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Abstract

In offline reinforcement learning (RL), addressing out-of-distribution (OOD) ac-
tions is essential for safe policy learning, as such actions often lead to overestimated
values and risky behaviors. Existing methods primarily tackle this issue through
regularization or counterfactual reasoning but often lack a principled approach
to guarantee safe exploration within dataset constraints. This paper presents a
novel approach that incorporates safe RL theory into offline RL by introducing
the Dataset Feasibility Function (DFF), enabling policy learning that respects
dataset boundaries while managing OOD risks. Our proposed Dataset-Constrained
Reinforcement Learning (DCRL) framework employs two mechanisms: Dataset
Feasibility Guidance (DFG), which serves as a regularization term to keep the pol-
icy aligned with the dataset distribution, and Dataset Feasibility Indication (DFI),
which acts as an OOD detection tool. DFI enables safe out-of-distribution explo-
ration by leveraging model rollouts constrained within feasible zones identified
by a larger tolerance threshold. This approach uniquely blends safety constraints
with both regularization and counterfactual reasoning to advance performance and
robustness in offline RL. Empirical evaluations on benchmark datasets validate
that DCRL outperforms existing methods, achieving superior safety and efficacy in
constrained offline tasks.

1 Introduction

Reinforcement Learning (RL) has emerged as a pivotal technology in artificial intelligence[1], driving
advancements in fields such as industrial automation[2] [3] and autonomous driving [4]. However,
in many real-world applications, safety concerns limit agents’ ability to explore their environments
freely, necessitating the use of offline RL. In this paradigm, agents must derive policies from a fixed
dataset of experiences without real-time interactions, which presents unique challenges.

A significant issue in offline RL is the handling of out-of-distribution (OOD) actions. These arise
when an agent selects actions that are underrepresented or absent from the training dataset, often
leading to value overestimation, suboptimal policies, and poor generalization to new situations.
Traditional offline RL methods, including behavior cloning, policy regularization, and pessimistic
value-based approaches, aim to mitigate these OOD risks. However, they grapple with a persistent
trade-off between conservatism and flexibility.[5] Overly conservative methods, such as Conservative
Q-Learning (CQL)[6] and Behavior Regularized Actor-Critic (BEAR)[7], can hinder agents from
discovering optimal actions within the dataset. In contrast, more flexible methods, such as Behavioral
Cloning with Q-function (BCQ)[8] and Implicit Q-Learning (IQL)[9], still risk selecting suboptimal
OOD actions. Consequently, these approaches often either over-constrain the learned policy, limiting
its potential, or allow risky explorations that could lead to unsafe actions.
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Rather than confining policy learning to the available data, a novel strategy in offline RL is to enhance
exploration through accurate policy evaluation beyond the data support, enabling OOD adaptation.
Recent strategies also suggest a more controlled approach: selectively "budgeting" counterfactual
decisions to strategically determine where OOD actions may enhance policy outcomes without
increasing error risk. [10] Additionally, in cross-domain offline RL, a novel representation-based ap-
proach mitigates dynamics mismatches by recovering mutual information between transitions across
domains without full domain alignment.[11] This selective cross-domain data sharing significantly
enhances learning performance in the target domain with limited data requirements, making it a
promising method for safe and adaptive OOD exploration.

Safe reinforcement learning (RL) focuses on optimizing policies while adhering to predefined con-
straints to ensure agent safety, especially in risk-sensitive environments. Reachability Constrained
Reinforcement Learning (RCRL)[12] and Feasible Reachable Policy Iteration (FRPI)[13] are signifi-
cant developments in this area, where the policy iteratively considers both reward maximization and
reachability constraints, ensuring feasible state trajectories that meet safety criteria. Research, such
as [14] has outlined methods to incorporate feasibility checks within RL algorithms, highlighting
how these approaches can be applied to manage constraints effectively.

Obviously, the core idea of OOD techniques lies in constraining or detecting the policy within the
dataset distribution. But what if we could enhance this framework by incorporating safe reinforcement
learning strategies to prohibit constraint violations or improve feasibility identification? In this work,
we introduce Dataset-Constrained Reinforcement Learning (DCRL), the first approach to integrate
safe RL principles directly into the offline reinforcement learning (RL) OOD problem. Our approach
centers on the Dataset Feasibility Function (DFF), a novel mechanism that assesses the feasibility
of state-action pairs within dataset constraints. By embedding DFF as a regularization term in the
policy objective, DCRL provides a structured balance between conservatism and flexibility, guiding
the policy to stay within the dataset distribution while selectively permitting exploration beyond it.
This dual mechanism, encompassing Dataset Feasibility Guidance (DFG) and Dataset Feasibility
Indication (DFI), enables safe, data-compliant exploration while addressing the unique challenges of
offline RL. Extensive experiments demonstrate that DCRL not only outperforms existing offline RL
approaches in both safety and performance but also represents a significant step forward in leveraging
dataset constraints to achieve robust policy learning in constrained environments.

Our contributions are as follows:

• Introduction of Dataset Constraints in Offline RL: We are the first to apply safe RL
theory to the offline RL setting by introducing a dataset constraint framework, providing a
structured approach to mitigate OOD risks and promote safe policy learning.

• Dataset Feasibility Function (DFF) for Feasibility Evaluation: We propose the DFF as a
mechanism to assess the feasibility of state-action pairs within dataset limits, establishing
a principled method to guide safe exploration while maximizing performance within the
dataset boundaries.

• Dual Mechanisms for Enhanced OOD Management: We develop two complementary
strategies—Dataset Feasibility Guidance (DFG) and Dataset Feasibility Indication (DFI).
DFG serves as a regularization term that aligns the policy with the dataset distribution, while
DFI functions as an OOD detection mechanism, enabling controlled policy optimization
through counterfactual reasoning.

• Empirical Validation on Benchmarks and Real-World Applications: Extensive experi-
ments on D4RL benchmarks and a legged robot platform demonstrate that our approach
outperforms state-of-the-art methods, providing superior safety, adaptability, and robustness
in challenging offline RL environments.

2 Proposal Details

Proposal Details please refer to the Appendix.
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A Related Works

Offline Reinforcement Learning (RL) focuses on learning from fixed datasets without real-time
interaction, presenting challenges such as distribution shift, which can lead to out-of-distribution
(OOD) actions that may result in erroneous value estimations. Existing methods can be broadly
categorized into behavior cloning, pessimistic value-based, and regularized policy-based approaches.

Behavior Cloning (BC) is one of the earliest offline RL methods, directly regressing actions from the
dataset. While effective, BC’s limitation lies in its tendency to mimic suboptimal actions, making it
sensitive to dataset quality. Extensions like BCQ (Batch-Constrained Q-learning)[8] use a conditional
variational autoencoder[15] to improve flexibility but can still be overly conservative. TD3+BC[16]
combines behavior cloning[17] with actor-critic methods, using a BC regularization term, yet it
retains the rigidity of traditional BC methods.

Pessimistic approaches such as Conservative Q-Learning (CQL)[6] train the Q-function to underes-
timate the value of OOD actions, discouraging their selection but potentially stifling exploration of
optimal actions. Implicit Q-Learning (IQL)[9] employs expectile regression to avoid evaluating OOD
actions directly, reducing complications but limiting the agent’s exploration of high-value actions.

Regularized policy-based methods like BEAR (Batch Ensemble Actor-Critic with Regularization)
[7] apply Maximum Mean Discrepancy (MMD) to keep the learned policy close to the behav-
ior policy, allowing some exploration while remaining conservative. Similarly, DOGE (Dataset-
conditioned Offline RL via Geometric Exploration)[18] and SPOT (Support-Constrained Offline
Policy Optimization)[19] use distance functions and density-based regularization to constrain learn-
ing within the dataset’s convex hull. While these approaches are effective, they often incur high
computational costs due to their reliance on density estimation.

B Preliminary

B.1 Safe RL

Safe RL is typically formulated as a Constrained Markov Decision Process [20], which is specified by
a tupleM := (S,A, T, r, h, c,Amma). S and A represent the state and action space; T : S ×A →
∆(S) is transition dynamics; r : S × A → R is the reward function; h : S → R is the constraint
violation function; c : S → [0, Cmax] is cost function; and Amma ∈ (0, 1) is the discount factor.
Typically, c(s) = max (h(s), 0), which means that it takes on the value of h(s) when the state
constraint is violated (h(s) > 0), and zero otherwise (h(s) ≤ 0). [21]

B.2 Offline RL

In reinforcement learning (RL), the interaction between an agent and its environment is typically
modeled as a Markov Decision Process (MDP), denoted as M = {S,A, P,R, γ, d0}. Here, S
represents the state space, and A is the action space. The environment dynamics are governed by a
transition probability function P (s′ | s, a), which defines the probability of transitioning from state s
to state s′ when action a is taken. The reward function R : S ×A → R maps each state-action pair
to a scalar reward, and γ ∈ [0, 1) is the discount factor, controlling the importance of future rewards.
Finally, d0 represents the initial state distribution [22].

The goal in RL is to learn a policy πθ(a | s), parameterized by θ, that maximizes the cumulative
discounted reward E [

∑∞
t=0 γ

tr(st, at)], where r(st, at) is the reward obtained at time step t. The
action-value function (or Q-value) of a policy π is defined as:

Qπ(st, at) = Eat+1,at+2,···∼π

[ ∞∑
t=0

γtr(st, at)

]
. (1)

In the offline RL setting, rather than interacting with the environment, the agent is provided with a
static dataset D ≜ {(s, a, r, s′)}, collected by a behavior policy πb [23]. Offline RL algorithms aim
to learn a policy entirely from this dataset D, without requiring additional online interactions.
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Figure 1: Illustration of the forward calculation and back propaga-tion of our proposed policy
regularization with dataset constraint.

B.3 Value Overestimation Issue of Offline RL

We often use the following one-step Temporal Difference (TD) update [22] to approximate Qπ ,

Q̂π(s, a)← Q̂π(s, a) + ηδt, (2)

where δt =
[
r(s) + γ(1− d)Q̂π(s′, a′)− Q̂π(s, a)

]
, a′ = π(s′) and η is a hyper-parameter control-

ling the step size. With sufficiently enough samples, Q̂π will converge to Qπ [24]. But in offline
RL, the dataset D is limited, with partial coverage of the state-action space. Thus, (s′, a′) may not
exist in D (a.k.a., distribution shift) because a′ is predicted by the learned policy π, not the behavior
policy µ. If Q̂π(s′, a′) is overestimated, the error will continuously backpropagate to the updates of
Q̂π , eventually causing Q̂π to have overly large outputs for any input state-action. It is known as the
value overestimation issue, with which policy regularization [25] has been proven to be effective to
deal. And we can categorize existing works on policy regularization into distribution constraint and
support constraint (A).

C Dataset Constrained Reinforcement Learning

In this section, we present our approach to Dataset Constrained Reinforcement Learning (DCRL),
which focuses on learning optimal policies within the constraints of a fixed dataset collected from
various behavior policies. We begin by defining the dataset constraints, followed by an exploration of
in-distribution feasibility, the dataset feasibility function, and the framework for policy iteration.

C.1 Dataset Constraint

The basic motivation of Dataset Constraint (DC) is to allow the policy π to choose optimal actions
from all actions in the offline dataset D. Since either distribution constraint or support constraint
regularizes π by only selecting actions from the same state in the dataset, DC empowers a better
generalization ability on π.
Definition C.1 (Point-to-set distance). Given the offline dataset D, for any state-action pair (s, a) ∈
S ×A, we define its point-to-set distance to D as

dβD(s, a) = min
(ŝ,â)∈D

∥(βs)⊕ a− (βŝ)⊕ â∥,

where ⊕ denotes the vector concatenation operation and β is a hyper-parameter trading off the
differences in s and a.
Definition C.2 (Dataset Constraint Signal). We define the constraint signal, denoted as the cost c,
based on a distance metric between a given sample and its nearest neighbor in the dataset. This
constraint can be formulated in two different ways for practical purposes:

• Value-based format: The cost is a continuous value determined by:

c = dβD(s, a)− ϵ (3)

where dβD(s, a) represents the distance between the state-action pair (s, a) and its closest
neighbor in the dataset D, with ϵ as a predefined tolerance threshold.
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• Binary format: The cost is represented as a binary value indicating whether the distance
exceeds the tolerance threshold:

c =
(
dβD(s, a)− ϵ

)
> 0 (4)

In this case, the cost is 1 if the distance is greater than ϵ, and 0 otherwise.

C.2 Dataset Feasibility Function

The Dataset Feasibility Function (DFF) is designed to evaluate whether a given state-action pair (s, a)
is feasible within the constraints imposed by the dataset, specifically under the context of offline
reinforcement learning (RL). Unlike traditional Q-functions that estimate the expected cumulative
reward, DFF focuses on estimating the likelihood of a state-action pair being within the dataset’s
support. By doing so, DFF plays a crucial role in guiding policy learning away from out-of-distribution
(OOD) regions, ensuring that the learned policy remains within the feasible regions defined by the
dataset.

The DFF can be formally defined in the context of constrained decision-making as follows:

Fh(s, a) = E
[
max
t∈N

h(st) | s0 = s, a0 = a

]
(5)

Where h(st) indicates whether a state st is within the feasible region defined by the dataset constraints
(binary or continuous feasibility measure). Fh(s, a) is the dataset feasibility action-value function,
which evaluates the feasibility of taking action a in state s based on dataset support.

This formulation allows the DFF to serve as a regularization term that penalizes policies for selecting
OOD actions. The lower the DFF value for a given state-action pair, the more likely it is that the
action is OOD, and vice versa. This makes the DFF an essential tool for controlling policy exploration,
particularly in scenarios where dataset coverage is limited.

C.2.1 Constrained MDPs

To formalize the problem of avoiding OOD actions, we model the offline RL problem as a Constrained
Markov Decision Process (CMDP). In a CMDP, the agent must optimize its expected return while
satisfying a set of constraints that reflect real-world limitations or, in our case, dataset support
constraints.

The CMDP can be defined by the tuple ⟨S,A, P,R,C, γ⟩, where S is the state space. A is the
action space. P (s′ | s, a) is the transition probability from state s to state s′ after taking action a.
R(s, a) is the reward function. C(s, a) is the cost function that encodes the dataset feasibility. Here,
C(s, a) = 0 if (s, a) is within the dataset support and C(s, a) > 0 otherwise. γ is the discount factor.

In this framework, the DFF acts as the constraint function within the CMDP. The agent’s objective is
to maximize the expected cumulative reward while minimizing the cumulative cost associated with
OOD actions:

max
π

E

[ ∞∑
t=0

γtR(st, at)

]
, s.t. E

[ ∞∑
t=0

γtC(st, at)

]
≤ ϵ (6)

Where ϵ is a threshold for acceptable OOD behavior. This formulation ensures that the policy avoids
actions leading to unsafe or unsupported states while still exploring within the feasible dataset region.
Remark C.3 (DFF as an OOD Indicator). The key to proving DFF as an OOD indicator lies in its
ability to estimate the feasibility of state-action pairs under the dataset constraints. Since the DFF
evaluates whether a state-action pair belongs to the support of the dataset, it naturally acts as an
indicator for OOD actions. If the DFF value for a given (s, a) is low, it indicates that the pair lies
outside the dataset’s feasible region. On the other hand, a high DFF value suggests that the pair is
within the dataset’s support.
Remark C.4 (Implementing DFF as a Network). We implement DFF as a neural network to estimate
the feasibility of state-action pairs. The DFF network takes as input a state s and an action a, and
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outputs a scalar value representing the feasibility score for that pair. The architecture of the DFF
network can be designed similarly to a value network in traditional RL.

Formally, the loss for the DFF network is given by:

LDFF = E(s,a)∼D
[
(Fh(s, a)− h(s))2

]
(7)

Where Fh(s, a) is the predicted feasibility score from the DFF network, and h(s) is the ground truth
feasibility measure.

C.3 Dataset Feasibility Function (DFF) Update

In our method, the Dataset Feasibility Function (DFF) is a key component that helps to evaluate the
feasibility of state-action pairs based on dataset constraints. Inspired by the structure of TD3’s dual
value network, we introduce a similar dual update mechanism for DFF.

We define the optimal feasible state-value function C∗
h(s) and the optimal feasible action-value

function F ∗
h (s, a) as follows:

Definition C.5 (Optimal Dataset Feasible Value Function). The optimal feasible state-value function
C∗

h(s) is defined as:
C∗

h(s) := min
π

Cπ
h (s)

:= min
π

max
t∈N

h(st),

s.t. s0 = s, at ∼ π(· | st),

(8)

where h(st) denotes the feasibility measure (binary or continuous) indicating whether the state st is
feasible under the dataset constraints.

Similarly, the optimal feasible action-value function F ∗
h (s, a) is defined as:

F ∗
h (s, a) := min

π
Fπ
h (s, a)

:= min
π

max
t∈N

h(st),

s.t. s0 = s,a0 = a, at+1 ∼ π(· | st+1),

(9)

Theorem C.6 (DFF Update Rule). The DFF update rule follows a similar structure to TD3’s Q-value
update, incorporating both feasible state-value and action-value functions. For each state s, the
update for the feasible state-value function Ch is given by:

C ′
h(s) = (1− γ)h(s) + γmax (Ch(s

′), Fh(s, a)) , (10)

where γ is the discount factor applied in the infinite horizon setting, and s′ is the next state sampled
according to the dynamics model or dataset.

For action-value updates, we define the objective function in terms of state and action feasibilities:

F ′
h(s, a) = E [max (h(s), γFh(s

′, a′))] , (11)

where the next action a′ is sampled according to the policy π.

C.4 Dataset Constrained Reinforcement Learning Framework

We propose Dataset-Constrained Reinforcement Learning (DCRL), a novel framework that introduces
the Dataset Feasibility Function (DFF), a mechanism for evaluating the feasibility of state-action
pairs under dataset constraints. We leverage DFF in two key innovations: (1) Dataset Feasibility
Guidance (DFG), where DFF serves as a regularization term in the optimization objective to guide
policy learning within the dataset’s distribution, and (2) Dataset Feasibility Indication (DFI), which
identifies feasible zones and allows state-wise policy optimization with distinct objectives. If a
state-action pair is deemed in-distribution, we perform traditional optimization; if out-of-distribution,
we employ counterfactual reasoning to enable safe exploration beyond the dataset.
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C.4.1 Dataset Feasibility Guidance

To ensure the policy avoids out-of-distribution (OOD) actions, we incorporate DFF as a regularization
term directly into the policy optimization objective. This guides the policy toward maximizing
feasible actions while minimizing the risk of OOD actions. The objective for the policy update can
be written as:

π′ = argmax
π

Es,a∼π [Q
π(s, a)− λFh(s, a)] , (12)

where λ is a regularization parameter controlling the trade-off between reward maximization and
feasibility preservation.

Algorithm 1 DCRL-DFG

1: Input: Initial policy parameters ϕ, Q-function parameters θ1, θ2, C-function parameters ω1, ω2,
offline dataset D, hyper-parameters α, β, τ

2: Set θ′1 ← θ1, θ′2 ← θ2, ϕ′ ← ϕ
3: for step t = 1 to T do
4: Sample a mini-batch of transitions {(s, a, r, s′, d)} from D
5: Update θi, i ∈ {1, 2} using gradient descent with
6: Use KD-Tree to find the nearest neighbor in D of every (s, πϕ(s))
7: Calculate the necessary values
8: Update ϕ using gradient descent with
9: Update target networks:

10: θ′1 ← τθ1 + (1− τ)θ′1; θ′2 ← τθ2 + (1− τ)θ′2
11: ω′

1 ← τω1 + (1− τ)ω′
1; ω′

2 ← τω2 + (1− τ)ω′
2

12: ϕ′ ← τϕ+ (1− τ)ϕ′

13: end for

Proposition C.7 (Policy Evaluation). Consider an initial Q0 : S × A → R with |A| < ∞. The
Q-value iterates defined by Qk+1 = T π

c Qk will converge to a fixed point Qπ as k →∞.
Proposition C.8 (Policy Improvement). Let πk be the policy at iteration k, and πk+1 be the updated
policy (maximizing the objective function). Then for all (s, a) ∈ S × A with |A| < ∞, we have
Qπk+1(s, a) ≥ Qπk(s, a).

C.4.2 Dataset Feasibility for OOD Identification (Proposal)

To extend the Dataset Feasibility Function (DFF) for Out-of-Distribution (OOD) identification,
we propose a dual-threshold approach. The key idea is to maintain two thresholds, ϵ1 and ϵ2,
corresponding to two different levels of feasibility for state-action pairs. This framework enables us
to better manage policy optimization both within and beyond the dataset’s feasible region, allowing
safe exploration of OOD states through model rollouts.

In this proposal, we define two DFFs—one for in-distribution (ID) actions and one for actions that
are slightly out-of-distribution (OOD). These functions are governed by two separate feasibility
thresholds:

• ϵ1: A strict threshold that defines the primary dataset’s feasible region. State-action pairs
with feasibility scores above this threshold are considered safe and in-distribution.

• ϵ2: A more relaxed threshold that allows exploration into a secondary zone where state-action
pairs are feasible but riskier, and model rollouts can be applied for optimization.

Theorem C.9 (Policy Optimization under Dual DFF Constraints). Once the rollouts are generated,
policy optimization proceeds with the following structure:

• In-distribution optimization: When DFF1(s, a) ≥ ϵ1, the agent optimizes its policy using
traditional techniques, such as actor-critic methods, relying on actual dataset transitions.

• Out-of-distribution optimization: When ϵ1 > DFF1(s, a) ≥ ϵ2, optimization is based
on the model-generated rollouts, and the policy is updated subject to the relaxed dataset
feasibility constraint DFF2(s, a) ≥ ϵ2. [10]
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In our next phase of analysis, we will focus on:

1. Formalizing the DFI Framework: Further refining the mathematical framework for dual
DFFs, including determining optimal values for ϵ1 and ϵ2 based on the dataset and environ-
ment dynamics.

2. Designing the World Model: Developing a robust world model capable of accurately predict-
ing environment dynamics for OOD rollouts, potentially using techniques like normalizing
flows or variational autoencoders for dynamic modeling.

3. Integration with Policy Optimization: Implementing a two-stage optimization pipeline where
in-distribution and OOD optimizations are handled in parallel, ensuring smooth transitions
between the two modes.

C.5 Convergence Analysis

Theorem C.10 (Convergence of DCRL). The proposed DCRL algorithm converges to a policy π∗

that optimally balances performance and dataset constraints, achieving maxπ J(π) subject to the
feasibility conditions defined by the dataset.
Definition C.11 (Lipschitz Function). A function f from S ⊂ Rm into Rn is called a Lipschitz
function if there exists a constant K ≥ 0 such that

∥f(x)− f(y)∥ ≤ K∥x− y∥, (13)

for all x, y ∈ S. Here, K is known as the Lipschitz constant. We denote the L2 norm as ∥ · ∥ unless
stated otherwise.

D Experiment Proposal

D.1 Feasibility Zone Validation with Synthetic Dataset

To begin, we will evaluate the effectiveness of our Dataset Feasibility Function (DFF) in identifying
feasible zones through a controlled experiment using a synthetic dataset. This dataset will be generated
by us, designed to include both in-distribution (ID) and out-of-distribution (OOD) state-action pairs.
By visualizing the learned feasible zones, we aim to confirm that our DFF can accurately detect OOD
actions and guide the policy toward safe, in-distribution decisions. This step will allow us to validate
the feasibility zone boundaries in a straightforward setting and provide an intuitive understanding of
the DFF’s behavior.
Definition D.1 (Dataset Reachable Zone). The data collected by U enables the reach of various states
through trajectories. We denote the Dataset Reachable Zone as:

SDR = {s |
K∑
i=0

dµi
(s) > 0, s ∈ S}, (14)

where S is the state space, and SDR is the Dataset Reachable Zone. This zone consists of all states
with occupancy by U .
Definition D.2 (Feasible Region). The feasible region for policy π and the largest feasible region are
defined as:

Sπf := {s | V π
h (s) ≤ 0}, (15)

S∗f := {s | V ∗
h (s) ≤ 0}. (16)

D.2 Toy Car Tracking Environment

Next, we will apply our method to a toy car tracking environment to further explore the performance
of DFF under different dataset configurations. We will vary the composition of the dataset, testing
settings such as:

• Positive Sample Proportion: Varying the percentage of positive samples to assess the impact
on policy learning and generalization.
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• Goal-Reaching Data: Including or excluding data where the toy car successfully reaches its
goal to evaluate how this affects the feasibility zone and policy optimization.

These experiments will allow us to assess how the distribution of samples within the dataset influences
the DFF’s ability to guide the policy toward optimal actions.[26]

D.3 D4RL Benchmark Evaluation

Following the initial experiments, we will conduct extensive tests using the D4RL (Deep Offline RL)
benchmark, which includes a variety of standard tasks for offline RL evaluation. We will compare
our method, Dataset-Constrained Reinforcement Learning (DCRL), against state-of-the-art methods
such as CQL, BEAR, and BCQ. The datasets will cover diverse environments, including tasks with
varying difficulty levels and data quality.

We have already gathered preliminary results, which are summarized in the following table:

Table 1: Average normalized score over the final 10 evaluations and 5 seeds. Scores with the highest
mean are highlighted.

Task Name BC BCQ BEAR AWAC CQL IQL TD3+BC DOGE SPOT PRDC DCRL(DFG)

halfcheetah-random 0.2 8.8 15.1 — 20.0 11.2 11.0 17.8 — 26.9 26.9± 1.0
hopper-random 4.9 7.1 14.2 — 8.3 7.9 8.5 21.1 — 26.8 26.8± 9.3
walker2d-random 1.7 6.5 10.7 — 8.3 5.9 1.6 0.9 — 5.0 5.0± 1.2
halfcheetah-medium 42.6 47.0 41.0 43.5 44.0 47.4 48.3 45.3 58.4 63.5 65.8± 0.9
hopper-medium 52.9 56.7 51.9 57.0 58.5 66.2 59.3 98.6 86.0 100.3 101.3± 0.2
walker2d-medium 75.3 72.6 80.9 72.4 72.5 78.3 83.7 86.8 86.4 85.2 87.1± 0.4
halfcheetah-medium-replay 36.6 40.4 29.7 40.5 45.5 44.2 44.6 42.8 52.2 55.0 55.0± 1.1
hopper-medium-replay 18.1 53.3 37.3 37.2 95.0 94.7 60.9 76.2 100.2 100.1 101.4± 1.6
walker2d-medium-replay 26.0 52.1 18.5 27.0 77.2 73.8 81.8 87.3 91.6 92.0 93.1± 1.6
halfcheetah-medium-expert 55.2 89.1 38.9 42.8 91.6 86.7 90.7 78.7 86.9 94.5 102.9± 0.5
hopper-medium-expert 52.5 81.8 17.7 55.8 105.4 91.5 98.0 102.7 99.3 109.2 112.9± 4.0
walker2d-medium-expert 107.5 109.5 95.4 74.5 108.8 109.6 110.1 110.4 112.0 111.2 111.2± 0.6

These comparisons will highlight the strengths and weaknesses of our approach in relation to other
popular offline RL methods.

D.4 Real-World Application on Unitree GO1 Legged Robot

Finally, we will transition our experiments to a real-world application by testing DCRL on a Unitree
GO1 legged robot. The dataset for this task will be collected from real-world interactions where the
robot navigates different terrains and performs locomotion tasks. We will measure the performance
of our algorithm in terms of:

• Stability: How well the robot maintains balance and control across diverse scenarios.
• Policy Effectiveness: The ability of the learned policy to perform tasks safely while staying

within the dataset constraints.
• Real-World Generalization: Testing whether our approach can generalize from offline data

to real-world situations without encountering unsafe behavior.

This final experiment will demonstrate the practical application and robustness of DCRL in real-world
robotics, providing insights into its performance in complex, dynamic environments.
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