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Abstract

We present a new approach for Neural Optimal Transport (NOT) training procedure,
capable of accurately and efficiently estimating optimal transportation plan via
specific regularization on dual Kantorovich potentials. The main bottleneck of
existing NOT solvers is associated with the procedure of finding a near-exact
approximation of the conjugate operator (i.e., the c-transform), which is done either
by optimizing over non-convex max-min objectives or by the computationally
intensive fine-tuning of the initial approximated prediction. We resolve both issues
by proposing a new theoretically justified loss in the form of expectile regularization
which enforces binding conditions on the learning process of the dual potentials.
Such a regularization provides the upper bound estimation over the distribution of
possible conjugate potentials and makes the learning stable, completely eliminating
the need for additional extensive fine-tuning. Proposed method, called Expectile-
Regularized Neural Optimal Transport (ENOT), outperforms previous state-of-
the-art approaches in the established Wasserstein-2 benchmark tasks by a large
margin (up to a 3-fold improvement in quality and up to a 10-fold improvement in
runtime). Moreover, we showcase performance of ENOT for various cost functions
in different tasks, such as image generation, demonstrating generalizability and
robustness of the proposed algorithm.

Project page with code
https://skylooop.github.io/enot/

1 Introduction

Computational optimal transport (OT) has enriched machine learning (ML) by offering a new view-
angle on the conventional ML tasks through the lens of comparison of probability measures (Villani
et al. [2009], Ambrosio et al. [2003], Peyré et al. [2019], Santambrogio [2015]). In different works,
OT is primarily employed either 1) as a differentiable proxy, with the OT distance playing the role
of a similarity metric between the measures, or 2) as a generative model, defined by the plan of
optimal transportation. One notable advantage of using OT in the latter setting is that, compared
to other generative approaches, such as GANs, Normalizing Flows, or Diffusion Models, there is
no assumption for one of the measures to be defined in a closed form (e.g., Gaussian or uniform)
or to be pairwise-aligned, admitting various applications of the OT theory. Both loss objective and
generative formulations of OT proved successful in a vast range of modern ML areas, including
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generative modelling (Arjovsky et al. [2017], Gulrajani et al. [2017], Korotin et al. [2021], Liu et al.
[2019], Leygonie et al. [2019]), reinforcement learning (Fickinger et al. [2022], Haldar et al. [2023],
Papagiannis and Li [2022], Luo et al. [2023]), domain adaptation (Xie et al. [2019], Shen et al. [2018]),
change point detection (Shvetsov et al. [2020]), barycenter estimation (Kroshnin et al. [2021], Buzun
[2023], Bespalov et al. [2022a,b]), biology and genomics (Bunne et al. [2022]). Low dimensional
discrete OT problems are solved via Sinkhorn algorithm (Cuturi [2013]), which employs entropic
regularization. This technique makes the entire optimization problem differentiable and efficient
computationally, but may require numerous iterations to converge to an optimal solution, whereas
the OT problem for the tasks supported on high-dimensional measure spaces are usually intractable,
oftentimes solvable only for the distributions which admit a closed-form density formulations. As a
result, the need for computationally-efficient OT solvers has become both evident (Peyré et al. [2019])
and pressing (Montesuma et al. [2023], Khamis et al. [2024]).

In this work, we will be concerned with the complexity, the quality, and the runtime speed of the
computational estimation of a deterministic OT plan T between two probability measures α and β
supported on measurable spaces X ,Y ⊂ Rd with Borel sigma-algebra. The OT problem in Monge’s
formulation (MP) for a cost function c : X × Y → R is stated as:

MP(α,β) = inf
T :T#α=β

∫
X
c(x, T (x))dα(x), (1)

where {T : T#α = β} is the set of measure-preserving maps, defined by a push forward operator
T#α(B) = α(T−1(B)) = β(B) for any Borel subset B ⊂ Y . The minimizer of the cost above
exists if X is compact, α is atomless (i.e. ∀x ∈ X : α({x}) = 0) and the cost function is continuous
(ref. Santambrogio [2015] Theorem 1.22 and Theorem 1.33).

However, MP formulation of the OT problem is intractable, since it requires finding the maps T under
the coupling constraints (which is non-convex optimization problem) and is not general enough to
provide a way for some mass-splitting solutions. By relaxing constraints in equation (1), the OT
problem becomes convex and this form is known as Kantorovich problem (KP) (ref. Villani et al.
[2009]):

KP(α,β) = inf
π∈Π[α,β]

∫
X×Y

c(x, y)dπ(x, y) = inf
π∈Π[α,β]

Eπ[c(x, y)], (2)

where Π[α,β] = {π ∈ P(X × Y) :
∫
Y dπ(x, y) = dα(x),

∫
X dπ(x, y) = dβ(y)} is a set of

admissible couplings with respective marginals α,β. MP and KP problems are equivalent in case
X = Y are compact, the cost function c(x, y) is continuous and α is atomless. Since KP (2) is
convex, it admits dual formulation (DP), which is constrained concave maximization problem and is
derived via Lagrange multipliers (Kantorovich potentials) f and g:

DP(α,β) = sup
(f,g)∈L1(α)×L1(β)

[
Eα[f(x)] + Eβ[g(y)]

]
+ inf

π,γ>0
γ Eπ[c(x, y)− f(x)− g(y)], (3)

where L1 is a set of absolutely integrable functions with respect to underlying measures α,β. The
exchange between infimum and supremum is possible by strong duality (Slater’s condition). If one
decomposes the outer expectation Eπ in the last equation as Eπ(x)Eπ(y|x), we can notice that the
supremum by f(x) should satisfy to the condition:

f(x) ≤ gc(x) = inf
π

Eπ(y|x)[c(x, y)− g(y)] = inf
T :X→Y

[
c(x, T (x))− g(T (x))

]
, (4)

otherwise, the infimum by γ would yield the −∞ value. Operator gc is called c-conjugate transfor-
mation. If MP=KP, the solution π(y|x) is deterministic and one may set π(y|x) = T (x). Finally,
DP (3) may be reduced to a single potential optimization task (using inequality (4), ref. Villani et al.
[2009] Theorem 5.10):

DP(α,β) = sup
g∈L1(β)

[
Eα[g

c(x)] + Eβ[g(y)]
]

(5)

= sup
g∈L1(β)

inf
T :X→Y

[
Eα[c(x, T (x))] + Eβ[g(y)]− Eα[g(T (x))]

]
. (6)

In practice, during optimization process the infimum by T in c-conjugate transformation is approxi-
mated by a parametric model Tθ, such that

gc(x) ≤ gT (x) = c(x, Tθ(x))− g(Tθ(x)). (7)
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A number of approaches were proposed to model Tθ in equation (6) e.g., with the Input Convex
Neural Networks (ICNN) (Amos et al. [2017], Makkuva et al. [2020], Taghvaei and Jalali [2019])
or with arbitrary non-convex neural networks (Rout et al. [2021], Korotin et al. [2023b]). Most of
these approaches make an assumption that the cost is squared Euclidean and utilize Brenier theorem
(Brenier [1991]), from which optimal map recovers as gradient of a convex function. The main
bottleneck of these parametric solvers is their instability in finding the optimal c-conjugate potential
gT from equation (7) and the rough estimation of T often results in a situation where the sum of
potentials g and gT diverges. These instability problems were thoroughly discussed in works Amos
[2023], Korotin et al. [2021]. Recently, Amos [2023] showed that it is possible to find a near exact
conjugate approximation by performing fine-tuning on top of initial guess (Tθ) in order to achieve
closest lower bound in the inequality (7). Despite being an exact approximation to the true conjugate,
such procedure requires extensive hyperparameter tuning and will definitely introduce an additional
computational overhead.2

In this work, we propose to mitigate above issues by constraining the solution class of conjugate
potentials through a novel form of expectile regression regularization Rg. In order to make joint
optimization of g and Tθ stable and more balanced (optimize g and Tθ in the OT problem (6)
synchronously and with the same frequency), we argue that it is possible to measure proximity of
potential g to (gT )c without an explicit estimation of the infimum in c-conjugate transform (4) and
instead optimize the following objective:

Eα[g
T (x)] + Eβ[g(y)]− Eα,β[Rg(x, y)]. (8)

The regularizer will have to constrain the differences g(y)− (gT )c(y) and gT (x)− gc(x) that should
match at the end of training. We show that such a natural regularization outperforms the state-of-
the-art NOT approaches in all of the tasks of the established benchmark for the computational OT
problems (the Wasserstein-2 benchmark, presented in Korotin et al. [2021]), with a remarkable 5 to
10-fold acceleration of training compared to previous works and achieving faster convergence on
synthetic datasets with desirable properties posed on OT map. Moreover, we show that proposed
method obtains state-of-the-art results on generative image-to-image tasks in terms of FID and MSE.

2 Related Work

In the essence, the main challenge of finding the optimal Kantorovich potentials in equation (6) lies
in alternating computation of the exact c-conjugate operators (4). Recent approaches consider the
dual OT problem from the perspective of optimization over the parametrized family of potentials.
Namely, parametrizing potential gη either as a non-convex Multi-Layer Perceptron (MLP) (Dam et al.
[2019]) or as an Input-Convex Neural Network (ICNN) (Amos et al. [2017]). Different strategies for
finding the solution to the conjugate operator can be investigated under a more general formulation of
the following optimization (Makkuva et al. [2020], Amos [2023]):

max
η

[
− Eα[gη(T̂ (x))] + Eβ[gη(y)]

]
, min

θ
Eα

[
Lamor(Tθ(x), T̂ (x))

]
, (9)

with T̂ (x) being the fine-tuned argmin of c-conjugate transform (4) with initial value Tθ(x). Loss
objective Lamor can be one of three types of amortization losses which makes Tθ(x) converge to
T̂ (x). This max-min problem is similar to adversarial learning, where gη acts as a discriminator and
Tθ finds a deterministic mapping from the measure α to β. The first objective in equation (9) is
well-defined under certain assumptions and the optimal parameters can be found by differentiating
w.r.t. η, according to the Danskin’s envelope theorem (ref. Danskin [1966]). We briefly overview
main design choices of the amortized models Tθ(x) in the form of continuous dual solvers and the
corresponding amortization objective options for Lamor in the Appendix C.

Another method considers the solution to the optimal map in (1) from a different perspective
by introducing a regularization term named Monge Gap (Uscidda and Cuturi [2023]) and learns
optimal T map from Monge formulation directly without any dependence on conjugate potentials.
More explicitly, by finding the reference measure µ with Support(α) ⊂ Support(µ), the following
regularizer quantifies deviation of T from being optimal transport map:

Mc
µ = Eµ[c(x, T (x))]− KPε(µ, T#µ) (10)

2This intuition is supported by a direct evaluation in Section 5 below.
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with KPε being entropy-regularized Kantorovich problem (2). However, despite its elegance, we still
need some method to compute KPε, and the underlying measure µ should be chosen thoughtfully,
considering that its choice impacts the resulting optimal transport map and the case when µ = α
does not always provide expected outcomes.

3 Background

Bidirectional transport mapping. We employ notations with hats (π̂, T̂ , ĝ, f̂ = (ĝ)c) to indicate
the correspondence to the solution (argmins) of the OT problem (6). Optimality in equation (6) is
obtained whenever complementary slackness is satisfied, namely: ∀(x, y) ∈ Support(π̂) : ĝc(x) +
ĝ(y) = c(x, y). Consider a specific setting when the optimal transport plan π̂(x, y) is deterministic
and MP=KP. Let the domains of α,β be equal and compact, i.e. X = Y , for some strictly convex
function h the cost c(x, y) = h(x − y). Denote by h∗ the convex conjugate of h, implying that
(∂h)−1 = ∇h∗. If α is absolutely continuous, then π̂(x, y) is unique and concentrated on graph
(x, T̂ (x)). Moreover, one may link it with Kantorovich potential f̂ as follows (Santambrogio [2015]
Theorem 1.17): ∇f̂(x) ∈ ∂xc(x, T̂ (x)) and particularly for c(x, y) = h(x− y)

T̂ (x) = x−∇h∗(∇f̂(x)). (11)

If the same conditions are met for measure β we can express the inverse mapping T̂−1(y) through
the potential ĝ:

T̂−1(y) = y −∇h∗(∇ĝ(y)). (12)
Max-min optimization in problem (6) by means of parametric models fθ and gη is unstable due
to non-convex nature of the problem. One way to improve robustness is to simultaneously train
bidirectional mappings T̂ (x) and T̂−1(y) expressed by formulas (11) and (12), thus yielding self-
improving iterative procedure. During the training, we also may use the equations (11) and (12) with
non-optimal functions fθ and gη, because there are no restrictions on T in problem (6) and we can
use any representation for the transport mapping function. Under weaker constraints (for example
X = Y = Rd), the c-concavity of the potentials f and g may be required. In this case, we can rely on
a local c-concavity in the data concentration region or, if the conditions for equations (11) and (12)
are not satisfied, we can use an arbitrary function for Tθ and do not express it through the potential fθ.
Under Brenier’s theorem conditions (Brenier [1991]) in domain Rn for the squared Euclidean cost,
it holds that T̂ (x) = x−∇f̂(x), where f̂ is some l2-concave function. It follows that the optimal
potentials f̂ and ĝ are l2-concave, even if one uses not l2-concave potentials f , g in the training
process.

Expectile regression. The idea behind the proposed regularization approach is to minimize the
least asymmetrically weighted squares. It is a popular option for estimating conditional maximum
of a distribution through neural networks. Recently, expectile regression was used in some offline
Reinforcement Learning algorithms and representation learning approaches (Ghosh et al. [2023]).
Let fθ : Rd → R be some parametric model from L2(Rd) space and x, y be dependent random
variables in Rd × R, where y has finite second moment. By definition (Newey and Powell [1987]),
the expectile regression problem is:

min
θ

E
[
Lτ (y − fθ(x))

]
= min

θ
E
∣∣τ − I[y ≤ fθ(x)]

∣∣ (y − fθ(x))
2, τ ≥ 0.5. (13)

The expectation is taken over the {x, y} pairs. The asymmetric loss Lτ reduces the contribution of
those values of y that are smaller than fθ(x), while the larger values are weighted more heavily (ref.
Figure 5). The expectile model fθ(x) is strictly monotonic in parameter τ . Particullary, the important
property for us is when τ → 1, it approximates the conditional (on x) maximum operator over the
corresponding values of y (Bellini et al. [2014]). Below we compute c-conjugate transformation by
means of expectile.

4 Proposed Method

The main motivation behind our method is to regularize optimization objective in DP (6) with
non-exact approximation of c-conjugate potential gT (x), defined in (7). The regularisation term
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Rg(x, y) should “pull” g(y) towards (gT )c(y) and gT (x) towards gc(x). Instead of finding explicit
c-conjugate transform, we compute τ -expectile of random variables gT (x)− c(x, y), treating y as a
condition. From the properties of expectile regression described above and equation (4) follows that
when τ → 1, the expectile converges to

max
x∈X

[
gT (x)− c(x, y)

]
= −(gT )c(y). (14)

Let the parametric models of Kantorovich potentials be represented as fθ(x) and gη(y). The transport
mapping Tθ(x) has the same parameters as fθ(x) if it can be expressed through fθ (ref. 11), or
otherwise, when fθ is not used (one-directional training), it is its own parameters. Let approximate
the maximum of eq. (14) by τ -expectile of gTη (x)− c(x, y) conditioning on y. So the target (term y

in eq. 13) of the expectile regression here is gTη (x)− c(x, y). The model in this case is −gη(y). It has
a negative sign because we approximate c-transform of gTη (x), which equals to infx c(x, y)− gTη (x).
The corresponding regression loss is Lτ

(
gTη (x)− c(x, y) + gη(y)

)
. Accounting the definition of gT

(7) we obtain the regularization loss for potential gη:

Rg(η, x, y) = Lτ

(
c(x, Tθ(x))− gη(Tθ(x))− c(x, y) + gη(y)

)
. (15)

The proposed expectile regularisation is incorporated into alternating step of learning the Kantorovich
potentials by implicitly estimating c-conjugate transformation, additionally encouraging model g
to satisfy the c-concavity criterion (Villani et al. [2009] Proposition 5.8). We minimize Rg(η) =
Eα,βRg(η, x, y) by η and simultaneously do training of the dual OT problem (6), splitting it into
two losses

Lg(η) = −Eβ[gη(y)] + Eα[gη(Tθ(x))], (16)

Lf (θ) = −Eα[gη(Tθ(x))] + Eα[c(x, Tθ(x))]. (17)

Algorithm 1 ENOT Training
Input: samples from unknown distributions x ∼ α and y ∼ β; cost function c(x, y);
Parameters: parametric potential model f or vector field f = T, parametric potential model g,
optimizers opt_f and opt_g, batch size n, train steps N , expectile τ , expectile loss weight λ,
bidirectional training flag is_bidirectional;
function train_step (f, g, {x1, . . . , xn}, {y1, . . . , yn})

1: {Assign OT mapping T(x)}
2: if is_bidirectional is true T(x) = x−∇h∗(∇f(x)) else T(x) = f(x)
3: {Compute dual OT losses and expectile regularisation Rg}
4: Lg = 1

n

∑n
i=1 g(T(xi))−

1
n

∑n
i=1 g(yi)

5: Lf = 1
n

∑n
i=1

[
c(xi,T(xi))− g(T(xi))

]
6: Rg = 1

n

∑n
i=1 Lτ

(
c(xi,T(xi))− c(xi, yi) + g(yi)− g(T(xi))

)
7: {Apply gradient updates for parameters of models f and g}
8: opt_f.minimize(f, loss = Lf)
9: opt_g.minimize(g, loss = Lg + λRg)

end function
10: {Main train loop}
11: for t ∈ 1, . . . , N do
12: sample x1, . . . , xn ∼ α, y1, . . . , yn ∼ β
13: if is_bidirectional is false or t mod 2 = 0 then
14: train_step(f, g, {x1, . . . , xn}, {y1, . . . , yn})
15: else
16: {Update inverse mapping β → α by swapping f and g}
17: train_step(g, f, {y1, . . . , yn}, {x1, . . . , xn})
18: end if
19: end for
20: sample x1, . . . , xn ∼ α, y1, . . . , yn ∼ β
21: {Approximate OT distance by sum of conjugate potentials, get T from step 2}
22: dist = 1

n

∑n
i=1

[
g(yi) + c(xi,T(xi))− g(T(xi))

]
; f(x) = c(x,T(x))− g(T(x))

23: return f, g, dist
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Algorithm 1 describes a complete training loop with full objective expressionLf (θ)+Lg(η)+λRg(η)
and hyperparameters τ (expectile) and λ. It includes two training options: one-directional with models
gη and Tθ; and bidirectional for strictly convex cost functions in form of h(x− y) with models fθ, gη
and Tθ, T−1

η (the latter are represented in terms of fθ, gη by formulas (11), (12)). The bidirectional
training procedure updates gη, Tθ in one optimization step and then switches to fθ, T−1

η update in the
next step. This option includes analogical regularisation term for the potential fθ:

Rf (θ, x, y) = Lτ

(
c(T−1

η (y), y)− fθ(T
−1
η (y))− c(x, y) + fθ(x)

)
. (18)

In the end of training we approximate the correspondent Wasserstein distance by expression

Wc(α,β) = Eβ[gη̂(y)]− Eα[gη̂(Tθ̂(x))] + Eα[c(x, Tθ̂(x))] (19)

with optimized parameters θ̂, η̂. We include a formal convergence analysis for τ regularized functions
being a tight bound on the exact solution to the c-conjugate transform in Appendix D.

5 Experiments

In this section, we provide a thorough validation of ENOT on a popular W2 benchmark to test the
quality of recovered OT maps. We compare ENOT with the state-of-the-art approaches and also
showcase its performance in generative tasks. Additional results and visualizations on 2D synthetic
tasks are provided in Appendix F.

5.1 Results on Wasserstein-2 Benchmark

While evaluating ENOT, we also measured the wall-clock runtime on all Wasserstein-2 benchmark
data (Korotin et al. [2021]). The tasks in the benchmark consist of finding the optimal map under the
squared Euclidean norm c(x, y) = ∥x− y∥2 between either: (1) high-dimensional (HD) pairs (α,β)
of Gaussian mixtures, where the target measure is constructed as an average of gradients of learned
ICNN models via W2(Korotin et al. [2019]) or (2) samples from pretrained generative model W2GN
(Korotin et al. [2021]) on CelebA dataset (Liu et al. [2015]). The quality of the map T̂ from α to β is
evaluated against the ground truth optimal transport plan T ∗ via unexplained variance percentage
metric (LUV

2 ) (Korotin et al. [2019, 2021], Makkuva et al. [2020]), which quantifies deviation from
the optimal alignment T ∗, normalized by the variance of β:

LUV
2 (T̂ ,α,β) = 100 · Eα∥T̂ (x)− T ∗(x)∥2

Varβ[y]
. (20)

The results of the experiments are provided in Table 1 for CelebA64 (64 × 64 image size) and in
Table 2 for the mixture of Gaussian distributions with a varying number of dimensions D. Overall,
ENOT manages to approximate optimal plan T ∗ accurately and without any computational overhead
compared to the baseline methods which require an inner conjugate optimization loop solution. To be
consistent with the baseline approaches, we averaged our results across 3-5 different seeds. All the
hyperparameters are listed in Appendix E.2 (Table 6).

Despite the fact that we compute at each train step a non-exact c-transform, the expectile regularization
enables the method to outperform all exact methods in all our extensive tests. In actuality, the
regularization does not introduce an additional bias, neither in theory, nor in practice. At the end
of training (or upon convergence), we obtain the exact estimate of the c-conjugate transformation.
Other methods demand near-exact estimation at each optimization step, requiring additional inner
optimization and introducing significant overhead. We assume that introduces an imbalance in the
simultaneous optimization by g and T in equation (6), underestimating the OT distance as a result.

5.2 Different Cost Functionals

We further investigate how ENOT performs for different cost functions and compare Monge gap
regularization (Uscidda and Cuturi [2023]) and ENOT between the measures defined on 2D synthetic
datasets. In Figure 1, we observe that despite recovering Monge-like transport maps Tθ, ENOT
achieves convergence up to 2× faster and produces more desirable OT-like optimal maps. To test other
specific use cases, we conducted experiments on 2D spheres data (Figure 2), where we parametrize
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Method Conjugate Early Generator Mid Generator Late Generator

W2-Cycle None 1.7 0.5 0.25
MM-Objective None 2.2 0.9 0.53
MM-R-Objective None 1.4 0.4 0.22

W2OT-Cycle None > 100 26.50± 60.14 0.29 ± 0.59
W2OT-Objective None > 100 0.29± 0.15 0.69 ± 0.9

W2OT-Cycle L-BFGS 0.62 ± 0.01 0.20 ± 0.00 0.09 ± 0.00
W2OT-Objective L-BFGS 0.61 ± 0.01 0.20 ± 0.00 0.09 ± 0.00
W2OT-Regression L-BFGS 0.62 ± 0.01 0.20 ± 0.00 0.09 ± 0.00
W2OT-Cycle Adam 0.65 ± 0.02 0.21 ± 0.00 0.11 ± 0.05
W2OT-Objective Adam 0.65 ± 0.02 0.21 ± 0.00 0.11 ± 0.05
W2OT-Regression Adam 0.66 ± 0.01 0.21 ± 0.00 0.12 ± 0.00

ENOT (Ours) None 0.32 ± 0.011 0.08 ± 0.004 0.04 ± 0.002

Table 1: LUV
2 comparison of ENOT on CelebA64 tasks from the Wasserstein-2 benchmark. The

attributes after the method names (‘Cycle’, ‘Objective’, ‘Regression’) correspond to the type of
amortisation loss. Column ‘Conjugate’ indicates the selected optimizer for the internal fine-tuning of
c-conjugate transform. The results of our method include the mean and the standard deviation across
3 different seeds. The best scores are highlighted.

Figure 1: Fitting of three different transport maps Tθ between source and target measures in R2

with Euclidean cost function c(x, y) = ∥x − y∥. We use the same number of iterations and MLP
architecture for each method. Left: Sinkhorn divergence; Middle: Monge gap; Right: ENOT.

Fitted Map      , Sinkhorn divergence 
   Source 
   Target
   Push-forward

Fitted Map      , Monge gap 
   Source 
   Target
   Push-forward

   Source 
   Target
   Push-forward

Fitted Map      , ENOT regularization 

Figure 2: Recovered OT maps Tθ between synthetic measures on 2-sphere with geodesic cost
c(x, y) = arccos(xT y). All models are MLPs with outputs normalized to be on a unit sphere. Blue
dots are the empirical source measure, red crosses are the empirical target measure and the orange
crosses are the result of the found transport map. Left: Sinkhorn; Middle: Monge; Right: ENOT.

the map Tθ as a MLP and test the algorithms with the geodesic cost c(x, y) = arccos(xT y) with
n = 1000 iterations. We set here flag is_bidirectional=False (meaning the training mode
is one-directional in this example). Remarkably, the time required for convergence is minimal for
ENOT, while the Monge gap takes up to three times longer. Moreover, in our experiments, Monge
gap solver diverged for n > 1300 iterations. ENOT consistently estimates accurate and continuous
OT maps.
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Method Conjugate D = 2 D = 4 D = 8 D = 16 D = 32

W2-Cycle None 0.1 0.7 2.6 3.3 6.0
MM-Objective None 0.2 1.0 1.8 1.4 6.9
MM-R-Objective None 0.1 0.68 2.2 3.1 5.3

Monge Gap None 0.1 ± 0.0 0.57 ± 0.0 2.05 ± 0.06 4.22 ± 0.1 7.24 ± 0.17

W2OT-Cycle None 0.05 ± 0.0 0.35 ± 0.01 > 100 > 100 > 100
W2OT-Objective None > 100 > 100 > 100 > 100 > 100

W2OT-Cycle L-BFGS > 100 > 100 > 100 > 100 > 100
W2OT-Objective L-BFGS 0.03 ± 0.0 0.22 ± 0.01 0.6 ± 0.03 0.8 ± 0.11 2.09 ± 0.31
W2OT-Regression L-BFGS 0.03 ± 0.0 0.22 ± 0.01 0.61 ± 0.04 0.77 ± 0.1 1.97 ± 0.38
W2OT-Cycle Adam 0.18 ± 0.03 0.69 ± 0.56 1.62 ± 2.82 > 100 > 100
W2OT-Objective Adam 0.06 ± 0.01 0.26 ± 0.02 0.63 ± 0.07 0.81 ± 0.10 1.99 ± 0.32
W2OT-Regression Adam 0.22 ± 0.01 0.28 ± 0.02 0.61 ± 0.07 0.8 ± 0.10 2.07 ± 0.38

ENOT (Ours) None 0.02 ± 0.0 0.03 ± 0.001 0.14 ± 0.01 0.24 ± 0.03 0.67 ± 0.02

Method Conjugate D = 64 D = 128 D = 256

W2-Cycle None 7.2 2.0 2.7
MM-Objective None 8.1 2.2 2.6
MM-R-Objective None 10.1 3.2 2.7

Monge Gap None 7.99 ± 0.19 9.1 ± 0.29 9.41 ± 0.21

W2OT-Cycle None > 100 > 100 > 100
W2OT-Objective None > 100 > 100 > 100

W2OT-Cycle L-BFGS > 100 > 100 > 100
W2OT-Objective L-BFGS 2.08 ± 0.40 0.67 ± 0.05 0.59 ± 0.04
W2OT-Regression L-BFGS 2.08 ± 0.39 0.67 ± 0.05 0.65 ± 0.07
W2OT-Cycle Adam > 100 > 100 > 100
W2OT-Objective Adam 2.21 ± 0.32 0.77 ± 0.05 0.66 ± 0.07
W2OT-Regression Adam 2.37 ± 0.46 0.77 ± 0.06 0.75 ± 0.09

ENOT (Ours) None 0.56 ± 0.03 0.3 ± 0.01 0.51 ± 0.02

Table 2: LUV
2 comparison of ENOT with baseline methods on the high-dimensional (HD) tasks from

Wasserstein-2 benchmark. The suffixes (‘Cycle’, ‘Objective’, ‘Regression’) correspond to the type of
amortisation loss. Column ‘Conjugate’ indicates the selected optimizer for the internal fine-tuning
of c-conjugate transform. D is the dimension of the measures domain. The mean and the standard
deviations of our method are computed across 5 different seeds. The best scores are highlighted.

5.3 Unpaired Image-to-Image Translation

To showcase the power of expectile regularization beyond the W2 benchmarks, we apply our method
to an unpaired image-to-image translation task. The corresponding image datasets are: female
subset of Celebrity faces (CelebA(f)) (Liu et al. [2015]), Anime Faces (Anime)3, Flickr-Faces-HQ
(FFHQ) (Karras et al. [2019]), comic faces v2 (Comics)4, Handbags and Shoes5. The datasets are
pre-processed in the conventional way as described in (Gazdieva et al. [2023]). The trained transport
maps include: Handbags to Shoes, FFHQ to Comics, CelebA(f) to Anime. We employ squared
Euclidean cost function divided by the image size (64 or 128), basic U-Net architecture (Ronneberger
et al. [2015]) for the transport map Tθ(x), and ResNet from WGAN-QC (Liu et al. [2019]) as a
potential gη(y). ENOT trains in one-directional mode with total steps count N = 120k. Appendix
Table 7 contains a complete list of hyperparameters (conventionally, we have used FID (Heusel et al.
[2017]) metric for the hyperparameters tuning). We report the learned transport maps in Figure 3 as
well as the widely used FID and MSE metrics in Table 3. Appendix 10 includes additional evaluation
on test images.

3kaggle.com/datasets/reitanaka/alignedanimefaces
4kaggle.com/datasets/defileroff/comic-faces-paired-synthetic-v2
5github.com/junyanz/iGAN/blob/master/train_dcgan
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Image-to-image translation baselines include popular GAN-based approaches: CycleGAN (Zhu et al.
[2017]) and StarGAN-v2 (Choi et al. [2020]), and two other recent neural OT methods: Extremal OT
(Gazdieva et al. [2023]) and Kernel OT (Korotin et al. [2023a]). ENOT outperforms the baselines
in all tasks in therms of FID score and, as in all other experiments, significantly speeds up the
computation. It takes about 5 hours to train the transport model on one GPU RTX 3090 Ti with image
size 64× 64 and about 16 hours when the image size is 128× 128, while an approximate training
time of the other OT algorithms and GANs is about 3 days on the same GPU.

Figure 3: Left: Handbags to Shoes; Middle: FFHQ to Comics; Right: CelebA(f) to Anime; all
images sizes are 128x128, the 1st row contains the source images, the 2nd row contains predicted
generative mapping by ENOT; Cost function: L2 divided by the image size.

Task and image size CycleGAN StarGAN Extr. OT Ker. OT ENOT

Handbags ⇒⇒ Shoes 128 23.4 22.36 27.10 26.7 19.19

FFHQ ⇒⇒ Comics 128 - - 20.95 20.81 17.11

CelebA(f) ⇒⇒ Anime 64 20.8 22.40 14.65 18.28 13.12

CelebA(f) ⇒⇒ Anime 128 - - 19.44 21.96 18.85

FID Metric

Task and image size CycleGAN StarGAN Extr. OT Ker. OT ENOT

Handbags ⇒⇒ Shoes 128 0.43 0.24 0.37 0.37 0.34

FFHQ ⇒⇒ Comics 128 - - 0.22 0.21 0.20

CelebA(f) ⇒⇒ Anime 64 0.32 0.21 0.30 0.34 0.26

CelebA(f) ⇒⇒ Anime 128 - - 0.31 0.36 0.28

MSE Metric

Table 3: Comparison of ENOT to baseline methods for image-to-image translation. We evaluate
generation task between two different datasets: Source ⇒ Target. And compare resulting images
based on Frechet Inception Distance (FID) and Mean Squared Error (MSE). Empty cells indicate that
original authors of particular method did not include results for those tasks.

5.4 Ablation Study: Varying hyperparameters expectile and regularization weight

Figure 4 presents the study of the impact of the proposed expectile regularization on the LUV
2 metric.

This is done by varying the values of the expectile hyperparameter τ and the scaling of the expectile
loss coefficient λ in Algorithm 1. Colored contour plots show the areas of the lowest and the highest
values of LUV

2 . The grey areas depict the cases when the OT solver diverged. For example, in
high-dimensions, D ≥ 64, it is the case for λ = 0, pointing out that the expectile regularization with
τ is necessary to prevent the instability during training.

The ablation study shows that, even when the parameter choices of τ and λ are not optimal, ENOT
still outperforms the other baseline solvers in Table 2, making ENOT approach robust to extensive
hyperparameter tuning, compared to amortized optimization approach (Amos [2023]) sensitive to the
hyperparameters of the conjugate solver. All ablation study experiments were conducted using the
network structure and the learning rates in Appendix E.2 (Table 4) (they coincide with those in Table
2).
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Figure 4: Contour plots of LUV
2 dependence on the values of λ and τ in Algorithm 1 for the

dimensions of D = 256 (Left, NaN values are greyed out), D = 128 (Middle), and D = 64 (Right).

6 Conclusion, Limitations and Future Work

Our paper introduces a new method, ENOT, for efficient computation of the conjugate potentials in
neural optimal transport with the help of expectile regularisation. We show that a solution to such a
regularization objective is indeed a close approximation to the true c-conjugate potential. Remarkably,
ENOT surpasses the current state-of-the-art approaches, yielding an up to a 10-fold improvement in
terms of the computation speed both on synthetic 2D tasks and on well-recognized Wasserstein-2
benchmark.

The proposed regularized objective on the conjugate potentials relies on two additional hyperparam-
eters, namely: the expectile coefficient τ and the expectile loss trade-off scaler λ, thus requiring
a re-evaluation for new data. However, given the outcome of our ablation studies, the optimal
parameters found on the Wasserstein-2 benchmark are optimal enough or at least provide a good
starting point.

We believe that ENOT will become a new baseline to compare against for the future NOT solvers
and will accelerate research in the applications of optimal transport in high-dimensional tasks, such
as generative modelling. As for future directions, ENOT can be tested with the other types of cost
functions, such as Lagrangian costs, defined on non-Euclidean spaces and in the dynamical optimal
transport settings, such as flow matching.
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Appendix

A Expectile visualisations
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Figure 5: Expectile regression. Left: the asymmetric squared lossLτ . The value τ = 0.5 corresponds
to the standard MSE loss, while τ = 0.9 and τ = 0.99 give more weight to the positive differences.
Right: expectile models fτ (x). The value τ = 0.5 corresponds to the conditional statistical mean
of the distribution, and when τ → 1 it approximates the maximum operator over the corresponding
values of y.

B Wasserstein-2 case.

For squared Euclidean cost c(x, y) = 1
2∥x− y∥2, one may use ordinary conjugation and replace the

vector norms outside the supremum in (6). Let Kantorovich potential g(y) equals 1
2∥y∥

2−u(y), then

gc(x) = inf
y

(
1

2
∥x− y∥2 − 1

2
∥y∥2 + u(y)

)
=

1

2
∥x∥2 − u∗(x) (21)

and consequently from (6) we derive that
1

2
W2(α,β) =

1

2
Eα∥x∥2 +

1

2
Eβ∥y∥2 + sup

u∈L1(β)

[
Eα[−u∗(x)] + Eβ[−u(y)]

]
. (22)

By equation (12) the corresponding optimal transport map T̂ (x) equals to the gradient of û∗ (argmax-
imum from the last formula):

T̂ (x) = x−∇f̂(x) = ∇û∗(x). (23)

C Expanded Review of Related Work

In this section of the Appendix we briefly outline categorization of different approaches for estimating
dual Kantorovich problem as proposed by (Amos [2023, 2022]), where the following differentiable
amortization loss design choices are highlighted:

A. Objective-based learning: (Lamor = Lobj) methods utilize local information (4) to establish
optimal descent direction for model’s parameters θ. (Dam et al. [2019]) predicts approximate
amortized solution Tθ(x) from equation (7) by minimizing the next expression over mini-
batch of samples from α:

Lobj(Tθ(x)) = c(x, Tθ(x))− gη(Tθ(x)). (24)
Methods max-min [MM] (Dam et al. [2019]), max-min batch-wise [MM-B] (Mallasto
et al. [2019], Chen et al. [2019]), max-min + ICNN [MMv1] (Taghvaei and Jalali [2019]),
Max-min + 2 ICNNs [MMv2] (Makkuva et al. [2020], Fan Jiaojiao and Chen [2021]),
[W2OT-Objective] (Amos [2023]) use such objective-based amortization in order to
learn optimal prediction. However, objective-based methods are limited by computational
costs and predictions made by amortized models can be overestimated, resulting in sub-
optimal solution.
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B. Regression-based Amortization (Amos [2022]) (Lamor = Lreg) is an instance of regression-
based learning, which can be done by fitting model’s prediction Tθ(x) into ground-truth
solution T̂ (x), taking Euclidean distance as proximity measure:

Lreg(Tθ(x), T̂ (x)) = ∥Tθ(x)− T̂ (x)∥2 (25)

Such choice for learning Tθ(x) is computationally efficient and works best when ground-
truth solutions T̂ (x) are provided. However, there are no guarantees for obtaining optimal
solution when T̂ (x) is not unique.

C. Cycle-based Amortization (Lamor = Lcycle) is based on the first order optimality criteria for
equation (4), i.e ∇yc(x, y) = ∇ygη(y). If c(x, y) = 1

2∥x − y∥2 then ∇yc(x, y) = x − y
and one may use the following expression in the loss

min
θ

EαLcycle(Tθ(x)) = min
θ

Eα∥x− Tθ(x)−∇gη(Tθ(x))∥2. (26)

It is called cycle-consistency regularization. Method [W2] Korotin et al. [2019] uses this
choice and substitutes it from the dual loss (9) to avoid solving max-min problem.

D Conjugate Function Approximation by Expectile

Lemma D.1 (Rudin [1976]). Let random vector ξ have a compact support Ω and ∀x ∈ Ω:
fn+1(x) ≥ fn(x) be a sequence of continuous functions. Then from functional convergence fn → f
follows convergence of fn(ξ) to f(ξ) with probability 1.
Theorem D.2. Denote by fτ ∈ C0 a non-parametric solution of expectile regression in class of
continuous functions that approximates the τ -th (τ > 0.5) conditional expectile of c-conjugate
transform g(η)− c(ξ, η). Let function g be upper-bounded and random vectors ξ, η have compact
support Ω, then with probability 1

lim
τ→1

fτ (ξ) = −gc(ξ) = sup
η∈Ω

{g(η)− c(ξ, η)} (27)

Proof. First note that fτ (ξ) ≤ −gc(ξ) with probability 1, otherwise it would be possible to reduce
the average value of the loss function Lτ by taking −gc(ξ). By the monotonicity property of the
expectile (ref. Bellini et al. [2014]) ∀x ∈ Ω, τ2 > τ1: fτ2(x) > fτ1(x). When τ → 1 for each
x ∈ Ω it holds that fτ (x) converges to −gc(x) as monotone and bounded sequence. By means of
Lemma B.1 we also derive that fτ (ξ) converges to −gc(ξ) with probability 1.

E Implementation Details

E.1 Environment and Libraries

We implement ENOT in JAX framework, making it fully compatible and easily integrable with the
OTT-JAX library (Cuturi et al. [2022]). Moreover, since ENOT introduced expectile regularization,
there is no additional overhead and whole procedure is easily jit-compiled, which is a drastic
difference with previous approaches. To find the optimal hyperparameters in Appendix (E.2), we used
Weights & Biases sweeps for hyperparameter grid search and Hydra for managing different setup
configurations. ENOT implementation consists of only a single file, which is easy to reproduce and
can be tested on other datasets of interest. We provide step-by-step tutorial of benchmarking ENOT
by the following link at OTT-JAX or on the website https://skylooop.github.io/enot/.

E.2 Hyperparameters for Wasserstein-2 Benchmark Tasks

Tables 4 and 6 provide detailed hyperparameter values used in the experiments in Section 5. To
find the values of these parameters, we performed an extensive grid search sweep across different
seeds, yielding the best results among the seeds, on average. We tried to be as close as possible in
terms of hyperparameters to previous works. Likewise, we tested different choices of hidden layers
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and found that the most stable training occurs at n ≥ 512, but we found that for low-dimensional
tasks (i.e D ≤ 64), 128 neurons are enough to achieve lowest LUV

2 compared to results reported in
(Amos [2023], Makkuva et al. [2020], Korotin et al. [2023b]). Since ENOT does not introduce any
additional computational overhead, increasing number of neurons will not slow down overall training
time. Runtime comparison with (Amos [2023]) for W-2 benchmark presented in Table 9.

Hyperparameter Value

potential model fθ non-convex MLP
conjugate model gθ non-convex MLP
fθ hidden layers [512, 512, 512] if D ≥ 64, else [128, 128, 128]
gθ hidden layers

# training iterations 200 000
activation function ELU (Clevert et al. [2015])

f optimizer Adam with cosine annealing (α = 1e-4)g optimizer
Adam f β [0.9, 0.9]
Adam g β [0.9, 0.7]

initial learning rate 3e-4
expectile coef. λ 0.3

expectile τ 0.9
batch size 1024

Table 4: Hyperparameters for D-dimensional Gaussian Mixture Wasserstein-2 benchmark tasks.

Hyperparameter Value

potential model fθ non-convex MLP
conjugate model gθ non-convex MLP
fθ hidden layers [64, 64, 64, 64]
gθ hidden layers

# training iterations 100 000
activation function ELU (Clevert et al. [2015])

f optimizer Adam with cosine annealing (α = 1e-4)g optimizer
Adam f β [0.9, 0.999]Adam g β

initial learning rate 5e-4
expectile coef. λ 0.3

expectile τ 0.99
batch size 1024

Table 5: Hyperparameters for Synthetic 2D datasets from (Rout et al. [2021])

Hyperparameter Value

potential model fθ ConvPotential (Amos [2023])conjugate model gθ
hidden layers 6 Conv Layers

# training iterations 80 000
activation function ELU (Clevert et al. [2015])

f optimizer Adam with cosine annealing (α = 1e-4)g optimizer
Adam f β [0.5, 0.5]Adam g β

initial learning rate 3e-4
expectile coef. λ 1.0

expectile τ 0.99
batch size 64

Table 6: Hyperparameters for CelebA64 Wasserstein-2 benchmark tasks.
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Hyperparameter Value

potential model fθ UNet (Ronneberger et al. [2015])
conjugate model gθ ResNet (Liu et al. [2019])
# training iterations 120 000
activation function ReLU and LeakyReLU(0.2)

f optimizer Adam with cosine annealing (α = 1e-2)g optimizer
Adam f β [0.5, 0.5]Adam g β

initial learning rate f 1e-4
initial learning rate g 5e-5

expectile coef. λ 1.0
expectile τ 0.98
batch size 64

Table 7: Hyperparameters for image to image translation tasks.

MLP Hidden layers Method Runtime

[64, 64, 64, 64]
W2OT (L-BFGS) ∼ 60 min

ENOT ∼ 1.3 min

[128, 128, 128, 128]
W2OT (L-BFGS) ∼ 120 min

ENOT ∼ 1.3 min

[256, 256, 256, 256]
W2OT (L-BFGS) ∼ 300 min

ENOT ∼ 1.3 min
Table 8: Runtime comparison for different layers sizes between W2OT (Amos [2023]) with default
hyperparameters and ENOT on synthetic 2D data on tasks from Rout et al. [2021].

F Results on Synthetic 2D Datasets

Additionally, we evaluate the performance of ENOT on synthetic datasets, introduced in Makkuva
et al. [2020] and Rout et al. [2021]. Here, all neural networks are initialized as non-convex MLPs,
and for each optimal plan found by ENOT, we demonstrate difference between ground truth Sinkhorn
W2(α,β) distance and optimal plan found by ENOT, which is recovered from learned potentials by
equation (23). Figures 7 and 8 show the estimated optimal transport plans (in blue) both in forward
and backward directions recovered by Tθ#α ≈ β and T−1

η#β ≈ α and the countour plots of the
learned potential functions respectively. Also, in Table 8 we compare the runtime to complete 20k
iterations using amortized method from W2OT (Amos [2023]). Table depicts how runtime changes
for varying number of hidden layers in non-convex MLP, while keeping other hyperparameters for
amortized model to those recommended from original paper with LBFGS solver. Additional details
on the full list of hyperparameters is included in Appendix E.2 (Table 4).

F.1 Synthetic 2D Tasks Details

Table 5 lists optimal parameters for ENOT for synthetic-2D tasks from Rout et al. [2021]. Amos
[2023] pointed out that LeakyReLU activation works better compared to ELU used for Wasserstein-2
benchmark. However, for expectile regularisation we found out that ELU works as well for synthetic
2d tasks. We keep Adam β parameters as default [0.9, 0.999] and observe that 25k training iterations
are enough to converge for tasks from Rout et al. [2021]. Moreover, we tried different neurons per
layer and Table 8 shows runtime in minutes in comparison to previous state-of-the-art approach. Such
speedups are made possible due to efficient utilization of jit compilation since ENOT does not use
any inner optimizations.

F.2 Additional results with varying expectile hyperparameter

To characterize ENOT performance as a function of expectile τ , we performed evaluation with
ranging it from 0.5 to 0.999 in several tasks:
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Method D = 2 D = 4 D = 8 D = 16 D = 32 D = 64 D = 128 D = 256

W2OT 157 108 91 140 246 397 571 1028

ENOT (Ours) 14 14 15 15 15 16 21 21

Table 9: Comparison of runtimes (in minutes) against the baseline (W2OT-Objective L-BFGS) on
the high-dimensional (HD) tasks from the Wasserstein-2 benchmark with same networks architecture.

τ LUV
2 (D = 256) W2, Synth. 2D FID (CelebA ⇒⇒ Anime) MSE (CelebA ⇒⇒ Anime)

0.5 0.55 33.47 16.43 0.264

0.6 0.52 12.63 16.28 0.260

0.7 0.51 9.59 15.95 0.265

0.8 0.49 1.4 15.19 0.262

0.9 0.5 0.06 13.87 0.266

0.95 0.54 0.03 14.27 0.267

0.999 0.55 0.02 13.91 0.288

Table 10: Performance of ENOT with varying levels of expectile hyperparameter τ onW2 benchmark
(1st column), showcasing intuition on convergence as τ → 1; Synthetic 2D data (2nd column);
Image-to-Image translation FID (3rd column), and MSE (4th column).

• Image-to-image translation dataset (CelebA(f) to Anime with image size 64, Table 3);
• Wasserstein-2 benchmark with D = 256 (Table 2);
• Synthetic 2D dataset from Figure 7.

In these experiments (Table 10), we observe a significant drop in performance when τ approaches
0.5 on the Synthetic 2D dataset and (CelebA(f) to Anime (in terms of FID). On Wasserstein-2
benchmark, the tendency is less evident. At the same time, values of τ in the range [0.9, 1.0) always
demonstrate convergence of ENOT, giving good results in all experiments. Setting τ = 1 may cause
an instability. This can be the case because, under certain conditions, the overall contribution of
proposed regularization term will be zero, which means that the potentials can become unbounded.
However, in our experiments, such an instability occurred extremely rarely (mostly due to bad
optimizer parameters), resulting only in a slight drop in performance.
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Figure 6: Ablating varying Left: loss weight λ and Right: expectile τ coefficients in ENOT based on
dimension of task from W2 benchmark. LUV

2 is shown.

F.3 Details on Generative Tasks

Table 7 provides details on hyperparameters used for unpaired image-to-image translation from
Section 5.3. We observe that ENOT outperforms GAN based approaches, such as CycleGAN and
StarGAN-v2. ENOT also outperforms the closest similiar recent approachs for generative modelling
based on NOt such as Extremal OT (Gazdieva et al. [2023]) and Kernel OT (Korotin et al. [2023a]).
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Figure 7: Recovered optimal transport plans (T̂ (x) and T̂−1(y) from (23)) and learned potentials
contour plots obtained from solving OT dual problem (22) with squared Euclidean cost via ENOT
regularisation on synthetic datasets from Makkuva et al. [2020]. Evaluation metric is Sinkhorn
distance between the measures, i.e. W2(T̂#α,β), W2(α, T̂

−1
# β). The estimated distance (22) from

learned potentials compared with the reference value W2(α,β).

Figure 8: Recovered optimal transport push forward map (23) visualization for squared Euclidean
cost using ENOT algorithm on synthetic datasets from Rout et al. [2021].

F.4 W2-Benchmark Tasks Details

High-dimensional measures (HD) task from Korotin et al. [2019] tests whether OT solvers can
redistribute mass among modes of varying measures. Different instantiations of Gaussian mixtures
in dimensions D=2, 4, 16, . . ., 256 are compared between each other via OT. In the benchmark,
Mix3toMix10 is used, where source measure α can consist of random mixture of 3 Gaussians and
target measure consist of two random mixtures β1,β2 of 10 Gaussians. Afterwards, pretrained OT
potentials ∇ψi#α = β are used to form the final pair as (α, 12 (∇ψ1 +∇ψ2)#α).

Images task produces pair candidates for OT solvers in the form of high-dimensional images from
CelebA64 faces dataset (Liu et al. [2015]). Different pretrained checkpoints (Early, Mid, Late, Final)
from WGAN-QC model (Liu et al. [2019]) are used to pretrain potential models. Target measure for
final checkpoint is constructed as average between learned potentials via [W2] solver and forms a pair
input for OT algorithm as (αCelebA, βCkpt) = (αFinal, [

1
2 (∇ψ

1 +∇ψ2)#αFinal)]). Figure 9 shows an
example of pair of two such measures (α,β).
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Figure 9: Example pair from W2-Benchmark of CelebA faces. Top row: Images, which were
produced as final checkpoint from WGAN-QC model. Bottom row: Images, obtained from early
checkpoint of WGAC-QC model.

F.5 Unpaired Image to Image Additional Results

Figure 10: Optimal transportation mapping found by ENOT for Top: Handbag (top row) ⇒ Shoes
(bottom row); Middle: FFHQ (top row) ⇒ Comics (bottom row); Bottom: CelebA(f) (top row) ⇒
Anime (bottom row) image-to-image translation tasks.
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We made a thorough experiments on established benchmarks and compare
proposed method with the other NOT solvers. In all extensive tests, ENOT outperforms the
competition both in terms of time and accuracy.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We provided discussions on limitations in Section 6 of main paper (last two
paragraphs).
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]
Justification: We provided a theoretical proof that expectile regularization approximates
upper bound on the exact c-transform.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Along with detailed hyperparameter specifications in the Appendix, we in-
cluded easy to follow Jupyter notebook which can be found in supplementary materials,
enabling the others to fully reproduce the results in the paper.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We provided a fully reproducible code, which could be easily integrated into
OTT-JAX framework. Moreover, we provided step-by-step jupyter notebook, showcasing
the performance of the proposed algorithm in all discussed tasks.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We provided detailed hyperparameters specifications in the Appendix for each
of the tested benchmarks.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: All reported results are statistically significant. We include evaluation error
(StDev) for each model and each dataset in the study across different runs and seeds.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We include the exact computer configuration in Appendix and mention GPU
model in the main text.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We read it and adhered to the ethical guidelines.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [No]
Justification: Our paper does not address the societal impact as we operate with common
datasets and benchmarks for testing Neural Optimal transport solvers.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Not applicable to this work.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We properly refer to the original papers and use the open source codes from
official repositories, providing the direct URLs to them.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the package
should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We include all of the details corresponding to train procedures, datasets used,
and citations. Moreover, we provide a readme file for the repository details. The released
code is legally approved for the publication; no special documentation is needed.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: No crowdsourcing was used in this study.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: No human studies/IRB was needed for this study.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

26

paperswithcode.com/datasets


• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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