whereas previous (black-box) papers did not; we get nearly the same ioa for Hopper and
HalfCheetah (Nevergrad computed the expected value instead of computing the ioa, so we cannot
compare exactly; see Figure 3 for curves). ABBO is slower than LA-MCTS on Swimmer. Note
that we keep the same method for all benchmarks whereas LA-MCTS modified the algorithm for
3 rows. On HDMULTIMODAL, ABBO performs better than LA-MCTS, as detailed in the text,
and as confirmed in (Wang et al., 2020), which acknowledges the poor results of LA-MCTS for
high-dimensional Ackley and Rosenbrock.

AllDEs and Hdbo are benchmark collections specifically designed to compare DE variants
(AllDEs) and high-dimensional Bayesian Optimization (Hdbo), respectively (Rapin & Teytaud,
2018). These benchmark functions are similar to the ones used in YABBOB. Many variants of
DE (resp. BO) are considered. Results are presented in Figure 5. They show that the performance
of ABBO, relatively to DE or BO, is consistent over a wide range of parametrizations of DE or BO,
at least in their most classical variants. All these variants are publicly visible in Nevergrad and/or in
our anonymized branch.

Realworld: A test of ABBO is performed on the Realworld optimization benchmark suite proposed
in (Rapin & Teytaud, 2018). This suite includes testbeds from MLDA (Gallagher & Saleem, 2018)
and from (Liu et al., 2020). Results for this suite, presented in Figure 6, confirm that ABBO per-
forms well also on benchmarks that were not explicitly used for its design - however, this benchmark
was used for designing Shiwa, which was the basis of our ABBO. A rigorous cross-validation, on
benchmarks totally independent from the design of Shiwa, is provided in the next sections.

4.2 NEW BENCHMARKS IN OPTIMSUITE USED ONLY FOR EVALUATING ABBO

Pyomo is a modeling language in Python for optimization problems (Hart et al., 2017). It is popular
and has been adopted in formulating large models for complex and real-world systems, including
energy systems and network resource systems. We implemented an interface to Pyomo for Never-
grad and enriched our benchmark problems (Anonymous, 2020), which include discrete variables
and constraints. Experimental results are shown in Figure 2. They show that ABBO also performs
decently in discrete settings and in constrained cases.

Additional new artificial and real-world functions: LSGO (large scale global optimization) com-
bines various functions into an aggregated difficult testbed including composite highly multimodal
functions. Correctly decomposing the problem is essential. Various implementations of LSGO
exist; in particular we believe that some of them do not match exactly. Our implementation fol-
lows (Li et al., 2013) , which introduces functions with subcomponents (i.e., groups of decision
variables) having non-uniform sizes and non-uniform, even conflicting, contributions to the objec-
tive function. Furthermore, we present here experimental results on SequentialFastgames from the
Nevergrad benchmarks, and three newly introduced benchmarks, namely Rocket, SimpleTSP (a set
of traveling salesman problems), power systems (unit commitment problems (Padhy, 2004)). Ex-
perimental results are presented in Figures 2, 7, and 8. They show that ABBO performs well on new
benchmarks, never used for its design nor for that of the low-level heuristics used inside ABBO.

MuJoCo. Many articles (Sener & Koltun, 2020; Wang et al., 2020) studied the MuJoCo
testbeds (Todorov et al., 2012) in the black-box setting. MuJoCo tasks correspond to control prob-
lems. Defined in (Wang et al., 2020; Mania et al., 2018), the objective is to learn a linear mapping

7



Under review as a conference paper at ICLR 2021

Swimmer (dim 16) Hopper (dim 33)

Half-Cheetah (dim 102) Walker-2d (dim 102)

Ant (dim 888) Humanoid (dim 6392)

Figure 3: Results on the MuJoCo testbeds. Dashed lines show the standard deviation. Compared to
the state of the art in (Wang et al., 2020), with an algorithm adapted manually for the different tasks,
we get overall better results for Humanoid, Ant, Walker. We get worse results for Swimmer (could
match if we had modified our code for the 3 easier tasks as done in (Wang et al., 2020)), similar
for Hopper and Cheetah: we reach the target for 5 of the 6 problems (see text). Runs of Shiwa
correspond to the improvement of Shiwa due to chaining, as explained in Table 2.

from states to actions. It turned out that the scaling is critical (Mania et al., 2018): for reasons men-
tioned in Section 2, solutions are close to 0. We chose to scale all the variables of the problem at the
power of 0.1 the closest to 1.2/d, for all methods run in Figure 3. We remark that ABBO and Shiwa
perform well, including comparatively to gradient-based methods in some cases, while having the
ability to work when the gradient is not available. When the gradient is available, black-box methods
do not require computation of the gradient, which saves time.

We use the same experimental setup as Wang et al. (2020) (linear policy, offline whitening of states).
We get results better than LA-MCTS, in a setting i.e., does not use any expensive surrogate model
(Table 3). Our runs with CMA-ES and Shiwa are better than those in (Wang et al., 2020). We
acknowledge that LMRS (Sener & Koltun, 2020) outperforms our method on all MuJoCo tasks,
using a deep network as a surrogate model: however, we point out that a part of their code is not
open sourced, making the experiments not reproducible. In addition, when rerunning their repository
without the non open sourced part, it solved Half-Cheetah within budget 56k, which is larger than
ours. For Humanoid, the target was reached at 768k, which is again larger than our budget. Results
from ABBO are comparable to, and usually better than (for the 3 hardest problems), results from
LA-MCTS, while ABBO is entirely reproducible. In addition, it runs the same method for all

8



Under review as a conference paper at ICLR 2021

benchmarks and it is not optimized for each task specifically as in (Sener & Koltun, 2020; Wang
et al., 2020). In contrast to ABBO, (Wang et al., 2020) uses different underlying regression methods
and sampling methods depending on the MuJoCo task, and it is not run on other benchmarks except
for some of the HDMULTIMODAL ones. On the latter, ABBO performances are significantly
better for Ackley and Rosenbrock in dimension 100 (expected results around 100 and 10−8 after
10k iterations for Rosenbrock and Ackley respectively for ABBO, vs 0.5 and 500 in (Wang et al.,
2020)). From the curves in (Wang et al., 2020) and in the present work, we expect LA-MCTS to
perform well with an adapted choice of parametrization and with a low budget, for tasks related to
MuJoCo, whereas ABBO is adapted for wide ranges of tasks and budgets.

5 CONCLUSIONS

This paper proposes OptimSuite, a very broad benchmark suite composed of real-world and of arti-
ficial benchmark problems. OptimSuite is implemented as a fork of Nevergrad (Rapin & Teytaud,
2018), from which it inherits a strong reproducibility: our (Python) code is open source (Anony-
mous, 2020), tests are rerun periodically, and up-to-date results are available in the public dash-
board (Rapin & Teytaud, 2020). A whole experiment can be done as a one-liner. OptimSuite fixes
several issues of existing benchmarking environments. The suite subsumes MuJoCo, Pyomo, LSGO,
YABBOB, MLDA, and several new real-world problems. We also propose ABBO, an improved al-
gorithm selection wizard. Despite its simplicity, ABBO shows very promising performance across
the whole benchmark suite, often outperforming the previous state-of-the-art, problem-specific
solvers: (a) by solving 5 of the 6 cases without any task-specific hyperparameter tuning, ABBO
outperforms LA-MCTS, which was specialized for each single task, (b) ABBO outperforms Shiwa
on YABBOB and its variants, which is the benchmark suite used to design Shiwa in the first place,
(c) ABBO is also among the best methods on LSGO and almost all other benchmarks.

Further work. OptimSuite subsumes most of the desirable features outlined in Section 2, with
one notable exception, the true black-box setting, which other benchmark environments have im-
plemented through a client-server interaction (Loshchilov & Glasmachers, 2017). A possible com-
bination between our platform and such a challenge, using the dashboard to publish the results,
could be useful, to offer a meaningful way for cross-validation. Further improving ABBO is on
the roadmap. In particular, we are experimenting with the automation of the still hand-crafted se-
lection rules. Note, though, that it is important to us to maintain a high level of interpretability,
which we consider key for a wide acceptance of the wizard. Another avenue for future work is a
proper configuration of the low-level heuristics subsumed by ABBO. At present, some of them are
merely textbook implementations, and significant room for improvement can therefore be expected.
Newer variants (Loshchilov, 2014; Akimoto & Hansen, 2016; Loshchilov et al., 2018) of CMA-
ES, of LMRS (Sener & Koltun, 2020), recent Bayesian optimization libraries (e.g. Eriksson et al.
(2019)), as well as per-instance algorithm configuration such as Belkhir et al. (2017) are not unlikely
to result in important improvements for various benchmarks. We also plan on extending OptimSuite
further, both through interfacing existing benchmark collections/problems, and by designing new
benchmark problems ourselves.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for valuable suggestions that helped us improve the clarity and
the presentation of our work.

9



Under review as a conference paper at ICLR 2021

REFERENCES

Youhei Akimoto and Nikolaus Hansen. Projection-based restricted covariance matrix adaptation for
high dimension. In Proc. of Genetic and Evolutionary Computation (GECCO’16), pp. 197–204,
ACM, 2016.

Anonymous. Anonymized github repository with all source code of our work. https://
anonymous.4open.science/r/5118cc2c-e2b0-475f-ba8d-3a2971a93acd/,
2020.

SME Artelys. Artelys sqp wins the bbcomp competition, 2015. URL https://www.ini.rub.
de/PEOPLE/glasmtbl/projects/bbcomp/index.html.

Anne Auger and Nikolaus Hansen. Benchmarking the (1+1)-CMA-ES on the BBOB-2009 noisy
testbed. In Proc. of Genetic and Evolutionary Computation Conference (GECCO’09, Companion
Material, pp. 2467–2472. ACM, 2009.

Anne Auger, Marc Schoenauer, and Olivier Teytaud. Local and global order 3/2 convergence of a
surrogate evolutionary algorithm. In Proc. of Genetic and Evolutionary Computation Conference
(GECCO’05), pp. 857–864. ACM, 2005.

Nicolas Baskiotis and Michèle Sebag. C4.5 competence map: a phase transition-inspired approach.
In Proc. of International Conference on Machine Learning (ICML’04), 2004.

Nacim Belkhir, Johann Dréo, Pierre Savéant, and Marc Schoenauer. Per instance algorithm con-
figuration of cma-es with limited budget. In Proc. of Genetic and Evolutionary Computation
Conference (GECCO’17), pp. 681–688. ACM, 2017.

Vincent Berthier. Progressive differential evolution on clustering real world problems. In Revised
Selected Papers of the 12th International Conference on Artificial Evolution - Volume 9554, pp.
71–82. Springer, 2016.

Hans-Georg Beyer. The Theory of Evolution Strategies. Natural Computing Series. Springer, Hei-
deberg, 2001.

Hans-Georg Beyer. http://lists.lri.fr/pipermail/bbob-discuss/
2012-April/000270.html, 2012a.

Hans-Georg Beyer. http://lists.lri.fr/pipermail/bbob-discuss/
2012-April/000258.html, 2012b.

Hans-Georg Beyer and Hans-Paul Schwefel. Evolution Strategies - A Comprehensive Introduction.
Natural Computing, 1(1):3–52, May 2002.

Bernd Bischl, Pascal Kerschke, Lars Kotthoff, Thomas Marius Lindauer, Yuri Malitsky, Alexandre
Fréchette, Holger H. Hoos, Frank Hutter, Kevin Leyton-Brown, Kevin Tierney, and Joaquin Van-
schoren. ASlib: A Benchmark Library for Algorithm Selection. Artificial Intelligence (AIJ), 237:
41 – 58, 2016.

Olivier Bousquet, Sylvain Gelly, Kurach Karol, Olivier Teytaud, and Damien Vincent. Critical
hyper-parameters: No random, no cry. CoRR, abs/1706.03200, 2017.

Sébastien Bubeck, Rémi Munos, and Gilles Stoltz. Pure exploration in finitely-armed and
continuous-armed bandits. Theor. Comput. Sci., 412(19):1832–1852, 2011.

Marie-Liesse Cauwet and Olivier Teytaud. Population control meets Doob’s martingale theorems:
The noise-free multimodal case. In Proc. of Genetic and Evolutionary Computation (GECCO’20,
Companion Material), GECCO ’20, pp. 321–322. ACM, 2020.

Marie-Liesse Cauwet, Jialin Liu, Baptiste Rozière, and Olivier Teytaud. Algorithm portfolios for
noisy optimization. Annals of Mathematics and Artificial Intelligence, 76(1-2):143–172, 2016.

Marie-Liesse Cauwet, Camille Couprie, Julien Dehos, Pauline Luc, Jérémy Rapin, Morgane Riviere,
Fabien Teytaud, and Olivier Teytaud. Fully parallel hyperparameter search: Reshaped space-
filling. arXiv preprint arXiv:1910.08406. To appear in Proc. of ICML 2020, 2019.

10

https://anonymous.4open.science/r/5118cc2c-e2b0-475f-ba8d-3a2971a93acd/
https://anonymous.4open.science/r/5118cc2c-e2b0-475f-ba8d-3a2971a93acd/
https://www.ini.rub.de/PEOPLE/glasmtbl/projects/bbcomp/index.html
https://www.ini.rub.de/PEOPLE/glasmtbl/projects/bbcomp/index.html
http://lists.lri.fr/pipermail/bbob-discuss/2012-April/000270.html
http://lists.lri.fr/pipermail/bbob-discuss/2012-April/000270.html
http://lists.lri.fr/pipermail/bbob-discuss/2012-April/000258.html
http://lists.lri.fr/pipermail/bbob-discuss/2012-April/000258.html


Under review as a conference paper at ICLR 2021

Alexandre Adrien Chotard, Anne Auger, and Nikolaus Hansen. Cumulative Step-size Adaptation
on Linear Functions: Technical Report. Research report, Inria Saclay, June 2012.

Yann Collette, Nikolaus Hansen, Gilles Pujol, Daniel Salazar, and Rodolphe Le Riche. On object-
oriented programming of optimizers - examples in scilab. 01 2010.

Remi Coulom. http://lists.lri.fr/pipermail/bbob-discuss/2012-April/
000252.html, 2012a.

Rémi Coulom. Clop: Confident local optimization for noisyblack-box parameter tuning. In Ad-
vances in Computer Games, pp. 146–157. Springer Berlin Heidelberg, 2012b.

Duc-Cuong Dang and Per Kristian Lehre. Self-adaptation of mutation rates in non-elitist popula-
tions. In Proc. of Parallel Problem Solving from Nature (PPSN’16), pp. 803–813, 2016.

Jérémie Decock and Olivier Teytaud. Noisy optimization complexity under locality assumption. In
Proceedings of the Twelfth Workshop on Foundations of Genetic Algorithms XII, FOGA XII ’13,
pp. 183–190. ACM, 2013.

Benjamin Doerr, Huu Phuoc Le, Régis Makhmara, and Ta Duy Nguyen. Fast genetic algorithms. In
Proc. of Genetic and Evolutionary Computation (GECCO’17), pp. 777–784. ACM, 2017.

Benjamin Doerr, Carola Doerr, and Johannes Lengler. Self-adjusting mutation rates with provably
optimal success rules. In Proc. of Genetic and Evolutionary Computation (GECCO’19), pp.
1479–1487. ACM, 2019.

David Eriksson, Michael Pearce, Jacob Gardner, Ryan D Turner, and Matthias Poloczek. Scalable
global optimization via local Bayesian optimization. In H. Wallach, H. Larochelle, A. Beygelz-
imer, F. d Alché-Buc, E. Fox, and R. Garnett (eds.), Advances in Neural Information Processing
Systems, volume 32, pp. 5496–5507. Curran Associates, 2019.

Matteo Fischetti and Michele Monaci. Exploiting erraticism in search. Operations Research, 62(1):
114–122, 2014.

Marcus Gallagher and Sobia Saleem. Exploratory landscape analysis of the mlda problem set. In
PPSN’18 workshop, 2018.

Nikolaus Hansen and Andreas Ostermeier. Completely derandomized self-adaptation in evolution
strategies. Evolutionary Computation, 11(1), 2003.

Nikolaus Hansen, Anne Auger, Steffen Finck, and Raymond Ros. Real-parameter black-box opti-
mization benchmarking 2009: Experimental setup. Technical Report RR-6828, INRIA, France,
2009.

Nikolaus Hansen, Raymond Ros, Nikolas Mauny, Marc Schoenauer, and Anne Auger. Impacts of
Invariance in Search: When CMA-ES and PSO Face Ill-Conditioned and Non-Separable Prob-
lems. Applied Soft Computing, 11:5755–5769, 2011.

William E Hart, Carl D Laird, Jean-Paul Watson, David L Woodruff, Gabriel A Hackebeil,
Bethany L Nicholson, and John D Siirola. Pyomo-optimization modeling in python, volume 67.
Springer, 2017.

Verena Heidrich-Meisner and Christian Igel. Hoeffding and bernstein races for selecting policies
in evolutionary direct policy search. In Proc. of International Conference on Machine Learning
(ICML’09), pp. 401–408. ACM, 2009.

Michael Hellwig and Hans-Georg Beyer. Evolution under strong noise: A self-adaptive evolution
strategy can reach the lower performance bound - the pcCMSA-ES. In Proc. of Parallel Problem
Solving from Nature (PPSN’16), pp. 26–36. Springer, 2016.

John H. Holland. Adaptation in Natural and Artificial Systems. University of Michigan Press, 1975.

Max Jaderberg, Valentin Dalibard, Simon Osindero, Wojciech M. Czarnecki, Jeff Donahue, Ali
Razavi, Oriol Vinyals, Tim Green, Iain Dunning, Karen Simonyan, Chrisantha Fernando, and
Koray Kavukcuoglu. Population based training of neural networks, 2017.

11

http://lists.lri.fr/pipermail/bbob-discuss/2012-April/000252.html
http://lists.lri.fr/pipermail/bbob-discuss/2012-April/000252.html


Under review as a conference paper at ICLR 2021

Donald R. Jones, Matthias Schonlau, and William J. Welch. Efficient global optimization of expen-
sive black-box functions. Journal of Global Optimization, 13(4):455–492, Dec 1998.

Pascal Kerschke and Heike Trautmann. Automated Algorithm Selection on Continuous Black-Box
Problems By Combining Exploratory Landscape Analysis and Machine Learning. Evolutionary
Computation, pp. 1 – 28, 2018.

Pascal Kerschke, Holger H. Hoos, Frank Neumann, and Heike Trautmann. Automated Algorithm
Selection: Survey and Perspectives. Evolutionary Computation, pp. 1 – 47, 2018.

Lars Kotthoff. Algorithm Selection for Combinatorial Search Problems: A Survey. AI Magazine,
35(3):48 – 60, 2014.

Xiaodong Li, Ke Tang, Mohammmad Nabi Omidvar, Zhenyu Yang, and Kai Qin. Benchmark func-
tions for the CEC’2013 special session and competition on large-scale global optimization. 01
2013.

Jialin Liu, Antoine Moreau, Mike Preuss, Jeremy Rapin, Baptiste Roziere, Fabien Teytaud, and
Olivier Teytaud. Versatile black-box optimization. In Proc. of Genetic and Evolutionary Compu-
tation (GECCO’20), pp. 620–628, 2020.

Ilya Loshchilov. A computationally efficient limited memory cma-es for large scale optimization.
In Proc. of Genetic and Evolutionary Computation (GECCO’14), pp. 397–404, 2014.

Ilya Loshchilov and T. Glasmachers. Black box optimization competition, 2017. URL https:
//www.ini.rub.de/PEOPLE/glasmtbl/projects/bbcomp/index.html.

Ilya Loshchilov, Tobias Glasmachers, and Hans-Georg Beyer. Large scale black-box optimization
by limited-memory matrix adaptation. IEEE Transactions on Evolutionary Computation, 23(2):
353–358, 2018.

Katherine Mary Malan and Andries Petrus Engelbrecht. A Survey of Techniques for Characterising
Fitness Landscapes and Some Possible Ways Forward. Information Sciences (JIS), 241:148 – 163,
2013.

Horia Mania, Aurelia Guy, and Benjamin Recht. Simple random search provides a competitive
approach to reinforcement learning, 2018.

Olaf Mersmann, Bernd Bischl, Heike Trautmann, Mike Preuss, Claus Weihs, and Günter Rudolph.
Exploratory Landscape Analysis. In Proc. of Genetic and Evolutionary Computation Conferennce
(GECCO’11), pp. 829 – 836. ACM, 2011.

Laurent Meunier, Carola Doerr, Jérémy Rapin, and Olivier Teytaud. Variance reduction for better
sampling in continuous domains. In Proc. of Parallel Problem Solving from Nature (PPSN’20),
volume 12269 of LNCS, pp. 154–168. Springer, 2020.

D. Molina, M. Lozano, and F. Herrera. Memetic algorithm with local search chaining for continuous
optimization problems: A scalability test. In 2009 Ninth International Conference on Intelligent
Systems Design and Applications, pp. 1068–1073, 2009.

Mario Andrés Muñoz Acosta, Yuan Sun, Michael Kirley, and Saman K. Halgamuge. Algorithm Se-
lection for Black-Box Continuous Optimization Problems: A Survey on Methods and Challenges.
Information Sciences (JIS), 317:224 – 245, October 2015.

John A. Nelder and Roger Mead. A simplex method for function minimization. Computer Journal,
7:308–313, 1965.

Fernando Nogueira. Bayesian Optimization: Open source constrained global optimization tool for
Python, 2014–. URL https://github.com/fmfn/BayesianOptimization.

Narayana Prasad Padhy. Unit commitment-a bibliographical survey. IEEE Transactions on Power
Systems, 19(2):1196–1205, 2004.

12

https://www.ini.rub.de/PEOPLE/glasmtbl/projects/bbcomp/index.html
https://www.ini.rub.de/PEOPLE/glasmtbl/projects/bbcomp/index.html
https://github.com/fmfn/BayesianOptimization


Under review as a conference paper at ICLR 2021

Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion, Olivier
Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, Jake Vanderplas,
Alexandre Passos, David Cournapeau, Matthieu Brucher, Matthieu Perrot, and Édouard Duch-
esnay. Scikit-learn: Machine learning in Python. Journal of Machine Learning Research, 12:
2825–2830, 2011.

Erik Pitzer and Michael Affenzeller. A Comprehensive Survey on Fitness Landscape Analysis.
In János Fodor, Ryszard Klempous, and Carmen Paz Suárez Araujo (eds.), Recent Advances in
Intelligent Engineering Systems, Studies in Computational Intelligence, pp. 161 – 191. Springer,
2012.

Michael J.D. Powell. An efficient method for finding the minimum of a function of several variables
without calculating derivatives. The Computer Journal, 7(2):155–162, 1964.

Michael J.D. Powell. A Direct Search Optimization Method That Models the Objective and Con-
straint Functions by Linear Interpolation, pp. 51–67. Springer, 1994. ISBN 978-94-015-8330-5.

Nicholas J. Radcliffe and Patrick D. Surry. Formal memetic algorithms. In T.C. Fogarty (ed.),
Evolutionary Computing: AISB Workshop, pp. 1–16. Springer, LNCS 865, 1994.

Jeremy Rapin and Olivier Teytaud. Nevergrad - A gradient-free optimization platform. https:
//GitHub.com/FacebookResearch/Nevergrad, 2018.

Jeremy Rapin and Olivier Teytaud. Dashboard of results for Nevergrad platform. https://dl.
fbaipublicfiles.com/nevergrad/allxps/list.html, 2020.

Jérémy Rapin, Pauline Dorval, Jules Pondard, Nicolas Vasilache, Marie-Liesse Cauwet, Camille
Couprie, and Olivier Teytaud. Openly revisiting derivative-free optimization. In Proc. of Genetic
and Evolutionary Computation (GECCO’19), pp. 267–268. ACM, 2019.

Ingo Rechenberg. Evolutionstrategie: Optimierung Technischer Systeme nach Prinzipien des Biol-
ogischen Evolution. Fromman-Holzboog Verlag, 1973.

Benjamin Recht, Rebecca Roelofs, Ludwig Schmidt, and Vaishaal Shankar. Do CIFAR-10 classi-
fiers generalize to CIFAR-10 ?, 2018.

John Rischard Rice. The Algorithm Selection Problem. Advances in Computers, 15:65 – 118, 1976.

Hartley Rogers. Theory of Recursive Functions and Effective Computability. MIT Press, 1987.
ISBN 0262680521.

Raymond Ros and Nikolaus Hansen. A simple modification in CMA-ES achieving linear time and
space complexity. In Proc. of Parallel Problem Solving from Nature (PPSN’08), pp. 296–305.
Springer, 2008.

Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, and Xi Chen.
Improved techniques for training gans. In NeurIPS, 2016.

Ralf Salomon. Re-evaluating genetic algorithm performance under coordinate rotation of benchmark
functions. a survey of some theoretical and practical aspects of genetic algorithms. BioSystems,
39(3):263–278, 1996.

Ozan Sener and Vladlen Koltun. Learning to guide random search. In International Confer-
ence on Learning Representations, 2020. URL https://openreview.net/forum?id=
B1gHokBKwS.

Kate Amanda Smith-Miles. Cross-Disciplinary Perspectives on Meta-Learning for Algorithm Se-
lection. ACM Computing Surveys (CSUR), 41:1 – 25, January 2009.

Jasper Snoek, Hugo Larochelle, and Ryan P. Adams. Practical bayesian optimization of machine
learning algorithms. In Advances in Neural Information Processing Systems (NIPS), pp. 2951–
2959, 2012.

13

https://GitHub.com/FacebookResearch/Nevergrad
https://GitHub.com/FacebookResearch/Nevergrad
https://dl.fbaipublicfiles.com/nevergrad/allxps/list.html
https://dl.fbaipublicfiles.com/nevergrad/allxps/list.html
https://openreview.net/forum?id=B1gHokBKwS
https://openreview.net/forum?id=B1gHokBKwS


Under review as a conference paper at ICLR 2021

Rainer Storn and Kenneth Price. Differential evolution - a simple and efficient heuristic for global
optimization over continuous spaces. J. of Global Optimization, 11(4):341–359, December 1997.

Emanuel Todorov, Tom Erez, and Yuval Tassa. MuJoCo: A physics engine for model-based control.
2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5026–5033.
IEEE, 2012.

Mauro Vallati, Frank Hutter, Lukás Chrpa, and Thomas Leo McCluskey. On the effective con-
figuration of planning domain models. In Proc. of International Joint Conference on Artificial
Intelligence (IJCAI’15), 2015.

Konstantinos Varelas, Anne Auger, Dimo Brockhoff, Nikolaus Hansen, Ouassim Ait ElHara, Yann
Semet, Rami Kassab, and Frédéric Barbaresco. A comparative study of large-scale variants of
CMA-ES. In Proc. of Parallel Problem Solving from Nature (PPSN’18), volume 11101 of LNCS,
pp. 3–15. Springer, 2018.

Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler Reddy, David Courna-
peau, Evgeni Burovski, Pearu Peterson, Warren Weckesser, Jonathan Bright, Stéfan J. van der
Walt, Matthew Brett, Joshua Wilson, K. Jarrod Millman, Nikolay Mayorov, Andrew R. J. Nelson,
Eric Jones, Robert Kern, Eric Larson, CJ Carey, İlhan Polat, Yu Feng, Eric W. Moore, Jake Vand
erPlas, Denis Laxalde, Josef Perktold, Robert Cimrman, Ian Henriksen, E. A. Quintero, Charles R
Harris, Anne M. Archibald, Antônio H. Ribeiro, Fabian Pedregosa, Paul van Mulbregt, and SciPy
1. 0 Contributors. SciPy 1.0–Fundamental Algorithms for Scientific Computing in Python. arXiv
e-prints, art. arXiv:1907.10121, Jul 2019.

Linnan Wang, Rodrigo Fonseca, and Yuandong Tian. Learning search space partition for black-box
optimization using Monte Carlo Tree Search. arXiv:2007.00708. To appear in Proc. of NeurIPS
2020, 2020.

Lin Xu, Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown. SATzilla: Portfolio-based algo-
rithm selection for SAT. J. Artif. Int. Res., 32(1):565–606, 2008.

14



Under review as a conference paper at ICLR 2021

A DETAILS ABOUT PROPERTIES OF BENCHMARKS

We specify the properties mentioned in Table 1.

• Large scale: includes dimension ≥ 1000.
• Translations: in unbounded continuous domains, a standard deviation σ has to be pro-

vided, for example for sampling the first and second iterates of the optimization algorithm.
Given a standard deviation σ, we consider that there is translation when optimas are ran-
domly translated by a N (0, σ2) shift. Only interesting for artificial cases.

• Far-optimum: optima are translated far from the optimum, with standard deviation at least
N (0, 25× σ2).

• Symmetrizations / rotations (here assuming an optimum, up to translation, in 0).
Rotation: with a random rotation matrix M , the function x 7→ f(x) is replaced by
x 7→ f(M(x)). Symmetrization: x 7→ f(x) can be replaced by x 7→ f(S(x)), with S
a diagonal matrix with each diagonal coefficient equal to 1 or −1 with probability 50%.
We do not request all benchmarks to be rotated: it might be preferable to have both cases
considered.

• One-line reproducibility: Where reproducibility requires significant coding, it is unlikely
to be of great use outside of a very small set of specialists. One-line reproducibility is given
when the effort to reproduce an entire experiment does not require more than the execution
of a single line. We consider this to be an important feature.

• Periodic automated dashboard: are algorithms re-run periodically on new problem in-
stances? Some platforms do not collect the algorithms, and reproducibility is hence not
given. An automated dashboard is convenient also because new problems can be added
“on the go” without causing problems, as all algorithms will be executed on all these new
problem instances. This feature addresses what we consider to be one of the biggest bot-
tlenecks in the current benchmarking environments.

• Complex or real-world: Real-world is self-explanatory; complex means a benchmark
involving a complex simulator, even if it is not real world. MuJoCo is in the “complex”
category.

• Multimodal: whether the suite contains problems for which there are local optima which
are not global optima.

• Open sourced / no license: Are algorithms and benchmarks available under an open source
agreement. BBOB does not collect algorithms, MuJoCo requires a license, LSGO and
BBOB are not realworld, Mujoco requires a license, BBComp is no longer maintained,
Nevergrad before OptimSuite did not include complex ML problems without license issue
before our work: some people have already applied Nevergrad to MuJoCo, but with our
work MuJoCo becomes part of Nevergrad so that people can upload their code in Nevergrad
and it will be run on all benchmarks, including MuJoCo.

• Ask/tell/recommend correctly implemented (Collette et al., 2010; Bubeck et al., 2011):
The ask and tell idea (developped in Collette et al. (2010)) is that an optimization algorithm
should not come under the format Optimizer.minimize(objective− function) because
there are many settings in which this is not possible: you might think of agents optimiz-
ing concurrently their own part of an objective function, and problems of reentrance, or
asynchronicity. All settings can be recovered from an ask/tell optimization method. This
becomes widely used. However, as well known in the bandit literature (you can think
of pure exploration bandits (Bubeck et al., 2011)), it is necessary to distinguish ask, tell
and recommend: the “recommend” method is the one which proposes an approximation
of the optimum. Let us develop an example explaining why this matters: the domain is
{1, 2, 3, 4}, and we have a budget of 20 in a noisy case. NoisyBBOB assumes that the
optimum is found when “ask” returns the optimum arm: then, the status remains “found”
even if the algorithm has no idea where is the optimum and never comes back nearby. So
an algorithm which just iteratively “asks” 1, 2, 3, 4, 1, 2, 3, 4, . . . reaches the optimum in
at most 4 iterations. This does not mean anything in the noisy case, as the challenge is to
figure out which of the four numbers is the optimum. With a proper ask/tell/recommend,
the optimizer chooses an arm at the end of the budget. A simple regret is then computed.

15



Under review as a conference paper at ICLR 2021

Actually this also matters in the noise-free case, but the issue is much more critical in noisy
optimization. The case of continuous noisy optimization also has counter-examples and all
the best noisy optimization algorithms use ask/tell/recommend. We add the reference to
the paper above.
• Human excluded / client-server: The problem instances are truly black-box. Algorithms

can only suggest points and observe function values, but neither the algorithm nor its de-
signer have access to any other information about the problem apart from the number of
variables, their type, ranges, and order. It is impossible to repeat experiments for tuning
hyperparameters without “paying” the budget of the HP tuning. This is something we could
not do, as everything is public and open sourced: however, we believe that we mitigate this
issue by considering a large number of benchmarks.

B ADDITIONAL FIGURES

High-dimensional (HD)

Noisy HD

Figure 4: YAHDBBOB (dimension ≥ 50) and YANOISYHDBBOB (noisy + dimension ≥ 50)
heatmaps.

16



Under review as a conference paper at ICLR 2021

AllDEs (d ∈ {5, 20, 100}.)

HDBO (d ∈ {20, 2000})

Figure 5: ABBO vs specific families of optimization algorithms (DE, and BO in the high-
dimensional case) on Cigar, Hm, Ellipsoid, Sphere functions. Not all run algorithms are mentioned,
for short. Bayesian optimization (Nevergrad uses Nogueira (2014–)), often exploring boundaries
first, is outperformed in high dimension (Wang et al., 2020).

17



Under review as a conference paper at ICLR 2021

PARAMULTIMODAL

Realworld

Figure 6: Up: experiments for the parallel multimodal setting PARAMULTIMODAL. Budget up to
100000, parallelism 1000, Ackley+Rosenbrock+DeceptiveMultimodal+Griewank+Lunacek+Hm.
Bottom: Realworld benchmark from Nevergrad: games, Sammon mappings, clustering, small trav-
eling salesman instance, small power systems.

18



Under review as a conference paper at ICLR 2021

Rocket

SimpleTSP

Figure 7: Additional problems (1): Rocket (26 continuous variables, budget up to 1600, sequential
or parallelism 30) and SimpleTSP (10 to 1000 decision variables).

19



Under review as a conference paper at ICLR 2021

PowerSystems

Lsgo (15 functions)

Figure 8: Additional problems (2): PowerSystems (1806 to 9646 neural decision variables) and
LSGO (mix of partially separable, overlapping, shifted cases as in Li et al. (2013)).

20


	Introduction: State of the Art
	Sound Black-Box Optimization Benchmarking
	A New Algorithm Selection Wizard: ABBO
	Experimental Results
	Benchmarks in OptimSuite Used for Designing and Validating ABBO
	New Benchmarks in OptimSuite Used Only for Evaluating ABBO

	Conclusions
	Details about properties of benchmarks
	Additional Figures

