
WATT: Weight Average Test-Time Adaptation of CLIP

David Osowiechi∗ Mehrdad Noori∗ Gustavo A. Vargas Hakim

Moslem Yazdanpanah Ali Bahri Milad Cheraghalikhani Sahar Dastani

Farzad Beizaee Ismail Ben Ayed Christian Desrosiers

LIVIA, ÉTS Montréal, Canada
International Laboratory on Learning Systems (ILLS)

Abstract

Vision-Language Models (VLMs) such as CLIP have yielded unprecedented perfor-
mances for zero-shot image classification, yet their generalization capability may
still be seriously challenged when confronted to domain shifts. In response, we
present Weight Average Test-Time Adaptation (WATT) of CLIP, a new approach
facilitating full test-time adaptation (TTA) of this VLM. Our method employs a
diverse set of templates for text prompts, augmenting the existing framework of
CLIP. Predictions are utilized as pseudo labels for model updates, followed by
weight averaging to consolidate the learned information globally. Furthermore,
we introduce a text ensemble strategy, enhancing the overall test performance
by aggregating diverse textual cues. Our findings underscore the effectiveness of
WATT across diverse datasets, including CIFAR-10-C, CIFAR-10.1, CIFAR-100-C,
VisDA-C, and several other challenging datasets, effectively covering a wide range
of domain shifts. Notably, these enhancements are achieved without the need for
additional model transformations or trainable modules. Moreover, compared to
other TTA methods, our approach can operate effectively with just a single image.
The code is available at: https://github.com/Mehrdad-Noori/WATT.

1 Introduction

The integration of vision and language modalities into a unified learning framework, known as Vision
Language models (VLM), has shown remarkable effectiveness in a broad range of vision-related tasks
[1, 2, 3]. Notably, these models excel in zero-shot generalization scenarios, where they demonstrate
proficiency in tasks beyond their original training scope, without requiring additional fine-tuning
supervision. Applications of models like CLIP [1] extend across diverse domains including video
recognition [4], audio processing [5], and medical imaging [6]. These advancements underscore the
pivotal role of such methods in shaping the trajectory of future research and applications in machine
learning.

Despite its powerful capabilities, CLIP, like other traditional deep architectures such as Convolutional
Neural Networks (CNNs), experiences performance degradation when confronted with domains it
has not been trained on. Current research trends emphasize the importance of domain adaptation
mechanisms in the deployment of CLIP [7, 8]. However, a significant challenge remains: swiftly and

∗Equal contribution.
Correspondence to david.osowiechi.1@ens.etsmtl.ca and mehrdad.noori.1@ens.etsmtl.ca

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

https://github.com/Mehrdad-Noori/WATT
mailto:david.osowiechi.1@ens.etsmtl.ca
mailto:mehrdad.noori.1@ens.etsmtl.ca


Template

T 0: “a photo of a {class k}”
T 1: “itap of a {class k}”
T 2: “a bad photo of the {class k}”
T 3: “a origami {class k}”
T 4: “a photo of the large {class k}”
T 5: “a {class k} in a video game”
T 6: “art of the {class k}”
T 7: “a photo of the small {class k}”

(a)

T0 T1 T2 T3 T4 T5 T6 T7

T0
T1

T2
T3

T4
T5

T6
T7

1.00 0.81 0.93 0.77 0.94 0.89 0.91 0.95

0.81 1.00 0.73 0.62 0.75 0.71 0.69 0.75

0.93 0.73 1.00 0.74 0.90 0.88 0.89 0.91

0.77 0.62 0.74 1.00 0.74 0.75 0.77 0.77

0.94 0.75 0.90 0.74 1.00 0.85 0.88 0.93

0.89 0.71 0.88 0.75 0.85 1.00 0.88 0.87

0.91 0.69 0.89 0.77 0.88 0.88 1.00 0.89

0.95 0.75 0.91 0.77 0.93 0.87 0.89 1.00

Average Similarity Matrix Across All Classes

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

(b)

T 0 T 1 T 2 T 3 T 4 T 5 T 6 T 7 WATT

Original 89.80 90.37 90.50 88.42 89.93 89.95 90.13 88.54 91.05
Gaussian Noise 60.19 61.01 61.17 58.24 58.84 58.35 59.62 61.13 63.84
Defocus Blur 77.23 77.07 78.00 75.98 76.39 77.45 77.08 75.59 78.94
Snow 76.57 77.36 77.93 75.08 77.45 77.09 77.05 75.57 79.79
JPEG Compression 64.65 65.36 65.24 64.16 64.18 64.36 64.78 65.32 67.36

(c)

Figure 1: (a) The different templates used during our experiments. (b) Matrix of cosine similarity
between each template, averaged over all classes of the CIFAR-10 dataset. (c) Comparison of
accuracy (%) using cross-entropy (CE) on CIFAR-10 and some corruptions of CIFAR-10-C datasets
using different templates and our weight average strategy.

effectively adapting the model to new domains while preserving its attractive zero-shot capabilities,
thus obviating the need for retraining.

To tackle this challenge, we investigate the impact of different text prompt templates, listed in
Figure 1a, on model adaptation. Despite these templates being related, as reported in Figure 1b, the
cosine similarity between their embeddings varies greatly, suggesting that they encode complementary
information about the classes. The variability of information in different templates can also be
observed in Figure 1c, where the classification accuracy obtained with these templates on a subset
of CIFAR-10 corruptions fluctuates by up to 3%. Given this insight, finding an effective way to
leverage the knowledge from different text templates would be useful to yield a better adaptation.
This motivates our work proposing Weight Average adaptation during Test-Time (WATT).

By strategically averaging the adapted weights derived from multiple text prompt templates, our
method aims to harness the complementary strengths of individual templates, resulting in robust and
enhanced performance across a wide range of domain shifts. To further illustrate this point, Figure 2
presents the test loss and adaptation error surfaces for three models that are separately adapted using
three templates (T 0, T 1, T 2) under the Gaussian noise corruption of the CIFAR-10-C dataset2. The
central point in these landscapes, representing the final model obtained by averaging the weights
of the separate models, demonstrates a convergence towards lower loss and error, highlighting the
potential of weight averaging for test-time adaptation. Moreover, inspired by recent advancements
in machine learning utilizing train-time weight averaging techniques [10, 11], the proposed WATT
method can dynamically adjust to new data to tackle unforeseen distribution shifts without relying on
class supervision.

We outline the main contributions of our work as follows:

• We introduce a novel Test-Time Adaptation method for CLIP, which leverages weight averaging
across various text templates at test-time.

2To visualize the loss and error surface, we use weight vectors from models adapted with text templates
T 0, T 1, and T 2, denoted as w0, w1, and w2. Following [9], we define u = w1 − w0 and v = (w2 − w0) −
(w2−w0)·(w1−w0)

∥w1−w0∥2
(w1 − w0). The normalized vectors û = u

∥u∥ and v̂ = v
∥v∥ form an orthonormal basis in the

plane of w0, w1, and w2. We create a Cartesian grid in this basis and evaluate the networks at each grid point. A
point P with coordinates (x, y) in the plane is given by P = w0 + x · û+ y · v̂. To plot all in the same plane,
we used the average of the three templates’ text embeddings.

2



T0 T1

T2

Loss

T0 T1

T2

Error (1-Acc)

Figure 2: Loss and Error surfaces on model parameters for the Gaussian noise corruption of the
CIFAR-10C dataset. Points T 0, T 1, and T 2 represent models adapted with different text templates
(please see Fig. 1a). The central point (cross) shows the model obtained by averaging these weights,
demonstrating improved performance.

• Our WATT strategy yields highly competitive performances in comparisons to current TTA
methods, and could bring improvement using only a single image at test time, a capability not
present in previous approaches.

• We rigorously evaluate our WATT methodology through comprehensive evaluations across
different datasets characterized by diverse types and degrees of domain shifts, encompassing a
total of 155 evaluation scenarios. Our experiments demonstrate the robustness and efficacy of
WATT compared to existing adaptation methods.

2 Related work
Test-Time Adaptation (TTA) is crucial in domain adaptation, particularly with unlabeled target
domain data and no access to source domain samples. The challenge lies in estimating the target
domain’s distribution and comparing domain characteristics indirectly. Recent advancements have
highlighted the potential and limitations of adapting pre-trained models. A key focus has been on
leveraging batch normalization layers for adaptation due to their ability to retain source domain
information. Methods such as PTBN [12] and TENT [13] recalibrate batch statistics and optimize
affine parameters via entropy minimization, though they often require image augmentations or
large batches. MEMO [14] proposes a simple approach that does not require multiple test points;
it uses single-test-point data augmentations and minimizes the marginal entropy of the model’s
average output to enforce consistency and improve robustness. LAME [15] introduces a closed-form
optimization strategy that refines model predictions for target images by leveraging the Laplacian
of feature maps to encourage clustering, thereby emphasizing feature similarities. In another study,
SAR [16] addresses TTA instability by using batch-agnostic norms (e.g., group and layer norms) and
a sharpness-aware entropy minimization approach. It filters noisy samples and guides the model to
flat minima, improving robustness under mixed domain shifts and small batch sizes.

Recently, Test-Time Training (TTT) methodologies have emerged as prominent contenders in TTA
[17, 18, 19, 20, 21]. This approach involves training a supplementary sub-branch alongside the
primary network in an unsupervised manner, subsequently leveraging it to refine the model. Unlike
previous methods, our approach operates on individual image batches, offering a significant advantage
in TTA by avoiding the necessity of training additional branches from scratch.

In natural language processing, TPT [8] introduced entropy minimization for adapting models like
CLIP, albeit with high computational costs due to learning an adapter at the text prompt with multiple
transformations. DiffTPT [22] extends this by leveraging pre-trained diffusion models to generate
diverse and informative augmented data, combining conventional augmentation methods used in TPT
with diffusion-generated data to enhance adaptability. It also introduces a cosine similarity-based
filtration technique for improved prediction fidelity. TDA [23] offers a training-free approach with
a dynamic adapter, utilizing a lightweight key-value cache and pseudo label refinement, making it
computationally efficient. CLIPArTT [24], fine-tunes normalization layers with minimal disruption to
the model’s knowledge, enhancing text supervision by introducing pseudo labels. Existing methods
often lag behind supervised prompt adaptation techniques in performance. SwapPrompt [25] bridges
this gap by leveraging self-supervised contrastive learning, employing a dual prompt paradigm. In

3



1st Adapted

CLIP (𝜽𝟏)

𝐿𝑇𝑇𝐴(𝜃
1)

𝑻𝟎

A photo of 

a {class k}+

Test Image

2nd Adapted

CLIP (𝜽𝟐)

𝐿𝑇𝑇𝐴(𝜃
2)

𝑻𝟏

itap of 

a {class k}+

Test Image

Hth Adapted

CLIP (𝜽𝑯)

𝐿𝑇𝑇𝐴(𝜃
𝐻)

𝑻𝑯

a photo of the 

small {class k}+

Test Image

…

u
p

d
a
ti

n
g

 L
N

w
e

ig
h

ts
 o

f 
th

e
 

v
is

io
n

 e
n

c
o

d
e

r 
e

v
e

ry
 i
te

ra
ti

o
n

weight averaging 
every L iterations 

(M times) 

𝑻𝟎 A photo of 

a {class k}

𝑻𝑯
a photo of the 

small {class k}

Adapted CLIP 

…

𝑇1 … 𝑇𝐶𝑇2

Text Embedding 

Averaging

T
e

s
t 

Im
a

g
e

𝐼1 𝐼1. 𝑇1 … 𝐼1. 𝑇C𝐼1. 𝑇2 Class is Dog

itap of 

a {class k}
𝑻𝟏 Text 

Encoder

𝑇1
1 … 𝑇𝐶

1𝑇2
1

𝑇1
2 … 𝑇𝐶

2𝑇2
2

…
Text Embeddings

𝑇1
𝐻 … 𝑇𝐶

𝐻𝑇2
𝐻

A
ll

 T
e

m
p

la
te

s

Weight 

Averaged

Vision 

Encoder
Similarity Scores Final Prediction

Adaptation Phase

Evaluation Phase

weight averaging 
every L iterations 

(M times) 

u
p

d
a
ti

n
g

 L
N

w
e

ig
h

ts
 o

f 
th

e
 

v
is

io
n

 e
n

c
o

d
e

r 
e

v
e

ry
 i

te
ra

ti
o

n

u
p

d
a
ti

n
g

 L
N

w
e

ig
h

ts
 o

f 
th

e
 

v
is

io
n

 e
n

c
o

d
e
r 

e
v
e

ry
 i
te

ra
ti

o
n

Figure 3: Overview of the proposed WATT method. In the Adaptation Phase, the model is adapted
using different text templates (T 0, T 1, ..., TH ), with weight averaging performed periodically. In the
Evaluation Phase, the adapted CLIP model uses averaged text embeddings from all templates and the
weight averaged model to predict the class of the test image.

comparison, our method combines prompt augmentation and fine-tuning of normalization layers,
highlighting its effectiveness in test-time adaptation.

Weight Averaging (WA) is a powerful train-time technique for improving deep neural network
generalization. Stochastic Weight Averaging (SWA) [26] averages weights of multiple models
sampled from different training epochs, aiding smooth optimization trajectory and convergence
to points with superior generalization. SWAD [10] refines SWA by densely sampling weights
throughout training, enhancing generalization and robustness across tasks. This train-time refinement
enhances WA’s effectiveness in producing models with improved generalization. The Lookaround
[11] optimizer iterates between an “around step” and an “average step”, building on SWAD’s
advancements. In the “around step”, independently trained models using various data augmentations
explore a broader loss landscape to find flatter minima. In the “average step,” weights of these models
are then averaged, guiding optimization towards lower loss regions. This method enhances robustness
and generalization across tasks, improving upon SWA and SWAD by providing a more effective
weight averaging process.

In contrast to existing approaches, WATT leverages varied text prompts to adapt vision-language
models such as CLIP during testing. Our method also harnesses the benefits of weight averaging while
addressing domain shifts without additional model transformations or trainable modules, thereby
setting a new precedent in test-time adaptation.

3 Method

The proposed WATT method, summarized visually in Figure 3 comprises three main components, the
first two in the Adaptation Phase and the third in the Evaluation Phase: 1) a light-weight transductive
TTA strategy that adapts CLIP’s visual encoder effectively by considering the similarity between all

4



Dataset single_temp text_avg

CIFAR-10 90.87 ±0.10 91.08 ±0.06
CIFAR-10.1 86.80 ±0.19 86.85 ±0.18
CIFAR-10-C 72.08 72.66

CIFAR-100 69.79 ±0.20 70.30 ±0.11
CIFAR-100-C 41.79 42.24

Table 1: Accuracy (%) with different text ensembles at test time.

batch samples in terms of their visual and text features; 2) a weight-averaging strategy using multiple
text templates to generate diverse model hypotheses during adaptation; 3) an ensembling technique
that boosts performance during evaluation by averaging the embedding of different text templates.

3.1 Transductive TTA loss

While our method can be employed with any TTA framework, in this work, we implement a strategy
inspired by the transductive TTA approach of CLIPArTT [24] which effectively incorporates semantic
relationships among batch samples.

Initially, our process involves executing inference using CLIP, a system comprising a visual encoder
fv
θ (·) that translates an image x into visual features zv ∈ RD, and a text encoder f t

θ(·) which converts
text prompts t into text features zt ∈ RD. During inference, we employ pre-defined text prompts
assigned to each class within a dataset, such as t0k = “a photo of a {class k}”. For a new
image xi, the likelihood of belonging to class k is then computed using cosine similarity:

pik =
exp

(
cos(zvi , z

t
k)/τ

)∑
j exp

(
cos(zvi , z

t
j)/τ

) , cos(z, z′) =
z⊤z′

∥z∥2 ·∥z′∥2
, (1)

where τ is a softmax temperature parameter set to 0.01 is this work. This prediction is then stored to
be used as pseudo labels for the model.

Denoting the normalized visual embeddings of the samples within the test batch as Zv ∈ RB×D and
the instance-specific text embeddings as Zt ∈ RB×D, we compute an image-to-image similarity ma-
trix Sv = Zv(Zv)⊤ ∈ [−1, 1]B×B modeling pairwise relationships in terms of image characteristics.
Similarly, we construct a text-to-text similarity matrix St = Zt(Zt)⊤ ∈ [−1, 1]B×B , capturing the
semantic relationships among text embeddings within the batch. Utilizing the computed pairwise
similarity matrices, we generate pseudo labels Q = softmax

(
(Sv + St)/2τ

)
∈ [0, 1]B×B which are

used with cross-entropy in our transductive TTA loss:

LTTA(θ) = −
1

B

B∑
i=1

B∑
j=1

qij log pij . (2)

Drawing a link with the Stochastic Neighbor Embedding (SNE) method for dimensionality reduction
[27], which minimizes the KL divergence between distributions modeling pairwise distances, our
TTA loss ensures that the inter-modality (text-to-image) similarities of batch samples are aligned
with their intra-modality ones (text-to-text and image-to-image).

3.2 Multi-Template Weight Averaging

We explore various text prompt templates suggested in the CLIP paper and detailed in Fig. 1a.
As reported in Table 1c, these prompts achieve varying performance across different corruption
types of CIFAR-10-C. We formulate prompts of the form thk = template h(class k), where
h ∈ {1, 2, . . . ,H}, encompassing a spectrum of textual cues tailored to elicit diverse responses from
the model.

Two different approaches are investigated for our multi-template weight averaging (MTWA) strategy.
The first one denoted as Parallel MTWA (WATT-P), which follows recent optimization approaches
like Lookaround [11], performs the adaptation separately for each text template, starting from the
same parameters, and then averages the resulting adapted weights. The second one, called Sequential
MTWA (WATT-S), instead considers text templates sequentially without resetting the weights. These
two approaches, which we illustrate and compare in Fig. 4, are detailed below.

5



𝑻𝟎

M iterations
(here M=2)

Initial 
Weights

𝑻𝟏

𝑻𝟎

𝑻𝟏

𝑻𝟎

𝑻𝟎
Final

Weights 𝑻𝟎

𝑻𝟎

𝑻𝟏

𝑻𝟏

𝑻𝟎
𝑻𝟎

W
A

T
T 

-
S

Final
Weights

Initial 
Weights 𝑻𝟏

𝑻𝟏

M iterations
(here M=2)

𝑻𝟏 𝑻𝟏

Figure 4: Visual comparison of the Parallel (left) and Sequential (right) approaches for multi-template
weight averaging during adaptation.

Dataset CLIP BS = 1 BS = 2 BS = 4 BS = 8 BS = 16 BS = 32 BS = 64 BS = 128

CIFAR-10 88.74 89.87 89.39 ±0.02 89.16 ±0.07 88.93 ±0.16 89.14 ±0.04 89.51 ±0.12 90.16 ±0.13 91.05 ±0.06
CIFAR-10.1 83.25 84.55 84.32 ±0.15 83.88 ±0.17 84.12 ±0.37 84.35 ±0.21 84.87 ±0.16 85.52 ±0.30 86.98 ±0.31
CIFAR-10-C 59.22 61.26 63.60 63.47 63.94 65.66 68.34 71.21 73.82

Table 2: Accuracy (%) of our method for different batch sizes compared to CLIP.

Parallel MTWA. This approach optimizes the TTA loss in (2) separately for H different models,
each utilizing a distinct template. Starting from the same visual encoder parameters θ, these models
are updated in parallel for L iterations, resulting in updated parameters θ′h, with h ∈ {1, . . . ,H}. The
parameters are reset after each update, enabling each model to restart the adaptation from the same
initial point. Subsequently, we aggregate the weights obtained from these H models by computing
their average: θavg = 1

H

∑H
h=1 θ

′
h. We repeat this step M times, and denote the overall process as

“(after L iter) ×M”.

Sequential MTWA. Our Sequential MTWA approach is inspired from the work of [26], where the
averaging of weights across various stages of the training process is employed to mitigate variance
and enhance generalization capabilities. Instead of resetting parameters for each model, we update
parameters after each template’s iteration. To ensure impartiality in the update sequence of templates,
a random selection process is implemented, thereby disregarding any predetermined order.

3.3 Evaluation Phase

At test-time, predictions are computed using Equation 1 through two distinct methodologies. In
the first approach, the text features zt0 are derived from the initial text prompt t0k = “a photo of
a class k”, denoted as single_temp. Conversely, the second method aggregates the text features
from all templates by computing their mean, resulting in the prediction ztens =

1
H

∑H
h=1 z

t
h, denoted

as text_avg (see Fig. 3).

4 Experimental Setup

Settings. In line with prior TTA methodologies, adjustments are made to all Layer Normalization
layers within the visual feature extractor for test-time adaptation. The Adam optimizer is employed
with a fixed learning rate of 10−3, wheras a smaller learning rate of 10−4 is chosen for adaptation
to the 3D renderings split, as it reflects a more pronounced shift. Throughout our experimentation
process, a consistent batch size of 128 is maintained to ensure uniformity and facilitate meaningful
comparisons across various scenarios.

Datasets. Following [24], we rigorously evaluate WATT’s performance across diverse TTA datasets
using established assessment techniques. These datasets simulate intricate domain shifts, providing
nuanced insights into our approach’s effectiveness. Additionally, we explore WATT’s adaptability on
the original dataset through zero-shot test-time adaptation. To ensure a thorough examination, we

6



1 2 4 6 8
Number of templates

70

75

80

85

90

Te
st

-ti
m

e 
ac

cu
ra

cy
CIFAR10
CIFAR10.1
CIFAR10-C average

Figure 5: Evolution of the accuracy for different
numbers of random template on 5 test-time runs.

0 10 20 50 80 100
Number of iterations

30

40

50

60

70

Te
st

-ti
m

e 
ac

cu
ra

cy

CIFAR100
Defocus Blur
Frost
Contrast
CIFAR100-C average

Figure 6: Evolution of accuracy on CIFAR-100
corruptions with the Parallel MTWA method.

extend our analysis to include various domain generalization datasets, exposing our method to a broad
spectrum of image categories for comprehensive evaluation. Our evaluation framework encompasses
natural images, common corruptions, simulated shifts, video shifts, texture shifts and style shifts.

In our assessment of natural image analysis, we include CIFAR-10, CIFAR-10.1, and CIFAR-100,
each comprising 10,000 images and offering varied data distributions. CIFAR-10.1 [28] introduces
a natural shift from CIFAR-10, providing a comprehensive evaluation of our model’s performance.
We also incorporate the CIFAR-10-C and CIFAR-100-C datasets [28], augmented with 15 distinct
corruptions across 5 severity levels, resulting in 75 common corruption scenarios. This comprehensive
augmentation assesses the model’s resilience effectively.

Our investigation also extends to the VisDA-C dataset [29], challenging models with simulated and
video shifts across diverse imagery types. Additionally, we evaluate our method on three datasets
mostly used in the field of domain generalization: PACS [30], VLCS [31], and OfficeHome [32]
datasets, instrumental in understanding texture and style variations. These evaluations effectively
demonstrate the generalizability of our method across distinct domain shifts.

Benchmarking. We conduct a comparative analysis of WATT against contemporary methods using
ViT-B/32 as the backbone. Specifically, we incorporate an adapted version of TENT [13], customized
for CLIP by the authors of [24], using 10 iterations. We also include SAR [16] and MEMO [14] in
the same manner as TENT. Additionally, we compare with TPT [8], a novel adaptation technique
for CLIP that heavily relies on image augmentations, as well as DiffTPT [22], an extension that
incorporates diffusion models. Lastly, we include TDA [23], which employs a dynamic adapter, and
CLIPArTT [24], a recent approach that utilizes pseudo labels generated through conformal learning.

5 Results

In this section, we present empirical findings from our WATT method through a series of ablation stud-
ies aimed at understanding the impacts of individual components. These studies inform subsequent
experiments across diverse datasets. Leveraging insights from ablations, we conduct comprehensive
experiments, benchmarking WATT against state-of-the-art techniques across various datasets.

5.1 Ablation Studies

In this section, unless otherwise specified, we focus on the Sequential MTWA variant of our method
(see Section 3.2) and will use these findings as a reference for the Parallel MTWA method.

Comparison of the template used during testing. After updating the model, we proceed to compute
the similarity between the image features and the text embeddings, enabling prediction. Typically, text
embeddings originate from the text prompt “a photo of a class k”. However, by employing
multiple templates, we have the flexibility to alter this text embedding through the averaging of all
text embeddings from each template. Table 1 conducts a comparative analysis revealing that this

7



averaged text embedding consistently yields superior results across all scenarios. Hence, we adopt
this approach for next experiments.

Comparison of the number of templates. In Figure 5, we examine the performance variation relative
to the number of utilized templates. In this investigation, we conduct 5 runs wherein the templates
are randomly selected from a pool of 8 distinct templates (as outlined in Fig. 1a). Notably, when
the distribution shift is minimal, as observed in CIFAR-10 and CIFAR-10.1, optimal performance
is attained using 6 templates, with performance gradually diminishing thereafter. Conversely, in
scenarios characterized by substantial corruptions, such as CIFAR-10-C, employing all 8 templates
proves advantageous. Consequently, our focus moving forward will be on utilizing all 8 templates in
our work.

Dataset Text avg. Output avg.
Weight avg. (ours)

(after 10 iter)×1 (after 1 iter)×10 (after 2 iter)×5

CIFAR-10 90.58 ±0.03 90.90 ±0.03 91.08 ±0.06 91.39 ±0.14 91.05 ±0.06

CIFAR-10.1 85.78 ±0.25 86.77 ±0.08 86.85 ±0.18 88.02 ±0.18 86.98 ±0.31

CIFAR-10-C 71.41 72.60 72.66 73.66 73.82
CIFAR-100 69.46 ±0.13 70.32 ±0.1 70.3 ±0.11 70.85 ±0.08 70.74 ±0.20

CIFAR-100-C 41.37 42.68 42.24 45.32 45.57

Table 3: Accuracy (%) obtained with different averaging strategies.

Text Averaging vs Output Averaging vs Weight Averaging. Utilizing the averaging method within
a VLM offers several possibilities, including averaging the weights, the outputs or the text embeddings
before computing the logits. In Table 3, a comparison between these approaches is presented. It
becomes evident that weight averaging consistently outperforms text embedding averaging across
various datasets, showcasing a superiority of approximately 1% even with the less effective weight
averaging method. This performance advantage is observed across CIFAR-10, CIFAR-10.1, and
CIFAR-10-C, and persists even with larger numbers of classes, such as in CIFAR-100 and CIFAR-
100-C. When concentrating on output averaging, the results may be less evident with less effective
weight averaging methods. However, they remain valid and even more accurate with superior weight
averaging techniques. Therefore, our focus for future experiments will be on weight averaging as the
preferred approach.

Best moment to do the Weight Averaging. Examining Table 3, it is evident that the parameters L
and M discussed in Section 3 are crucial. Specifically, a large L (e.g., 10) combined with a small
M (e.g., 1) is ineffective. Conversely, setting L = 1 and M = 10 yields optimal results for small
distribution shift datasets, while L = 2 and M = 5 perform best on highly corrupted datasets. Given
that TTA typically encounters substantial distribution shifts, we will use L = 2 and M = 5 in our
subsequent experiments.

Performance over the number of iterations. In this section, we focus on the method incorporating
a Parallel MTWA mechanism and examine the impact of the number of iterations on performance.
As illustrated in Figure 6, the accuracy stabilizes after approximately 20 iterations. Although there is
a slight improvement in performance beyond 50 iterations, the difference is marginal. Based on these
observations, we have opted to use 50 iterations for our experiments.

Model performance across various batch sizes. In our investigation, we delve into the performance
implications of TTA methods when operating under small batch sizes, a historical challenge in the
field. Table 2 provides insights into this aspect, revealing substantial performance enhancements
with increasing batch sizes. Notably, our WATT model showcases remarkable adaptability, demon-
strating performance improvements even with a single image input contrary to alternative methods.
Specifically, we observe enhancements of approximately 1% for CIFAR-10 and CIFAR-10.1, and
an impressive 2% for CIFAR-10-C when compared to baseline. Moving forward, we maintain a
batch size of 128 in our experiments, aligning with prevalent practices observed in contemporary
state-of-the-art methodologies.

8



Dataset CLIP TENT TPT TDA DiffTPT SAR CLIPArTT WATT-P WATT-S

CIFAR-10 88.74 91.69 ±0.10 88.06 ±0.06 84.09 ±0.04 83.07 ±0.05 89.05 ±0.02 90.04 ±0.13 91.41 ±0.17 91.05 ±0.06

CIFAR-10.1 83.25 87.60 ±0.45 81.80 ±0.27 78.98 ±0.37 76.50 ±0.29 83.65 ±0.04 86.35 ±0.27 87.78 ±0.05 86.98 ±0.31

CIFAR-10-C 59.22 67.56 56.80 48.00 56.77 60.45 71.17 72.83 73.82
CIFAR-100 61.68 69.74 ±0.16 63.78 ±0.28 60.32 ±0.06 52.80 ±0.08 64.44 ±0.01 69.79 ±0.04 70.38 ±0.14 70.74 ±0.20

C
IF

A
R

-1
00

-C

Gaussian Noise 14.80 14.38 ±0.14 14.03 ±0.10 8.20 ±0.35 21.40 ±0.08 15.85 ±0.03 25.32 ±0.14 31.28 ±0.03 32.07 ±0.23

Shot noise 16.03 17.34 ±0.27 15.25 ±0.17 9.58 ±0.43 24.17 ±0.49 17.41 ±0.05 27.90 ±0.05 33.44 ±0.11 34.36 ±0.11

Impulse Noise 13.85 10.03 ±0.13 13.01 ±0.13 7.63 ±0.19 16.87 ±0.24 14.90 ±0.09 25.62 ±0.09 29.40 ±0.11 30.33 ±0.03

Defocus blur 36.74 49.05 ±0.07 37.60 ±0.17 25.59 ±0.41 20.30 ±0.29 42.00 ±0.06 49.88 ±0.23 52.32 ±0.28 52.99 ±0.16

Glass blur 14.19 3.71 ±0.07 16.41 ±0.02 9.83 ±0.56 15.57 ±0.46 13.84 ±0.08 27.89 ±0.03 31.20 ±0.12 32.15 ±0.30

Motion blur 36.14 46.62 ±0.27 37.52 ±0.23 28.92 ±0.18 21.00 ±0.64 39.52 ±0.01 47.93 ±0.14 49.72 ±0.15 50.53 ±0.12

Zoom blur 40.24 51.84 ±0.15 42.99 ±0.11 31.08 ±0.36 25.53 ±0.05 45.40 ±0.05 52.70 ±0.06 54.72 ±0.04 55.30 ±0.22

Snow 38.95 46.71 ±0.21 42.35 ±0.13 32.94 ±0.12 28.83 ±0.37 41.85 ±0.08 49.72 ±0.01 51.79 ±0.04 52.77 ±0.15

Frost 40.56 44.90 ±0.27 43.31 ±0.14 34.84 ±0.25 31.10 ±0.36 42.20 ±0.04 49.63 ±0.12 53.04 ±0.08 53.79 ±0.31

Fog 38.00 47.31 ±0.04 38.81 ±0.17 31.13 ±0.15 16.60 ±0.43 40.14 ±0.00 48.77 ±0.04 50.78 ±0.24 51.49 ±0.21

Brightness 48.18 60.58 ±0.18 50.23 ±0.11 42.36 ±0.10 38.13 ±0.29 52.77 ±0.10 61.27 ±0.08 62.65 ±0.25 63.57 ±0.21

Contrast 29.53 45.90 ±0.11 28.09 ±0.09 18.03 ±0.07 7.70 ±0.22 34.40 ±0.10 48.55 ±0.24 51.34 ±0.10 52.76 ±0.27

Elastic transform 26.33 33.09 ±0.08 28.12 ±0.15 18.88 ±0.24 21.60 ±0.51 28.44 ±0.07 37.45 ±0.08 39.97 ±0.06 40.90 ±0.43

Pixelate 21.98 26.47 ±0.09 20.43 ±0.14 14.59 ±0.30 22.83 ±0.31 22.91 ±0.07 33.88 ±0.14 39.59 ±0.09 40.97 ±0.16

JPEG compression 25.91 29.89 ±0.07 28.82 ±0.09 17.56 ±0.11 31.77 ±0.45 27.20 ±0.06 36.07 ±0.32 38.99 ±0.16 39.59 ±0.08

Mean 29.43 35.19 30.46 22.08 22.89 31.92 41.51 44.68 45.57

Table 4: Accuracy (%) on CIFAR-10, CIFAR-10.1, CIFAR-10-C, CIFAR-100, and CIFAR-100-C
datasets. WATT-P refers to our method with Parallel MTWA and WATT-S to the Sequential MTWA
variant of WATT.

5.2 Comparison to SOTA methods

Performance evaluation with small batches. In existing TTA works that study small batch size
scenarios, such as SAR [16] and MEMO [14], we implement these methods in the context of CLIP.
We compare our method with other TTA approaches using a batch size of 1. As shown in Table 5,
WATT-P achieves the highest accuracy across all cases, outperforming SAR by 2.23% and MEMO
by 0.75% on CIFAR-10.1. Notably, this improvement is achieved without any image augmentation,
which is a common practice in previous TTA approaches that deal with small batches.

Dataset CLIP TPT SAR MEMO CLIPArTT WATT-P

CIFAR-10 88.74 88.29 87.41 89.29 88.76 89.87
CIFAR 10.1 83.25 82.85 82.32 83.80 83.15 84.55
CIFAR-10-C 59.22 59.03 58.70 61.15 59.18 61.26

Table 5: Comparison of different TTA methods with a batch size equal to 1.

Performance evaluation in the presence of natural or no domain shift. In Table 4, results show
consistent performance enhancements with WATT, both with the Parallel and Sequential MTWA
strategies, alongside the baseline. On CIFAR-10, performance improves by 2.67% with Parallel
MTWA and 2.31% using Sequential MTWA. On CIFAR-10.1, improvements reach 4.53% and 3.73%,
and on CIFAR-100, enhancements are 8.70% and 9.06%. While WATT consistently outperforms the
baseline, TPT, and CLIPArTT, TENT yields superior results on CIFAR-10. WATT’s effectiveness
often correlates with the number of classes, showing better performance with more classes, indicating
its strength in lower-confidence scenarios.

Performance evaluation in the presence of common corruptions. Table 4 shows that both WATT
variants consistently outperform alternative methods across various corruptions and class numbers.
Notably, WATT with Parallel MTWA improves performance by 16.48% on CIFAR-100 Gaussian
Noise and by 17.01% on Glass Blur compared to the baseline, while WATT with Sequential MTWA
shows improvements of 17.27% and 17.96% respectively. On common corruptions, the Sequential
MTWA variant surpasses Parallel MTWA, with improvements of 0.99% on CIFAR-10 and 0.89% on
CIFAR-100. According to the TDA supplementary materials, we selected the weighting factor alpha
as 5.0 and the sharpness ratio beta as 2.0, which are stated as optimal. However, these values did not
appear to be the best choice for more challenging datasets like CIFAR-10-C or CIFAR-100-C that
contain various corruptions. Adjusting these parameters based on the dataset would not be consistent

9



Dataset Domain CLIP TENT TPT CLIPArTT WATT-P WATT-S

VisDA-C
3D (trainset) 84.43 84.86 ±0.01 79.35 ±0.04 85.09 ±0.01 85.42 ±0.03 85.36 ±0.01

YT (valset) 84.45 84.68 ±0.01 83.57 ±0.04 84.40 ±0.01 84.57 ±0.00 84.69 ±0.01
Mean 84.44 84.77 81.46 84.75 85.00 85.03

OfficeHome

Art 73.75 74.03 ±0.27 75.76 ±0.27 73.84 ±0.20 75.65 ±0.27 75.76 ±0.39
Clipart 63.33 63.42 ±0.04 63.08 ±0.31 63.54 ±0.06 66.23 ±0.13 65.77 ±0.11

Product 85.32 85.51 ±0.08 84.07 ±0.28 85.23 ±0.16 85.41 ±0.09 85.41 ±0.01

Real World 87.71 87.74 ±0.05 85.89 ±0.33 87.61 ±0.05 88.22 ±0.15 88.37 ±0.05
Mean 77.53 77.68 77.20 77.56 78.88 78.83

PACS

Art 96.34 96.65 ±0.05 95.52 ±0.20 96.57 ±0.09 96.31 ±0.00 96.39 ±0.00

Cartoon 96.08 96.22 ±0.05 94.77 ±0.20 96.00 ±0.02 96.52 ±0.02 96.62 ±0.02
Photo 99.34 99.40 ±0.00 99.42 ±0.06 99.28 ±0.00 99.48 ±0.03 99.52 ±0.00
Sketch 82.85 82.96 ±0.12 83.22 ±0.14 83.93 ±0.14 86.92 ±0.04 86.65 ±0.12

Mean 93.65 93.81 93.23 93.95 94.81 94.80

VLCS

Caltech101 99.51 99.51 ±0.00 99.36 ±0.06 99.51 ±0.00 99.43 ±0.00 99.51 ±0.00
LabelMe 68.15 67.89 ±0.13 54.88 ±0.12 67.96 ±0.04 66.67 ±0.21 68.49 ±0.12
SUN09 68.85 69.27 ±0.04 67.30 ±0.49 68.68 ±0.09 72.61 ±0.15 73.13 ±0.17
VOC2007 84.13 84.42 ±0.15 76.74 ±0.28 84.09 ±0.02 82.30 ±0.16 83.41 ±0.17

Mean 80.16 80.27 74.57 80.06 80.25 81.14

Table 6: Accuracy (%) on different domains of VisDA-C, OfficeHome, PACS and VLCS datasets.

with the principles of a fully TTA method, which might explain their suboptimal performance in our
results. Regarding DiffTPT, it generates 64 images per test image, making it challenging to use in a
real-world TTA scenario. Similar to TDA, DiffTPT requires carefully chosen parameters to fit the
dataset, whereas our method does not require dataset-specific tuning. This highlights the robustness
and practicality of our approach in diverse real-world applications.

Performance analysis under simulated and video shifts. Results on the 3D (simulated shift)
and YT (video shift) splits of VisDA-C demonstrate a significant improvement in accuracy with our
proposed WATT method compared to pure CLIP. The Sequential MTWA variant achieves the highest
accuracy on both the 3D and YT splits, with scores of 85.36% and 84.69%, respectively, surpassing
other adaptation methods including TENT, TPT, and CLIPArTT (see Table 6).

Performance analysis under texture and style shifts. Results on the OfficeHome, PACS, and
VLCS datasets are presented in Table 6. On average, our proposed WATT method, with Parallel
and Sequential MTWA variants, improves performance across the different domains of OfficeHome,
PACS, and VLCS compared to other methods. This highlights its robustness in addressing texture
and style shifts, which are especially challenging compared to other domain shift variants.

6 Conclusion

We introduce WATT, a Test-Time Adaptation method tailored for Vision-Language Models. Our
approach harnesses Weight Averaging with different text prompts and incorporates text embeddings
averaging to bolster prediction accuracy.

Through an extensive ablation study, we scrutinized the efficacy of employing varied text prompts and
weight averaging. Comparative evaluations across Test-Time Adaptation and Domain Generalization
datasets underscored the superiority of our method, particularly in scenarios involving distribution
shifts and zero-shot performance enhancements compared to state-of-the-art approaches.

Looking forward, investigating the potential of text prompts and weight averaging in classification
opens up promising avenues for future exploration. Our methodology, with its focus on template
manipulation, suggests potential avenues for extension, such as incorporating alternative class
descriptors, yielding valuable insights for future research. Moreover, expanding Test-Time Adaptation
to encompass diverse scenarios, including segmentation or object detection with Vision-Language
Models, holds significant potential for advancing our comprehension of model adaptability and
performance across varied tasks.

10



References
[1] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,

Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning,
pages 8748–8763. PMLR, 2021.

[2] Chao Jia, Yinfei Yang, Ye Xia, Yi-Ting Chen, Zarana Parekh, Hieu Pham, Quoc Le, Yun-Hsuan
Sung, Zhen Li, and Tom Duerig. Scaling up visual and vision-language representation learning
with noisy text supervision. In International conference on machine learning, pages 4904–4916.
PMLR, 2021.

[3] Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson,
Tete Xiao, Spencer Whitehead, Alexander C Berg, Wan-Yen Lo, et al. Segment anything. arXiv
preprint arXiv:2304.02643, 2023.

[4] Ziyi Lin, Shijie Geng, Renrui Zhang, Peng Gao, Gerard de Melo, Xiaogang Wang, Jifeng Dai,
Yu Qiao, and Hongsheng Li. Frozen clip models are efficient video learners. In European
Conference on Computer Vision, pages 388–404. Springer, 2022.

[5] Andrey Guzhov, Federico Raue, Jörn Hees, and Andreas Dengel. Audioclip: Extending clip
to image, text and audio. In ICASSP 2022-2022 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pages 976–980. IEEE, 2022.

[6] Jie Liu, Yixiao Zhang, Jie-Neng Chen, Junfei Xiao, Yongyi Lu, Bennett A Landman, Yixuan
Yuan, Alan Yuille, Yucheng Tang, and Zongwei Zhou. Clip-driven universal model for organ
segmentation and tumor detection. In Proceedings of the IEEE/CVF International Conference
on Computer Vision, pages 21152–21164, 2023.

[7] Zhengfeng Lai, Noranart Vesdapunt, Ning Zhou, Jun Wu, Cong Phuoc Huynh, Xuelu Li,
Kah Kuen Fu, and Chen-Nee Chuah. Padclip: Pseudo-labeling with adaptive debiasing in clip
for unsupervised domain adaptation. In Proceedings of the IEEE/CVF International Conference
on Computer Vision (ICCV), pages 16155–16165, October 2023.

[8] Manli Shu, Weili Nie, De-An Huang, Zhiding Yu, Tom Goldstein, Anima Anandkumar, and
Chaowei Xiao. Test-time prompt tuning for zero-shot generalization in vision-language models.
In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh, editors, Advances in
Neural Information Processing Systems, volume 35, pages 14274–14289. Curran Associates,
Inc., 2022.

[9] Timur Garipov, Pavel Izmailov, Dmitrii Podoprikhin, Dmitry P Vetrov, and Andrew G Wilson.
Loss surfaces, mode connectivity, and fast ensembling of dnns. In S. Bengio, H. Wallach,
H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett, editors, Advances in Neural
Information Processing Systems, volume 31. Curran Associates, Inc., 2018.

[10] Junbum Cha, Sanghyuk Chun, Kyungjae Lee, Han-Cheol Cho, Seunghyun Park, Yunsung Lee,
and Sungrae Park. Swad: Domain generalization by seeking flat minima. Advances in Neural
Information Processing Systems, 34:22405–22418, 2021.

[11] Jiangtao Zhang, Shunyu Liu, Jie Song, Tongtian Zhu, Zhengqi Xu, and Mingli Song.
Lookaround optimizer: k steps around, 1 step average. Advances in Neural Information
Processing Systems, 36, 2024.

[12] Zachary Nado, Shreyas Padhy, D. Sculley, Alexander D’Amour, Balaji Lakshminarayanan, and
Jasper Snoek. Evaluating prediction-time batch normalization for robustness under covariate
shift. arXiv:2006.10963 [cs, stat], January 2021. arXiv: 2006.10963.

[13] Dequan Wang, Evan Shelhamer, Shaoteng Liu, Bruno Olshausen, and Trevor Darrell. Tent:
Fully test-time adaptation by entropy minimization. 2021.

[14] Marvin Zhang, Sergey Levine, and Chelsea Finn. Memo: Test time robustness via adaptation
and augmentation. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh,
editors, Advances in Neural Information Processing Systems, volume 35, pages 38629–38642.
Curran Associates, Inc., 2022.

11



[15] Malik Boudiaf, Romain Mueller, Ismail Ben Ayed, and Luca Bertinetto. Parameter-free online
test-time adaptation. In IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), pages 8344–8353, 2022.

[16] Shuaicheng Niu, Jiaxiang Wu, Yifan Zhang, Zhiquan Wen, Yaofo Chen, Peilin Zhao, and
Mingkui Tan. Towards stable test-time adaptation in dynamic wild world, 2023.

[17] Yu Sun, Xiaolong Wang, Zhuang Liu, John Miller, Alexei A. Efros, and Moritz Hardt. Test-time
training with self-supervision for generalization under distribution shifts. In International
Conference on Machine Learning (ICML), 2020.

[18] David Osowiechi, Gustavo A. Vargas Hakim, Mehrdad Noori, Milad Cheraghalikhani, Ismail
Ayed, and Christian Desrosiers. Tttflow: Unsupervised test-time training with normalizing flow.
In 2023 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), pages
2125–2126, Los Alamitos, CA, USA, jan 2023. IEEE Computer Society.

[19] Yossi Gandelsman, Yu Sun, Xinlei Chen, and Alexei A Efros. Test-time training with masked
autoencoders. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho, editors,
Advances in Neural Information Processing Systems, 2022.

[20] Gustavo A Vargas Hakim, David Osowiechi, Mehrdad Noori, Milad Cheraghalikhani, Ali Bahri,
Ismail Ben Ayed, and Christian Desrosiers. Clust3: Information invariant test-time training. In
Proceedings of the IEEE/CVF International Conference on Computer Vision, pages 6136–6145,
2023.

[21] David Osowiechi, Gustavo A. Vargas Hakim, Mehrdad Noori, Milad Cheraghalikhani, Ali
Bahri, Moslem Yazdanpanah, Ismail Ben Ayed, and Christian Desrosiers. Nc-ttt: A noise
constrastive approach for test-time training. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pages 6078–6086, June 2024.

[22] Chun-Mei Feng, Kai Yu, Yong Liu, Salman Khan, and Wangmeng Zuo. Diverse data augmen-
tation with diffusions for effective test-time prompt tuning. In Proceedings of the IEEE/CVF
International Conference on Computer Vision (ICCV), pages 2704–2714, October 2023.

[23] Adilbek Karmanov, Dayan Guan, Shijian Lu, Abdulmotaleb El Saddik, and Eric Xing. Efficient
test-time adaptation of vision-language models. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), pages 14162–14171, June 2024.

[24] Gustavo Adolfo Vargas Hakim, David Osowiechi, Mehrdad Noori, Milad Cheraghalikhani, Ali
Bahri, Moslem Yazdanpanah, Ismail Ben Ayed, and Christian Desrosiers. Clipartt: Light-weight
adaptation of clip to new domains at test time. arXiv preprint arXiv:2405.00754, 2024.

[25] Xiaosong Ma, Jie ZHANG, Song Guo, and Wenchao Xu. Swapprompt: Test-time prompt
adaptation for vision-language models. In Thirty-seventh Conference on Neural Information
Processing Systems, 2023.

[26] Pavel Izmailov, Dmitrii Podoprikhin, Timur Garipov, Dmitry Vetrov, and Andrew Gordon
Wilson. Averaging weights leads to wider optima and better generalization. arXiv preprint
arXiv:1803.05407, 2018.

[27] Geoffrey E Hinton and Sam Roweis. Stochastic neighbor embedding. Advances in neural
information processing systems, 15, 2002.

[28] Dan Hendrycks and Thomas Dietterich. Benchmarking neural network robustness to common
corruptions and perturbations. 2019.

[29] Xingchao Peng, Ben Usman, Neela Kaushik, Dequan Wang, Judy Hoffman, and Kate Saenko.
Visda: A synthetic-to-real benchmark for visual domain adaptation. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, June 2018.

[30] Da Li, Yongxin Yang, Yi-Zhe Song, and Timothy M Hospedales. Deeper, broader and artier
domain generalization. In Proceedings of the IEEE international conference on computer vision,
pages 5542–5550, 2017.

12



[31] Chen Fang, Ye Xu, and Daniel N Rockmore. Unbiased metric learning: On the utilization of
multiple datasets and web images for softening bias. In Proceedings of the IEEE International
Conference on Computer Vision, pages 1657–1664, 2013.

[32] Hemanth Venkateswara, Jose Eusebio, Shayok Chakraborty, and Sethuraman Panchanathan.
Deep hashing network for unsupervised domain adaptation. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages 5018–5027, 2017.

13



WATT: Weight Average Test-Time Adaption of CLIP
Supplementary Material

A Implementation

Our proposed WATT method is implemented in Python using the PyTorch (version 2.0.1) framework.
All experiments were conducted on an NVIDIA V100 32 GB GPU. However, due to the effectively
and lightweight nature of our method, it can be executed on less powerful GPUs. Specifically, the
adaptation with a batch size of 128 using the ViT/B32 backbone requires up to 4 GB of memory,
making it feasible to use on a wide range of GPUs. For fairness and consistency, we re-implemented
and ran all other methods, including CLIPArTT, TENT, and TPT, in the same environment. Each
experiment was performed three times to ensure reliability (three trials per experiment). To facilitate
reproducibility, we provide the original implementation and detailed step-by-step instructions in our
repository, accessible via this github link.

B Template details

The CLIP paper identifies 80 templates that enhance model robustness and performance. They
ultimately conclude that 7 of these templates best summarize their model (see this link). In our
work, we use these 7 generic templates and add the common one, “a photo of {},” based on their
optimization. These templates are not specifically linked to the content of the images.

C Dataset details

In our investigation, we use the VisDA-C dataset, which challenges models with two distinct domain
shifts: the simulated shift and the video shift. The simulated shift includes 152,397 3D-rendered
images across 12 diverse classes, while the video shift comprises 72,372 YouTube video frames
spanning the same categories. This dataset addresses the diversity of imagery types applicable to a
model, posing a significant challenge.

Moreover, we evaluate our proposed method on three other datasets: PACS, VLCS, and OfficeHome.
These datasets help understand various domain shifts, including texture and style variations. The
PACS dataset consists of 9,991 images across four domains (Art, Cartoons, Photos, Sketches) and
seven classes. The VLCS dataset contains 10,729 images across four domains (Caltech101, LabelMe,
SUN09, VOC2007) and five classes. Lastly, the OfficeHome dataset includes 15,588 images across
four domains (Art, Clipart, Product, Real) and 65 classes. Evaluating across these distinct domain
shifts showcases the generalizability of our method. These datasets are more representative of
real-world scenarios compared to CIFAR, with complex domain shifts.

D Computational Cost

We conduct a thorough evaluation under consistent conditions using an NVIDIA A6000 GPU within
the same Python environment. The Table 7 provided compares the adaptation time, memory usage,
and the number of learnable parameters for various TTA methods, including our proposed WATT
method.The table clearly demonstrates that WATT-S, a sequential implementation of WATT, maintains
competitive adaptation time and memory usage compared to other methods like TENT and ClipArTT,
which are efficient but lack the robustness of WATT’s method. Additionally, the table highlights that
WATT-P, with parallel model training, offers a faster adaptation time than WATT-P with a for-loop
implementation, albeit at the cost of higher memory usage. It’s important to note that methods
like DiffTPT [22] and MEMO [14], which show significantly higher adaptation times, employ off-
the-shelf diffusion models and AugMix augmentation, respectively, resulting in time-consuming
processes that may be impractical for real-world scenarios. In contrast, the effectiveness of our
WATT-S method makes it better suited for scenarios where a robust, rapid, and resource-efficient
adaptation is crucial.

14

https://github.com/Mehrdad-Noori/WATT
https://github.com/openai/CLIP/blob/main/notebooks/Interacting_with_CLIP.ipynb


Method Adaptation Time Memory Percentage of Learnable Parameters

WATT-S 2.34 s 1.5 GB 0.026%
WATT-P 23.2 s (23.2/8) 1.5 GB (8 x 1.5 GB) 0.026% (x8)
TENT 0.28 s 1.5 GB 0.026%
ClipArTT 0.55 s 1.7 GB 0.026%
SAR 0.42 s 1.4 GB 0.026%
MEMO 165 s 2 GB 0.026%
DiffTPT 8.2 + 0.26 s 8.7 GB + 1.7 GB 0.001%

Table 7: Comparison of computational cost of different methods.

E Pseudo-code of our both methods

In Algorithms 1 and 2, we compare the two variants of WATT: one with Parallel MTWA (WATT-P)
and the other with Sequential MTWA (WATT-S). The WATT-P model recalibrates its parameters
for each template using the average parameters of m− 1, whereas the WATT-S model updates its
parameters solely at the start of each new iteration m.

Algorithm 1 WATT-P - model f , parameter θ

1: for m ∈ {1, 2, . . . ,M} do
2: θavg ← 1

H

∑H
h=1 θh

3: for h ∈ {1, 2, . . . ,H} do
4: f ← fθavg
5: for l ∈ {1, 2, . . . , L} do
6: θh ← LTTA(fθavg(templateh))
7: end for
8: end for
9: end for

Algorithm 2 WATT-S - model f , parameter θ

1: for m ∈ {1, 2, . . . ,M} do
2: θavg ← 1

H

∑H
h=1 θh

3: f ← fθavg
4: for h ∈ {1, 2, . . . ,H} do
5: for l ∈ {1, 2, . . . , L} do
6: θh ← LTTA(fθavg(templateh))
7: end for
8: end for
9: end for

F Additional Ablation Studies

Cross Entropy vs Entropy Minimization. Two unsupervised loss functions were integrated into
previous TTA methods: classical entropy minimization and the loss introduced by CLIPArTT [24],
where predictions are utilized as pseudo labels for cross-entropy computation. In Table 8, a com-
parison between these two loss functions is presented across the original CIFAR-10 dataset and
various corruptions from CIFAR-10-C. It is observed that, for these specific corruptions, entropy
minimization generally outperforms with the different templates employed, except for Gaussian
Noise. However, upon assessing the weighted average accuracy, computed after 10 iterations for
each template, cross-entropy consistently emerges as the superior option. The marginal impact of the
weighted average on entropy minimization suggests that, irrespective of the template used, the model
updates in a consistent direction to enhance confidence, rendering cross-entropy the preferred choice
for subsequent experiments.

15



Dataset Loss T 0 T 1 T 2 T 3 T 4 T 5 T 6 T 7 WA

CIFAR-10 TENT 91.69 91.97 91.69 90.28 91.16 92.11 91.98 89.14 90.60
CE 89.8 90.37 90.5 88.42 89.93 89.95 90.13 88.54 91.05

Gaussian Noise TENT 41.27 37.16 46.39 51.31 39.27 32.51 49.7 42.96 47.08
CE 60.19 61.01 61.17 58.24 58.84 58.35 59.62 61.13 63.84

Defocus Blur TENT 77.12 77.13 78.7 76.09 76.85 76.59 77.86 74.31 76.21
CE 77.23 77.07 78 75.98 76.39 77.45 77.08 75.59 78.94

Snow TENT 78.29 79.54 80.09 75.39 78.97 78.52 78.78 75.82 77.24
CE 76.57 77.36 77.93 75.08 77.45 77.09 77.05 75.57 79.79

JPEG Compression TENT 62.64 65.83 64.27 59.49 62.78 64.19 62.62 63.39 65.31
CE 64.65 65.36 65.24 64.16 64.18 64.36 64.78 65.32 67.36

Table 8: Comparison of accuracy (%) using entropy minimization (TENT) or cross-entropy (CE)
on CIFAR-10 and some corruptions of CIFAR-10-C datasets with ViT-B/32 encoder on different
templates (please see Fig. 1a) and the weight average.

G Experiments with another VLM

We investigate if our TTA method is working with other VLMs like SigLip, so we compare if after
adaptation with our method the performance improves compared to the baseline in Table 9.

Dataset SigLip WATT-S

CIFAR-10 66.35 75.02 ±0.05

CIFAR-10.1 57.30 65.87 ±0.21

CIFAR-10-C 37.52 45.29 ±0.13

CIFAR-100 33.97 65.87 ±0.21

CIFAR-100-C 14.43 20.05 ±0.05

Table 9: Performance comparison of SigLip and WATT-S on different datasets

H Experiments on other Visual Encoders

We replicated the experiments from the main paper using alternative visual encoders, ViT-B/16 and
ViT-L/14.

Dataset Backbone CLIP TENT TPT (BS=32) CLIPArTT WATT-P WATT-S

CIFAR-10 ViT-B/16 89.25 92.75 ±0.17 89.80 ±0.05 92.61 ±0.05 92.31 ±0.10 91.97 ±0.03

ViT-L/14 95.36 96.13 ±0.01 95.18 ±0.02 95.16 ±0.03 95.91 ±0.10 95.71 ±0.03

CIFAR-10.1 ViT-B/16 84.00 88.52 ±0.33 83.75 ±0.21 88.72 ±0.33 87.90 ±0.11 88.10 ±0.08

ViT-L/14 91.20 92.22 ±0.25 91.32 ±0.12 91.02 ±0.02 92.97 ±0.13 92.10 ±0.33

CIFAR-10-C ViT-B/16 60.15 68.00 59.75 73.22 75.04 76.22
ViT-L/14 76.04 79.18 75.01 78.06 80.05 80.06

CIFAR-100 ViT-B/16 64.76 71.73 ±0.14 67.15 ±0.23 71.34 ±0.07 72.98 ±0.07 72.85 ±0.15

ViT-L/14 73.28 78.03 ±0.08 76.85 ±0.06 79.42 ±0.08 79.33 ±0.05 78.85 ±0.19

CIFAR-100-C ViT-B/16 32.01 37.90 33.73 40.08 47.86 48.95
ViT-L/14 44.59 50.14 47.58 52.52 54.10 54.34

Table 10: Accuracy (%) on CIFAR-10, CIFAR-10.1, CIFAR-10-C, CIFAR-100 and CIFAR-100-C
datasets with ViT-B/16 and ViT-L/14 as visual encoders.

Performance evaluation in the presence of natural or no domain shift. As indicated in the
main results, employing WATT, both with Parallel and Sequential MTWA, consistently enhances

16



performance alongside the baseline. This pattern persists across different visual encoders, as shown
in Tables 10. Although WATT consistently outperforms the baseline and TPT, TENT and CLIPArTT
may occasionally yield superior results depending on the visual encoder used.

Performance evaluation in the presence of common corruptions. Table 10 demonstrates a
consistent trend where both WATT methods consistently outperform alternative methods across
various corruptions and class numbers. Upon closer examination of Table 10, specifically with
ViT-B/16 as the visual encoder, Sequential MTWA exhibits a significant performance advantage,
surpassing the baseline by 16.07% and the leading method in the state-of-the-art by 3.00%. This
trend becomes even more pronounced with an increased number of classes, where Sequential MTWA
surpasses the baseline and CLIPArTT by 16.94% and 8.87%, respectively.

Performance analysis under simulated and video shifts. Our study reveals substantial accuracy
improvements on the 3D (simulated shift) and YT (video shift) partitions of VisDA-C when employing
different backbones. This enhancement is particularly notable with our proposed WATT method
compared to pure CLIP. Notably, the WATT-S variant achieves the highest accuracy across both
the 3D and YT partitions, outperforming various adaptation approaches including TENT, TPT, and
CLIPArTT. Detailed comparisons can be found in Tables 11 and 12.

Performance analysis under texture and style shifts. Findings across the OfficeHome, PACS, and
VLCS datasets are detailed in Tables 11 and 12. Across these varied domains, our WATT method
demonstrates consistent performance enhancements, as evidenced by both its WATT-P and WATT-S
variants. These improvements underscore the efficacy of our approach in mitigating the complexities
of texture and style shifts, which pose particular challenges compared to other forms of domain shift.

Dataset Domain CLIP TENT TPT CLIPArTT WATT-P WATT-S

VisDA-C
3D (trainset) 87.16 87.57 ±0.01 84.04 ±0.03 87.58 ±0.00 87.61 ±0.01 87.72 ±0.02
YT (valset) 86.61 86.81 ±0.00 85.90 ±0.11 86.60 ±0.01 86.66 ±0.00 86.75 ±0.04

Mean 86.89 87.19 84.97 87.09 87.14 87.24

OfficeHome

Art 79.30 79.26 ±0.14 81.97 ±0.17 79.34 ±0.05 80.37 ±0.25 80.43 ±0.09

Clipart 65.15 65.64 ±0.05 67.01 ±0.21 65.69 ±0.11 68.59 ±0.13 68.26 ±0.11

Product 87.34 87.49 ±0.02 89.00 ±0.06 87.35 ±0.07 88.15 ±0.07 88.02 ±0.08

Real World 89.31 89.50 ±0.04 89.66 ±0.06 89.29 ±0.03 90.18 ±0.03 90.14 ±0.06

Mean 80.28 80.47 81.91 80.42 81.82 81.71

PACS

Art 97.44 97.54 ±0.02 95.10 ±0.41 97.64 ±0.02 97.49 ±0.08 97.66 ±0.08
Cartoon 97.38 97.37 ±0.04 91.42 ±0.22 97.37 ±0.02 97.47 ±0.04 97.51 ±0.02
Photo 99.58 99.58 ±0.00 98.56 ±0.40 99.58 ±0.00 99.58 ±0.00 99.58 ±0.00
Sketch 86.06 86.37 ±0.05 87.23 ±0.06 86.79 ±0.04 89.73 ±0.16 89.56 ±0.14

Mean 95.12 95.22 93.08 95.35 96.07 96.08

VLCS

Caltech101 99.43 99.43 ±0.00 97.62 ±0.12 99.43 ±0.00 99.36 ±0.00 99.36 ±0.00

LabelMe 67.75 67.31 ±0.14 49.77 ±0.03 67.74 ±0.10 67.55 ±0.39 68.59 ±0.25
SUN09 71.74 71.57 ±0.15 71.56 ±0.86 71.67 ±0.01 74.75 ±0.07 75.16 ±0.12
VOC2007 84.90 85.10 ±0.11 71.17 ±0.70 84.73 ±0.08 82.53 ±0.10 83.24 ±0.05

Mean 80.96 80.85 72.53 80.89 81.05 81.59

Table 11: Accuracy (%) on different domains of VisDA-C, OfficeHome, PACS and VLCS datasets
with ViT-B/16 as visual encoder.

17



Dataset Domain CLIP TENT TPT CLIPArTT WATT-S

VisDA-C
3D (trainset) 91.24 91.40 ±0.01 90.65 ±0.00 91.34 ±0.00 91.71 ±0.00
YT (valset) 85.62 85.77 ±0.01 85.41 ±0.06 85.61 ±0.01 86.80 ±0.01
Mean 88.43 88.59 88.03 88.48 89.26

OfficeHome

Art 82.47 82.61 ±0.15 86.76 ±0.26 82.35 ±0.19 84.43 ±0.20

Clipart 72.20 72.51 ±0.03 74.76 ±0.07 72.41 ±0.06 75.43 ±0.08
Product 90.94 90.97 ±0.02 92.42 ±0.07 90.94 ±0.06 91.88 ±0.05

Real World 92.72 92.75 ±0.02 92.95 ±0.16 92.63 ±0.03 94.06 ±0.02
Mean 84.58 84.71 86.72 84.58 86.45

PACS

Art 98.68 98.83 ±0.00 94.82 ±0.34 98.76 ±0.02 98.68 ±0.00

Cartoon 97.74 97.74 ±0.00 95.65 ±0.19 97.74 ±0.00 97.90 ±0.02
Photo 99.54 99.54 ±0.03 99.44 ±0.03 99.54 ±0.00 99.64 ±0.00
Sketch 93.28 93.51 ±0.04 92.72 ±0.15 93.26 ±0.02 93.80 ±0.02
Mean 97.31 97.41 95.66 97.33 97.51

VLCS

Caltech101 99.43 99.43 ±0.00 97.86 ±0.43 99.43 ±0.00 99.51 ±0.00
LabelMe 69.22 69.07 ±0.12 52.54 ±0.20 69.32 ±0.15 62.76 ±0.13

SUN09 68.06 68.23 ±0.03 69.49 ±0.32 67.89 ±0.07 72.21 ±0.15
VOC2007 83.99 84.08 ±0.15 76.16 ±0.63 83.89 ±0.13 83.02 ±0.12

Mean 80.18 80.20 74.01 80.13 79.38

Table 12: Accuracy (%) on different domains of VisDA-C, OfficeHome, PACS and VLCS datasets
with ViT-L/14 as visual encoder.

I Detailed Experimental Findings

This section provides extensive tables with detailed information on the results, which were summa-
rized in the main body of the paper.

Dataset single_temp text_avg

CIFAR-10 90.87 ±0.10 91.08 ±0.06

CIFAR-10.1 86.80 ±0.19 86.85 ±0.18

C
IF

A
R

-1
0-

C

Gaussian Noise 61.20 ±0.05 62.09 ±0.15
Shot noise 63.16 ±0.09 63.51 ±0.03
Impulse Noise 55.29 ±0.22 56.04 ±0.16
Defocus blur 78.03 ±0.12 78.66 ±0.07
Glass blur 62.7 ±0.24 63.35 ±0.25
Motion blur 76.33 ±0.11 76.96 ±0.14
Zoom blur 78.29 ±0.05 79.08 ±0.15
Snow 78.65 ±0.21 78.95 ±0.05
Frost 79.49 ±0.11 79.95 ±0.06
Fog 77.21 ±0.03 77.72 ±0.09
Brightness 86.60 ±0.07 86.98 ±0.06
Contrast 79.22 ±0.01 79.62 ±0.04
Elastic transform 71.17 ±0.25 71.61 ±0.09
Pixelate 67.59 ±0.08 68.70 ±0.15
JPEG compression 66.26 ±0.00 66.72 ±0.01

Mean 72.08 72.66

Table 13: Accuracy (%) on CIFAR-10, CIFAR-
10.1 and CIFAR-10-C datasets with different text
ensemble at test time. (WA after 10 iter)×1

Dataset single_temp text_avg

CIFAR-100 69.79 ±0.20 70.30 ±0.11

C
IF

A
R

-1
00

-C

Gaussian Noise 27.17 ±0.22 28.08 ±0.21
Shot noise 29.69 ±0.20 30.47 ±0.19
Impulse Noise 25.28 ±0.10 26.37 ±0.28
Defocus blur 49.83 ±0.11 50.52 ±0.04
Glass blur 27.83 ±0.03 28.25 ±0.06
Motion blur 47.77 ±0.21 47.89 ±0.21
Zoom blur 52.90 ±0.16 53.05 ±0.10
Snow 50.31 ±0.03 50.22 ±0.17
Frost 50.79 ±0.07 51.08 ±0.09
Fog 48.70 ±0.16 48.48 ±0.21
Brightness 61.22 ±0.06 61.56 ±0.16
Contrast 47.87 ±0.17 47.90 ±0.14
Elastic transform 37.55 ±0.13 37.93 ±0.19
Pixelate 33.81 ±0.06 34.56 ±0.14
JPEG compression 36.09 ±0.13 37.30 ±0.18

Mean 41.79 42.24

Table 14: Accuracy (%) on CIFAR-100 and
CIFAR-100-C datasets with different text en-
semble at test time. (WA after 10 iter)×1

18



Dataset Text avg. Output avg.
Weight avg. (ours)

(after 10 iter)×1 (after 1 iter)×10 (after 2 iter)×5

CIFAR-100 69.46 ±0.13 70.32 ±0.10 70.3 ±0.11 70.85 ±0.08 70.74 ±0.20
C

IF
A

R
-1

00
-C

Gaussian Noise 27.67 ±0.11 28.58 ±0.04 28.08 ±0.21 31.67 ±0.10 32.07 ±0.23
Shot noise 30.18 ±0.06 31.05 ±0.13 30.47 ±0.19 34.26 ±0.28 34.36 ±0.11
Impulse Noise 25.79 ±0.02 26.86 ±0.07 26.37 ±0.28 30.12 ±0.12 30.33 ±0.03
Defocus blur 49.51 ±0.04 51.04 ±0.02 50.52 ±0.04 52.76 ±0.25 52.99 ±0.16
Glass blur 27.88 ±0.22 28.72 ±0.08 28.25 ±0.06 31.95 ±0.08 32.15 ±0.30
Motion blur 46.68 ±0.05 48.30 ±0.19 47.89 ±0.21 50.46 ±0.10 50.53 ±0.12
Zoom blur 52.05 ±0.07 53.72 ±0.11 53.05 ±0.10 55.13 ±0.29 55.30 ±0.22
Snow 49.40 ±0.18 51.01 ±0.13 50.22 ±0.17 52.60 ±0.26 52.77 ±0.15
Frost 49.68 ±0.04 51.50 ±0.06 51.08 ±0.09 53.30 ±0.21 53.79 ±0.31
Fog 47.36 ±0.17 48.67 ±0.22 48.48 ±0.21 51.35 ±0.08 51.49 ±0.21
Brightness 60.42 ±0.12 61.74 ±0.31 61.56 ±0.16 63.23 ±0.12 63.57 ±0.21
Contrast 46.86 ±0.05 48.14 ±0.10 47.90 ±0.14 52.40 ±0.23 52.76 ±0.27
Elastic transform 37.00 ±0.37 38.55 ±0.23 37.93 ±0.19 40.97 ±0.11 40.90 ±0.43
Pixelate 33.65 ±0.12 34.63 ±0.17 34.56 ±0.14 40.32 ±0.08 40.97 ±0.16
JPEG compression 36.38 ±0.11 37.67 ±0.23 37.30 ±0.18 39.35 ±0.19 39.59 ±0.08

Mean 41.37 42.68 42.24 45.32 45.57

Table 15: Accuracy (%) on CIFAR-100 and CIFAR-100-C datasets with different averaging

Dataset Text avg. Output avg.
Weight avg. (ours)

(after 10 iter)×1 (after 1 iter)×10 (after 2 iter)×5

CIFAR-10 90.58 ±0.03 90.90 ±0.03 91.08 ±0.06 91.39 ±0.14 91.05 ±0.06

CIFAR-10.1 85.78 ±0.25 86.77 ±0.08 86.85 ±0.18 88.02 ±0.18 86.98 ±0.31

C
IF

A
R

-1
0-

C

Gaussian Noise 61.23 ±0.13 62.22 ±0.12 62.09 ±0.15 63.42 ±0.07 63.84 ±0.24
Shot noise 62.88 ±0.15 63.98 ±0.17 63.51 ±0.03 64.93 ±0.13 65.28 ±0.21
Impulse Noise 54.71 ±0.07 56.41 ±0.11 56.04 ±0.16 58.37 ±0.37 58.64 ±0.11
Defocus blur 77.93 ±0.12 78.63 ±0.18 78.66 ±0.07 79.11 ±0.17 78.94 ±0.12

Glass blur 62.37 ±0.18 63.32 ±0.07 63.35 ±0.25 64.67 ±0.18 65.12 ±0.07
Motion blur 75.55 ±0.19 76.97 ±0.05 76.96 ±0.14 77.56 ±0.12 77.81 ±0.14
Zoom blur 77.86 ±0.06 78.90 ±0.18 79.08 ±0.15 79.76 ±0.03 79.32 ±0.07

Snow 77.77 ±0.03 78.92 ±0.03 78.95 ±0.05 79.89 ±0.26 79.79 ±0.06

Frost 78.51 ±0.09 79.67 ±0.09 79.95 ±0.06 80.52 ±0.04 80.54 ±0.12
Fog 76.04 ±0.17 77.54 ±0.10 77.72 ±0.09 78.44 ±0.21 78.53 ±0.22
Brightness 86.08 ±0.13 86.75 ±0.04 86.98 ±0.06 87.32 ±0.14 87.11 ±0.11

Contrast 77.87 ±0.02 79.48 ±0.07 79.62 ±0.04 80.77 ±0.35 81.20 ±0.22
Elastic transform 69.98 ±0.16 71.20 ±0.22 71.61 ±0.09 72.52 ±0.19 72.66 ±0.15
Pixelate 66.78 ±0.29 68.27 ±0.17 68.70 ±0.15 70.50 ±0.20 71.11 ±0.13
JPEG compression 65.62 ±0.28 66.78 ±0.08 66.72 ±0.01 67.05 ±0.10 67.36 ±0.28

Mean 71.41 72.60 72.66 73.66 73.82

Table 16: Accuracy (%) on CIFAR-10, CIFAR-10.1 and CIFAR-10-C datasets with different averaging

19



Dataset CLIP BS = 1 BS = 2 BS = 4 BS = 8 BS = 16 BS = 32 BS = 64 BS = 128

CIFAR-10 88.74 89.87 89.39 ±0.02 89.16 ±0.07 88.93 ±0.16 89.14 ±0.04 89.51 ±0.12 90.16 ±0.13 91.05 ±0.06

CIFAR-10.1 83.25 84.55 84.32 ±0.15 83.88 ±0.17 84.12 ±0.37 84.35 ±0.21 84.87 ±0.16 85.52 ±0.30 86.98 ±0.31

C
IF

A
R

-1
0-

C
Gaussian Noise 35.27 38.55 43.85 ±0.26 45.41 ±0.10 47.95 ±0.15 51.79 ±0.27 56.35 ±0.11 60.87 ±0.33 63.84 ±0.24
Shot noise 39.67 42.57 46.87 ±0.25 47.95 ±0.15 49.13 ±0.14 52.57 ±0.03 56.96 ±0.10 61.84 ±0.06 65.28 ±0.21
Impulse Noise 42.61 42.92 47.94 ±0.29 48.20 ±0.18 48.69 ±0.11 50.53 ±0.18 53.32 ±0.19 55.81 ±0.11 58.64 ±0.11
Defocus blur 69.76 72.29 72.80 ±0.13 72.95 ±0.13 72.57 ±0.20 73.71 ±0.18 75.28 ±0.18 77.37 ±0.08 78.94 ±0.12
Glass blur 42.40 44.15 48.15 ±0.15 47.69 ±0.07 48.96 ±0.04 52.59 ±0.19 57.83 ±0.24 62.16 ±0.20 65.12 ±0.07
Motion blur 63.97 66.37 67.53 ±0.07 67.22 ±0.01 68.00 ±0.12 69.20 ±0.11 71.60 ±0.06 74.75 ±0.09 77.81 ±0.14
Zoom blur 69.83 71.50 72.60 ±0.14 72.30 ±0.04 72.39 ±0.01 73.19 ±0.06 75.01 ±0.09 77.03 ±0.27 79.32 ±0.07
Snow 71.78 73.72 74.46 ±0.16 73.97 ±0.19 74.12 ±0.05 74.62 ±0.22 76.06 ±0.06 77.64 ±0.06 79.79 ±0.06
Frost 72.86 75.67 76.50 ±0.23 75.98 ±0.11 75.55 ±0.16 76.32 ±0.13 77.67 ±0.03 78.82 ±0.20 80.54 ±0.12
Fog 67.04 68.88 70.25 ±0.02 69.94 ±0.06 69.88 ±0.09 71.02 ±0.15 73.10 ±0.02 75.95 ±0.04 78.53 ±0.22
Brightness 81.87 83.52 83.73 ±0.10 83.38 ±0.03 83.31 ±0.05 83.51 ±0.11 84.49 ±0.13 85.40 ±0.07 87.11 ±0.11
Contrast 64.37 67.02 69.67 ±0.13 68.64 ±0.14 69.08 ±0.06 71.11 ±0.17 74.58 ±0.14 78.25 ±0.22 81.20 ±0.22
Elastic transf. 60.83 62.04 64.25 ±0.13 63.50 ±0.40 63.46 ±0.10 64.65 ±0.28 66.63 ±0.21 69.58 ±0.18 72.66 ±0.15
Pixelate 50.53 51.65 55.18 ±0.26 55.47 ±0.14 56.30 ±0.29 58.88 ±0.21 63.00 ±0.08 67.43 ±0.11 71.11 ±0.13
JPEG compr. 55.48 58.12 60.17 ±0.04 59.44 ±0.18 59.74 ±0.04 61.20 ±0.09 63.15 ±0.15 65.32 ±0.16 67.36 ±0.28

Mean 59.22 61.26 63.60 63.47 63.94 65.66 68.34 71.21 73.82

Table 17: Accuracy (%) on CIFAR-10, CIFAR-10.1 and CIFAR-10-C datasets with ViT-B/16 as
visual encoder for different number of batches.

Dataset T=1 T=2 T=4 T=6 T=8

CIFAR-10 89.42 ±0.84 90.74 ±0.30 90.98 ±0.14 91.34 ±0.16 91.05 ±0.06

CIFAR-10.1 85.08 ±0.59 86.49 ±0.59 87.20 ±0.48 87.53 ±0.21 86.98 ±0.31

C
IF

A
R

-1
0-

C

Gaussian Noise 59.82 ±1.43 62.05 ±0.62 62.79 ±0.18 63.49 ±0.27 63.84 ±0.24

Shot noise 62.32 ±1.32 63.35 ±0.43 64.73 ±0.31 65.02 ±0.10 65.28 ±0.21

Impulse Noise 54.07 ±0.17 56.83 ±0.33 57.53 ±0.47 58.37 ±0.08 58.64 ±0.11

Defocus blur 77.09 ±0.24 78.32 ±0.32 78.92 ±0.16 79.17 ±0.26 78.94 ±0.12

Glass blur 60.64 ±0.29 63.77 ±0.43 64.42 ±0.68 64.64 ±0.39 65.12 ±0.07

Motion blur 74.60 ±0.50 77.02 ±0.32 77.70 ±0.26 77.73 ±0.12 77.81 ±0.14

Zoom blur 77.40 ±0.29 78.93 ±0.46 79.28 ±0.54 79.33 ±0.24 79.32 ±0.07

Snow 76.96 ±1.04 78.83 ±0.31 79.47 ±0.29 79.69 ±0.33 79.79 ±0.06

Frost 77.62 ±0.86 79.27 ±0.45 80.04 ±0.26 80.46 ±0.17 80.54 ±0.12

Fog 75.32 ±0.57 77.27 ±0.39 78.00 ±0.17 78.55 ±0.29 78.53 ±0.22

Brightness 85.13 ±0.58 86.74 ±0.22 87.07 ±0.20 87.13 ±0.21 87.11 ±0.11

Contrast 77.18 ±0.68 79.74 ±0.31 80.32 ±0.07 80.69 ±0.12 81.20 ±0.22

Elastic transform 69.39 ±0.39 71.40 ±0.24 72.25 ±0.14 72.28 ±0.34 72.66 ±0.15

Pixelate 66.26 ±0.76 68.86 ±0.68 69.47 ±0.39 71.00 ±0.57 71.11 ±0.13

JPEG compression 64.58 ±0.58 66.28 ±0.14 66.82 ±0.24 67.16 ±0.18 67.36 ±0.28

Mean 70.56 72.58 73.25 73.65 73.82

Table 18: Accuracy (%) on CIFAR-10, CIFAR-10.1 and CIFAR-10-C datasets with ViT-B/16 as
visual encoder for different number of templates randomly picked over 5 runs.

20



Dataset CLIP TENT TPT (BS=32) CLIPArTT WATT-P WATT-S

CIFAR-10 88.74 91.69 ±0.10 88.06 ±0.06 90.04 ±0.13 91.41 ±0.17 91.05 ±0.06

CIFAR-10.1 83.25 87.60 ±0.45 81.80 ±0.27 86.35 ±0.27 87.78 ±0.05 86.98 ±0.31
C

IF
A

R
-1

0-
C

Gaussian Noise 35.27 41.27 ±0.27 33.90 ±0.08 59.90 ±0.36 61.89 ±0.24 63.84 ±0.24
Shot noise 39.67 47.20 ±0.23 38.20 ±0.02 62.77 ±0.07 63.52 ±0.08 65.28 ±0.21
Impulse Noise 42.61 48.58 ±0.31 37.66 ±0.20 56.02 ±0.16 57.13 ±0.02 58.64 ±0.11
Defocus blur 69.76 77.12 ±0.16 67.83 ±0.28 76.74 ±0.05 78.86 ±0.09 78.94 ±0.12
Glass blur 42.40 52.65 ±0.30 38.81 ±0.12 61.77 ±0.16 62.88 ±0.06 65.12 ±0.07
Motion blur 63.97 71.25 ±0.09 63.39 ±0.13 76.01 ±0.19 76.85 ±0.26 77.81 ±0.14
Zoom blur 69.83 76.20 ±0.19 68.95 ±0.16 77.40 ±0.20 79.35 ±0.04 79.32 ±0.07

Snow 71.78 78.29 ±0.20 70.16 ±0.10 77.29 ±0.16 79.44 ±0.09 79.79 ±0.06
Frost 72.86 79.84 ±0.09 72.39 ±0.22 79.20 ±0.08 80.13 ±0.10 80.54 ±0.12
Fog 67.04 77.39 ±0.01 64.31 ±0.28 75.74 ±0.14 77.68 ±0.07 78.53 ±0.22
Brightness 81.87 87.78 ±0.03 81.30 ±0.18 86.59 ±0.16 87.10 ±0.10 87.11 ±0.11

Contrast 64.37 79.47 ±0.11 62.26 ±0.31 77.82 ±0.14 80.04 ±0.24 81.20 ±0.22
Elastic transform 60.83 70.00 ±0.25 56.43 ±0.27 70.20 ±0.01 71.76 ±0.10 72.66 ±0.15
Pixelate 50.53 63.74 ±0.18 42.80 ±0.40 66.52 ±0.13 69.28 ±0.09 71.11 ±0.13
JPEG compression 55.48 62.64 ±0.14 53.67 ±0.25 63.51 ±0.14 66.49 ±0.14 67.36 ±0.28

Mean 59.22 67.56 56.80 71.17 72.83 73.82

Table 19: Accuracy (%) on CIFAR-10, CIFAR-10.1 and CIFAR-10-C datasets with ViT-B/32 as
visual encoder.

Dataset CLIP TENT TPT (BS=32) CLIPArTT WATT-P WATT-S

CIFAR-10 89.25 92.75 ±0.17 89.80 ±0.05 92.61 ±0.05 92.31 ±0.10 91.97 ±0.03

CIFAR-10.1 84.00 88.52 ±0.33 83.75 ±0.21 88.72 ±0.33 87.9 ±0.11 88.10 ±0.08

C
IF

A
R

-1
0-

C

Gaussian Noise 37.75 31.04 ±0.38 35.35 ±0.15 60.89 ±0.26 63.10 ±0.12 65.57 ±0.22

Shot noise 41.10 40.54 ±0.41 41.03 ±0.19 65.19 ±0.21 66.31 ±0.10 68.67 ±0.37

Impulse Noise 51.71 58.03 ±0.16 54.86 ±0.07 67.55 ±0.09 69.62 ±0.12 70.39 ±0.11

Defocus blur 70.07 77.57 ±0.03 70.29 ±0.02 78.92 ±0.12 79.64 ±0.08 79.90 ±0.07

Glass blur 42.24 47.16 ±0.05 37.86 ±0.17 57.18 ±0.20 58.98 ±0.12 61.62 ±0.21

Motion blur 65.81 76.16 ±0.05 67.43 ±0.11 76.59 ±0.06 78.32 ±0.16 79.02 ±0.07

Zoom blur 72.50 79.64 ±0.12 72.91 ±0.02 79.62 ±0.11 80.67 ±0.07 81.10 ±0.08

Snow 73.23 81.68 ±0.03 72.98 ±0.32 81.13 ±0.29 81.99 ±0.10 82.54 ±0.18

Frost 76.52 83.22 ±0.05 75.87 ±0.16 81.24 ±0.08 83.41 ±0.16 83.46 ±0.15

Fog 68.35 80.78 ±0.15 69.13 ±0.27 78.47 ±0.19 81.36 ±0.12 81.88 ±0.12

Brightness 83.36 89.85 ±0.11 83.67 ±0.14 88.66 ±0.15 89.06 ±0.05 89.10 ±0.14

Contrast 61.90 79.24 ±0.19 62.16 ±0.06 75.15 ±0.07 81.57 ±0.23 83.79 ±0.12

Elastic transform 53.16 62.54 ±0.08 51.26 ±0.23 69.49 ±0.08 69.14 ±0.09 70.93 ±0.20

Pixelate 48.48 67.08 ±0.24 44.65 ±0.21 71.80 ±0.16 73.38 ±0.29 75.67 ±0.32

JPEG compression 56.05 65.42 ±0.05 56.73 ±0.07 66.42 ±0.25 69.02 ±0.10 69.65 ±0.23

Mean 60.15 68.00 59.75 73.22 75.04 76.22

Table 20: Accuracy (%) on CIFAR-10, CIFAR-10.1 and CIFAR-10-C datasets with ViT-B/16 as
visual encoder.

21



Dataset CLIP TENT TPT (BS=32) CLIPArTT WATT-P WATT-S

CIFAR-100 64.76 71.73 ±0.14 67.15 ±0.23 71.34 ±0.07 72.98 ±0.07 72.85 ±0.15

C
IF

A
R

-1
00

-C
Gaussian Noise 15.88 12.28 ±0.20 15.43 ±0.03 19.01 ±0.24 34.23 ±0.03 35.95 ±0.27

Shot noise 17.49 15.07 ±0.21 16.88 ±0.07 20.27 ±0.21 36.68 ±0.1 37.96 ±0.15

Impulse Noise 21.43 13.13 ±0.16 22.12 ±0.15 17.66 ±0.10 43.17 ±0.35 44.62 ±0.2

Defocus blur 40.10 50.35 ±0.03 41.08 ±0.22 49.86 ±0.13 53.13 ±0.12 53.80 ±0.12

Glass blur 13.48 4.84 ±0.14 18.43 ±0.15 18.34 ±0.31 32.53 ±0.03 33.39 ±0.11

Motion blur 39.82 49.85 ±0.37 40.85 ±0.26 50.00 ±0.09 51.63 ±0.06 52.72 ±0.30

Zoom blur 45.45 54.76 ±0.04 46.77 ±0.06 54.13 ±0.08 56.81 ±0.11 57.51 ±0.09

Snow 42.77 52.38 ±0.18 47.24 ±0.18 52.80 ±0.27 56.04 ±0.06 56.73 ±0.27

Frost 45.39 51.66 ±0.04 48.61 ±0.14 49.56 ±0.08 56.00 ±0.11 56.48 ±0.34

Fog 38.98 50.74 ±0.14 39.92 ±0.16 49.92 ±0.11 52.88 ±0.33 53.83 ±0.19

Brightness 52.55 64.26 ±0.09 55.83 ±0.10 63.76 ±0.13 65.58 ±0.07 66.67 ±0.19

Contrast 33.32 48.69 ±0.08 33.13 ±0.16 47.86 ±0.02 52.90 ±0.06 55.06 ±0.15

Elastic transform 24.39 33.56 ±0.28 27.36 ±0.10 32.93 ±0.23 39.82 ±0.21 40.37 ±0.26

Pixelate 21.89 36.20 ±0.28 21.26 ±0.10 39.49 ±0.21 45.10 ±0.06 47.02 ±0.04

JPEG compression 27.21 30.80 ±0.05 30.97 ±0.10 35.56 ±0.23 41.43 ±0.18 42.13 ±0.21

Mean 32.01 37.90 33.73 40.08 47.86 48.95

Table 21: Accuracy (%) on CIFAR-100 and CIFAR-100-C datasets with ViT-B/16 as visual encoder.

Dataset CLIP TENT TPT (BS=32) CLIPArTT WATT-P WATT-S

CIFAR-10 95.36 96.13 ±0.06 95.18 ±0.02 95.16 ±0.03 95.91 ±0.10 95.71 ±0.03

CIFAR-10.1 91.20 92.22 ±0.25 91.32 ±0.12 91.02 ±0.02 92.97 ±0.13 92.10 ±0.33

C
IF

A
R

-1
0-

C

Gaussian Noise 64.64 68.87 ±0.20 64.44 ±0.11 70.04 ±0.31 72.81 ±0.09 72.73 ±0.03

Shot noise 67.82 71.95 ±0.06 66.81 ±0.19 71.44 ±0.16 74.45 ±0.16 74.60 ±0.03

Impulse Noise 78.21 80.22 ±0.19 76.46 ±0.17 79.42 ±0.15 81.36 ±0.09 80.95 ±0.15

Defocus blur 80.73 83.10 ±0.03 79.01 ±0.23 81.75 ±0.19 83.20 ±0.10 83.15 ±0.18

Glass blur 50.29 57.12 ±0.07 49.64 ±0.23 58.13 ±0.23 61.51 ±0.07 62.35 ±0.15

Motion blur 80.75 82.69 ±0.11 78.85 ±0.04 80.76 ±0.12 82.60 ±0.13 82.61 ±0.12

Zoom blur 82.75 84.91 ±0.08 82.32 ±0.13 83.39 ±0.05 85.76 ±0.06 85.44 ±0.13

Snow 83.01 85.99 ±0.11 82.69 ±0.10 84.48 ±0.07 84.91 ±0.13 85.61 ±0.15

Frost 84.90 87.15 ±0.12 84.63 ±0.08 85.21 ±0.06 87.17 ±0.13 86.88 ±0.04

Fog 78.44 81.30 ±0.07 77.56 ±0.17 79.27 ±0.07 81.80 ±0.11 81.79 ±0.09

Brightness 91.67 93.07 ±0.04 90.94 ±0.04 91.87 ±0.09 92.78 ±0.05 92.59 ±0.16

Contrast 84.20 87.93 ±0.04 82.88 ±0.09 86.19 ±0.06 87.54 ±0.12 87.38 ±0.02

Elastic transform 65.45 69.96 ±0.12 64.81 ±0.14 67.43 ±0.24 71.19 ±0.07 71.25 ±0.09

Pixelate 75.10 77.89 ±0.05 72.92 ±0.12 77.11 ±0.10 77.88 ±0.13 77.67 ±0.16

JPEG compression 72.58 75.49 ±0.07 71.18 ±0.19 74.46 ±0.11 75.88 ±0.16 75.84 ±0.18

Mean 76.04 79.18 75.01 78.06 80.05 80.06

Table 22: Accuracy (%) on CIFAR-10, CIFAR-10.1 and CIFAR-10-C datasets with ViT-L/14 as
visual encoder.

22



Dataset CLIP TENT TPT,(BS=32) CLIPArTT WATT-P WATT-S

CIFAR-100 73.28 78.03 ±0.08 76.85 ±0.06 79.42 ±0.08 79.33 ±0.05 78.85 ±0.19

C
IF

A
R

-1
00

-C
Gaussian Noise 30.55 36.93 ±0.03 36.10 ±0.11 41.46 ±0.15 43.99 ±0.13 44.13 ±0.11

Shot noise 34.58 40.96 ±0.16 38.23 ±0.13 44.27 ±0.09 46.28 ±0.22 46.63 ±0.17

Impulse Noise 44.89 49.09 ±0.14 49.69 ±0.21 51.44 ±0.23 56.15 ±0.04 56.26 ±0.22

Defocus blur 48.88 55.23 ±0.07 50.43 ±0.19 56.55 ±0.22 57.46 ±0.01 57.66 ±0.42

Glass blur 23.46 27.02 ±0.23 24.35 ±0.22 30.47 ±0.14 32.54 ±0.12 33.54 ±0.16

Motion blur 50.83 56.03 ±0.20 51.94 ±0.04 56.98 ±0.18 58.22 ±0.10 57.81 ±0.05

Zoom blur 56.02 61.19 ±0.10 56.96 ±0.16 62.56 ±0.04 62.94 ±0.02 62.74 ±0.06

Snow 49.03 55.60 ±0.09 54.89 ±0.11 58.81 ±0.11 60.68 ±0.06 61.04 ±0.27

Frost 53.27 58.21 ±0.15 58.15 ±0.33 60.38 ±0.23 62.34 ±0.14 62.76 ±0.22

Fog 48.51 53.37 ±0.25 49.26 ±0.13 54.38 ±0.04 54.71 ±0.31 54.70 ±0.13

Brightness 60.53 67.34 ±0.17 66.60 ±0.10 69.63 ±0.14 71.52 ±0.07 71.60 ±0.09

Contrast 50.24 59.91 ±0.13 53.64 ±0.24 63.39 ±0.13 62.77 ±0.22 63.95 ±0.04

Elastic transform 35.07 38.49 ±0.12 35.72 ±0.09 39.57 ±0.39 41.28 ±0.25 41.27 ±0.15

Pixelate 43.86 48.37 ±0.17 44.32 ±0.10 50.45 ±0.16 51.15 ±0.15 51.22 ±0.13

JPEG compression 39.11 44.42 ±0.09 43.44 ±0.11 47.45 ±0.14 49.40 ±0.17 49.78 ±0.18

Mean 44.59 50.14 47.58 52.52 54.10 54.34

Table 23: Accuracy (%) on CIFAR-100 and CIFAR-100-C datasets with ViT-L/14 as visual encoder.

23



NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: In the abstract, we claim that we introduce a new method using Weight
Averaging for Test-Time Adaptation. In the paper, we present this method and prove its
performance compared to state-of-art.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The work has been tested on many datasets with several runs. We also point
out that with a small number of classes, it seems less effective compared to when there are
many classes. Additionally, we show that it is not always the best when there is no domain
shift.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs

24



Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: All our assumptions are writing in the Introduction and the Methodology,
everything is explained with some illustrations.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: In the section Experimental Setup, we present all our different settings which
are based on the CLIPArTT method. We also provide our code.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

25



5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Everything is detailed in the github link in the Implentation section in the
supplementary material..

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Everything is detailed in the section Experimental Setup.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: All experiments have been conducted at least three times to ensure statistical
robustness.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

26

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Everything is detailed in the section Implementation of the supplementary
material.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have considered all potential harms caused by the research process, societal
impacts, and potential harmful consequences, as described in the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: Our paper addresses a research field that is not currently utilized for direct
practical applications, thereby limiting its immediate social impact.

Guidelines:

27

https://neurips.cc/public/EthicsGuidelines


• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: In our paper, we cite all sources that inspired our work, and we provide links
in our git repository to the codes from which we drew inspiration.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.

28



• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We document all aspects of our research and provide a link to our implementa-
tion, along with step-by-step explanations for reproducing the results.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

29

paperswithcode.com/datasets


• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

30


	Introduction
	Related work
	Method
	Transductive TTA loss
	Multi-Template Weight Averaging
	Evaluation Phase

	Experimental Setup
	Results
	Ablation Studies
	Comparison to SOTA methods

	Conclusion
	Implementation
	Template details
	Dataset details
	Computational Cost
	Pseudo-code of our both methods
	Additional Ablation Studies
	Experiments with another VLM
	Experiments on other Visual Encoders
	Detailed Experimental Findings

