
Published as a conference paper at ICLR 2023

LEARNING MATH REASONING FROM SELF-SAMPLED
CORRECT AND PARTIALLY-CORRECT SOLUTIONS

Ansong Ni1∗ Jeevana Priya Inala2 Chenglong Wang2

Oleksandr Polozov3† Christopher Meek4‡ Dragomir Radev1 Jianfeng Gao2

1Yale University, 2Microsoft Research, 3Google, 4University of Washington
ansong.ni@yale.edu, {jinala, chenwang}@microsoft.com

ABSTRACT

Pretrained language models have shown superior performance on many natural
language processing tasks, yet they still struggle at multi-step formal reasoning
tasks like grade school math problems. One key challenge of finetuning them to
solve such math reasoning problems is that many existing datasets only contain
one reference solution for each problem, despite the fact that there are often alter-
native solutions resembling different reasoning paths to the final answer. This way,
the finetuned models are biased towards the limited reference solutions, which
limits their generalization to unseen examples. To mitigate this issue, we pro-
pose to let the model perform sampling during training and learn from both self-
sampled fully-correct solutions, which yield the correct answer upon execution,
and partially-correct solutions, whose intermediate state matches an intermediate
state of a known correct solution. We show that our use of self-sampled correct
and partially-correct solutions can benefit learning and help guide the sampling
process, leading to more efficient exploration of the solution space. Additionally,
we explore various training objectives to support learning from multiple solutions
per example and find they greatly affect the performance. Experiments on two
math reasoning datasets show the effectiveness of our method compared to learn-
ing from a single reference solution with MLE, where we improve PASS@100
from 35.5% to 44.5% for GSM8K, and 27.6% to 36.2% PASS@80 for MathQA.
Such improvements are also consistent across different model sizes. Our code is
available at https://github.com/microsoft/TraceCodegen.

1 INTRODUCTION

Recent progress on pretrained language models shows that they are able to achieve human-level
performance on various natural language processing tasks with finetuning(Devlin et al., 2019; Brown
et al., 2020; Raffel et al., 2020). However, such models still lack the ability to perform multi-step
math reasoning even for problems that are intended for grade-school students (Cobbe et al., 2021).
Current methods for solving math problems typically rely on generating solutions (a sequence of
computation steps) and executing them to obtain the final answer (Cobbe et al., 2021; Austin et al.,
2021; Chen et al., 2021a; Chowdhery et al., 2022), as directly generating the final answer would
require computational abilities that even the largest models do not possess (Brown et al., 2020;
Chowdhery et al., 2022).

When finetuning such models on math reasoning, existing methods often rely on the MLE objective
that aims to maximize the log-likelihood of the reference solution for each natural language input.
However, in addition to the reference solution, there are often multiple correct solutions for each
question, resembling alternative reasoning paths to the final answer. However, those alternative
solutions are unseen during training, and this results in model overfitting: the model becomes overly
confident in its predictions because it sees the same solution over multiple epochs of training (Bunel
et al., 2018; Austin et al., 2021; Cobbe et al., 2021). This leads to poor generalization on unseen

∗Majority of the work done during an internship at Microsoft Research. †Work started while at Microsoft
Research, paper contribution limited to proof-reading. ‡Work initiated while at Microsoft.

1

https://github.com/microsoft/TraceCodegen


Published as a conference paper at ICLR 2023

inputs and is re�ected by the lowPASS@k performance, where the model is unable to predict the
right answer even when allowed multiple attempts per question.

To mitigate this issue, we propose learning from self-sampled solutions. Concretely, during training
time, the model samples alternative solutions, and keeps track of all solutions that are semantically
correct with respect to the gold execution result, and learns from all of these correct solutions as
opposed to only from the reference. To further improve the effectiveness of learning from self-
sampled solutions, we allow the model to learn from partially-correct solutions, whose intermediate
states are consistent with intermediate states of known correct solutions. This new technique allows
the model to maximally utilize the self-sampling and more ef�ciently explore the solution space. We
also study various common loss functions for learning from multiple targets for a single natural lan-
guage input, including augmented-MLE, Maximize Marginal Likelihood (MML) and� -smoothed
MML (Guu et al., 2017) and �nd that their different gradient equations greatly affect the learning
capabilities of the model.

We perform experiments on two math reasoning tasks, namely MathQA-Python (Austin et al., 2021)
and Grade-School-Math (GSM) (Cobbe et al., 2021), and �netune GPT-Neo models (Black et al.,
2021) to generate Python program as solutions from the problem description in natural language.
Results show that learning from self-sampled solutions can improve thePASS@100 from 35.5%
to 44.5% for GSM, and 27.6% to 36.2% forPASS@80 on a �ltered version of MathQA-Python.1

Moreover, we �nd that learning from partially-correct solutions generally improves performance
over learning from just fully-correct solutions (e.g., +3.0% PASS@100 for GSM8K) as it guides
the sampling process, discovering more alternative solutions for learning. Such performance boosts
from our proposed methods are also consistent for different model sizes. Ablation on different loss
functions shows that MLE-Aug loss is the most effective in learning from multiple targets and yields
the most improvements over MLE loss.

2 OVERVIEW

Problem formulation. We consider the task of generating solutions from math problem descrip-
tions in natural language (NL). Given an NL inputx 2 X and the executorE : Y ! Z , the goal is
to generate a solutiony 2 Y that executes to the expected answerz� 2 Z , i.e.,E(y) = z� .

Standard approach and its limitation. The standard approach is to assume that we have a dataset
of paired NL inputx and reference solutiony� . Most datasets typically only provide one reference
solution for a particular NL input. Then, a parameterized modelP� is learned with theMaximum
Likelihood Estimation(MLE) objective from the NL-Solution pair(x; y � ) as:

LMLE(x; y � ; P� ) = � logP� (y� jx) (1)
The builtin assumption of using Eq. 1 for learning is that only the reference solutiony� is correct.
However, this assumption is clearly untrue for the math reasoning problem as typically multiple
reasoning paths can achieve the correct �nal result. With only one reference solution as target for
learning, Eq. 1 would encourage the model to put all probability mass ony� , which could easily lead
to over�tting (Bunel et al., 2018; Austin et al., 2021; Cobbe et al., 2021).

Overview of our approach. While manually collecting additional reference solutions for each
speci�cation is a laborious process (Austin et al., 2021; Cobbe et al., 2021; Schuster et al., 2021),
in our work, we explore an alternate approach: where the model self-samples additional correct (or
partially-correct) solutions and learns from them during training. Fig. 1 shows an example: for the
questionx, our model was able to self-sample an alternative solutionŷ that is different from the
reference solutiony� provided in the dataset. Looking at the intermediate states shown on the right,
we can see that both these solutions execute to produce the sample desired output,i.e., ẑ = z� , as
noted with solid red boxes. Taking this one step further, our approach can also identify partially-
correct solutions from its samples. For example, on the bottom left, we show a sampled solutionŷ0

that is incorrect only because of an error in its last two steps. But we identify a pre�xŷ0
� 5 of it as

partially-correct because the intermediate stateŝ0
5 for this pre�x matches the intermediate states�

5
of a known correct solutiony� (noted as dashed red boxes) and yet syntactically different fromy� .
Based on these observations and intuitions, we introduce our approach in the following sections.

1We choose differentk for evaluatingPASS@k to be consistent with previous work.

2



Published as a conference paper at ICLR 2023

Figure 1: Examples of self-sampled correct and partially-
correct solutions from MathQA (more in Appendix D). The
steps and intermediate states marked in red areincorrect.

Algorithm 1 Training Update
Input:

Parameterized modelP� (yjx);
ExecutorE : Y ! Z ;
A training example(x; y � ; z� );
Buffer B for this inputx

1: if jBj = 0 then
2: B  B + f y� g /* initialize buffer */
3: end if
4: Ŷ  SampleSolutions(x; P � ; B)
5: for ŷ in Ŷ do
6: ẑ  E (ŷ) /* execute solution */
7: if isCorrect(ẑ; z� ) then
8: if not isDuplicate(ŷ; B) then
9: B  B + ŷ /* save to buffer */

10: end if
11: end if
12: end for
13: �

update
 ��� r � L (x; B; P� )

3 LEARNING FROM SELF-SAMPLED SOLUTIONS

We now formally present our approach. There are three main steps: 1)sampling2) �ltering and
3) learningas shown in Alg. 1. Here we mainly introduce the self-sampling framework using only
fully-correct solutions and the extensions with partially-correct solutions will be introduced in § 3.3.

3.1 ONLINE SAMPLING AND FILTERING

For each speci�cationx, we maintain a bufferB to save the different solutions that are correct,i.e.,
evaluate to the correct result. Note that the buffers are persistent and cumulative across training
epochs. To add more solutions inB, we perform online sampling and �ltering as follows.
Online sampling (line 4 in Alg. 1): With the NL questionx from each example(x; y � ; z� ) as input,
the model samples a set candidate solutionsŶ = f ŷi gn

i =1 � P� (ŷjx);
Filtering incorrect solutions(line 7 in Alg. 1): As not all sampled solutions in̂Y are correct (thus
not suitable for learning), we �lter out all incorrect solutions inŶ , i.e.,Ŷ � = f ŷjŷ 2 Ŷ ; E(ŷ) = z� g;
Filtering duplicate solutions (line 8 in Alg. 1): Because the model can sample solutions that are
correct but are ”trivial variants” of other already saved solutions (e.g.,the solution differs from an-
other solution only in white spaces, comments or trivial steps like ”x = x * 1.0 ”), we further
�lter the buffer to remove them. This is essential as all saved solutions will be directly used for
learning and such undesired behavior from the model will be encouraged without the �ltering pro-
cess.2 Concretely, we �rst perform �ltering based on the linearized abstract syntax trees (ASTs) to
eliminate the differences in white space, etc; then we set a constraint on maximum number of lines
using the number of lines iny� as the reference to prevent saving solutions with trivial steps.

3.2 LEARNING FROM MULTIPLE TARGETS

With self-sampling, each natural language question is paired with multiple solutions as targets for
learning. Here we discuss some common loss functions for the multi-target learning problem, with

2Our preliminary experiments also show that the performance greatly degenerates when such trivial variants
are left in the buffer for learning.

3



Published as a conference paper at ICLR 2023

Name Loss FunctionsL (x; B; P� ) Gradientsr � (x; B; P� )

MLE � log P� (y� jx) �r � log P� (y� jx)
MLE-Aug �

P
ŷ 2B log P� (ŷjx) �

P
ŷ 2B r � log P� (ŷjx)

MML � log
P

ŷ 2B P� (ŷjx) �
P

ŷ 2B
P � ( ŷ j x )P

~y 2B P � (~y j x ) r � log P� (ŷjx)

� -MML � 1
� log

P
y P� (ŷjx) � �

P
ŷ 2B

P � ( ŷ j x ) �
P

~y 2B P � (~y j x ) � r � log P� (ŷjx)

Table 1: Comparison of loss functions and their gradients over multiple referenceB. Note that they
all degenerates to MLE when only the gold reference solution is used as target,i.e.,B = f y� g.

a focus on how each target contributes to the gradient. The loss functions and their gradients are
shown in Tab. 1.

Augmented MLE (MLE-Aug): This objective augments MLE with multiple targets simply by
summing the loss from multiple solutions inB, which is equivalent as minimizing the KL-divergence
from P� (yjx) to Q(yjx) = 1

jBj �1B (y), where1(�) is a set indicator function. It encourages the model
to put equal weights on all targets by ensuring that all targets equally contribute to the gradient.
Maximum Marginal Likelihood (MML): MML attempts to approximateP� (z� jx) by marginaliz-
ing over the correct solutions inB. However, for each target̂y 2 B , the gradient of it is in proportion
to the likelihoodP� (ŷjx) given by the model, which results in a positive feedback loop during gradi-
ent updates. It encourages the model to still put a majority of the probability on one of the solutions
in B as noted in (Guu et al., 2017).
� -smoothed MML (� -MML): Proposed in Guu et al. (2017), the� -MML objective is an extension
of MML with a hyperparameter� 2 (0; 1] to adjust weights of the gradient from each target. It an
interpolation between MML and MLE-Aug objectives, more speci�cally, it recovers MML when
� = 1 and its gradient is equivalent to that of MLE-Aug when� ! 0.

Empirically, we �nd that these distinctions between those loss functions greatly affects the model
performance (Fig. 3), especially when partially-correct solutions are included for learning.

3.3 LEARNING FROM PARTIALLY -CORRECTSOLUTIONS

Besides learning from self-sampledfully-correct solutions(FCSs), we can also let the model learn
from partially-correct solutions(PCSs). Our motivation is that the model often encounter solutions
that are close to being correct as they only make mistakes in the last few steps (e.g.,Fig. 1), and these
partially-correct solutions provide additional learning opportunities. Learning from PCSs could also
address the issue that the sampler may have a low chance of encountering fully-correct solutions for
complex tasks due to the sparse solution space.

3.3.1 IDENTIFYING PARTIALLY -CORRECTSOLUTIONS

When the model samples a solution that does not produce the desired answer, we want to identify
if a pre�x of this solution is partially correct,i.e., it performs some of the necessary computation
steps needed for the correct solution, so that the model can additionally learn from these potentially
unseen pre�xes in the next iteration. A challenge here is �guring out when a pre�x is partially
correct. Ideally, we want to say a pre�xy� i is partially correct if there exists a suf�xy>i such that
their concatenation (y� i jj y>i ) is a correct solution. There are two caveats here: (1) if there is no
length restriction on the suf�x, it is always possible to �nd a suf�x that complements any pre�x (e.g.,
a full gold solution is one such suf�x); and (2) it is computationally very expensive to search for all
suf�xes (even with a length restriction) to check if a pre�x can be completed to a correct solution.

To overcome these challenges, we leverage the gold reference solutions and any self-sampled fully-
correct or even partially-correct solutions to help identify new partially-correct pre�xes. The idea is
to identify a pre�x as partially correct if it produces a set of intermediate values (upon execution) that
exactly matches the set of intermediate values produced by a pre�x of a known correct or partially-
correct solution. For such a pre�x, we know that there exists a reasonable complement suf�x based
on the suf�x of the known solutions. Note that, this de�nition of partial correctness is conservative
compared to the ideal de�nition above, but it makes the computation signi�cantly tractable.

4



Published as a conference paper at ICLR 2023

Algorithm 2 SampleSolutions(x; P� ; B) with partially-correct solutions

Input: ModelP� (yjx); the NL inputx and a set of partially-correct solutionsB
Output: Solution sampleŝY .

1: Select̂y� i 2 B n f ŷjE(ŷ) = z� g uniformly at random /* sample PCS pre�x for completion */
2: Sample a set of completionsYp � P� (ŷ>i jŷ� i ; x)
3: Ŷ  f [ŷ� i jj ŷ>i ]gŷ >i 2 Yp /* concatenate completions with the solution pre�x */
4: return Ŷ

Below, we formally de�ne this notion of partial solutions that leverages existing known fully and
partially correct solutions.

Intermediate state.Given a solutiony = ( u1; :::; ut ) whereui is thei -th reasoning step, we de�ne
the intermediate statesi as the set of all variables values in the scope after executing the �rsti steps
y� i = ( u1; :::; ui ), which we call apre�x of this solution. It is easy to see that the pre�xesy� i and
intermediate statessi of a solution construct a bijective function, which is also illustrated in Fig. 1.
Note that the state representation is name-agnostic since variable names do not typically contributes
to the semantics of the solutions.
State-based equivalence and partial correctness.Given the de�nition of the intermediate state,
we say the pre�xes of two solutions,y� i andy0

� j , aresemantically equivalentif and only if si = s0
j ,

i.e., those two solutions produces the exact same set of variable values. And then we de�nepartial
correctnessas follows: a solution pre�xy� i is partially-correct if and only if it is semantically
equivalent to the pre�x of another known partially-correct solutiony�

� j . As we keep all known
partially-correct solutions in the bufferB, formally:

PartiallyCorrect(y� i ) () 9 y� 2 B: 9j � j y� j s:t: s�
j = si

3.3.2 MODIFICATIONS TO THE MAIN ALGORITHM

To support learning from partial solutions, we modify Alg. 1 as follows to enable buffering and
sampling from partial solutions. The fully updated algorithm is shown in Appendix C.

Guided-Sampling: In § 3.1, we mentioned that full solutions are sampled for each questionx asŷ �
P� (ŷjx). With PCS pre�xes, compared with sampling a solution from scratch, generating solutions
with these pre�xes reduces the generation length thus the model can more ef�ciently explore the
solution space. This guided sampling process is described in more detail in Alg. 2. Note that since
the empty solutiony0 is in the bufferB since initialization, therefore model can still generate and
explore the space from scratch and not always follows the existing solution pre�xes.
Identify partially-correct pre�xes: As mentioned in § 3.3, if a solution̂y does not produce the
expected resultz� but its pre�x ŷ� i is partially-correct, the model can still learn from its pre�x.
However, an important task here is to identify the longest partially-correct pre�x for learning, in
other words, locate the exact step that the solution deviates from a correct reasoning path. We can
achieve this simply by backtracking the intermediate states and �nd the �rst state that is equivalent
to any of the states from a saved solution.3

Filtering solution pre�xes: With the inclusion of partially-correct solutions, we need to slightly
change the two �ltering criteria in § 3.1. For deduplication, while we still use AST to rule out
changes with non-semantic tokens such as white space, we also check if the partially-correct solution
pre�x ŷ� i is a pre�x of another known PCS inB. For the same reason, when saving a new partially-
correct solution̂y, we need to prune out any existing solution inB that is a pre�x ofŷ. As for the
length constraint, the same principle still applies, but now it is compared against other partially-
correct solution thatexecutes to the same state.
Learning objective: As partially-correct solutions are solution pre�xesy� i missing the later part
y>i , with an auto-regressive generation model, the learning ofP� (y� i jx) is independent ofy>i .
Thus the learning objectives in § 3.2 do not need to change with the inclusion of PCS in the buffer
for learning. The only difference is that the end-of-sequence “<eos >” token is not appended to the
PCS as those solutions are not yet �nished.

3In practice, we use astate ! solution prefix dictionary and the lookup takes a negligible
amount of time.

5



Published as a conference paper at ICLR 2023

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets.We evaluate on two math reasoning datasets, in which we generate straight-line Python
programs as solutions to solve math problems described in natural language. We �netune the lan-
guage models to output such program solutions using only the natural language problem description
as the input.

. MathQA-Python-Filtered: The original MathQA-Python consists of 19.2K training examples of
NL and Python program pairs (Austin et al., 2021). However, we �nd the raw dataset to contain
many questions that share the same question templates and only differ in concrete number across
the train/dev/test sets. To better understand the generalization of the trained models, we derive a
deduplicated version of the dataset by �rst merging the train and dev data and then perform template-
based deduplication. Partly inspired by Finegan-Dollak et al. (2018), we re-split the train and dev
set based on the question templates, resulting in 6.8K/0.7K train/dev data for the �ltered version.4

While we mainly experiment on the �ltered version, we report performance on both versions when
compared with previous methods.
. GSM5.5K-Python: The grade-school-math (GSM8K) dataset (Cobbe et al., 2021) contains 7.5K
training data points. Since it only provides natural language solutions with math formulas and does
not have a dev set, we �rst reserved 20% of the training data as dev set, then automatically converted
the formulas to program solutions in the same style as MathQA-Python. As the result, we �netune
our models with the 5.5K successfully converted training examples. Note that the natural language
solutions/explanations are not used as input to the models in our experiments.

Evaluation metrics: Following recent work in neural program synthesis (Austin et al., 2021; Chen
et al., 2021a; Chowdhery et al., 2022) and math reasoning (Cobbe et al., 2021), we usePASS@k
as our main evaluation metric. It allows the model to samplek solutions for each question and
the task is considered solved if any one of thek solutions is correct, soPASS@k can also be seen
as the fraction of problems in the test/dev set being solved givenk attempts. More details (e.g.,
temperature) can be found in Appendix A.

Model training: We use GPT-Neo (Black et al., 2021) as our language model and mainly study
two model sizes, 125M and 2.7B.5 Following previous work (Austin et al., 2021), we evaluate all
PASS@k on the same model checkpoint that has the bestPASS@1 score, but note that it might not be
the best checkpoint for otherk values (more discussion in Appendix E). Detailed hyperparameter
settings can also be found in Appendix A.

4.2 MAIN RESULTS

Learning from self-sampled solutions improvesPASS@k. Fig. 2 shows the performance on the
two datasets by learning from self-sampled FCSs and PCSs using MLE-Aug (orange bars), com-
pared with MLE on single reference solution (blue bars). We can see that our proposed method
can greatly improvePASS@k, especially for higherk values. By comparing different model sizes,
we can see that learning from self-sampled solutions can help with both small and large models,
with a +12.3% and +9.0%PASS@100improvement on GSM5.5K-Python for GPT-Neo-125M and
GPT-Neo-2.7B, respectively and a +3.1% and +8.6%PASS@80 improvement on MathQA-Python-
Filtered for GPT-Neo-125M and GPT-Neo-2.7B, respectively. We note that our approach does not
improvePASS@1, which is expected as learning from multiple targets mainly helps with increasing
the diversity of the sampled solutions rather than improving the most-probable solution (for which
MLE is better suited).

Partially-correct solutions improve model performance. We next show the effects of including
partially-correct solutions onPASS@k performance in Fig. 2 (green bars vs orange bars) and the
number of saved FCSs and PCSs in Fig. 4. First, we observe from Fig. 4 that using partial correctness
not only results in PCSs being saved and directly learned from, but it also boosts the number of FCSs
being found with the guided-sampling process. As a result, mostPASS@k performances drop if we

4We will release the processing scripts for replication and comparison.
5We choose GPT-Neo because it was the only public language model that have been pretrained on code

when we conduct the experiments.

6




	Introduction
	Overview
	Learning from Self-Sampled Solutions
	Online Sampling and Filtering
	Learning from Multiple Targets
	Learning from Partially-Correct Solutions
	Identifying Partially-Correct Solutions
	Modifications to the main algorithm


	Experiments
	Experimental Setup
	Main Results
	Additional Analysis

	Limitations and Future Work
	Related Work
	Conclusion
	Experiment Setting Details
	Additional Experiment Results
	Full Learning Algorithm with Partial Correctness
	Qualitative Analysis
	Tracking Training Progress

