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ABSTRACT

Recent advances in Generative Adversarial Networks (GANs) have achieved im-
pressive results for the purpose of generating high-quality synthetic imagery. While
capable of synthesizing high-fidelity images, these models often generate unsatis-
factory images which fall outside of the data manifold. A considerable research
effort has investigated the data manifold, either by simply discarding images having
a lower probability according to the discriminator output, or by filtering real images
which are within the sparse regions of the data manifold. While effective, these
methods fail to get access to either the fake distribution or the real distribution.
In this paper, we propose a divide and conquer policy for GAN training. We first
introduce a new local data-manifold detector (LDMD), which estimates whether
the generated images are inside or outside of the data manifold. With the proposed
LDMD, we further introduce a noise replay mode if it is outside the manifold, and a
fake sample reuse mode if it is inside the manifold. Extensive experimental results
on a number of GANs variants (e.g., SAGAN,SNGAN,BigGAN and StyleGAN)
demonstrate qualitatively and quantitatively that our method improves the GAN’s
performance, resulting in more realistic images than previous methods as confirmed
by a significant drop in the FID.

1 INTRODUCTION

GANs achieve state-of-the-art synthesis results on image data and beyond. They have been shown to
generate high-quality realistic images (Karras et al., 2018; 2019; Brock et al., 2019; Esser et al., 2021;
Sauer et al., 2022; Epstein et al., 2022). GANs, however, suffer from mode-collapse and training
instabilities. To combat these challenges, a significant number of studies have focused on improving
the architectures (Karras et al., 2018; Esser et al., 2021; Sauer et al., 2022; Epstein et al., 2022), and
the optimization of training (Arjovsky et al., 2017; Gulrajani et al., 2017; Miyato et al., 2018; Zhang
et al., 2018; Liu et al., 2020; Sauer et al., 2021). In this paper, we push the envelope further: how to
reduce mode-collapse and training instabilities by investigating the generated data-manifold.

Recent work by (Wu et al., 2019; Sinha et al., 2020; DeVries et al., 2020; Casanova et al., 2021)
suggests that exploring the training data manifold can be useful when the GAN network is trained
on samples closer to data-manifold. That is, leveraging more realistic generated samples helps the
generator converge better. Wu et al. (2019) updates the generator and discriminator parameters using
the sampling noise as input of the generator which outputs more realistic images. However, they fail
to use ‘less realistic’ generated samples. Top-k (Sinha et al., 2020) discards the gradient contributions
from the elements of the batch that the discriminator scores as ‘least realistic’. Yet, it finally only
learn the main distribution of the real data, and suffers from challenging of using small training
batch size. DeVries et al. (2020); Casanova et al. (2021) train a GAN network by considering the
local data-manifold which is expressed with the nearest neighbor. DeVries et al. (2020) simply zero
out the training sample which is within the low data dense, resulting in using all training samples.
Casanova et al. (2021) requires extra input images when using the trained generator at test time. In
this paper, we explore how to detect and utilize the generated sample closer to the real data-manifold.
Furthermore, we propose a new method to improve the quality of synthesized samples which are far
away from the data-manifold.

To further improve the training of GANs: we investigate both the fake data-manifold and the real
data-manifold, and propose a divide and conquer policy for GAN training. As shown in Fig. 1 (left),
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Fake sampleReal sample

Figure 1: (Left) the manifolds of both the real (green ball) and fake (red ball) samples overlap
for already trained GAN model. (Middle) we intensify the fake images which are within the real
data-manifold. (Right) we push the generated images which are not within the real data-manifold.

we hypothesize the manifolds of both the real and fake samples overlap for already trained GAN
model,which we think it holds (Theis et al., 2015). We introduce a local data-manifold detector
(LDMD) which deploys the generated image. That is, LDMD is used to estimate whether the
generated sample is within the real data-manifold or not. With the introduced LDMD, we label
the generated image as reliable fake image (RFI) or non-reliable fake image (nRFI). The former
(Fig. 1 (middle)) is within the real data-manifold, and provides more useful gradients when updating
the generator (Wu et al., 2019; Casanova et al., 2021), which encourages the generator to preserve
strong connection with the local training manifold. The latter (i.e., nRFI) is not within the real
data-manifold, for which we propose a new method to push the generator output to the side of the true
real data-manifold (Fig. 1 (right)). After distinguishing RFI and nRFI, we propose two methods by
using both the input noise and the generated fake image. Furthermore, we consider the density around
each RFI, which can weight the importance of RFI which is high density area, improving GANs
performance. We evaluate the proposed method on multiple datasets, including complex datasets
which have significant differences such as Cifar10 (Krizhevsky et al., 2009), AFHQ (Choi et al.,
2020) and ImageNet (Deng et al., 2009).

In sum, our work makes the following contributions:

• We propose a local data-manifold detector (LDMD), which contributes to estimate whether the
generated images are inside or outside of the data manifold.

• With the proposed local data-manifold detector(LDMD), we further propose a new resampling
method of both the input noise and the generated image, which are utilized to improve GAN
optimization.

• Extensive experimental results in a number of GANs variants demonstrate qualitatively and
quantitatively that our method improves GANs performance, resulting in more realistic images
than previous methods as confirmed by a significant drop in the FID.

2 RELATED WORKS

GANs. The original GANs (Goodfellow et al., 2014) is defined as containing two components:
generator and discriminator, and subsequent related works also follow this structure. Mode collapse
and training instability are two main challenges in the training process of GANs. Many approaches
focus on solving these above-mentioned problems (Gulrajani et al., 2017; Salimans et al., 2016;
Mao et al., 2017; Arjovsky et al., 2017; Miyato et al., 2018; Bang & Shim, 2021; Liu et al., 2022).
SNGAN (Miyato et al., 2018) proposed a novel weight normalization technique to stabilize the
training of the discriminator. StyleGAN (Karras et al., 2019) improves the architecture of the generator
to control the high-level attributes and stochastic variation of synthesis images. BigGAN (Brock et al.,
2019) successfully generates conditional high-resolution and various images using ImageNet (Deng
et al., 2009). StyleGAN-XL (Sauer et al., 2022) inserts conditional information for StyleGAN, and
manages to generate the high-fidelity image. Some methods (Schwarz et al., 2020; Nguyen-Phuoc
et al., 2019; Chan et al., 2021; Niemeyer & Geiger, 2021b;a; Nguyen-Phuoc et al., 2020; Lunz et al.,
2020; Henderson et al., 2020; Gadelha et al., 2017; Jimenez Rezende et al., 2016; Gu et al., 2021;
Zhao et al., 2022) have already combined 3D scene representations with GANs, which can be trained
using only single-view images.
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Data manifold for GANs. Recent methods (DeVries et al., 2020; Casanova et al., 2021; Sinha et al.,
2020; Wu et al., 2019) consider the data-manifold for GANs training, since exploring the training
data manifold could improve model performance when the GAN network is trained on samples closer
to data-manifold. That is, more realistic samples could be useful for generating more realistic images.
(Wu et al., 2019) focuses on the local noise distribution which is corresponding to more realistic
image. Top-k (Sinha et al., 2020) indicates that (Wu et al., 2019) ignores ‘less realistic’ generated
samples, and proposed to only leverage the elements of the batch, which has the maximum probability
scores of the discriminator outputs. Top-k, however, fails to get access to the fake distribution as
well as the challenge usage of small training batch size. (DeVries et al., 2020; Casanova et al.,
2021) explore the impact of reducing the size of the training set when training GANs. Specially they
use the nearest neighbour to present the data manifold, and strengthen the usage of the high-dense
manifold. Although (DeVries et al., 2020) got better metric scores, it fails to use all training samples.
(Casanova et al., 2021) needs extra input image when using the trained generator at test time. In this
paper, the proposed method avoids this disadvantages, and improve GANs performance.

GANs Evaluation. Better correlation with human perception has been found in the widely used
Inception Score (Salimans et al., 2016), but recent works have also shown its limitations (Zhou
et al., 2018). Latest quantitative metrics (Heusel et al., 2017; Sajjadi et al., 2018; Kynkäänniemi
et al., 2019; Naeem et al., 2020) have achieved convincing performance. For image generation
tasks, FID score (Heusel et al., 2017), the most popular metric, has empirically exhibited good
agreements with human perceptual scores. FID, however, fails to separate two important properties
of the quality of generative models: fidelity and diversity. To address this shortcoming, (Sajjadi et al.,
2018; Kynkäänniemi et al., 2019; Naeem et al., 2020) proposed two-values metric: Precision/Recall,
and density/coverage. These methods, however, only evaluate the trained model instead of guiding
directly GANs training. Inspired by (Kynkäänniemi et al., 2019) we use the nearest neighbour to
estimate the data-manifold, and optimize GANs training.

3 METHOD

Here we briefly introduce GANs. A GAN consists of a deep generative model G and a discriminative
model D, both of which play a mini-max game. The aim of the generator is to generate a distribution
pg that is similar to the real data distribution pdata, such that the discriminative network cannot
distinguish between the images from the real data distribution and the generated ones (the model
distribution).

Let z ∈ RZ be random noise, and x (where x ∈ X ) be a real image drawn from the real data
distribution pdata. The generator G takes the noise variable z as input, aiming to synthesize samples
obeying the distribution pg . The discriminative model D(x) computes the probability of which input
data x is from pdata rather than the generated model distribution pg. Ideally, D(x) = 0 if x ∼ pg
and D(x) = 1 if x ∼ pdata. More formally, the generative model and discriminative model are
trained by solving:

min
G

max
D

V (D,G) = Ex∼pdata
[logD (x)] + Ez∼p(z) [log (1−D (G(z)))] (1)

where p (z) follows the normal distribution.

3.1 A DIVIDE AND CONQUER POLICY FOR GAN EFFICIENT TRAINING

Given a well-trained generator (Karras et al., 2019; Brock et al., 2019), we observe that some synthe-
sized samples well follow the real data manifold and have high-fidelity quality, while others do not.
This phenomenon inspires us to explore processing the two groups of generated samples differently.
Therefore, we propose a divide and conquer policy for GAN training. For the sample within the real
data manifold, we can reuse it to further improve GAN performance as suggested (Casanova et al.,
2021; DeVries et al., 2020; Sinha et al., 2020; Wu et al., 2019), aiming to reinforce the real data
manifold. The noise, i.e., the samples that are outside the real data manifold, are replayed. In this
paper, we present the local data manifold detector (LDMD), studying the implicit data local manifold
to split the generated images during training. Finally, we propose a more efficient training scheme
that handles the two groups of generated images differently.
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Figure 2: (Left) Overview of local data manifold detector (LDMD). We expect the generator to
generate realistic images (i.e., black solid dots) similar to the neighbors (i.e., orange solid dots),
defined circus with orange color. We define the generated image as reliable fake image (RFI) if it
follows E.q 5. If not, it is a non reliable fake image (nRFI). (Right) The proposed local data manifold
detector (LDMD) finds both RFI and nRFI. RFI is taken as input for the discriminator as well as the
batch fake images, to push the generator to connect strongly to the local data manifold, aiming to
improve GAN performance. For nRFI, we replay the noise which is corresponding to nRFI, and feed
it into the generator, aiming to close the local data manifold.

Local data manifold detector. Inspired by the GAN evaluation method (Kynkäänniemi et al.,
2019), we build a local data manifold detector based on the k-nearest neighbour algorithm. Generated
images are considered to be within the local manifold if the generated image is within the manifold
(estimated by of the nearest neighbours) of the real image, and the real image also is within the nearest
neighbours of the generated image 1. Using k-nearest neighbors has proven to be very successful in a
myriad of computer vision tasks such as categorization (Zhang et al., 2006), detection (Cohen et al.,
2020), and retrieval (Dwibedi et al., 2021). Thus, we use k-nearest neighbors to achieve the goal of
finding the local data manifold. Specially, we first extract feature f of each real image x with the
feature extractor F (i.e., InceptionV3 (Szegedy et al., 2016)). Then we build the memory bank S to
store all real image features:

f = F(x) (2)

S = [f0,f1, . . . ,fnt−1] (3)

where nt is the number of the real images X . Similarly, we also extract the feature representation f̂
of fake images x̂j from the current batch G(zj):

f̂ = F(x̂j) = F(G(zj)) (4)

The index j is 0,1,...,nb − 1, and nb is the batch size. We build the nearest neighbour set
N i

k(i=0,1,...,nt − 1) of the training data, here N i
k is the index set of the k-nearest neighbors of

feature fi for the training sample xi. We define Dmax(N i
k) to be the maximum distance of the

k-nearest neighbors. We also construct the nearest neighbour set N j
k (j=0,1,...,nb − 1) between the

features of the generated image and the real image, here the index j is 0,1,...,nb − 1, and nb is the
batch size. We define Dmax(N j

k ) to be the maximum distance of the k-nearest neighbor.

Inspired by recent work (Kynkäänniemi et al., 2019; Naeem et al., 2020), we use the Euclidean
distance for nearest neighbor retrieval. Constructing the nearest neighbor aims to find local manifold
of the training data in the feature space (Kynkäänniemi et al., 2019; Naeem et al., 2020). As
Kynkäänniemi et al. (2019) mentions, it is possible to estimate the true training manifold by computing
pairwise Euclidean distances between all feature vectors in the training data. For each training feature
embedding, we construct a hypersphere with a radius equal to the distance to its kth nearest neighbor
(i.e., Dmax(N i

k)).

1The nearest neighbour of the real image is selected among the real images, while the nearest neighbour of
the generated image is computed between the generated fake image and all real images.
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Based on both the nearest neighbour index set N i
k and N j

k , we propose to further annotate the
generated images separately. We label each fake image as being either a reliable fake image (RFI) or
a non-reliable fake image (nRFI). As shown in Fig. 2 (left), a reliable fake image (RFI) is defined by
the following constraints: {

D(x̂j ,xi) < Dmax(N i
k)

D(xi, x̂j) < Dmax(N j
k ),

(5)

where D(x̂j ,xi) is the distance between x̂j and xi (i ∈ N j
k ). Eq. 5 indicates that the generated

image is within the estimated nearest neighbour of the real image (i.e., N i
k), and the real image also

is within the estimated nearest neighbour of the generated image (i.e., N j
k ). We assume that the

generated image is reliable if the generated image meets Eq. 5, which we believe is reasonable since
it has been used to evaluate GANs model (Kynkäänniemi et al., 2019) at test time. If the generated
image G(zj) does not meet Eq. 5, we label it as a non-reliable fake image (nRFI), which indicates
that the generated image G(zj) is not within the training manifold.

The definition of a reliable fake image (RFI) indicates that the fake image x̂j is strongly connected
with the local training data manifold, since the given fake image feature is within the local training
manifold. (Kynkäänniemi et al., 2019) proposed this mechanism to match the distributions of both
the real data and the fake data when evaluating GAN models. In this paper, we adapt it to train GANs.
In the following section, we introduce how to use both RFI and nRFI to efficiently train GANs.

Reliable fake image (RFI). Recent work by (Casanova et al., 2021; DeVries et al., 2020; Sinha et al.,
2020; Wu et al., 2019) indicate that exploring the training data manifold can be more useful when
the GAN network is trained on samples closer to data-manifold. Motivated by the same insight, we
propose to reuse RFI. To be specific, as shown on Fig. 2 (right) we re-enter RFI into the discriminator,
as well as using current batch samples.

min
G

max
D

V (D,G) = Ex∼pdata
[logD (x)] + Ez∼p(z) [log (1−D (G(z)))]

+ Ez∼prfi
[log (1− w(m(G(z))) ∗D (G(z)))]

(6)

w(·) = 1 + sigmoid(·) (7)

where prfi follows the normal distribution, from which noise z is sampled to generate the correspon-
dence to RFI. m is the number of the real image which meets Eq. 5. We hypothesize that the more
real images xi meet Eq. 5, the higher the probability that the generated sample xj = G(z) is within
the real data-manifold, which indicates xj = G(z) is more useful when computing gradient, as also
suggested (Casanova et al., 2021; Wu et al., 2019). This inspires us to introduce a weight w(·). In
this paper, we only utilize this mechanism when updating the generator. Specially, when updating
the generator RFI is reused to compute the gradient, we do not re-enter RFI when optimizing the
discriminator, since the discriminator suffers from the challenge of balancing both the real and fake
image distribution.

Non-Reliable fake image (nRFI). We re-enter the same noise into the generator when the corre-
sponding output of the generator is nRFI. Since nRFI is not within the real sample manifold, we
sample the same noise to push the generator output to the side of the true real sample manifold. We
define the loss as:

min
G

max
D

V (D,G) = Ex∼pdata
[logD (x)] + Ez∼p(z) [log (1−D (G(z)))]

+ Ez∼pnrfi
[log (1−D (G(z + δ)))]

(8)

where pnrfi follows the normal distribution which is corresponding to nRFI. δ is a noise perturbation.
Prior work (Yang et al., 2021) has mentioned the continuity of images synthesized from the latent
codes within a neighbourhood are positive with the continuity of the latent codes. Thus we hypothesize
that the small area of the noise devoted to nRFI is still corresponding to the fake image distribution
outside of the real data-manifold. Therefore we introduce a noise perturbation δ strategy into the
noise which is corresponding to nRFI. In our paper we sample δ from a Gaussian distribution whose
variance (i.e., 0.5) is sufficiently smaller than that of z. (Yang et al., 2021) uses this technique for
contrastive learning.
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Figure 3: Results on CIFAIR-10(Top-left), Tiny-ImageNet(Top-right) and AFHQ-cat(bottom).

Full Objective. The full objective function of our model is:

min
G

max
D

V (D,G) = Ex∼pdata
[logD (x)] + Ez∼p(z) [log (1−D (G(z)))]

+ Ez∼prfi
[log (1− w(G(z)) ∗D (G(z)))]

+ Ez∼pnrfi
[log (1−D (G(z + δ)))]

(9)

4 EXPERIMENTS

In this section, we first introduce the used evaluation measures, datasets and architectures. Then, we
explore a wide variety of configurations for our approach, and evaluate our method on different GAN
architectures and datasets.

4.1 EXPERIMENT SETTING

Datasets. We evaluate our model on varying kinds of datasets, including CIFAR-10 (Krizhevsky
et al., 2009), AFHQ (Choi et al., 2020) and ImageNet (Deng et al., 2009). CIFAR-10 dataset contains
60000 32× 32 colour images and 10 classes in total. There are 50000 training images and 10000
test images. AFHQ contains 3 classes (i.e., cat, dog and wild), each one has about 5000 training
images and 500 test images. We evaluate our method on each category with resized image 256× 256.
We use 1000 images to train, and the remaining images for test. Here we only use AFHQ-cat.
ImageNet (Deng et al., 2009) contains 1,281,167 training images with 128× 128 considered, and
1000 object classes. We also consider Tiny ImageNet, which contains 100,000 images of 200 classes
(500 for each class) downsized to 64 × 64 colored images. We leverage validation set to test our
model.
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Figure 4: The nearest neighbour of the generated image on Tiny-ImageNet. The left images are the
generated samples, while the remaining ones are the nearest neighbour samples of the training dataset

Figure 5: T-SNE of both the training data and the fake data on CIFAR-10. The proposed method
manages to learn the class-specific distribution.

Baselines. We compare to DCGAN (Radford et al., 2015), SAGAN (Zhang et al., 2018),
SNGAN (Miyato et al., 2018),Top-k (Sinha et al., 2020), ISGAN (DeVries et al., 2020) and Style-
GAN (Karras et al., 2019). Top-k (Sinha et al., 2020) discards the fake images which have the
lowest discriminator outputs, and preserve the ones which have the highest discriminator outputs.
ISGAN (DeVries et al., 2020) focuses on the areas of the high data-manifold. For StyleGAN (Karras
et al., 2019) we leverage the pretrained model 2 to compare both baselines and the proposed method
due to the limited computing resources. All of aforementioned methods perform unconditional
GANs. We also consider BigGAN (Brock et al., 2019) to conduct conditional image generation. Our
code highly relies on StudioGAN project 3. The training details for all models are introduced in
StudioGAN.

Evaluation Measures. We employ two widely used Inception Score (IS) (Salimans et al., 2016) and
Fréchet Inception Distance (FID) (Heusel et al., 2017) for evaluation. We also use two-value metrics:
Precision and Recall (PR) (Kynkäänniemi et al., 2019) and Density and Coverage (DC) (Naeem et al.,
2020). Both PR and DC evaluate the quality and the diversity.

2https://github.com/rosinality/stylegan2-pytorch.
3https://github.com/POSTECH-CVLab/PyTorch-StudioGAN.
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Architecture Method FID IS Precision Recall Density Coverage

DCGAN

Naive 49.02 6.63 0.56 0.31 0.44 0.35
Top-k 45.62 6.65 0.60 0.33 0.52 0.35

ISGAN 56.73 5.89 0.52 0.26 0.38 0.29
Ours 42.77 6.67 0.64 0.32 0.58 0.42

SNGAN

Naive 23.65 7.86 0.65 0.64 0.69 0.63
Top-k 22.54 7.97 0.65 0.63 0.71 0.68

ISGAN 29.43 6.67 0.58 0.55 0.64 0.59
Ours 19.87 8.01 0.69 0.66 0.73 0.70

SAGAN

Naive 22.31 7.92 0.63 0.64 0.66 0.61
Top-k 18.21 8.70 0.66 0.66 0.73 0.65

ISGAN 30.15 6.75 0.61 0.52 0.62 0.55
Ours 17.86 8.65 0.70 0.67 0.75 0.73

BigGAN

Naive 7.24 9.43 0.65 0.74 0.92 0.85
Top-k 7.21 9.89 0.68 0.72 0.99 0.91

ISGAN 7.11 10.0 0.67 0.73 0.97 0.92
Ours 7.09 10.10 0.69 0.75 1.01 0.93

Tiny-ImageNet

SNGAN

Naive 69.57 6.26 0.38 0.26 0.24 0.19
Top-k 66.29 6.75 0.41 0.27 0.31 0.22

ISGAN 65.62 6.89 0.46 0.29 0.24 0.23
Ours 63.76 7.05 0.50 0.31 0.29 0.24

SAGAN

Naive 65.12 6.89 0.44 0.28 0.27 0.22
Top-k 63.90 7.24 0.47 0.31 0.32 0.26

ISGAN 62.81 7.67 0.50 0.30 0.29 0.28
Ours 60.84 7.84 0.51 0.33 0.33 0.27

BigGAN

Naive 23.65 7.12 0.63 0.59 0.66 0.62
Top-k 22.19 7.64 0.68 0.62 0.69 0.67

ISGAN 22.02 7.34 0.65 0.60 0.64 0.66
Ours 19.87 8.01 0.69 0.66 0.73 0.70

Table 1: Reporting the metric values on both CIFAR-10 and Tiny-ImageNet dataset for various GAN architec-
tures. The GAN variants considered are SNGAN, SAGAN and BigGAN. Naive means that we directly use the
corresponding architecture method.

AFHQ-cat ImageNet
IS FID Precision Recall Density Coversity IS FID Precision Recall Density Coversity

StyleGAN 1.91 7.23 0.27 0.64 0.13 0.09 BigGAN 98.51 8.54 0.75 0.60 0.96 0.82
Top-K 2.02 6.42 0.31 0.65 0.13 0.10 Top-K 105.62 8.50 0.76 0.62 0.96 0.83
Ours 2.34 6.29 0.38 0.71 0.17 0.15 Ours 109.32 8.32 0.78 0.63 0.98 0.83

Table 2: Quantitative results of the proposed method on AFHQ-cat(left) and ImageNet(right).

4.2 RESULTS

Quantitative results. Tables 1 (up) reports the quantitative results of the baselines and the proposed
method on the CIFAR-10 dataset to assess both conditional and unconditional GANs. Both the
baselines and our method use the same architecture for each of the GAN variants. We can see that the
proposed method almost everywhere achieves the best performance in terms of six evaluation metrics,
except for the IS metric using SAGAN. This indicates that our model produces the most realistic
and correct class-specific images among all the methods compared. Top-k using both DCGAN and
SAGAN has the best Recall and IS scores. As reported on Table 1 (bottom), our method wins in all
metrics on Tiny-ImageNet dataset, clearly verifying the importance of the proposed method(LDMD,
RFI and nRFI ) to improve the GAN’s performance.

We further compare our method on different architectures, including StyleGANan d BigGAN. We
evaluate our method on AFHQ-cat and ImagNet. As reported on Table 2, we obtain the best score
for all metrics. Here we use the pretrained StyleGAN model from FFHQ (Karras et al., 2019), and
finetune it on AFHQ-cat.

Qualitative results. Fig. 3 exhibits the generated images on three datasets: CIFAR-10, Tiny-
ImageNet and AFHQ-cat. We observe that our method provides a high visual quality. Fig. 4 shows
the nearest neighbor images of RFI (here k=7). This indicates that our found RFI, based on LDMD,
are close to local data-manifold. The T-SNE plot (Fig. 5) also shows that our method successfully
generates class-specific images.

4.3 ABLATION STUDY

We conduct ablation studies to isolate the validity of the key components of our method: RFI and
nRFI. We analyze the behavior of the proposed method with different nearest neighbor factors. We
also ablate the impact of both the weight w (Eq. 7) and the noise perturbation δ(Eq. 8).

RFI and nRFI. We explore a wide variety of configurations for our approach, including: DC-
GAN+RFI, DCGAN+nRFI, and DCGAN+RFI+nRFI. Fig. 6 presents a comparison between several
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Figure 6: Ablation study of the variants of our method with DCGAN architecture on CIFAR-10. For
FID score the lower is better, while the remaining metrics the higher is better.
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Figure 7: (Left 1) ablation study on the impact of varying kth nearest neighbour on CIFAR-10. (Left
2) ablation study of the varying δ of our method. (Left 3) the impact of varying times when re-entering
RFI and replaying noise which is corresponding to nRFI. (Right 1) evolution of the percentage of
RFI, which is conducted on AFHQ-cat with StyleGAN architecture.

variants of our method in terms of FID, IS, Percision and Recall with DCGAN architecture on
CIFAR-10. As shown in Fig. 6, the proposed method using both RFI and nRFI is able to achieve a
better score than DCGAN on all metrics. Using either RFI or nRFI contributes to improve the model
performance except for DCGAN+nRFI which has lower IS value than DCGAN.

kth nearest neighbor. We ablate the impact of varying kth nearest neighbor for both SAGAN
and SNGAN. Fig. 7 (left 1) presents qualitative results on CIFAR-10. Changing this value has a
significant effect on the GAN’s performance. Using either small or larger k values leads to negative
performance. We are able to get better results when leveraging the value from 300 to 800. We found
that k value depend on the dataset, since each category of different datasets has a different number of
images. We set 300 for CIFAR-10, 800 for ImageNet (also Tiny-ImageNet) and 100 for AFHQ-cat.

Noise perturbation. We evaluate the impact of varying Gaussian mean. As shown on Fig. 7 (left 2)
with SNGAN on CIFAR-10, the proposed method exhibits the best performance when mean δ = 0.5.
Without Gaussian noise (i.e., δ = 0 ), our method has sub-optimal result.

Varying times of reusing the noise and the fake image. We ablate the influence of the times for
reusing the noise and the fake image. As shown on Fig. 7 (left 3) with SNGAN on CIFAR-10, the
FID value decreases when reusing 1 time. This is followed by a stable rise, which indicates that
increasing the reuse does not correspond to improved GAN performance. Thus, in this paper, we
only replay once.

Change of parentage of RFI Fig. 7 (right 1) shows the evolution of the percentage of RFI. We
evaluate our method using the pretrained StyleGAN on AFHQ-cat. We observe the percentage gets
larger during training, which indicates that more fake images are similar to the real images, and the
area of overlapping of both the fake and real data distributions get larger.

5 CONCLUSION

We have described a divide and conquer policy for GAN training which is effective for improving
GAN performance. We propose the nearest neighbour aware local data manifold detector, which
accurately and efficiently annotates the generated images into RFI and nRFI. we further introduce
a noise replay mode if it is nRFI, and a fake sample reuse mode if it is RFI. In the experiment, we
show that our method achieves good performance on varying kinds of GAN architecture variants and
datasets, which proves the effectiveness of our method.
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