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Abstract—In low-dose microscopy, noisy phaseless measure-
ments can be modeled as Poisson or Bernoulli random variables.
In this paper, we propose a spectral method for this phase
retrieval setup and derive reconstruction guarantees for both
noise models with Gaussian measurements. Furthermore, we
study how the reconstruction error depends on the radiation
dose used for the measurements and on the oversampling ratio.

Index Terms—phase retrieval, spectral method, low-dose
imaging, Poisson noise, quantized measurements

I. INTRODUCTION

In X-ray and electron microscopy, the goal is to image
small-scale biological objects and study their structure and
properties. In such experiments, the object is illuminated with
a focused radiation beam and a (pixelated) detector placed be-
hind the object counts the arriving radiation particles scattered
from the object. The observed diffraction measurements can
be understood as the intensities of the incoming radiation,
comprising the information on the measured object.

More formally, we aim to recover the object of interest
x ∈ Rn from its phaseless measurements of the form

yj ≈ |⟨aj , x⟩|2, j ∈ [m],

with measurement vectors aj ∈ Rn. This quadratic inverse
problem is commonly known as the phase retrieval problem.

In many imaging experiments, the objects, such as proteins
or various cell materials, may be highly sensitive to the
received dose (see, e.g., [6]). In these cases, the measurements
are performed in a low-dose regime and each detector pixel
essentially measures the received illumination particle count.
Due to the discrete nature of this process, the measurements
at the detector pixels can be modeled as realizations of
independent Poisson random variables

Y P
j ∼ Poisson

(
|⟨aj , x⟩|2

)
. (P)

Note that, for notational simplicity, we work with a fixed
normalization of the measurement vectors, so the dose is
incorporated in x and corresponds to ∥x∥22.
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A widely used approach to the phase retrieval problem
with Poisson noise is based on likelihood maximization.
Common strategies to solve the resulting non-convex op-
timization problem include ADMM [2] or Wirtinger flow
algorithms [3]. While these and similar methods yield a high
signal-to-noise ratio in the case when the values |⟨aj , x⟩|2
are large, their performance is limited for extremely low
doses [4], [8], [9], [12]. In this setting, the values |⟨aj , x⟩|2
are very small and the Poisson distributions of Y P

j can be
well approximated by a Bernoulli distribution. That is, one
can model the measurements yj as realizations of Bernoulli
random variables

Y B
j ∼ Bernoulli

(
1− exp(−|⟨aj , x⟩|2)

)
. (B)

The measurement model (B) is further motivated by 4D-
scanning transmission electron microscopy (4D-STEM), in
which acquisition is performed with event-driven detectors
that have capacity to record only the first particle arrival [7].

In this paper, we propose and analyze a new approach
for solving phase retrieval for both Poisson and Bernoulli
measurement models and study how the high-count informa-
tion lost in the Bernoulli model influences the reconstruction
accuracy across various dose values.

II. PROBLEM FORMULATION

The Bernoulli measurements can be interpreted as noisy
one-bit representations of the squared phaseless measure-
ments. Consequently, the theory for one-bit compressed sens-
ing can serve as an inspiration for reconstruction algorithms.
We follow the idea of [13] to seek a vector z ∈ Rn whose
noiseless measurements |⟨aj , z⟩|2 maximize the correlation
with the noisy measurements yj .

In analogy, for both measurement models (P) and (B),
we aim to obtain a good approximation for the ground-truth
object x by solving the constrained optimization problem

maximize fx(z) (1)

subject to ∥z∥22 = α,

with the objective function fx : Rn → R given by

fx(z) =
1

m

m∑
j=1

yj |⟨aj , z⟩|2.



The constraint ∥z∥22 = α here specifies the dose α, which is a
part of the experimental setup and is thus known in advance.

Since

1

m

m∑
j=1

yj |⟨aj , z⟩|2 = zT

 1

m

m∑
j=1

yjaja
T
j

 z,

the solution to (1) is the leading eigenvector of the matrix

Y ..=
1

m

m∑
j=1

yjaja
T
j , (2)

scaled according to the norm constraint.
Interestingly, computing the leading eigenvector of this

matrix Y is exactly the spectral method proposed in [1].
The spectral method is motivated by the observation proved
in [1] that for Gaussian random measurement vectors
aj

i.i.d.∼ N (0, In) and the corresponding noise-free phaseless
measurements yj = |⟨aj , x⟩|2, the random matrix Y concen-
trates around its expectation 2xxT+∥x∥22 · In, whose leading
eigendirection is exactly parallel to the underlying signal x.

While we arrive at the same strategy through a different
motivation, the resulting algorithm is the same. Consequently,
the theoretical analysis can be approached analogously to [1],
and the main challenge is to incorporate the effect of the
Poisson (P) and the Bernoulli distribution (B), respectively.

For the high-dose scenario, recovery guarantees have been
derived in [3] for a truncated version of the spectral method;
see [10], [11] for an asymptotic analysis of such a truncated
spectral method in the case of more general noise models that
also include the Poisson model as a special case.

More precisely, a truncation T (y) = y1y≤t is applied to
the observations, so that Y is replaced by

1

m

m∑
j=1

T (yj)aja
T
j .

For an appropriate truncation, the resulting method is shown
to recover the ground-truth with a sample complexity of
m = O(n). However, the results do not extend to the low-
dose setting, but only apply for ∥x∥2 ≥ log1.5(m). In this
paper, we show that we can go beyond this limiting minimal
dose condition with a sampling complexity only increased by
logarithmic factors.

III. RECOVERY GUARANTEES

In this section, we adopt the following notation and as-
sumptions. Let x ∈ Rn be the measured object renormalized
by the radiation dose parameter α ..= ∥x∥22 and assume that
the measurement vectors aj , j ∈ [m], are drawn indepen-
dently from the standard normal distribution N (0, In). For the
phaseless measurements {yj}mj=1 drawn from the Poisson (P)
or Bernoulli (B) observation models, we define the matrix Y
as in (2). We denote by x0 the eigenvector corresponding to
the largest eigenvalue of Y , normalized so that ∥x0∥22 = α.

A. Poisson measurements

We start by evaluating how well x0 approximates the
ground-truth object x in the case of the Poisson measurement
model. For this purpose, we define the phaseless distance
between two vectors u, v ∈ Rn as

dist(u, v) = min
γ∈{−1,1}

∥u− γv∥2.

To derive the recovery guarantees, we need the following
technical lemma describing the properties of the matrix Y
in the Poisson case. The proof of this lemma can be found
in [5].

Lemma 1. If yj , j ∈ [m], are distributed according to the
Poisson model (P), then

E [Y ] = 2xxT + ∥x∥22 · In.

Furthermore, for every δ > 0, there exist constants C, Ĉ, c >
0 depending only on δ, such that, if m ≥ n ≥ c, with
probability at least 1− δ, it holds that

∥Y − E [Y ]∥ ≤ C
(
∥x∥22 + Ĉ

)√
log(n) log(m)

√
n

m
.

Using this deviation bound, we can prove the following
recovery guarantee for phaseless Poisson measurements.

Theorem 2. If yj , j ∈ [m], are distributed according to the
Poisson model (P), then, for every δ > 0, there exist constants
C, Ĉ, c > 0 depending only on δ, such that, if m ≥ n ≥ c,
with probability at least 1− δ, the vector x0 satisfies

dist(x0, x)
2

∥x∥22
≤ 2C

(
1 +

Ĉ

∥x∥22

)√
log(n) log(m)

√
n

m
.

Proof. We aim to bound the phaseless distance

dist(x0, x)
2 = min

γ∈{−1,1}
∥x0 − γx∥22

= min
γ∈{−1,1}

(
∥x0∥22 − 2γ ⟨x0, x⟩+ ∥x∥22

)
= ∥x0∥22 − 2 |⟨x0, x⟩|+ ∥x∥22

= 2α− 2 |⟨x0, x⟩| .

Thus, we need to establish a lower bound for |⟨x0, x⟩|. We
proceed similarly to [1], using that x0 is the eigenvector
corresponding to the largest eigenvalue λ0 of Y normalized
so that ∥x0∥22 = α. We use that∣∣∣αλ0 − 2 |⟨x, x0⟩|2 − α ∥x0∥22

∣∣∣
=
∣∣∣xT

0 Y x0 − xT
0

(
2xxT + ∥x∥22 · In

)
x0

∣∣∣
=
∣∣xT

0 (Y − E [Y ])x0

∣∣
≤ ∥x0∥22 ∥Y − E [Y ]∥ .



Setting δ ..= ∥Y − E [Y ]∥, the inequality above yields

|⟨x0, x⟩|2 ≥ 1

2

(
αλ0 − α2 − αδ

)
.

Further, the largest eigenvalue λ0 of Y satisfies

λ0 ≥ 1

∥x∥22
xTY x

=
1

∥x∥22
xT (Y − E [Y ] + E [Y ])x

≥ −δ +
1

∥x∥22
xTE [Y ]x

= −δ + 3α,

so that

|⟨x0, x⟩|2 ≥ 1

2

(
2α2 − 2αδ

)
,

and we conclude

dist(x0, x)
2

α
≤ 2− 2

√
1− 1

α
· δ ≤ 2

δ

α

if δ ≤ α. If δ > α, the same upper bound holds for the relative
reconstruction error since |⟨x0, x⟩|2 ≥ 0. Using Lemma 1 to
estimate δ yields the result.

Remark 3. From the bound in Theorem 2, we conclude that

m

log(m)2
= O

(
n log(n) ·

(
1 +

1

α

)2
)

measurements are required to recover the ground-truth object
up to a small constant relative error from Poisson phaseless
measurements by solving (1).

B. Bernoulli measurements

We now switch to the study of the case when the phaseless
measurements yj are truncated to {0, 1} values and distributed
according to the Bernoulli model (B). Similarly to the Poisson
case, we start with a technical lemma, the proof of which can
be found in [5].

Lemma 4. If yj , j ∈ [m], are distributed according to the
Bernoulli model (B), it holds that

E [Y ] =
2

(2∥x∥22 + 1)
3
2

· xxT +

(
1− 1

(2∥x∥22 + 1)
1
2

)
· In.

Furthermore, for every δ > 0, there exist constants C, c > 0
depending only on δ, such that, if m ≥ n ≥ c, with probability
at least 1− δ, it holds that

∥Y − E [Y ]∥ ≤ C
√

log(n)

√
n

m
.

Using this deviation bound, we prove the following recov-
ery guarantee for phaseless Bernoulli measurements.

Theorem 5. If yj , j ∈ [m], are distributed according to
the Bernoulli model (B), then, for every δ > 0, there exist

constants C, c > 0 depending only on δ, such that, if m ≥
n ≥ c, with probability at least 1− δ, the vector x0 satisfies

dist(x0, x)
2

∥x∥22
≤ 2C ·

(
2∥x∥22 + 1

) 3
2

∥x∥22

√
log(n)

√
n

m
.

Proof. With calculations analogous to the proof of Theo-
rem 2, we obtain that |⟨x0, x⟩|2 is bounded from below by

(2α+ 1)
3
2

2

(
αλ0 −

(
1− 1

(2α+ 1)
1
2

)
∥x0∥22 − αδ

)
and

λ0 ≥ −δ + α · 2

(2α+ 1)
3
2

+

(
1− 1

(2α+ 1)
1
2

)
,

so that

|⟨x0, x⟩|2 ≥ (2α+ 1)
3
2

2

(
α2 · 2

(2α+ 1)
3
2

− 2αδ

)

= α2 − α (2α+ 1)
3
2 δ.

Thus, we obtain

dist(x0, x)
2

α
≤ 2− 2

√
1− (2α+ 1)

3
2

α
· δ ≤ 2δ

(2α+ 1)
3
2

α

if δ ≤ α (2α+ 1)
− 3

2 . If δ > α (2α+ 1)
− 3

2 , the same upper
bound holds due to |⟨x0, x⟩|2 ≥ 0. Applying Lemma 4
completes the proof.

Remark 6. From Theorem 5, we conclude that

m = O

(
n log(n) · (2α+ 1)

3

α2

)
measurements are required to recover the ground-truth object
up to a small constant relative error from Bernoulli phaseless
measurements by solving (1).

We note that the factor (2α+1)3

α2 is minimal for α = 1
and its contribution can be interpreted as follows. For very
small as well as for rather large values of α, we need a lot
of oversampling. In the former case, this is due to the small
amount of information captured by the measurements. This
phenomenon is naturally the same for Poisson observations.
In the latter case, this is due to a loss of information because
of the truncation in the Bernoulli model.

IV. NUMERICAL EXPERIMENTS

To illustrate the findings of Section III, we numerically
compute the relative reconstruction error

min
{
∥x− x̂∥22 , ∥x+ x̂∥22

}
∥x∥22

(3)

for obtained reconstructions x̂ ∈ Rn across various values of
the oversampling ratio m

n and the dose scale α = ∥x∥22. For
our numerical experiments, we set the object dimension to



Fig. 1: The dependence of the relative reconstruction error (3)
on the dose and the oversampling ratio for the Poisson mea-
surement model (P). Left: the proposed spectral method (1);
Right: the proposed method with subsequent FIVS iterations.
The plots show averages over 10 random trials.

Fig. 2: The dependence of the relative reconstruction error (3)
on the dose and the oversampling ratio for the Bernoulli mea-
surement model (B). Left: the proposed spectral method (1);
Right: the proposed method with subsequent FIVS iterations.
The plots show averages over 10 random trials.

be n = 256, and the measurement vectors aj
i.i.d.∼ N (0, In),

j ∈ [m].
We compare the solution x0 obtained using the proposed

spectral method (1) to the one that uses x0 as initialization,
followed by k = 100 iterations of the FIVS method (Wirtinger
flow using a Gaussian loss after variance stabilization) that
is proposed in [4] for low-dose Poisson phase retrieval.
The results of the numerical simulations for the Poisson
and Bernoulli measurement models are shown in Figures 1
and 2, respectively. In the case of Poisson phase retrieval, we
see that the reconstruction error decreases with higher dose
and oversampling ratio values, as predicted by Theorem 2.
Furthermore, running iterations of FIVS improves the recon-
struction result. In the case of Bernoulli measurements, we
see that the reconstruction error deteriorates when the dose
α gets large, indicating that too much information is lost
in the measurement truncation. FIVS iterations improve the
reconstruction here only in the low oversampling ratio regime,
otherwise the spectral initialization shows better performance.
This can be explained by the fact that FIVS is proven to

converge to a stationary point of a non-convex measurement
error metric and hence can deteriorate the estimate in terms
of the relative reconstruction error (3) if the initialization falls
within the basin of attraction of a poor local minimum. We
also note that the numerical experiments indicate successful
reconstruction for much lower oversampling ratio values than
predicted by Theorems 2 and 5.

V. DISCUSSION

We studied the performance of the spectral method for
Poisson and Bernoulli measurements, focusing on the influ-
ence of the oversampling ratio and the dose value on the
reconstruction error. In particular, in the highly truncated
case of Bernoulli measurements, we established a trade-off
between the oversampling ratio and the achievable dose value.
Further research is needed to refine the proposed method.
For instance, while the truncation rule in [3] does not apply
in the low-count regime, it would be interesting to study
reconstruction properties for this type of data preprocessing,
expanding upon the results we obtained for the non-truncated
spectral method.
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