
Published as a conference paper at ICLR 2023

LEARNING MATH REASONING FROM SELF-SAMPLED
CORRECT AND PARTIALLY-CORRECT SOLUTIONS

Ansong Ni1∗ Jeevana Priya Inala2 Chenglong Wang2

Oleksandr Polozov3† Christopher Meek4‡ Dragomir Radev1 Jianfeng Gao2

1Yale University, 2Microsoft Research, 3Google, 4University of Washington
ansong.ni@yale.edu, {jinala, chenwang}@microsoft.com

ABSTRACT

Pretrained language models have shown superior performance on many natural
language processing tasks, yet they still struggle at multi-step formal reasoning
tasks like grade school math problems. One key challenge of finetuning them to
solve such math reasoning problems is that many existing datasets only contain
one reference solution for each problem, despite the fact that there are often alter-
native solutions resembling different reasoning paths to the final answer. This way,
the finetuned models are biased towards the limited reference solutions, which
limits their generalization to unseen examples. To mitigate this issue, we pro-
pose to let the model perform sampling during training and learn from both self-
sampled fully-correct solutions, which yield the correct answer upon execution,
and partially-correct solutions, whose intermediate state matches an intermediate
state of a known correct solution. We show that our use of self-sampled correct
and partially-correct solutions can benefit learning and help guide the sampling
process, leading to more efficient exploration of the solution space. Additionally,
we explore various training objectives to support learning from multiple solutions
per example and find they greatly affect the performance. Experiments on two
math reasoning datasets show the effectiveness of our method compared to learn-
ing from a single reference solution with MLE, where we improve PASS@100
from 35.5% to 44.5% for GSM8K, and 27.6% to 36.2% PASS@80 for MathQA.
Such improvements are also consistent across different model sizes. Our code is
available at https://github.com/microsoft/TraceCodegen.

1 INTRODUCTION

Recent progress on pretrained language models shows that they are able to achieve human-level
performance on various natural language processing tasks with finetuning(Devlin et al., 2019; Brown
et al., 2020; Raffel et al., 2020). However, such models still lack the ability to perform multi-step
math reasoning even for problems that are intended for grade-school students (Cobbe et al., 2021).
Current methods for solving math problems typically rely on generating solutions (a sequence of
computation steps) and executing them to obtain the final answer (Cobbe et al., 2021; Austin et al.,
2021; Chen et al., 2021a; Chowdhery et al., 2022), as directly generating the final answer would
require computational abilities that even the largest models do not possess (Brown et al., 2020;
Chowdhery et al., 2022).

When finetuning such models on math reasoning, existing methods often rely on the MLE objective
that aims to maximize the log-likelihood of the reference solution for each natural language input.
However, in addition to the reference solution, there are often multiple correct solutions for each
question, resembling alternative reasoning paths to the final answer. However, those alternative
solutions are unseen during training, and this results in model overfitting: the model becomes overly
confident in its predictions because it sees the same solution over multiple epochs of training (Bunel
et al., 2018; Austin et al., 2021; Cobbe et al., 2021). This leads to poor generalization on unseen

∗Majority of the work done during an internship at Microsoft Research. †Work started while at Microsoft
Research, paper contribution limited to proof-reading. ‡Work initiated while at Microsoft.

1

https://github.com/microsoft/TraceCodegen

Published as a conference paper at ICLR 2023

inputs and is reflected by the low PASS@k performance, where the model is unable to predict the
right answer even when allowed multiple attempts per question.

To mitigate this issue, we propose learning from self-sampled solutions. Concretely, during training
time, the model samples alternative solutions, and keeps track of all solutions that are semantically
correct with respect to the gold execution result, and learns from all of these correct solutions as
opposed to only from the reference. To further improve the effectiveness of learning from self-
sampled solutions, we allow the model to learn from partially-correct solutions, whose intermediate
states are consistent with intermediate states of known correct solutions. This new technique allows
the model to maximally utilize the self-sampling and more efficiently explore the solution space. We
also study various common loss functions for learning from multiple targets for a single natural lan-
guage input, including augmented-MLE, Maximize Marginal Likelihood (MML) and β-smoothed
MML (Guu et al., 2017) and find that their different gradient equations greatly affect the learning
capabilities of the model.

We perform experiments on two math reasoning tasks, namely MathQA-Python (Austin et al., 2021)
and Grade-School-Math (GSM) (Cobbe et al., 2021), and finetune GPT-Neo models (Black et al.,
2021) to generate Python program as solutions from the problem description in natural language.
Results show that learning from self-sampled solutions can improve the PASS@100 from 35.5%
to 44.5% for GSM, and 27.6% to 36.2% for PASS@80 on a filtered version of MathQA-Python.1
Moreover, we find that learning from partially-correct solutions generally improves performance
over learning from just fully-correct solutions (e.g., +3.0% PASS@100 for GSM8K) as it guides
the sampling process, discovering more alternative solutions for learning. Such performance boosts
from our proposed methods are also consistent for different model sizes. Ablation on different loss
functions shows that MLE-Aug loss is the most effective in learning from multiple targets and yields
the most improvements over MLE loss.

2 OVERVIEW

Problem formulation. We consider the task of generating solutions from math problem descrip-
tions in natural language (NL). Given an NL input x ∈ X and the executor E : Y → Z , the goal is
to generate a solution y ∈ Y that executes to the expected answer z∗ ∈ Z , i.e., E(y) = z∗.

Standard approach and its limitation. The standard approach is to assume that we have a dataset
of paired NL input x and reference solution y∗. Most datasets typically only provide one reference
solution for a particular NL input. Then, a parameterized model Pθ is learned with the Maximum
Likelihood Estimation (MLE) objective from the NL-Solution pair (x, y∗) as:

LMLE(x, y
∗, Pθ) = − logPθ(y

∗|x) (1)
The builtin assumption of using Eq. 1 for learning is that only the reference solution y∗ is correct.
However, this assumption is clearly untrue for the math reasoning problem as typically multiple
reasoning paths can achieve the correct final result. With only one reference solution as target for
learning, Eq. 1 would encourage the model to put all probability mass on y∗, which could easily lead
to overfitting (Bunel et al., 2018; Austin et al., 2021; Cobbe et al., 2021).

Overview of our approach. While manually collecting additional reference solutions for each
specification is a laborious process (Austin et al., 2021; Cobbe et al., 2021; Schuster et al., 2021),
in our work, we explore an alternate approach: where the model self-samples additional correct (or
partially-correct) solutions and learns from them during training. Fig. 1 shows an example: for the
question x, our model was able to self-sample an alternative solution ŷ that is different from the
reference solution y∗ provided in the dataset. Looking at the intermediate states shown on the right,
we can see that both these solutions execute to produce the sample desired output, i.e., ẑ = z∗, as
noted with solid red boxes. Taking this one step further, our approach can also identify partially-
correct solutions from its samples. For example, on the bottom left, we show a sampled solution ŷ′

that is incorrect only because of an error in its last two steps. But we identify a prefix ŷ′≤5 of it as
partially-correct because the intermediate state ŝ′5 for this prefix matches the intermediate state s∗5
of a known correct solution y∗ (noted as dashed red boxes) and yet syntactically different from y∗.
Based on these observations and intuitions, we introduce our approach in the following sections.

1We choose different k for evaluating PASS@k to be consistent with previous work.

2

Published as a conference paper at ICLR 2023

n0 = 72
n1 = 250
n2 = 26
t0 = n0 * 0.2778
t1 = n1 / t0
t2 = n2 - t1
answer = t0 * t2

n0 = 72
n1 = 250
n2 = 26
t0 = n0 * 0.2778
t1 = n2 * t0
answer = t1 - n1

A goods train runs at a speed of 72kmph and crosses a 250M long platform
in 26 seconds. What is the length of the goods train?

Re
f.

So
lu

tio
n

Co
rr

ec
t S

ol
ut

io
n

N
L

In
pu

t
{72}
{72, 250}
{72, 250, 26}
{72, 250, 26, 20.0}
{72, 250, 26, 20.0, 12.5}
{72, 250, 26, 20.0, 12.5, 13.5}
output = 270

{72}
{72, 250}
{72, 250, 26}
{72, 250, 26, 20.0}
{72, 250, 26, 20.0, 520}
output = 270

n0 = 72
n1 = 250
n2 = 26
t0 = n0 / 3.6
t1 = n1 / t0
t2 = n0 - t1
answer = t0 * t1

Pa
rt

ia
lly

-C
or

re
ct

So

lu
tio

n
Pr

ef
ix {72}

{72, 250}
{72, 250, 26}
{72, 250, 26, 20.0}
{72, 250, 26, 20.0, 12.5}
{72, 250, 26, 20.0, 12.5, 59.5}
output = 1547

Correct

Ev
al

ua
te

 w
ith

 E
xe

cu
to

r

Solutions Intermediate States

𝑦∗
𝑥

#𝑦

#𝑦′

!𝑦′!"

𝑠"∗

𝑠̂"$

𝑧∗

𝑧̂

Partially-
Correct

Self-Sampled Solutions

Figure 1: Examples of self-sampled correct and partially-
correct solutions from MathQA (more in Appendix D). The
steps and intermediate states marked in red are incorrect.

Algorithm 1 Training Update
Input:

Parameterized model Pθ(y|x);
Executor E : Y → Z;
A training example (x, y∗, z∗);
Buffer B for this input x

1: if |B| = 0 then
2: B ← B + {y∗} /* initialize buffer */
3: end if
4: Ŷ ← SampleSolutions(x, Pθ,B)
5: for ŷ in Ŷ do
6: ẑ ← E(ŷ) /* execute solution */
7: if isCorrect(ẑ, z∗) then
8: if not isDuplicate(ŷ,B) then
9: B ← B + ŷ /* save to buffer */

10: end if
11: end if
12: end for
13: θ

update←−−− ∇θL(x,B, Pθ)

3 LEARNING FROM SELF-SAMPLED SOLUTIONS

We now formally present our approach. There are three main steps: 1) sampling 2) filtering and
3) learning as shown in Alg. 1. Here we mainly introduce the self-sampling framework using only
fully-correct solutions and the extensions with partially-correct solutions will be introduced in § 3.3.

3.1 ONLINE SAMPLING AND FILTERING

For each specification x, we maintain a buffer B to save the different solutions that are correct, i.e.,
evaluate to the correct result. Note that the buffers are persistent and cumulative across training
epochs. To add more solutions in B, we perform online sampling and filtering as follows.
Online sampling (line 4 in Alg. 1): With the NL question x from each example (x, y∗, z∗) as input,
the model samples a set candidate solutions Ŷ = {ŷi}ni=1 ∼ Pθ(ŷ|x);
Filtering incorrect solutions(line 7 in Alg. 1): As not all sampled solutions in Ŷ are correct (thus
not suitable for learning), we filter out all incorrect solutions in Ŷ , i.e., Ŷ ∗ = {ŷ|ŷ ∈ Ŷ ; E(ŷ) = z∗};
Filtering duplicate solutions (line 8 in Alg. 1): Because the model can sample solutions that are
correct but are ”trivial variants” of other already saved solutions (e.g., the solution differs from an-
other solution only in white spaces, comments or trivial steps like ”x = x * 1.0”), we further
filter the buffer to remove them. This is essential as all saved solutions will be directly used for
learning and such undesired behavior from the model will be encouraged without the filtering pro-
cess.2 Concretely, we first perform filtering based on the linearized abstract syntax trees (ASTs) to
eliminate the differences in white space, etc; then we set a constraint on maximum number of lines
using the number of lines in y∗ as the reference to prevent saving solutions with trivial steps.

3.2 LEARNING FROM MULTIPLE TARGETS

With self-sampling, each natural language question is paired with multiple solutions as targets for
learning. Here we discuss some common loss functions for the multi-target learning problem, with

2Our preliminary experiments also show that the performance greatly degenerates when such trivial variants
are left in the buffer for learning.

3

Published as a conference paper at ICLR 2023

Name Loss Functions L(x,B, Pθ) Gradients∇θ(x,B, Pθ)

MLE − logPθ(y
∗|x) −∇θ logPθ(y

∗|x)
MLE-Aug −

∑
ŷ∈B logPθ(ŷ|x) −

∑
ŷ∈B∇θ logPθ(ŷ|x)

MML − log
∑

ŷ∈B Pθ(ŷ|x) −
∑

ŷ∈B
Pθ(ŷ|x)∑

ỹ∈B Pθ(ỹ|x)
∇θ logPθ(ŷ|x)

β-MML − 1
β
log

∑
y Pθ(ŷ|x)β −

∑
ŷ∈B

Pθ(ŷ|x)β∑
ỹ∈B Pθ(ỹ|x)β

∇θ logPθ(ŷ|x)

Table 1: Comparison of loss functions and their gradients over multiple reference B. Note that they
all degenerates to MLE when only the gold reference solution is used as target, i.e., B = {y∗}.

a focus on how each target contributes to the gradient. The loss functions and their gradients are
shown in Tab. 1.

Augmented MLE (MLE-Aug): This objective augments MLE with multiple targets simply by
summing the loss from multiple solutions in B, which is equivalent as minimizing the KL-divergence
from Pθ(y|x) to Q(y|x) = 1

|B| ·1B(y), where 1(·) is a set indicator function. It encourages the model
to put equal weights on all targets by ensuring that all targets equally contribute to the gradient.
Maximum Marginal Likelihood (MML): MML attempts to approximate Pθ(z

∗|x) by marginaliz-
ing over the correct solutions in B. However, for each target ŷ ∈ B, the gradient of it is in proportion
to the likelihood Pθ(ŷ|x) given by the model, which results in a positive feedback loop during gradi-
ent updates. It encourages the model to still put a majority of the probability on one of the solutions
in B as noted in (Guu et al., 2017).
β-smoothed MML (β-MML): Proposed in Guu et al. (2017), the β-MML objective is an extension
of MML with a hyperparameter β ∈ (0, 1] to adjust weights of the gradient from each target. It an
interpolation between MML and MLE-Aug objectives, more specifically, it recovers MML when
β = 1 and its gradient is equivalent to that of MLE-Aug when β → 0.

Empirically, we find that these distinctions between those loss functions greatly affects the model
performance (Fig. 3), especially when partially-correct solutions are included for learning.

3.3 LEARNING FROM PARTIALLY-CORRECT SOLUTIONS

Besides learning from self-sampled fully-correct solutions (FCSs), we can also let the model learn
from partially-correct solutions (PCSs). Our motivation is that the model often encounter solutions
that are close to being correct as they only make mistakes in the last few steps (e.g., Fig. 1), and these
partially-correct solutions provide additional learning opportunities. Learning from PCSs could also
address the issue that the sampler may have a low chance of encountering fully-correct solutions for
complex tasks due to the sparse solution space.

3.3.1 IDENTIFYING PARTIALLY-CORRECT SOLUTIONS

When the model samples a solution that does not produce the desired answer, we want to identify
if a prefix of this solution is partially correct, i.e., it performs some of the necessary computation
steps needed for the correct solution, so that the model can additionally learn from these potentially
unseen prefixes in the next iteration. A challenge here is figuring out when a prefix is partially
correct. Ideally, we want to say a prefix y≤i is partially correct if there exists a suffix y>i such that
their concatenation (y≤i||y>i) is a correct solution. There are two caveats here: (1) if there is no
length restriction on the suffix, it is always possible to find a suffix that complements any prefix (e.g.,
a full gold solution is one such suffix); and (2) it is computationally very expensive to search for all
suffixes (even with a length restriction) to check if a prefix can be completed to a correct solution.

To overcome these challenges, we leverage the gold reference solutions and any self-sampled fully-
correct or even partially-correct solutions to help identify new partially-correct prefixes. The idea is
to identify a prefix as partially correct if it produces a set of intermediate values (upon execution) that
exactly matches the set of intermediate values produced by a prefix of a known correct or partially-
correct solution. For such a prefix, we know that there exists a reasonable complement suffix based
on the suffix of the known solutions. Note that, this definition of partial correctness is conservative
compared to the ideal definition above, but it makes the computation significantly tractable.

4

Published as a conference paper at ICLR 2023

Algorithm 2 SampleSolutions(x, Pθ,B) with partially-correct solutions

Input: Model Pθ(y|x); the NL input x and a set of partially-correct solutions B
Output: Solution samples Ŷ .

1: Select ŷ≤i ∈ B \ {ŷ|E(ŷ) = z∗} uniformly at random /* sample PCS prefix for completion */
2: Sample a set of completions Yp ∼ Pθ(ŷ>i|ŷ≤i, x)

3: Ŷ ← {[ŷ≤i||ŷ>i]}ŷ>i∈Yp /* concatenate completions with the solution prefix */
4: return Ŷ

Below, we formally define this notion of partial solutions that leverages existing known fully and
partially correct solutions.

Intermediate state. Given a solution y = (u1, ..., ut) where ui is the i-th reasoning step, we define
the intermediate state si as the set of all variables values in the scope after executing the first i steps
y≤i = (u1, ..., ui), which we call a prefix of this solution. It is easy to see that the prefixes y≤i and
intermediate states si of a solution construct a bijective function, which is also illustrated in Fig. 1.
Note that the state representation is name-agnostic since variable names do not typically contributes
to the semantics of the solutions.
State-based equivalence and partial correctness. Given the definition of the intermediate state,
we say the prefixes of two solutions, y≤i and y′≤j , are semantically equivalent if and only if si = s′j ,
i.e., those two solutions produces the exact same set of variable values. And then we define partial
correctness as follows: a solution prefix y≤i is partially-correct if and only if it is semantically
equivalent to the prefix of another known partially-correct solution y∗≤j . As we keep all known
partially-correct solutions in the buffer B, formally:

PartiallyCorrect(y≤i) ⇐⇒ ∃y∗ ∈ B. ∃j ≤ |y∗| s.t. s∗j = si

3.3.2 MODIFICATIONS TO THE MAIN ALGORITHM

To support learning from partial solutions, we modify Alg. 1 as follows to enable buffering and
sampling from partial solutions. The fully updated algorithm is shown in Appendix C.

Guided-Sampling: In § 3.1, we mentioned that full solutions are sampled for each question x as ŷ ∼
Pθ(ŷ|x). With PCS prefixes, compared with sampling a solution from scratch, generating solutions
with these prefixes reduces the generation length thus the model can more efficiently explore the
solution space. This guided sampling process is described in more detail in Alg. 2. Note that since
the empty solution y0 is in the buffer B since initialization, therefore model can still generate and
explore the space from scratch and not always follows the existing solution prefixes.
Identify partially-correct prefixes: As mentioned in § 3.3, if a solution ŷ does not produce the
expected result z∗ but its prefix ŷ≤i is partially-correct, the model can still learn from its prefix.
However, an important task here is to identify the longest partially-correct prefix for learning, in
other words, locate the exact step that the solution deviates from a correct reasoning path. We can
achieve this simply by backtracking the intermediate states and find the first state that is equivalent
to any of the states from a saved solution. 3

Filtering solution prefixes: With the inclusion of partially-correct solutions, we need to slightly
change the two filtering criteria in § 3.1. For deduplication, while we still use AST to rule out
changes with non-semantic tokens such as white space, we also check if the partially-correct solution
prefix ŷ≤i is a prefix of another known PCS in B. For the same reason, when saving a new partially-
correct solution ŷ, we need to prune out any existing solution in B that is a prefix of ŷ. As for the
length constraint, the same principle still applies, but now it is compared against other partially-
correct solution that executes to the same state.
Learning objective: As partially-correct solutions are solution prefixes y≤i missing the later part
y>i, with an auto-regressive generation model, the learning of Pθ(y≤i|x) is independent of y>i.
Thus the learning objectives in § 3.2 do not need to change with the inclusion of PCS in the buffer
for learning. The only difference is that the end-of-sequence “〈eos〉” token is not appended to the
PCS as those solutions are not yet finished.

3In practice, we use a state → solution prefix dictionary and the lookup takes a negligible
amount of time.

5

Published as a conference paper at ICLR 2023

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets. We evaluate on two math reasoning datasets, in which we generate straight-line Python
programs as solutions to solve math problems described in natural language. We finetune the lan-
guage models to output such program solutions using only the natural language problem description
as the input.

▷ MathQA-Python-Filtered: The original MathQA-Python consists of 19.2K training examples of
NL and Python program pairs (Austin et al., 2021). However, we find the raw dataset to contain
many questions that share the same question templates and only differ in concrete number across
the train/dev/test sets. To better understand the generalization of the trained models, we derive a
deduplicated version of the dataset by first merging the train and dev data and then perform template-
based deduplication. Partly inspired by Finegan-Dollak et al. (2018), we re-split the train and dev
set based on the question templates, resulting in 6.8K/0.7K train/dev data for the filtered version.4
While we mainly experiment on the filtered version, we report performance on both versions when
compared with previous methods.
▷ GSM5.5K-Python: The grade-school-math (GSM8K) dataset (Cobbe et al., 2021) contains 7.5K
training data points. Since it only provides natural language solutions with math formulas and does
not have a dev set, we first reserved 20% of the training data as dev set, then automatically converted
the formulas to program solutions in the same style as MathQA-Python. As the result, we finetune
our models with the 5.5K successfully converted training examples. Note that the natural language
solutions/explanations are not used as input to the models in our experiments.

Evaluation metrics: Following recent work in neural program synthesis (Austin et al., 2021; Chen
et al., 2021a; Chowdhery et al., 2022) and math reasoning (Cobbe et al., 2021), we use PASS@k
as our main evaluation metric. It allows the model to sample k solutions for each question and
the task is considered solved if any one of the k solutions is correct, so PASS@k can also be seen
as the fraction of problems in the test/dev set being solved given k attempts. More details (e.g.,
temperature) can be found in Appendix A.

Model training: We use GPT-Neo (Black et al., 2021) as our language model and mainly study
two model sizes, 125M and 2.7B.5 Following previous work (Austin et al., 2021), we evaluate all
PASS@k on the same model checkpoint that has the best PASS@1 score, but note that it might not be
the best checkpoint for other k values (more discussion in Appendix E). Detailed hyperparameter
settings can also be found in Appendix A.

4.2 MAIN RESULTS

Learning from self-sampled solutions improves PASS@k. Fig. 2 shows the performance on the
two datasets by learning from self-sampled FCSs and PCSs using MLE-Aug (orange bars), com-
pared with MLE on single reference solution (blue bars). We can see that our proposed method
can greatly improve PASS@k, especially for higher k values. By comparing different model sizes,
we can see that learning from self-sampled solutions can help with both small and large models,
with a +12.3% and +9.0% PASS@100 improvement on GSM5.5K-Python for GPT-Neo-125M and
GPT-Neo-2.7B, respectively and a +3.1% and +8.6% PASS@80 improvement on MathQA-Python-
Filtered for GPT-Neo-125M and GPT-Neo-2.7B, respectively. We note that our approach does not
improve PASS@1, which is expected as learning from multiple targets mainly helps with increasing
the diversity of the sampled solutions rather than improving the most-probable solution (for which
MLE is better suited).

Partially-correct solutions improve model performance. We next show the effects of including
partially-correct solutions on PASS@k performance in Fig. 2 (green bars vs orange bars) and the
number of saved FCSs and PCSs in Fig. 4. First, we observe from Fig. 4 that using partial correctness
not only results in PCSs being saved and directly learned from, but it also boosts the number of FCSs
being found with the guided-sampling process. As a result, most PASS@k performances drop if we

4We will release the processing scripts for replication and comparison.
5We choose GPT-Neo because it was the only public language model that have been pretrained on code

when we conduct the experiments.

6

Published as a conference paper at ICLR 2023

(a) GSM5.5K-Python with GPT-Neo 125M (b) GSM5.5K-Python with GPT-Neo 2.7B

(c) MathQA-Python-Filtered with GPT-Neo 125M (d) MathQA-Python-Filtered with GPT-Neo 2.7B

Figure 2: Percentage of the problems solved (PASS@k) on the dev set of GSM5.5K-Python and
MathQA-Python-Filtered, comparing our self-sampling approach and the common MLE objective.
All our methods include partially-correct solutions and use the MLE-Aug loss for learning.

Figure 3: PASS@100 comparison of
various loss functions (§ 3.2) under dif-
ferent self-sampling strategies. Results
are on the dev set of GSM5.5K-Python
with finetuned GPT-Neo 125M model.
β = 0.25 for β-MML. Full results avail-
able as Tab. 5 in Appendix B.

Figure 4: Number of saved FCSs and PCSs per prob-
lem for GSM5.5K-Python (left) and MathQA-Python-
Filtered (right), with different self-sampling strategies
and model sizes. # FCSs includes the reference solution.

do not include partially-correct solutions in the buffer, as the model learns from a smaller number of
FCSs and PCSs as targets. The one exception is the GPT-Neo 125M model on the MathQA-Python-
Filtered dataset, where we do not observe any advantage/disadvantage of using PCSs.

MLE-Aug loss function works the best. We next study the effects of different objective functions
for learning from multiple targets as described in § 3.2. We also experiment under different self-
sampling strategies (i.e., FCS only or FCS + PCS), and our experiment results on GSM5.5K-Python
with the GPT-Neo 125M model are shown in Tab. 5. We can see that MLE-Aug loss results in the
biggest improvement compared to other losses both with just FCSs and with FCSs + PCSs. MML
performs the worst: it only marginally improves over MLE with only FCS and performs worse than
MLE when also learning from PCSs. As discussed in § 3.2 and Tab. 1, the gradient of MML is in
proportional to the likelihood given by the model, thus it encourages the model to put all weight on
one solution in the buffer. As MLE already learns from the gold reference solution, it is hard for

7

Published as a conference paper at ICLR 2023

Original Version Filtered Version
Models PASS@1 PASS@80 PASS@1 PASS@80

Previous work:
Codex Davinci† (Chen et al., 2021a) 6.0 42.0 5.0 40.0
LaMDA 68B∗ (Austin et al., 2021) - 79.5 - -
LaMDA 137B∗ (Austin et al., 2021) - 81.2 - -

Ours:
GPT-Neo 125M w/ self-sampling FCS + PCS 77.6 84.7 11.7 28.2
GPT-Neo 2.7B w/ self-sampling FCS + PCS - - 20.7 36.2

Table 2: Comparison with previous methods on the original (test set used) and filtered version (dev
set used) of the MathQA-Python dataset. ∗: model not pretrained on code. †: few-shot learning
results. -: no results available.

MML to make improvements with self-sampled solutions, and the performance may even decrease
when MML puts all weight on an incomplete partially-correct solution. In contrast, the gradients of
MLE-Aug objective are equally distributed among the targets, which leads to more diversity in its
generation due to a more balanced source of learning signals. β-MML loss is proposed to alleviate
the aforementioned issue for MML loss, but we do not observe an advantage of using it instead of
the MLE-Aug loss in our experiments.

4.3 ADDITIONAL ANALYSIS

Diversity of the solutions. By inspecting the k generated solutions for each task, we find that there
is more diversity in the solutions that the model generates using our method. More specifically, we
calculate the ratio of unique solutions from the 100 samples for the comparison in Fig. 2a, and find
that 30.5% of them are unique for our approach but only 20.8% for the model trained with MLE.

Dynamics between # of PCSs and FCSs saved in the buffer. As discussed above, more saved
solutions typically results in better PASS@k performance. Interestingly, when comparing different
model sizes, we can see that while the sum of partially and fully-correct solutions sampled and saved
in the buffer are about the same (i.e., 3.36 and 3.31) for GSM5.5K-Python dataset in Fig. 4, around
60% of them are FCS for the small model while it is 76% for the larger model. The difference in
percentage of PCSs left in the buffer also reflects the model’s ability for completing partially-correct
solution prefixes. We also find that during early stages of training, the number of PCSs rapidly grows
while the model is relatively weak to sample FCSs, thus the PCSs help enriching the learning signal
and preventing overfitting early-on. More discussions about this can be found in Appendix E.

Comparison to previous works Here we compare with previous work on both the original and
the filtered versions of MathQA-Python datasets in Tab. 2. On the original dataset, self-sampling
with GPT-Neo 125M is able to outperform previous methods that finetune 137B model pretrained
on natural language. We also compare with Codex model used in a few-shot setting (more details
in Appendix A), and find that on the much harder filtered dataset, a 2.7B GPT-Neo model finetuned
with our methods obtains much better PASS@1 but with lower PASS@80. By inspecting the output
from Codex, we discover that its outputs are much more diverse than finetuned models, which
contributes to a higher PASS@80 even under the few-shot setting. Comparison with previous work
on the GSM dataset is in Appendix B due to limited space.

5 LIMITATIONS AND FUTURE WORK

More general definition of (partial) correctness. In this work, we define partial correctness
based on state-based solution equivalence. This is a conservative way for defining solution equiva-
lence as it requires exact match of the sets of variable values, but a solution could be partially correct
and yet, not have an exact match of variable values because some of these values may not needed for
future computation. In the future, we want to explore ways to relax this restriction that will help us
find more partially correct solutions in an efficient manner. Besides, our partial correctness defini-
tion requires the existence of at least one fully-correct solution and when such reference solution is

8

Published as a conference paper at ICLR 2023

not available from the dataset (i.e., in a weakly-supervised setting), we would need to first sample an
FCS that matches the gold execution result to begin with. In addition, we simply use the matching
of execution results to define correctness, which is susceptible to spurious solutions that achieves the
correct result by coincidence. For math reasoning, we find such spurious solutions to be quite rare6,
as the correct answer is typically numeric which is less likely for a semantically wrong solution to
obtain the correct answer by chance. But methods as Zhong et al. (2020); Chen et al. (2022) may be
needed for this definition of correctness to be more robust on other domains.

Towards generating general programs. While we focus on the domain of generating solutions
for math reasoning in this work, here we reflect on how our method can be applied to program syn-
thesis in general. However, general programs might contain complex structures such as conditions
(e.g., if-else) or loops (e.g., while-do) as opposed to straight-line programs in the math-
reasoning domain. Dealing with these complex structures poses additional challenges because most
neural program synthesis models perform left-to-right auto-regressive generation, and the changes
to the control flow break the alignment between program generation and program execution (Chen
et al., 2018; 2021b; Nye et al., 2021). There are two potential ways to extend our technique to ad-
dress the problem. First, we can treat a branch or a loop as an atomic unit (i.e., a block whose state
is the state after executing all statements within it), then we can apply state-based equivalence in
the same way. Second, because our technique only requires execution after the full programs are
generated, we can still evaluate and compare program states based on intermediate states.

6 RELATED WORK

Weakly-supervised semantic parsing. Many previous work in learning semantic parsers from
weak supervision follows the same process of sampling programs and maximizing the probability
of the correct ones (Krishnamurthy et al., 2017; Guu et al., 2017; Min et al., 2019; Ni et al., 2020).
Our work differs as our tasks contain one reference solution for each task as opposed to only the
final answer like weakly-supervised semantic parsing tasks. Thus, our work leverages the reference
solution for sampling and defines partial correctness based on known solutions. Because of the
problem setup difference, we found that the conclusions in Guu et al. (2017) about loss functions do
not generalize to our case.

Execution-guided code generation. Our work relates to execution-guided code generation as we
leverage intermediate states of math solutions to guide the sampling process. In code generation lit-
erature, intermediate program execution states are used to prune the search space (Liang et al., 2017;
Wang et al., 2018; Li et al., 2022) or condition further generation on the execution states(Chen et al.,
2018; Ellis et al., 2019; Nye et al., 2020; Chen et al., 2021b; Nye et al., 2021). The key difference of
these methods from ours is that they require doing both decoding and execution at inference time,
while our work only uses execution during training, which reduces decoding overhead.

Learning from partial reward for program synthesis. There are parallels between multi-target
learning and the reinforcement learning setting with sparse rewards for generating programs (Liang
et al., 2017; 2018; Simmons-Edler et al., 2018; Bunel et al., 2018; Agarwal et al., 2019). Similarly,
our approach of identifying partial correctness of solutions is similar to partial rewards. But instead
of discounting an entire trajectory with a low reward as in RL, we truncate the solution to a partially-
correct prefix and assign it the “full reward”, which is a main contribution of this work.

7 CONCLUSION

We propose to let pretrained language models sample additional solutions for each problem and
learn from the self-sampled solutions that are correct or partially-correct. We define partial cor-
rectness by tracing and matching intermediate execution states. We experiment on different math
reasoning tasks and show that such partially-correct solutions can help more efficient exploration
of the solution space and provide useful learning signal, which improves the PASS@k performance.
Overall, our proposed method can improve PASS@k from 3.1% to 12.3% compared to learning from
a single solution with MLE.

6We manually inspected the self-sampled FCSs by GPT-Neo 2.7B on 100 tasks of GSM5.5K and found
spurious solutions only exist for 3 of them.

9

Published as a conference paper at ICLR 2023

ACKNOWLEDGEMENTS

The authors would like to thank Jackson Woodruff, Pengcheng Yin, and the anonymous reviewers
for the useful discussion and comments.

REFERENCES

Rishabh Agarwal, Chen Liang, Dale Schuurmans, and Mohammad Norouzi. Learning to generalize
from sparse and underspecified rewards. In International Conference on Machine Learning, pp.
130–140. PMLR, 2019.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. Program synthesis with large language
models. arXiv preprint arXiv:2108.07732, 2021.

Sid Black, Leo Gao, Phil Wang, Connor Leahy, and Stella Biderman. GPT-Neo: Large Scale Au-
toregressive Language Modeling with Mesh-Tensorflow, March 2021.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Rudy Bunel, Matthew Hausknecht, Jacob Devlin, Rishabh Singh, and Pushmeet Kohli. Leveraging
grammar and reinforcement learning for neural program synthesis. In International Conference
on Learning Representations, 2018.

Bei Chen, Fengji Zhang, Anh Nguyen, Daoguang Zan, Zeqi Lin, Jian-Guang Lou, and Weizhu
Chen. Codet: Code generation with generated tests. arXiv preprint arXiv:2207.10397, 2022.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021a.

Xinyun Chen, Chang Liu, and Dawn Song. Execution-guided neural program synthesis. In Interna-
tional Conference on Learning Representations, 2018.

Xinyun Chen, Dawn Song, and Yuandong Tian. Latent execution for neural program synthesis
beyond domain-specific languages. Advances in Neural Information Processing Systems, 34,
2021b.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. Palm:
Scaling language modeling with pathways. arXiv preprint arXiv:2204.02311, 2022.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Jacob Hilton, Reiichiro Nakano, Christopher
Hesse, and John Schulman. Training verifiers to solve math word problems. arXiv preprint
arXiv:2110.14168, 2021.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186, Minneapolis, Minnesota, June
2019. Association for Computational Linguistics. doi: 10.18653/v1/N19-1423.

Kevin Ellis, Maxwell Nye, Yewen Pu, Felix Sosa, Josh Tenenbaum, and Armando Solar-Lezama.
Write, execute, assess: Program synthesis with a repl. Advances in Neural Information Processing
Systems, 32, 2019.

Catherine Finegan-Dollak, Jonathan K Kummerfeld, Li Zhang, Karthik Ramanathan, Sesh Sadasi-
vam, Rui Zhang, and Dragomir R Radev. Improving text-to-sql evaluation methodology. In ACL,
2018.

10

Published as a conference paper at ICLR 2023

Kelvin Guu, Panupong Pasupat, Evan Zheran Liu, and Percy Liang. From language to programs:
Bridging reinforcement learning and maximum marginal likelihood. In ACL, 2017.

Jayant Krishnamurthy, Pradeep Dasigi, and Matt Gardner. Neural semantic parsing with type con-
straints for semi-structured tables. In Proceedings of the 2017 Conference on Empirical Methods
in Natural Language Processing, pp. 1516–1526, 2017.

Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi Leblond, Tom
Eccles, James Keeling, Felix Gimeno, Agustin Dal Lago, et al. Competition-level code generation
with alphacode. arXiv preprint arXiv:2203.07814, 2022.

Chen Liang, Jonathan Berant, Quoc Le, Kenneth Forbus, and Ni Lao. Neural symbolic machines:
Learning semantic parsers on freebase with weak supervision. In ACL, pp. 23–33, 2017.

Chen Liang, Mohammad Norouzi, Jonathan Berant, Quoc V Le, and Ni Lao. Memory augmented
policy optimization for program synthesis and semantic parsing. Advances in Neural Information
Processing Systems, 31, 2018.

Sewon Min, Danqi Chen, Hannaneh Hajishirzi, and Luke Zettlemoyer. A discrete hard em approach
for weakly supervised question answering. In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the 9th International Joint Conference on Natural
Language Processing (EMNLP-IJCNLP), pp. 2851–2864, 2019.

Ansong Ni, Pengcheng Yin, and Graham Neubig. Merging weak and active supervision for semantic
parsing. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 34, pp. 8536–
8543, 2020.

Maxwell Nye, Yewen Pu, Matthew Bowers, Jacob Andreas, Joshua B Tenenbaum, and Armando
Solar-Lezama. Representing partial programs with blended abstract semantics. In International
Conference on Learning Representations, 2020.

Maxwell Nye, Anders Johan Andreassen, Guy Gur-Ari, Henryk Michalewski, Jacob Austin,
David Bieber, David Dohan, Aitor Lewkowycz, Maarten Bosma, David Luan, et al. Show
your work: Scratchpads for intermediate computation with language models. arXiv preprint
arXiv:2112.00114, 2021.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, Peter J Liu, et al. Exploring the limits of transfer learning with a unified text-to-text
transformer. J. Mach. Learn. Res., 21(140):1–67, 2020.

Tal Schuster, Ashwin Kalyan, Alex Polozov, and Adam Tauman Kalai. Programming puzzles.
In Thirty-fifth Conference on Neural Information Processing Systems Datasets and Benchmarks
Track (Round 1), 2021.

Riley Simmons-Edler, Anders Miltner, and Sebastian Seung. Program synthesis through reinforce-
ment learning guided tree search. arXiv preprint arXiv:1806.02932, 2018.

Chenglong Wang, Kedar Tatwawadi, Marc Brockschmidt, Po-Sen Huang, Yi Mao, Oleksandr Polo-
zov, and Rishabh Singh. Robust text-to-sql generation with execution-guided decoding. arXiv
preprint arXiv:1807.03100, 2018.

Ruiqi Zhong, Tao Yu, and Dan Klein. Semantic evaluation for text-to-sql with distilled test suites.
In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing
(EMNLP), pp. 396–411, 2020.

11

Published as a conference paper at ICLR 2023

APPENDIX

A EXPERIMENT SETTING DETAILS

Name MathQA GSM8K.

Training Steps 50K 25K
Learning Rate (LR) 1.0e-4
Optimizer AdamW
Adam Betas (0.9, 0.999)
Adam Eps 1.0e-8
Weight Decay 0.1
LR Scheduler Linear w/ Warmup
LR Warm-up Steps 100
Effective Batch Size 32
FP Precision FP 32 for 125M, FP16 for 2.7B
Gradient Clipping 1.0

Table 3: The hyperparameters used for model training on two different types of datasets.

Hyperparameters. All hyperparameters for training is shown in Tab. 3. We use β = 0.25
in the experiments with β-MML, as a result of enumeration search among the values of
{0.1, 0.25, 0.5, 0.9}. We use the default AdamW optimizer settings and slightly tuned the learn-
ing rate by trying out several values between 1.0e-3 and 1.0e-5. The difference in floating point
precision is to fit the GPT-Neo 2.7B model into the memory of the GPUs. All experiments are
conducted on V100-32GB GPUs.

PASS@k evaluation. We use temperature sampling and sample n solutions with T = 0.8, where
n = 80 for MathQA and n = 100 for GSM to evaluate PASS@n, to be maximally consistent
with previous work (Austin et al., 2021; Cobbe et al., 2021; Chowdhery et al., 2022). We also
report PASS@{5, 10, 20, 50} using the n samples and the unbiased estimator proposed in Chen et al.
(2021a). We use T = 0.2 to sample 1 solution per specification and evaluate PASS@1.

Codex few-shot settings. We estimate the Codex (Chen et al., 2021a) performance un-
der the few-shot settings. More specifically, the prompt consists of a natural lan-
guage task description ”# Generate Python code to solve the following math
word problems:” and four examples, following previous work (Chowdhery et al., 2022). Each
example consists of the NL specification as a one-line comment and the gold program solutions. We
evaluate PASS@k for Codex using the same sampling methods as above.

Details for self-sampling. During a training step, we sample one solution7 for each task (i.e.,
natural language problem) in the batch, i.e., |Ŷ | = 1 in Alg. 1 and Alg. 2. Thus for each gradient
update, we first compute the loss for each task based on the saved solutions in the buffer and loss
functions described in Tab. 1, then it is averaged across the 32 tasks in the batch. Note that the
total number of samples we generate per task throughout training is also scaled up by the number
of training epochs, which is 235 for MathQA-Python-Filtered, 83 for MathQA-Python and 145
for GSM5.5K-Python. For sampling temperature, we use the same setting as inference time, with
T = 0.8.

B ADDITIONAL EXPERIMENT RESULTS

Comparing GSM performance with previous work. Here we compare our method with pre-
vious work on the original test sets of GSM8K. The results are shown as Tab. 4. On GSM8K,
some of the prior works are evaluated on a different format of NL inputs than ours, so they are not
directly comparable, but we still include them to help better position the performance of our meth-
ods. We test Codex using the same input in a few-shot setting, and we find that similar with the

7We also experiment with higher sampling budgets but do not observe significant improvements.

12

Published as a conference paper at ICLR 2023

Models PASS@1 PASS@100

Previous work:
OpenAI 6B∗♣ (Cobbe et al., 2021) 21.8 70.9
PaLM-Coder 540B†♣ (Chowdhery et al., 2022) 50.9 -
LaMDA 137B∗†♣ (Chowdhery et al., 2022) 7.6 -
Codex Cushman† (Chen et al., 2021a) 5.0 58.0
Codex Davinci† (Chen et al., 2021a) 17.0 71.0

Ours:
GPT-Neo 2.7B w/ self-sampling FCS + PCS 19.5 41.4

Table 4: Compare with previous methods on the original test set of GSM8K dataset. ∗: model not
pretrained on code. †: few-shot learning results. ♣: different setting from ours8.

Sols. in B PASS@k(%)
Self-Sampling Loss Func. FCS PCS k=1 k=5 k=10 k=20 k=50 k=100

- MLE - - 7.4 10.6 12.7 15.3 19.2 22.7

FCS only
MML 1.48 - 6.9 11.0 13.3 16.0 20.1 23.7
MLE-Aug 1.76 - 7.6 13.1 16.5 20.5 26.8 32.3
β-MML 1.57 - 7.5 11.7 14.5 17.9 23.1 27.3

FCS + PCS
MML 1.40 1.10 5.5 9.0 11.0 13.1 16.2 18.7
MLE-Aug 2.00 1.36 7.5 13.6 17.5 22.1 29.2 35.0
β-MML 1.62 1.14 7.2 12.0 14.9 18.4 23.6 27.9

Table 5: Full comparison of various loss functions (§ 3.2) with different self-sampling strategies.
Results are on the dev set of GSM5.5K-Python with GPT-Neo 125M as the base model. Best per-
formance within the same category is in bold and ones worse than MLE is underlined. β = 0.25 for
β-MML.

result on MathQA in Tab. 2, our method achieves better PASS@1 while being significantly worse
in PASS@100 compared with Codex. We hypothesize that as Codex model is used tested few-shot
setting and not finetuned, it does not suffer from the overfitting issue we mentioned. This leads to
great diversity but poor accuracy during generation. However, due to the little information we have
about Codex (e.g., model size, training data), it is hard to derive any further conclusion.

Ablation results on loss functions. Here we show the full results on the ablation of loss functions
in Tab. 5. We can see that trends observed from PASS@100 in Fig. 3 are consistent with other
PASS@k results, as MLE-Aug loss beats other two loss functions on all PASS@k. And using MML
loss when adding PCSs for learning results in worse performance than MLE for PASS@1 as well.
Moreover, from the number of FCSs and PCSs saved in the buffer B, we can also observe that using
MLE-Aug loss results in more FCSs and PCSs being saved, thus further encourages diversity in
generation.

C FULL LEARNING ALGORITHM WITH PARTIAL CORRECTNESS

Our general learning framework in shown as Alg. 1 and it is further extended in § 3.3. Here we show
a complete version of the algorithm with using partially-correct solutions in Alg. 3. Additionally,
here are the detailed explanation of the data structure and functions used in it:
▷ Mapping M: This is a data structure that maps an intermediate state to a set of solution (prefixes)
that execute to that state, i.e., M : S → Yn. In this mapping, we save all PCSs and their intermedi-
ate states, including all prefixes of any PCS. We use this to significantly speed up the lookup process
as mentioned in § 3.3.2;
▷ Function PartialCorrectnessCriteria(si,M): Since all states for all known PCSs are saved in
M, to know whether a prefix ŷ≤i is partially-correct, we only need to check if its state matches any

8Natural language explanations of the solutions are used as input and the few-shot exemplars are not in the
same format as ours.

13

Published as a conference paper at ICLR 2023

Algorithm 3 Training Update with Partially Correctness
Initialize: (only once before training starts)

Solutions buffer B = {y0, y∗} with an empty and the reference solution
Reference solution states (s∗1, s∗2, ..., s∗t) where s∗i = T (y≤i)
State-prefixes mappingM = {s∗i → {y≤i}}ti=1

Input:
Parameterized model Pθ(y|x)
A training example (x, y∗, z∗)
Tracing function T : Y → S to obtain intermediate states

1: Ŷ ← SampleSolutions(x, Pθ,B) /* call Alg. 2 */
2: for ŷ in Ŷ do
3: for i← |ŷ|; i ̸= 0; i← i− 1 do
4: si ← T (ŷ≤i) /* get intermediate state for each solution prefix ŷ≤i */
5: if PartialCorrectnessCriteria(si,M) then
6: YS ←M(si) /* get existing prefixes that executes to state si */
7: if not isDuplicate(ŷ≤i, YS) then
8: B ← updateBuffer(ŷ≤i,B)
9: M← updateMapping(ŷ≤i,M)

10: end if
11: continue /* we only need the longest matching prefix */
12: end if
13: end for
14: end for
15: θ

update←−−− ∇θL(x,B, Pθ)

of the known states for a PCS, i.e., if si ∈ M;
▷ Function isDuplicate(ŷ≤i, YS): As mentioned in § 3.3.2, we use AST and length constraint to rule
out ”trivial variants” and identify new PCSs to save in the buffer B. Here the solutions to compare
are the set of solutions YS that reaches the same intermediate state, i.e., being state-based equivalent;
▷ Function updateBuffer(ŷ≤i,B): Here we not only need to add the new PCS into the buffer B, but
also need to prune out the saved solutions that are prefix of ŷ≤i;
▷ Function updateMapping(ŷ≤i,M): Here we need to save the states of all prefixes of an identified
partially-correct solution, thus we will loop through all prefixes of ŷ≤i and obtain its execution state,
then update M accordingly. As mentioned above, existing PCSs may be a prefix of the new PCS,
so we also need to prune out such existing PCSs from mapping M.

D QUALITATIVE ANALYSIS

In Tab. 6, we show more examples of the fully-correct and partially-correct solutions that the mod-
els found during self-sampling, from both the MathQA and GSM datasets. First, we can see that
for some NL problems, it is possible that no FCS or PCS can be found with self-sampling, as in
MathQA-Example-1 and MathQA-Example-1. Take MathQA-Example-2 as an example, the ques-
tion is quite straightforward thus it leaves very little room for the existence of other correct solu-
tions, as the reference solution is already very short. Moreover, we can also observe that the ways
self-sampled FCS and PCS differ from the reference solution vary a lot. In MathQA-Example-2,
GSM-Example-1 and GSM-Example-2 the sampled FCSs complete the task with very different paths
compared with the reference solution, and actually result in using fewer lines of code. Another way
of getting FCS or PCS is to perform small and local perturbations, e.g., switch the two sides of a
addition or re-order the two non-dependent statements, as shown in other examples. We find that
these local perturbations are more common in general in both datasets, as such patterns are easier
for the model to learn.

E TRACKING TRAINING PROGRESS

Learning from self-sampled solutions mitigates overfitting. Here we shown the PASS@k per-
formance curve with respect to the training process in Fig. 5. From the curves, we can observe
that for MLE, while PASS@1 and PASS@5 generally improves during training, other PASS@k for

14

Published as a conference paper at ICLR 2023

NL Problem Descriptions Ref. Solution Self-Sampled FCS Self-Sampled PCS

(MathQA-Example-1):
The charge for a single room at hotel P
is 70 percent less than the charge for a
single room at hotel R and 10 percent
less than the charge for a single room at
hotel G. The charge for a single room
at hotel R is what percent greater than
the charge for a single room at hotel G?

n0=70.0
n1=10.0
t0=100.0-n0
t1=100.0-n1
t2=t0/t1
t3=t2*100.0
t4=100.0-t3
t5=t4/t3
answer=t5*100.0

n0=70.0
n1=10.0
t0=100.0-n1
t1=100.0-n0
t2=t0/t1
t3=t2*100.0
answer=t3-100.0

-

(MathQA-Example-2):
If john runs in the speed of 9 km/hr
from his house, in what time will he
reach the park which is 300m long
from his house?

n0=9.0
n1=300.0
t0=n0*1000.0
t1=n1/t0
answer=t1*60.0

- -

(MathQA-Example-3):
A class consists of 15 biology students
and 10 chemistry students. If you pick
two students at the same time, what’s
the probability that one is maths and
one is chemistry?

n0=15.0
n1=10.0
t0=n0+n1
t1=n0/t0
t2=n1/t0
t3=t0-1.0
t4=n1/t3
t5=n0/t3
t6=t1*t4
t7=t5*t2
answer=t6+t7

n0=15.0
n1=10.0
t0=n0+n1
t1=n0/t0
t2=n1/t0
t3=t0-1.0
t4=n1/t3
t5=n0/t3
t6=t1*t4
t7=t5*t2
answer=t7+t6

n0=15.0
n1=10.0
t0=n0+n1
t1=n0/t0
t2=n1/t0
t3=t0-1.0
t4=n0/t3
t5=n1/t3

(GSM-Example-1):
Ellie has found an old bicycle in a field
and thinks it just needs some oil to
work well again. She needs 10ml of
oil to fix each wheel and will need an-
other 5ml of oil to fix the rest of the
bike. How much oil does she need in
total to fix the bike?

n0=2
n1=10
n2=5
t0=n0*n1
answer=t0+n2

n0=10
n1=5
t0=n0+n1
answer=n0+t0

n0=10
n1=5
n2=2

(GSM-Example-2):
There is very little car traffic on Happy
Street. During the week, most cars
pass it on Tuesday - 25. On Mon-
day, 20% less than on Tuesday, and on
Wednesday, 2 more cars than on Mon-
day. On Thursday and Friday, it is
about 10 cars each day. On the week-
end, traffic drops to 5 cars per day.
How many cars travel down Happy
Street from Monday through Sunday?

n0=20
n1=100
n2=25
n3=2
n4=10
t0=n0/n1*n2
t1=n2-t0
t2=t1+n3
t3=n4*n3
t4=t0*n3
answer=t3+n2
\
+t2+t3+t4

n0=25
n1=2
n2=20
n3=100
n4=10
t0=n0-n1
t1=n2/n3*n0
t2=t0-t1
t3=t2+n4
t4=n0-t3
answer=t4+n3

n0=2
n1=25
n2=20
n3=100
n4=10

Table 6: More examples of self-sampled fully-correct (FCS) and partially-correct solutions (PCSs).
”MathQA” denotes the MathQA-Python-Filtered dataset and ”GSM” denotes the GSM5.5K-Python
dataset. All solutions are from the final buffer after training a GPT-Neo 2.7B model, while learning
from self-sampled FCS+PCS with the MLE-Aug loss.

higher k actually decreases after reaching the peak performance in early epochs, which is consis-
tent with previous findings (Cobbe et al., 2021). This is due to overfitting: in the early stage of
training, the model is less confident about its predictions thus the sampled k solutions are very di-
verse, and while training continues, it overfits to the one reference solution provided for learning
thus leads to poor generalization when evaluated by PASS@k with high k values. Fig. 5 also shows

15

Published as a conference paper at ICLR 2023

Figure 5: How PASS@k on the dev set evolve during training. Results shown on GSM5.5K-Python
dataset with GPT-Neo 125M model. Exponential moving average smoothing is applied for more
clarity, but original curve is shown in shade.

how our proposed self-sampling method can mitigate the overfitting problem, as it keeps improv-
ing or maintaining PASS@{5, 10, 20} while such performances start decreasing for MLE. Though it
also shows improvements for PASS@{50, 100}, but the performance still decreases in later training
stages. Here we can also see the importance of suitable learning objective, as MML has almost no
effect in mitigating such overfitting issue.

Early stopping is needed when prioritizing high k value for PASS@k. In our experiments, we
select the model checkpoint with the best PASS@1 performance to evaluate all PASS@k. This setup
aims to choose the best model that can solve the task with a small number of attempts (which cor-
responds to smaller k value), as studied in (Austin et al., 2021). We can also observe that with our
methods, the best PASS@1 checkpoint also yields the best or close to the best PASS@{5, 10, 20} per-
formances. However, in certain applications where large number of attempts are allowed, PASS@k
with high k values should be prioritized. An example is to generate candidate solutions before
reranking (Cobbe et al., 2021). In this case, an earlier checkpoint (e.g., one with best PASS@100)
should be used instead, which is not the best checkpoint for PASS@k where k is small. Also note
that our proposed method are not suitable for these applications, as we observe no improvement
on the peak PASS@{50, 100} performances. We think this because when such peak performance is
reached, it is still in the early stage of training thus not many FCSs or PCSs have been saved in the
buffer yet.

Partially-correct solutions help in early training stages. To show how self-sampling effects
training, in Fig. 6a we show how the size of the buffer progresses during training. From the curves,
we can see that in the early training stages (i.e., first 5k steps), the number of saved PCSs rapidly
grows while the number of FCSs only slightly increases. In later stages of training, the growth
of buffer size is mainly contributed by more FCSs being sampled and saved while the number of

16

Published as a conference paper at ICLR 2023

(a) Growth of the number of saved FCS and PCS dur-
ing training. # FCS includes the gold solutions.

(b) Distribution of the characterization of self-sampled
solutions during training.

Figure 6: How self-sampling evolves throughout the training process. Results shown as training the
GPT-Neo 125M model on the GSM5.5K-Python dataset with MLE-Aug loss.

PCSs stays steady. Also when compared to learning only with FCSs, learning with FCSs + PCSs
eventually accumulates more FCSs in the buffer (green dotted line vs yellow dotted line). In addition,
we show how the distribution of the outcomes of self-sampled solutions changes throughout training
in Fig. 6b. We can see that in the early training stages, the ratio of not executable/incorrect solutions
quickly drops to almost zero. At the same time, the ratio of new FCS or PCS being saved reaches the
peak. As training proceeds, the models are mostly sampling known FCS or PCS as the size of the
buffer converges as well. But the number of self-sampled fully-correct solutions gradually overtakes
the partially-correct ones.

17

	Introduction
	Overview
	Learning from Self-Sampled Solutions
	Online Sampling and Filtering
	Learning from Multiple Targets
	Learning from Partially-Correct Solutions
	Identifying Partially-Correct Solutions
	Modifications to the main algorithm

	Experiments
	Experimental Setup
	Main Results
	Additional Analysis

	Limitations and Future Work
	Related Work
	Conclusion
	Experiment Setting Details
	Additional Experiment Results
	Full Learning Algorithm with Partial Correctness
	Qualitative Analysis
	Tracking Training Progress

